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Abstract

We consider the eigenvalue problem of the Stokes operator Aσ on the open unit ball Ωo (σ = 0) - respec-
tively on an open spherical annulus Ωσ (0 < σ < 1) - both in R3, where one constructs the domain D(Aσ)
of Aσ in such a way, that the requirement of homogeneous Dirichlet boundary conditions on the frontier
∂Ωσ is fulfilled in a general sense. Supplementary, one protects by theoretical standard methods of partial
differential equations (PDE), that the Stokes eigenfunctions are smooth, such that the Stokes eigenfunctions
have to fulfill homogeneous Dirichlet boundary conditions in the classical sense too.
The existence of a complete system of eigenfunctions of the Stokes operator Aσ is known as a theoretical
result of (PDE), but a system of explicitly calculated eigenfunctions of Ao was given for the first time by
the author (cf. [12]) just ten years ago. It is to note, that the proof of the completeness for the system of the
explicitly calculated eigenfunctions to Ao was not given in [12]. In what follows, we prove the complete-
ness for the system and give a new method for the representation of the calculated Stokes eigenfunctions.
The proof is based on a decomposion theorem of solenoidal vector fields on Ω∗ into toroidal and poloidal
parts, where these toroidal and poloidal vector fields are defined by toroidal and poloidal scalar functions
respectively. We derive from the original eigenvalue problem of the Stokes operator Aσ in the unknowns λ
and u (the eigenvalue and the vectorial eigenfunction) scalar eigenvalue problems in the unknowns λ and η
(the eigenvalue and a scalar eigenfunction), where we use the decomposion theorem and surface spherical
harmonics. Especially we apply the nice properties of the Laplace-Beltrami operator B on the spherical
surfaces and the surface spherical harmonics as eigenfunctions of B. Our investigations result in a new
explicite derivation of the Stokes eigenfunctions, which are written in spherical coordinates here, where the
eigenvalues of Ao are exactly the eigenvalues given in [12]. Additionally we give hints for the application
of our methods to the Stokes operator on the open spherical annulus Ωσ between two concentrical spherical
surfaces. We note, that the Stokes eigenfunctions are an essential tool in the study of flows, where we cover
Newtonian flows in the kernel of the earth and around the earth by the systems of Stokes eigenfunctions.
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1. Introduction

In an open series on Eigenfunctions of the Stokes Operator in Special Domains (cf. [8], [13] and [14]), we
have given some complete systems of calculated (complex-valued) Stokes eigenfunctions, whereby we have
applied periodic conditions in the former unbounded directions of the 3D-domains.
The proofs of completeness of this systems were pointed out in [12], where the reader will find the real-
valued eigenfunctions and the possibilities for the use of low-dimensional Galerkin spaces defined by Stokes
eigenfunctions for fact finding of the mechanism of the transition to turbulence in the non-stationary 3D-
Navier-Stokes equations (NSE) for the flow of incompressible Newtonian fluids in 3D-channels and in
3D-pipes too (cf. also [11]).
The eigenvalue problems for the Stokes operator Aσ on 3D-balls or on 3D-annuli are boundary value prob-
lems in bounded 3D-domains with rigid frontiers, what means, that we do not need additional periodic
conditions in any unbounded directions of the 3D-domains.
In the recent paper we establish a general method to decompose solenoidal vector fields in a ball (or in a
spherical annulus (a spherical layer)), what finally results in the proof of completeness for the system of
calculated real-valued eigenfunction written in Cartesian coordinates given in [12]. It is worth to note, that
we have already used the decomposition idea of solenoidal fields into toroidal and poloidal vector fields
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implicitly to reach our results in [12], where we have also profit by the pure scalar action of the vector
Laplacian on every Cartesian coordinate of vector fields written as functions of polar coordinates as a big
advantage.
The Stokes eigenvalue problem written as a boundary value problem in the unknowns u, λ and p is given
by:
PROBLEM 1: We seek solutions u, λ and p (for σ : 0 ≤ σ < 1) fulfilling:

