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APPLICATIONS OF STOKES EIGENFUNCTIONS TO THE
NUMERICAL SOLUTIONS OF THE NAVIER-STOKES

EQUATIONS IN CHANNELS AND PIPES

Bernd RUMMLER †

Abstract

General classes of boundary-pressure-driven flows of incompressible Newtonian fluids in three-di-
mensional (3D) channels and in 3D pipes with known steady laminar realizations are investigated
respectively. The characteristic physical and geometrical quantities of the flows are subsumed in
the kinetic Reynolds number Re and a parameter ψ, which involves the energetic ratio and the
directions of the boundary-driven part and the pressure-driven part of the laminar flow.
We prescribe periodical conditions in the unbounded directions for the deviation u from the scaled
laminar velocity uL. The solution of non-stationary dimension-free Navier-Stokes equations is
sought in the form u = uL + u, where the initial conditions are taken as small perturbations of
uL. We receive out of the dimension-free Navier-Stokes equations for u - by the use of the Galerkin
method - autonomous systems (S) of ordinary differential equations for the time-dependent coef-
ficients of the spatial Stokes eigenfunction. The numerical investigations of the systems (S) for
various geometries, initial conditions, Reynolds number Re and parameters ψ show significant ef-
fects and essential details in the transition from laminar to turbulent flows. Especially we get hints
for the mechanism of bifurcation and good results for the critical Reynolds number as well as for
the mean velocities.
Key Words: Navier-Stokes equations, Stokes eigenfunctions, Galerkin methods, Transition

to turbulence

1 Introduction

The channel flow and the pipe flow of incompressible
Newtonian fluids are well known as old-established
objects of preference in theoretical and applied fluid-
dynamic research. Owing to the simple geometry of
the domains - these flows are ideal qualified for studies
to the transition to turbulence and for investigations
to extract further deterministic features from a ran-
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dom, fine-grained turbulent flow (cf.[1-5]).
It is the purpose of our investigations to check and

to clarify the possibilities of using low-dimensional
Galerkin spaces defined by Stokes eigenfunctions for
fact finding of the mechanism of the transition to tur-
bulence in the non-stationary 3D-Navier-Stokes equa-
tions (NSE). Particularly, our studies are targeted on
the behavior of such approximations in the vicinities
of critical Reynolds numbers.

We explore a general class of scaled flows of in-
compressible Newtonian fluids in unbounded channels
and in unbounded pipes in R3, which can be de-
scribed by the sum of laminar boundary-driven Cou-
ette (angular momentum for pipes) flow uL,c, of lami-
nar pressure-driven Poiseuille flow uL,p, and of a time-
dependent part u. The first and second addenda
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Applications of Stokes Eigenfunctions to the Numerical Solutions 715

are used to define the kinetic Reynolds number and
a weighting parameter ψ for the energetic ratio and
the direction of action of the boundary- and pressure-
driven parts from uL. Low-dimensional approxima-
tion spaces spanned by the subsystems of Stokes eigen-
functions with periodic conditions in the former un-
bounded directions are applied for the direct numeri-
cal study of systems of Galerkin equations (cf.[5-10]).

The essential notations and governing equations
supplemented with initial and boundary conditions
are outlined in section 2. After convenient scaling
we decompose the velocity fields u(t,x) into the lam-
inar flow uL(x) and the remaining velocity u(t,x)
(fulfilling homogeneous Dirichlet conditions on the
boundary of the channel or on the boundary of the
pipe): u = uL + u. Additionally, periodic condi-
tions in former unbounded directions are required for
u. The pressure is decomposed similarly. The kinetic
Reynolds numbers and a weighting parameter ψ for
the energetic ratio and the direction of action of the
boundary- and pressure-driven parts of uL are also
defined in this section.

We explain the Stokes operator and the Galerkin ap-
proximation uN :=

∑N
j=1 gjwj of the so-called weak

solutions ([11],[12]) u of the NSE for the remaining
velocities in section 3, where the {wj}∞j=1 are the
Stokes eigenfunctions. The Galerkin equations (as
an autonomous system of ordinary differential equa-
tions for the coefficients gj(t) of the eigenfunctions
{wj(x)}N

j=1) are stated there.
Section 4 is devoted to the numerical method and

the results. At first a fixed period 2·l = 2·2.69 was cho-
sen for historical reasons (cf. [13]). With this choice is
the dimension of the Galerkin spaceN(λ) = N(λmax)
determined by a bound λmax for the eigenvalues λ.
λmax is taken in such a way, that the Galerkin space
includes two significant modes for the modification of
the mean velocity both for the pure Couette-flow and
the pure Poiseuille-flow. For the calculation of the
coefficients in forming the system (S) are used uni-
versalized tools of combined C- and MAPLE-routines
together with implemented rules of general addition
theorems in form of allocation-lists.

The corresponding systems of ordinary differential
equations were solved numerically for several values
of the parameters Re, ψ and a set of initial values
{gj(0)}, j = 1, ..., N (small uN,(0) :=

∑N
j=1 gj(0)wj ),

where the kinetic energy E(t) :=
∑N

j=1 g
2
j (t) of the

Galerkin approximations uN was used as a measure
of turbulence.

2 The Basic Notations and Equations

The non-stationary NSE describe the evolution in
time of an incompressible Newtonian fluid. We are
interested on the channel flow and on the pipe flow,
which means, that the fluid is filling after scaling with
R in [m] an open unbounded domain Ω in R3:

Ω :=

{R−1y = x = (x1, x2, x3)T ∈ R3 :
√
x2

2 + δ∗x2
3 < 1},

where 2R is the thickness of the channel (with δ∗ = 0)
resp. the diameter of the pipe (with δ∗ = 1).

