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Abstract  
The study of the final states at two-dimensional decaying turbulence in wall-bounded domains is 
connected immediately with investigations to the Stokes eigenvalue problem. ([1]) We regard the 
Stokes operator A on an open bounded square Q, where no-slip (homogeneous Dirichlet) boundary 
conditions are required. The square Q is a bounded and convex domain with a Lipschitz-continuous 
boundary, what from follows that one knows the weak regularity of the eigenfunctions w (respectively 
of the corresponding stream function T) to exhibit generalized derivations of second (resp. third) 
order with vanishing traces in the Sobolev-sense. ([2], [3] and [4]) Our path to tackle the Stokes 
eigenvalue problem is the following: We formulate the problem in the framework of equivalent 
sequence-spaces in the Fourier coefficients of the Fourier expansion of the stream (eigen-)function T 
(of w) in half-periodic sinusoidal functions. The Sobolev-spaces with generalized derivations are 
explained equivalently in the form of weighted sequence-spaces in the Fourier coefficients and 
Lagrange multipliers involve the boundary conditions as an infinite sequence of constraints as 
boundary functionals. We get as the Euler-Lagrange formulation of the eigenvalue problem a linear 
system of equations in indefinite Lagrange multipliers, where the searched eigenvalue I is a root of a 
transcendental equation expressed by infinite-dimensional determinants. Two different 
finite-dimensional approximations result in inclusions of every eigenvalue by upper and lower bounds, 
which converge for increasing dimension of approximations to I. Finally, we approximate the 
corresponding eigenfunctions w by successive approximation. The described method improves former 
results [5] especially in the calculation of the eigenvalues. 
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1. Introduction 
The system of Stokes eigenfunctions <��ý_ý@5¶

 span the spatial Sobolev spaces for the mathematical 

treatment of the incompressible Navier-Stokes equations as an initial-boundary-value problem, where 
the existence of a complete system of Stokes eigenfunctions is ensured by the applicability from the 
elliptic partial differential equations theory. However, there are only rare cases of spatial domains with 
known systems of Stokes eigenfunctions as [6] and [7]. The explicit shape of every eigenfunction and 
the eigenvalues have to be identified separately even for such a simple domain as a square �. It is 
worth to note, that the eigenvalues of the Stokes operator A are of particular interest too in addition to 
the eigenfunctions, especially for estimates and studies to the clamped plate equation. The Stokes 
eigenfunctions to the smallest eigenvalues are the significant modes in the observation of the final 
states at two-dimensional decaying turbulence in wall-bounded squares. 
We use the open bounded square 3 of the side length 2 as the domain, where�3 L [T �Ð 96ãr O
T5áT6 O t= with the boundary ò3. The open square 3 is to categorize as a convex Lipschitzian 
domain, what means that the boundary ò3 is Lipschitz-continuous boundary - written as 3 Ð %4á5. 
The Stokes eigenvalue problem in the unknown Q(velocity), ã(eigenvalue) (and L(pressure)) is 
explained by 
              F Þ Q E ÏL L ãQ , r L Ï

ÍQ �L @ER�Q (in 3), Q�!Ê L r.                   (1) 
One may observe the problem in an equivalent eigenvalue formulation for the stream function î�with 
the same eigenvalue ã also - but without a correct examination of regularity ± as:  
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            ����F Þ6 î L ã Þ î�, Q �L ?QNH�î (in 3),�î�!Ê L !�

!�
L r,                     (2) 

here the equation (2) is closely spaced to the clamped plate equation from mechanics.  
Our way to tackle the problem is adumbrated as follows. We use Fourier series to describe the 
unknown eigenfunction Q in the space of zero-divergence fields, where the fields are taken as normed 
curl of products of half-periodic sinusoidal functions, respectively: 

Q �L Q�kTo L ?QNH�FÍ V̧àáá
è

¶

àáá@5

6

� ¾à.>á.
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6
G L ��?QNH�î:T5áT6;        (3) 

We involve the no-slip boundary conditions for Q�by the requirement of vanishing functionals, where 
we use the distinction of cases in odd and even wave numbers. We set: 
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Finally, the partial differential equations of (1) and (2) are rewritten in the weak form in series of the 

Fourier coefficients [V̧àááè _
àááÐ3

 and [V̧àááé _
àááÐ3

, where we substitute ã L è.