−4u + ∇ p = λu and div u = ∇T · u = 0 in Ωσ , with u = 0 on ∂Ωσ

One can write the PROBLEM 1 in an operator formulation by the use of appropriate function spaces of
solenoidal vector fields (cf. [6], [12] and [17]) as:
PROBLEM 2: We seek solutions u and λ fulfilling: Aσu = λu , where Aσ denotes the Stokes operator. So
we can use the full power of functional analysis to get, that Aσ is an operator with a pure real point spec-
trum, what means that all the eigenvalues λj > 0 are of finite multiplicity. The associated eigenfunctions
{wj(x)}∞j=1 of Aσ (counted in the multiplicity of λj) are regular. (cf. [1], [4], [17] and [18])
The recent paper is designed as follows:
The essential notations, the essential function spaces and the governing equations supplemented with bound-
ary conditions are outlined in section 2. The Stokes operator Aσ, the Leray-Helmholtz projector Υ and the
Laplace-Beltrami operator B are introduced there.
The section 3 is devoted to the characterization of solenoidal fields on Ωσ. In a first step we give a general
characterization lemma for solenoidal fields there. The central point of this section is the decomposion the-
orem of solenoidal vector fields on Ω∗ into toroidal and poloidal parts, where these toroidal and poloidal
vector fields are defined by toroidal and poloidal scalar functions respectively.
The eigenvalue problem for the Stokes operator Ao is treated in section 4. We restrict ourselves there to the
operator Ao in order to show the solution of the principal task. For the general results for Aσ we refer to
[19] and [15]. We give in this section a summary on our results, where we sketch an outlook on applications
also.
Finally some helpful relations of the vector analysis and the definitions of surface spherical harmonics are
collected in the Appendix, which closes the paper.

2. Notations, Function Spaces and Operators

We denote by x = (x1, x2, x3)T the spatial coordinates of points in R3 , by p = p(x) scalar fields and by
u = (u1, u2, u3)T = u(x) 3D-vector fields, where we use all these quantities in convenient scaling and
(., ., .)T as the notation for transposed columns.
We regard these vector fields p and u as functions on the domain Ωo := Ωo ∪ ∂Ωo respectively on the
domains Ωσ := Ωσ ∪ ∂Ωo, where Ω := Ωo stands for the open unit ball:

Ωo := {x ∈ R3 : ||x|| :=
√
x2

1 + x2
2 + x2

3 < 1}, with the frontier ω := ∂Ωo := {x ∈ R3 : ||x|| = 1},
respectively where we denote by Ωσ for fixed σ : 0 < σ < 1 the open annulus:
Ωσ := {x ∈ R3 : σ < ||x|| < 1}, with the frontier ∂Ωσ := {x ∈ R3 : ||x|| = σ or ||x|| = 1}.
We will use ej := (δj,1, δj,2, δj,3)T , ∀ j = 1, 2, 3, with Kronecker’s delta δj,k, for the unit vectors in the
Cartesian coordinate system and the notations {er, eϑ, eϕ} for the system of unit vectors in polar coordinates.
Any vector field u is customary representable in both systems as:
u =

∑3
j=1 ujej =

∑3
j=1 uj,cej = urer + uϑeϑ + uϕeϕ = ur,per + uϑ,peϑ + uϕ,peϕ

The transformation from one coordinate system to the other one can be written as uc = T c,pup respectively
up = T−1

c,puc = T p,cuc , where we have used conception pure columns of coordinates and the transfor-
mation matrices:

