Übungsaufgaben zur Vorlesung Analysis I Wintersemester 2013/14 - Blatt 1

(abzugeben: Aufgaben 1 - 3 am Freitag, 25.10.2013, zu Beginn der Vorlesung)

- 1. Zeigen Sie mit Hilfe einer Wahrheitstabelle, dass die folgenden Aussagen T_1 , T_2 unabhängig vom Wahrheitswert der Aussagen A und B stets wahr sind:
 - a) $T_1 := [\neg (A \land B)] \Leftrightarrow [(\neg A) \lor (\neg B)]$

b)
$$T_2 := [A \Leftrightarrow B] \Leftrightarrow [(A \Rightarrow B) \land (B \Rightarrow A)].$$
 (2+2 Punkte)

- 2. Seien $a, b \in \mathbb{R}$. Zeigen Sie folgende Aussagen:
 - a) Ist $b \ge 0$ und $a^2 \le b^2$, so folgt, dass $a \le b$.
 - b) Aus $a^2 \le b^2$ folgt $|a| \le |b|$. Zeigen Sie weiterhin durch ein Beispiel, dass diese Aussage falsch werden kann, wenn man |a| durch a und |b| durch b ersetzt. (2+3 Punkte)
- 3. Bestimmen Sie (durch geeignete Fallunterscheidung) jeweils die Menge aller $x \in \mathbb{R}$, für die die jeweilige Ungleichung gilt:
 - a) |2x-1| < |x-1|

b)
$$2 - x^2 \ge |x|$$
. (2+2 Punkte)

- 4. Zeigen Sie mit Hilfe einer Wahrheitstabelle, dass die folgenden Aussagen T_1 , T_2 Tautologien sind:
 - a) $T_1 := [(A \Rightarrow B) \land (\neg B)] \Rightarrow (\neg A)$
 - b) $T_2 := [A \land (\neg B \Rightarrow C) \land (\neg (C \land A))] \Rightarrow B$
- 5. Seien $a, b \in \mathbb{R}$. Zeigen Sie folgende Aussagen:
 - a) Aus $0 \le a \le b$ folgt, dass $a^2 \le b^2$.
 - b) $|a \cdot b| = |a| \cdot |b|$.
- 6. Bestimmen Sie jeweils die Menge aller $x \in \mathbb{R}$, für die die jeweilige Ungleichung gilt:
 - a) $3 + x > x^2$,
 - b) $|x| \ge |x 2|$,
 - c) $\frac{x+1}{x-1} > 1$.