8
ãÛ.� 

���������������������������������ãÛ Í VÜIáJQ
VÜIáJR

»�
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»�

IáJLs VÜIáJR
���������������������������������������������������������:x;� 

Here we have denoted by ��a zero-divergence field with the same properties as �, what means that � 
satisfies the same regularity and boundary conditions as �ä� The relations from (3) to (6) provide the 
basis for the application of the variational calculus to the Stokes eigenvalue problem. We are going to 
describe the further approach of the eigenvalue problem in the subsequent sections.             
The essential function spaces and correspondent spaces of sequences are introduces in section 2, 
where the properties of the spaces are sketched in the required accuracy only. We explain the Stokes 
operator and the Stokes eigenpairs (eigenvalues and eigenfunctions) there. Afterwards we establish the 
variational formulation of the eigenvalue problem there as a constrained variational problem. Standard 
procedures of variation are applied there to reach the Euler-Lagrange equations as the necessary 
conditions for a minimum. The section is concluded with the description of the Fourier coefficients in 
Lagrange multipliers, which are obtained by the examination of the Euler-Lagrange equations. Section 
3 is devoted to the systems of linear equations deduced from the conditions (6). There we explain 
infinite matrices, their approximations as finite matrices and determinants of finite and infinite 
matrices. Finally, the numerical methods and results are presented as a condensed account in section 
4.There are presented images of decaying turbulence in comparison to our results as well.  

 

2. Stokes eigenvalue problem and variational formulation 

The Stokes operator A is explained as a mapping from z6�on z4 �L �z. There are introduced the 
function spaces zÞ � (for G L rás) by the closures of the set ð = [� �Ð %4¶:3;ã�@ER�� L r=�in the 
norms of w6 L~6

4:3;� and ~6
5:3;ä  The space z6  is defined by z6 L z

5���~6
6:3; , where 

w6� denotes the Lebesgue space and ~6
Þ:3;  are Sobolev spaces, both on vector functions. 

The�mathematical setting of the Stokes operator A is given by: � ÷L Fó � �á where the projection ó :óã�w6 p z; is called the Leray-Helmholtz projection. We call a function Q �Ð z6�an eigenfunction to 

the eigenvalue ã of � iff Q �M r� satisfies the equation �Q L ãQ. The sequence [�ãýáSý�_ý@5¶
 is 

denoted as the system of Stokes eigenpairs (eigenvalues and normalized eigenfunctions), where the 
succession of pairs is given by the ordered eigenvalues (counted in multiplicity). We use the 
representation (3) for the treatment in the context of sequence spaces. The function spaces záÞ�are 
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explained as the sets of all functions Q� according to (3) with 

.Q.
Þ
L ¨Ã lsE �t

8
:I6 E J6;pÞ �+V̧àááè +

6
¶�
àáá@5 �

. O » for all G Ð 34.                       (7) 

We are going to use the spaces zá5�(with (4) and (5)) and z5 especially with regards to the so-called 
weak formulation of the eigenvalue problem. The kernels (null-spaces) of the linear functionals in (4) 
and (5) are closed subspaces of zá5  due to their continuity for G L sä  To get an equivalent 
description of in the z5  in the setting of (7) we define the space zá45  by 
zá45 L [�Q Ð zá5+{÷àÜ áQ�� L {øáÜ áQ�� L r�ÊIáJ Ð 3á E L sát_.                              

We introduce the simple sequence spaces �6 and �6 �H ��6�for the implementation of the constraints (4) 

and (5). We denote by »Ü L [ÙàÜ _à@5�¶
and by�¼� L [ÚáÜ _á@5�¶

sequences of Lagrange multipliers 

respectively for E L sát. We explain the space �6 by the linear space of all » which fulfill the 
condition Ã �Ùà�

6¶
à@5 O » , the square of the �6 -norm. The space �6 �H ��6  is defined as the 

Cartesian product of two �6-factors each one endowed with the norm of the product space. We use the 
spaces zá45 �and z5  for the variational formulation of problem �Q L ãQ  in a weak sense as a 
constrained variational problem. The following variational principle is to understand as an adaption of 
Courants minimax method. The Euler-Lagrange function à is defined by:  à L â @Ã :I6 E J6 F¶�

àáá@5

�ãÛ; kV̧àááè o6�AE �ß @s F Ã kV̧àááè o6¶�
àáá@5 �AE tÃ k�Ã Ùà

Ü {÷àÜ áQ��¶
à@5 E Ã Úá

Ü {øáÜ áQ��¶
á@5 o6

Ü@5  The necessary 

conditions for stationary points of à are determined in a standard way by partial derivatives with 
respect to all Fourier coefficients [V̧àááè _

àáá@5

¶
, where we set â L s and ß L r firstly. We get the key 

relations from the necessary conditions by simple calculations. So we have received the representation 
of the Fourier coefficients in Lagrange multipliers: 

V̧àáá
è L á�Ø

Ô >à	Ù
Õ

:à.>á.?��Û;¾á.>à.
�ÊHá M Ð 3 , with F L \s�ÊI L tM F s

t��������ÊI L tM  and E L Ds�ÊJ L tH F s
t��������ÊJ L tH

   (8) 

 
3. Matrix equations and finite approximation matrices                      
The spaces zá5 and zá45 admit orthogonal decomposition in subspaces of odd and even wavenumbers 
I and J, expressed by the indicators Eá F� L sátä So we get by way of example for the space zá5: 
zá5 L zá5

5á5
é�zá5

5á6
é�zá5

6á5
é�zá5

6á6
, where the correspondent pairs of subsequences of Lagrange multi- 

pliers are :»55á¼55;á :»65 á¼56;á :»56á¼65;á :»66á¼66;ä�We get the following systems of linear equations with 
infinite block matrices of coefficients by putting the representations (8) of the Fourier coefficients in 
Lagrange multipliers into the constraints (4) and (5) as zero equations, at which we denote by Ù and 
»Ý
Ü , ¼Ý

Ü  a sequence filled with zeros the correspondent and subsequences written as infinite columns. 