T c,p :=

 sinϑ cosϕ sinϑ cosϕ − sinϕ

sinϑ sinϕ sinϑ sinϕ cosϕ

cosϑ − sinϑ 0

 T p,c := T−1
c,p = T Tc,p

We denote by∇ the Nabla operator, written in Cartesian coordinates as: ∇ :=
∑3

j=1
∂
∂xj

ej .
The vector product of u and v ∈ R3 is stated by: u ∧ v.
We utilize the Nabla operator∇ to represent the fundamental differential expressions of the vector analysis
in R3 like: divu(x) := ∇Tu(x), curlu(x) := ∇∧ u(x), and gradη(x) := ∇η(x),
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for vector fields u and scalar functions η, where we understand the derivations at least in the generalized
sense.
It is worth to note, that the vector product and the differential expressions (div , curl and grad ) are in-
dependent of the special choice of the orthonormal right-handed coordinate system in R3 by their defini-
tions. We are going to use this property for the derivation of differential relations for curl ’s of vector fields
u := η(x) · x in the Appendix.
Let N be the set of natural numbers, No be the set of non-negative integers and Ω any ’nice’ (e.g of class C2)
open bounded set (domain) in Rn with n ∈ N and the boundary ∂Ω.
We regard the points x of Ω like the usual multi-indeces κ further on as columns. Following Schwartz’
notation for generalized derivations, we use κ ∈ Nn

o as a multi-index, with |κ| :=
∑n

j=1 κj .

We write the partial derivations as Dκ :=
∂|κ|

∂x
κ1
1 . . . ∂xκn

n

, ∀κ , where |κ| ≥ 1 .

For κ = 0 and any real-valued (or complex-valued) function f : D(f) ⊂ Rn → R (or C) we set
D0f(x) := f(x) ∀x ∈ D(f).
For m ∈ N we denote by Cm(Ω) the Banach space of real-valued (or complex-valued) functions f that are
continuous on Ω and all of whose derivatives Dκf up to and including the order m = |κ| are continuous on
Ω and can be extended by continuity to Ω. We write C(Ω) for m = 0. Finally we denote by C∞(Ω̃) the
linear vector space of all real-(or complex-)valued functions f which possess in all points x of any simple
connected set Ω̃ in Rn continuous derivations of arbitrary order |κ| ∈ No and by C∞o (Ω̃) the subspace of
C∞(Ω̃) of real- (or complex-)valued functions with compact supports in and different from Ω̃.
We apply the Lebesgue spaces L2(Ω) (and L2(∂Ω)) the (equivalence classes) of real (complex) absolutely
quadratic integrable functions defined on Ω (resp. on ∂Ω) for the Lebesgue measure. The Sobolev spaces
Wm

2 (Ω) (resp. Wm
2 (Ω) are the spaces of functions in L2(Ω) (resp. in L2(∂Ω)) with derivatives up to and

including the order m = |κ| in L2(Ω) (resp. in L2(∂Ω)). The spaces L2(.) and Wm
2 (.) are Hilbert spaces

with the norm ||f ||Wm
2 (.) := (

∑
m≤|κ|(||Dκf ||L2(.))2)(1/2). For m ∈ N we will apply the Hilbert spaces

of functions with vanishing boundary values in the generalized sense by Wm
2,o(Ω) := C∞o (Ω)

Wm
2 (.)

, where
the right hand side of this equation stands for the closure of C∞o (Ω) in Wm

2 (Ω).
For any linear space X or any Banach space X we will denote by X resp. X the spaces of vector-valued
functions with all components in X resp. X.
Let us define by Vσ := {v ∈ C∞o (Ωσ) : div v = 0} for σ : 0 ≤ σ < 1. The closures of Vσ in the
sense of L2(Ωσ) and W1

2,o(Ωσ) will be called by S(Ωσ) respectively by S1(Ωσ). We abbreviate the space
W2

2(Ωσ)∩S1(Ωσ) with S2(Ωσ) := W2
2(Ωσ)∩S1(Ωσ). The advantage of these spaces is, that their elements

are solenoidal fields and fulfill the boundary conditions in a general sense.
DEFINITION 1: We denote by 4 = div grad : W2

2(Ωσ) → L2(Ωσ) the Laplace operator in the sense
of Friedrichs extension. The Leray-Helmholtz projector Υ is the projector on solenoidal fields explained
by: Υ : L2(Ωσ) → S(Ωσ). The Stokes operator is stated as the product of Υ and −4 and defined by:
−Υ4 : S2(Ωσ)→ S(Ωσ).
DEFINITION 2: The Laplace-Beltrami operator is explained by

Bo Y := − 1
sinϑ

∂

∂ϑ
(sinϑ

∂Y

∂ϑ
) − 1

sin2 ϑ

∂2Y

∂ϕ2 , ∀Y ∈ D(Bo) = C∞(ω) ⊂ L2(ω)

