Übungsaufgaben: Nichtlineare Funktionalanalysis Serie 3

PD Dr. B. Rummler

Sommersemester 2020

1) Berechnen Sie möglichst elegant die Integrale:

a)
$$(2\pi i)^{-1} \oint_{S(0,3)} \frac{1}{z-2} dz = ?$$

b)
$$(2\pi i)^{-1} \oint_{S(0,3)} \frac{e^z}{e^z - 1} dz = ?$$

c)
$$(2\pi i)^{-1} \oint_{S(0,3)} \tan z \, dz = ?$$

2) (Auflösungssatz) Wir betrachten mit $\underline{F}:U(\underline{x}_o,\underline{y}_o)=D(\underline{F})\subset \mathbb{E}^n\times \mathbb{E}^m\to \mathbb{E}^m$ das Gleichungssystem

$$\underline{F}(\underline{x}, y) = \underline{0}. \quad (*)$$

Der Punkt: (\underline{x}_o, y_o) sei Lösung dieses Gleichungssystems.

Formulieren Sie als Folgerung aus Theorem 1.6 die Bedingungen für die lokale Auflösbarkeit von (*) nach y im Sinne von $y: \mathbb{E}^n \to \mathbb{E}^m$ bei $y(\underline{x}_o) = y_o$.

- 3) Zeigen Sie das nachfolgende lokale Invertierungs-Prinzip: Vorgegeben sei die C^1 -Abbildung $F:U(x_o)\subset\mathbb{X}\to\mathbb{Y}$, wobei \mathbb{X} und \mathbb{Y} Banachräume über dem Körper \mathbb{K} seien. F ist genau dann ein C^1 -Diffeomorphismus, wenn die Frechetableitung $F'(x_o)$ bijektiv ist. (Unter einem (lokalen) C^1 -Diffeomorphismus versteht man im obigen Sinne eine bijektive Abbildung $F:U(x_o)\to F(U(x_o))$ mit den C^1 -Abbildungen F und F^{-1} .)
- 4) (Schauder Operatoren)

Es seien \mathbb{H} ein reeller separabler unendlich-dimensionaler Hilbertraum und $M:=\{x\in\mathbb{H}:||x||\leq 1\}=\overline{K}(o_{\mathbb{H}},1)$ die abgeschlossene Einheitskugel in \mathbb{H} ausgestattet mit der durch die Norm von \mathbb{H} induzierten Metrik. Jedes $x\in\mathbb{H}$ habe die Fourier-Darstellung $x=\sum_{j=1}^{\infty}a_{j}w_{j}$.

Untersuchen Sie die unten erklärten Abbildungen T_1 , T_2 und T_3 hinsichtlich ihrer Stetigkeit und Vollstetigkeit. Geben Sie im Falle der Vollstetigkeit einer Abbildung die Schauder Operatoren P_8 an!

(a)
$$T_1: D(T_1) = M \to \mathbb{E}^1 \text{ mit } T_1(x) := (\sqrt{1 - ||x||^2}) \quad \forall x \in M$$
.

(b)
$$T_2: D(T_1) = M \to \mathbb{E}^1 \text{ mit } T_2(x) := ||x|| \operatorname{sgn}(a_1) \qquad \forall x \in M$$
.

(c)
$$T_3: D(T_1) = M \to \mathbb{H}$$
 mit

$$T_3(x) = T_3(\sum_{j=1}^{\infty} a_j w_j) := \sum_{j=1}^{\infty} \frac{\operatorname{sgn}(a_j)}{j^2} \cdot a_j w_j \quad \forall x \in M .$$