N��ÝÜ
�Ý
Ü
�
�Ü

Ý

��
Ü

Ý
O e»ÝÜ �
¼
Ü

Ý i L HÙ
Ù
I �������������������������������������:{; 

There are written the infinite matrices for elements of block matrices as�� or �, afterwards the square 

finite approximation matrices are referred as # and & respectively. For example we give the infinite 

matrix �5
5 L d :6ä?5;:6ß?5;::6ä?5;.>:6ß?5;.?��Û;¥:6ä?5;.>:6ß?5;.�h

ä@5áß@5

¶á¶

 and the infinite diagonal matrix ��5
5 L

@E=C� dÃß@5¶ :6ß?5;.::6ä?5;.>:6ß?5;.?��Û;¥:6ä?5;.>:6ß?5;.�h
ä@5

¶

ä�The transposed matrix of��Ü

Ý is the infinite 

matrix �Ý
Ü �there. We note, that there is a strong transcendental dependence of all elements of the infinite 



 

- 247 - 

 

block matrices of coefficients in (9) from the value�ãÛä��Since the value�ãÛ has to be a multiple of the 
sought eigenvalue, it is a simple conclusion that there have to exist nontrivial solutions of (9) too. We 
use the standard for the existence of nontrivial solutions of (9) as our criterion for eigenvalues: We look 
for values of �ãÛ with vanishing determinant of the block matrices. Finite dimensional approximations 
provide lower and upper bounds for every �ãÛ. Two types of definitions explain the correspondent block 
matrices. We set according to the choice of example Eá F� L s�above: 

#5áÆ
5 L d :6ä?5;:6ß?5;::6ä?5;.>:6ß?5;.?��Û;¥:6ä?5;.>:6ß?5;.�h

ä@5áß@5

ÆáÆ

á 

&Ù5áÆ5 L @E=C� dÃß@5¶ :6ß?5;.::6ä?5;.>:6ß?5;.?��Û;¥:6ä?5;.>:6ß?5;.�h
ä@5

Æ

for the lower bounds �ã�Û and &á5áÆ5 L
@E=C� dÃß@5Æ :6ß?5;.::6ä?5;.>:6ß?5;.?��Û;¥:6ä?5;.>:6ß?5;.�h

ä@5

Æ

for the upper bounds �ã�Û. The versions of the 

received block matrices are just like the matrix (9). The approximations of the Lagrange multipliers as 

unknown are written as Ùì5áÆ5 �L cÙÔ6ä?55áÆ g
ä@5

Æ
�and Úð5áÆ5 �L cÚ�6ä?55áÆ g

ä@5

Æ
 et cetera. Finally we state the 

determinant for infinite block matrices by: 
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4. Numerical methods and results  
For the numerical study we use a preprocessing steps, where the determinants of $à6ÆÜáÝ  or $Ø6ÆÜáÝ  are 

expressed by determinants of the matrices from format / . We apply there standard tools for 
determinants of 2 × 2 block matrices. To secure that the determinants are not identical vanishing 
functions of �ãÛ for regular values (not poles) there is diminished the format to / F s if necessary. The 
zeros �ãÛ of the determinants are calculated numerically with MAPLE combined with the bisection 
method and the secant method, where the region of values is restricted by �ã�Û O �ãÛ�O ã�Û. Finally, we 
approach the corresponding Lagrange multipliers ÙìÝáÆÜ áÚðÜáÆÝ áÙÜÝáÆÜ áÚ�ÜáÆÝ �by successive approximation 

for a reconstruction of the functions with (8). Our main result is the inclusion method for all 

eigenvalues ãý L �.

8
ãý
Û  at �ý L ý:Eá F;ã  ãý

Û L � ���Æ\¶ ã�ýáÆÛ L ���Æ\¶ ã�ýáÆÛ  with limits of 

monotonically sequences. Here, we abridge some findings in a condensed form. The first eigenvalue is 
ã5
Û N wäuruxtxrx. Figure 1 illustrates the behavior of the vorticity in decaying turbulence in 

comparison with stream functions of eigenfunctions both represented in contour colors. We point to 
the lecture for a lot of further findings and comparisons with [8] and [9].  

 

                  
Fig. 1 Decaying turbulence [1] in comparison to Stokes eigenfunctions as stream functions 
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