We denote the Friedrichs extension of Bo by B := Bo. The operator B is also called Laplace-Beltrami
operator for abbreviation.
It is usual to use the eigenvalues and eigenfunctions of the Laplace-Beltrami operator for the definion of
function spaces on ω cf. e.g. [6], p. 33 ). We denote by
D(Bm) = {Y ∈ L2(ω3) :

∑∞
j=0 (1 + ν2m

j )|(Y, Yj)L2(ω)|2 < ∞} for m ∈ No in account with THEO-
REMS B and C of the Appendix.
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3. Decomposition of solenodal fields into toroidal and poloidal fields

We show in this section, that every solenoidal field on Ωσ (for σ : 0 ≤ σ < 1) is the sum of a toroidal field
t := curl(ψ(x) · x) and a poloidal field p := curl(curl(χ(x) · x)), where we use similar argumentations
like in [2], [3], [5], [7], [9] (and also like in [16] but with spherical harmonics). We are going to apply the
notations ψ(.) = ηt(.) and χ(.) = ηp(.) for the use of the relations given in the Appendix too.
Additionally, we formulate a representation of the gradients ∇ p of harmonic pressures p as poloidal fields
p here.
The following lemma gives an essential characterization of solenoidal fields on Ωσ, σ : 0 ≤ σ < 1:

LEMMA 1: Let Ωσ be the open unit ball Ωo in R3, x ∈ R3 and r :=
√∑3

j=1 x
2
j the radius-coordinate in

a polar coordinate system. Then there exists no solenoidal vector function F ∈ (C1(Ωo))3, which is only
depending of the variable r, with F (r) 6= c ∀ r ∈ (0, 1), where c denotes any constant vector.
PROOF: Let the vector field F be written in Cartesian coordinates:

F T (r) = (F1(r), F2(r), F3(r))

Since F (r) is in (C1(.))3 , such that F (r) 6= c , there has to be at least one Fj∗(r) , j∗ ∈ {1, 2, 3} with

dFj∗(r)
dr

6= 0 . (1)

In addition, the gradient of r = r(x) is for r 6= 0 a point on the unit sphere: ∇x r =
1
r
x

So the
xj
r

are simply products of sinusoidal functions of the angles ϑ, ϕ. Because of (1) we get

xj∗

r
· dFj

∗(r)
dr

6≡ 0 and div F := ∇Tx · F (r) =
3∑
j=1

xj
r
· dFj(r)

dr
6≡ 0 ,

what contradicts our assumption div F = 0. 2

We formulate the conditions for the decomposition of a solenoidal vector field u on Ωσ into a toroidal field
t and a poloidal field p, u(x) = t(x) + p(x) in what follows. Let the fields t and p be explained by:

t := curl(ψx) = gradψ ∧ x and p := curl(curl(χx)) , (2)

where we restrict t and p by the conditions:

div t = xT t = 0 and divp = xT curl(p) = 0 . (3)

We denote by ωr for r ∈ [σ, 1], 0 < σ , the spherical surface: ωr := {x ∈ R3 : ||x|| = r}. The conditions
for the unique determination of t and p are stated by vanishing mean values:

1
|ωr|

∫
ωr

xTudωr = 0 and ∀ f ∈ C[σ, 1] : 0 =
1
|ωr|

∫
ωr

f · ψ(x)dωr =
1
|ωr|

∫
ωr

f · χ(x)dωr , (4)

where one can understand the equations of (4) as conclusions of the LEMMA 1 given above.
THEOREM 1: Let u ∈ W2

2(Ωσ) be a solenoidal vector field defined on Ωσ written in polar coordinates,
which fulfills the first equations of (4). Then there exist vector fields t and p what are unique determined by
(2),(3) and (4), with u = t + p (at least in the sense of L2(Ωσ)), where the regularity of t and p is inferred
by that of ψ and χ.
REMARK: The regularity of ψ and χ is inferred by the regularity of xT curl(u) and xTu. There one has to
study subspaces of L2(Ωσ) as weighted Sobolev spaces Wm

2,r(σ, 1;D(Bk)/R) with m, k ∈ N.
Now we give a shortened proof of THEOREM 1.
PROOF: (i) In the first step we write down the explicit shape of of t and p in polar coordinates:

ts = (0,
1

sinϑ
∂ψ

∂ϕ
, −∂ψ

∂ϑ
)Ts (5)
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p
s

=
1
r

(Bχ,
∂

∂ϑ

∂(rχ)
∂r

,
1

sinϑ
∂

∂ϕ

∂(rχ)
∂r

)Ts = (−r · 4χ, 0, 0)Ts + (grad(
∂(rχ)
∂r

))s , (6)

where one gets these relations by simple calculations.
For more regular t , p ∈ C2(Ωσ) the curls of toroidal fields are poloidal fields and the curls of poloidal
fields are toroidal fields:

(curl t)s = p̃
s

and (curlp)s = t̃s . (7)

Finally one gets the following conservation of the character for toroidal fields and poloidal fields, if one
applies the curl once more:

(curl curl t)s = t̆s and (curl curlp)s = p̆
s
. (8)

We obtain these equations for t , p ∈ W2
2(Ωσ) by density arguments too.

(ii) In the second step we note orthogonality properties of toroidal and poloidal fields on spherical surfaces.
Let us apply the surface spherical harmonics {Yj}∞j=0 in the notation of THEOREM B in the Appendix.
Making use of expansions of ψ and χ in {Yj}∞j=0 one gets by the restrictions (4), that

ψ(x) =
∞∑
j=1

ψ̂j(r)Yj(ϑ, ϕ) and χ(x) =
∞∑
j=1

χ̂j(r)Yj(ϑ, ϕ) . (9)

The we define by

t
(j)
s := (curl(ψ̂j(r)Yj(ϑ, ϕ)x))s and p(j)

s
:= (curl(curl(χ̂j(r)Yj(ϑ, ϕ)x)))s ∀ j ∈ N . (10)

Let us denote the systems of toroidal fields by {t(j)s }∞j=1 and the systems of poloidal fields by {p(j)
s
}∞j=1.

One shows the following orthogonality properties in the sense of L2(ω) similar to [5] p.623-623:

∀ j, k ∈ N with j 6= k :

r2(
∫
ω

(t(j)s )T t
(k)
s dω =

∫
ω

(p(j)
s

)T p(k)
s
dω =

∫
ω

(t(j)s )T p(k)
s
dω =

∫
ω

(t(j)s )T p(j)
s
dω) = 0 (11)

where one uses gradients, curls and the divergence on surfaces.
(iii) The proof is finished by the unique solution of the equations for the determination of ψ and χ:

Bψ = xT (curlu) and Bχ = xTu 2. (12)

Now we introduce some details for the consideration of gradients of harmonic functions.
Following [9](cf. sect. 2.4.1) and [18](cf. sect. 6.4.5) we use, that the set of all harmonic functions on Ωo

respectively on Ωσ is spanned by the systems of functions

Ho := {rl · Ckl (ϑ, ϕ)}lk=0, l∈N0
∪ {rl · Skl (ϑ, ϕ)}lk=1, l∈N and by Hσ :=

{{rl ·Ckl (ϑ, ϕ)}lk=0 ∪ {r−(l+1) ·Ckl (ϑ, ϕ)}lk=0}l∈N0 ∪ {{rl ·Skl (ϑ, ϕ)}lk=1 ∪ {r−(l+1) ·Skl (ϑ, ϕ)}lk=1}l∈N,

where the Ckl and Skl are surface spherical harmonics on the unit sphere ω (cf. Appendix, DEFINITION A).
LEMMA 2: Let p ∈ Hσ be a harmonic function on Ωσ, σ : 0 ≤ σ < 1. Then are the gradients ∇ p of
p ∈ Hσ poloidal fields p.
PROOF: The statement of the Lemma is a simple conclusion of the application of (6) on χ(x) := p(x) ,
where one uses: 0 = 4χ = 4p ∀ p ∈ Hσ . 2

We are going to apply our results toroidal and poloidal fields in the next section on the eigenvalue problem
for the Stokes operator in the unit ball.
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4. The eigenvalue problem for the Stokes operator in the unit ball

We regard the eigenvalue problem of the Stokes Operator Ao formulated in section 1 as the PROBLEMS 1
for [u, p] ∈ C2(Ωo)× C1(Ωo) respectively as the PROBLEMS 2 for u ∈ S2(Ωo) .
Let the Bessel functions of first kind be denoted by

Jl+ 1
2
(t) , J−(l+ 1

2
)(t) ∀ l ∈ No . (13)

The Bessel function Jl+ 1
2
(t) has infinitely many positive zeros {µj

l+ 1
2

}∞j=1, with 0 < µ1
l+ 1

2

< µ2
l+ 1

2

, < . . .

and µj
l+ 1

2

→ ∞ for j → ∞.

In what follows we will use the normed surface spherical harmonics (cf. Appendix THEOREM B:)) to define
the following toroidal fields for k = 0, . . . , l and k = 0, . . . , l:

tc,
(j),l,k
s

:= (curl(
Jl+ 1

2
(µj
l+ 1

2

r)
√
r

C̃kl x))s and ts,
(j),l,k
s

:= (curl(
Jl+ 1

2
(µj
l+ 1

2

r)
√
r

S̃kl x))s ∀ j, l ∈ N .(14)

For the definition of the poloidal fields we will use the following scalar functions χ: ∀ j, l ∈ N

p
c,

(j),l,k

s
:= (curl(curl(χ(j),l,k

c x)))s , χ
(j),l,k
c := (

Jl+ 1
2
(µj
l+ 3

2

r)
√
r

−
µj
l+ 3

2

Jl− 1
2
(µj
l+ 3

2

)rl

2l + 1
)C̃kl , k = 0, . . . , l

(15)

p
s,

(j),l,k

s
:= (curl(curl(χ(j),l,k

s x)))s , χ
(j),l,k
s := (

Jl+ 1
2
(µj
l+ 3

2

r)
√
r

−
µj
l+ 3

2

Jl− 1
2
(µj
l+ 3

2

)rl

2l + 1
)S̃kl , k = 1, . . . , l

We collect the toroidal fields and the poloidal fields in the following system of solenodal functions:

{{p
s,

(j),l,l

s
, . . . , p

c,
(j),l,0

s
, . . . , p

c,
(j),l,l

s
} ∪ {ts,(j),l,ls

, . . . , tc,
(j),l,0
s

, . . . , tc,
(j),l,l
s
}}j,l∈N (16)

We are now able to formulate our main result, where we will use the Bessel functions (13) and the defini-
tions (14) and (15):
THEOREM 2: The solenoidal fields (16) form a complete system of eigenfunctions for the Stokes operator
Ao in the unit ball. The eigenvalues are the λ(j),l,k = (µj

l+ 1
2

)2 with the multiplicity (2l + 1) in the class of

toroidal fields and the values λ(j),l,k = (µj
l+ 3

2

)2 with the multiplicity (2l+ 1) in the class of poloidal fields.

PROOF: The fields of the system (16) are solenoidal by their definition. Additionally we get the orthogonal-
ity of the fields (16) through the application of THEOREM 1. From the definition of the ts (5) and the p

s
(6),

it is apparent that one gets from the Stokes eigenvalue problem boundary value problems of ordinary dif-
ferential equations for the functions ψ̂(r) and χ̂(r) Fourier coefficients of ψ and χ developed in the surface
spherical harmonics. Here are substantially applied the tools of the REMARK A of the Appendix.
The proof is finished by the solution and a discussion of the boundary value problems of ordinary differen-
tial equations for the ψ̂(r) and χ̂(r). 2

REMARK: The Stokes eigenfunctions for Aσ and the equations for the determination of the eigenvalues are
given by the methods explained above in [19].
As a short resume it is to note that our tools and investigations provide complete systems of Stokes eigen-
functions for Aσ. One can use these functions to construct Galerkin schemes for the numerical investigations
of (turbulent) in balls and spherical annuli.
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Appendix

The notation of the surface spherical harmonics will be explained in what follows.
We introduce the associated Legendre functions for l ∈ N0, and k ∈ {0, 1, . . . , l} by:

P kl (t) :=
(−1)l+k

2ll!
(1− t2)

k
2
dl+k

dtl+k
(1− t2)l, t ∈ [−1, 1]

DEFINITION A: We will denote by:

Ckl (ϑ, ϕ) := cos(kϕ)P kl (cosϑ), l ∈ N0 , k ∈ {0, 1, . . . , l} and

Skl (ϑ, ϕ) := sin(kϕ)P kl (cosϑ), l ∈ N , k ∈ {1, 2, . . . , l} ,

the surface spherical harmonics of degree l ∈ N0 on the unit sphere ω (, for the arguments ϑ ∈ [0, π] and
ϑ ∈ [0, 2π)).
DEFINITION B: The normed systems of surface spherical harmonic is defined by:

C̃kl (., .) := (
√

2)−δk,0

√
(l − k)!(2l + 1)

(l + k)!2π Ckl (., .) and S̃kl (., .) :=
√

(l − k)!(2l + 1)
(l + k)!2π Skl (., .)

Using the notations of section 2 DEFINITION 1 for the Laplace-Beltrami operator Bo and its Friedrichs
extension B := Bo (also called as Laplace-Beltrami operator) we cite the following theorems:
THEOREM A: The Laplace-Beltrami operator Bo is essentially self-adjoint in L2(ω).
The associated bilinear form β(Y,Z) := (BoY,Z)L2(ω) ∀Y, Z ∈ D(Bo) is nonnegative, i.e.
β(Y, Y ) ≥ 0 ∀Y ∈ D(Bo) and β is W1

2(ω)-coercive.
The Friedrichs extension B of Bo is an operator with pure point spectrum.
THEOREM B: The eigenvalues of B are the ν(l) := l(l + 1) and the multiplicity of every ν(l) is
N(ν(l)) := 2l + 1 ∀ l ∈ N0. The system of eigenfunctions of B:

{Ỹ l
l , . . . , Ỹ

1
l , Y

0
l , Y

1
l , . . . , Y

l
l }∞l=0 := {S̃ll , . . . , S̃1

l , C̃
0
l , C̃

1
l , . . . , C̃

l
l}∞l=0

is a complete orthonormal system in L2(ω).
THEOREM C: The eigenvalues of B can be ordered by their (absolute) values, taking into account their
multiplicities. If the {νj}∞j=0 are the ordered eigenvalues and the {Yj}∞j=0 the correspondent orthonormal
eigenfunctions, then the system {Yj}∞j=0 is complete in L2(ω) and D(B) = {Y ∈ L2(ω3) :

∑∞
j=0 (1 +

ν2
j )|(Y, Yj)L2(ω)|2 <∞} with BY =

∑∞
j=1 νj(Y, Yj)L2(ω)Yj , since ν0 = 0.

REMARK A: We will complete the Appendix with a collection of tools for the proof of the THEOREMS 1
and 2. One shows by a simple calculation that the Laplace-Beltrami operator B and the scalar Laplacian
commute for all functions f ∈ C4(Ωσ) at least in all inner points x of Ωσ (in C4(Ωσ)) for σ : 0 ≤ σ < 1.
We regard now an arbitrary vector field of the form: y = η(x)x. We will derive simple relations for the
application of the 3D-Laplacian on toroidal and poloidal vector fields.
We will omit the index for the coordinate system in what follows, since the definitions of the differential
operators grad , div and curl are independent of the chosen orthonormal right-handed coordinate system.
Let us start with: curly. Here we got by the use of standard relations of the∇−calculus:

curl (η(x)x) = (gradη(x)) ∧ x and
curl (curl (η(x)x)) = grad(div (η(x)x)) − 4(η(x)x)

A simple calculation gives for the second term on the right hand side:

−4(η(x)x) = (−4η)x − 2gradη

The repeated application of the curl operator yields the following equations:

4(curl (ηx)) = curl ([4η]x))

and

4(curl curl (ηx)) = curl curl ([4η]x))
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