We use vchar = R(c2c + c2p)
1/2 as the velocity scale,

which results from the common known stationary lam-
inar velocity fields vL(Rx):

vL(Rx) :=Rcc · ((1 − δ∗)x2,−δ∗x3, δ
∗x2)T︸ ︷︷ ︸

= uL,c

+ Rcp · χ(1 − (x2
2 + δ∗x2

3), 0, 0)T︸ ︷︷ ︸
= uL,p

= vL,c + vL,p,

where cc, cp are velocity parameters in [1/s] and χ is
chosen in such a way that for cc = cp the velocity
fields vL,c and vL,p result the equal kinetic energy in
a control volume.

We establish the parameter ψ ∈ [0, 2π) for all
vL �= 0 as an indicator for the energetic ratio and
the direction of action of the parts of the laminar ve-
locity by:

cosψ := cc(c2c + c2p)
−1/2

sinψ := cp(c2c + c2p)
−1/2

We explain the kinetic Reynolds number Re by Re =
Re(cc, cp) := R2

ν (c2c + c2p)
1/2, the time scale R2

ν and
the scale for the kinematic pressure as ν(c2c + c2p)

1/2;
where ν denotes the kinematic viscosity in [m2/s].

The velocities and pressures are handled by the use
of splitting up formulas:

u =uL + u = cosψuL,c + sinψuL,p + u

and

p =pL + p = cosψ pL,c + sinψ pL,p + p,
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where uL and pL are the scaled laminar fields.
Finally periodic conditions for u and p are required

instead of conditions in infinity: (P):

u(t, x1, x2, x3) =u(t, x1 + 2l, x2, x3 + 2l(1 − δ∗))
p(t, x1, x2, x3) =p(t, x1 + 2l, x2, x3 + 2l(1− δ∗))

The initial-boundary value problem for the un-
knowns u(t,x) and p(t,x) is given by:
Problem 1: We seek solutions u(t,x) and p(t,x)
fulfilling:

∂u

∂t
−�xu+Re(

3∑
j=1

ujDju +
3∑

j=1

uj
LDju

+
3∑

j=1

ujDjuL ) + ∇xp = 0 ,

(with Dj := ∂./∂xj, j = 1, 2, 3 ),
∇x ·u = 0 in (0, T ) × Ω
u(0,x) = u0(x) = u(0, .) − uL(.)
u(t, x1, x2, x3)|(x2)2+δ∗(x3)2=1 = 0, and (P)

3 Explanation of the Galerkin
Approximations

We restrict the domain Ω on the open bounded sub-
domain Tl considering the presupposed periodic con-
ditions (P):

Tl := {x ∈ Ω : x = (x1, x2, x3)T ; |x1|, (1 − δ∗)|x3| < l},
in which we suppose l ≥ 1.

It is convenient to use suitable function spaces in
the mathematical treatment of Problem 1. Let us call
these spaces S ⊂ (L2(Tl))3 and S1 ⊂ (W 1

2 (Tl))3

(cf. [6], [9], [11]). The advantage of these spaces is,
that their elements are solenoidal fields und fulfill the
boundary conditions in a general sense. One can use
the eigenfunctions {wj(x)}∞j=1 of the Stokes operator
A to span the spaces S and S1, where one can under-
stand the Stokes operator as a stationary version of
Problem 1 with Re = 0. Additionally we note that
the Stokes operator is an operator with a pure point
spectrum with real eigenvalues λj > 0 of finite mul-
tiplicity (cf. [6], [11-12]). We apply the associated
eigenfunctions {wj(x)}∞j=1 of the Stokes operator A
(counted in multiplicity) for the explanation of the
Galerkin approximations.

Let (., .) be the scalar product on (L2(Tl))3. We
denote the number of eigenvalues of A with λj ≤ λ
by N = N(λ) and define the Galerkin space MN as
the span of {w1,w2, ...,wN} in S.
We explain the Galerkin approximation uN (t,x) :=
PNu(t,x) =

∑N
j=1 gj(t)wj(x) [, with gj(t) :=

(u(t,x),wj) , j = 1, ..., N ,] of the so-called weak so-
lution u(t,x) of Problem 1 by:

Problem 2 Let the initial-value u0 be an element
of S. We seek a function uN ∈ C1(0, T,MN ) such
that for all j ∈ {1, . . . , N}:
d

dt
(uN ,wj) + (∇uN ,∇wj) + Re{b(uN ,uN ,wj)

+ b(uL,uN ,wj) + b(uN ,uL,wj)} = 0,
uN (0) = PNu0 ,

where we have used the abbreviation b(u, q, s) :=
(
∑3

k=1 u
kDkq, s) for the trilinear-form, which is an-

tisymmetric in relation to permutation of q and s.
The Problem 2 is equivalent to the solution of the

initial-value problem of an autonomous systems (S) of
ordinary differential equations for the time-dependent
(Galerkin-)coefficients gj(t) with the initial-values
gj(0) for j = 1, ..., N :

dgj(t)
dt

=: ġj = −λjgj −Re(
N∑

i,s=1

bj,i,sgigs

+ cosψ
N∑

i=1

qI
j,igi + sinψ

N∑
i=1

qII
j,igi

+ cosψ
N∑

i=1

rI
j,igi + sinψ

N∑
i=1

rII
k,igi),

j = 1, 2, ..., N , (S)

gj(0) = gj,0 := (u(0)(x),wj), j = 1, 2, ..., N ,

with

bj,i,s := b(wi,ws,wj) (= −bs,i,j),
i, j, s = 1, 2, ..., N ,

qI
j,i := b(wi,uL,c,wj) , rI

j,i := b(uL,c,wi,wj)

(= −rI
i,j),

qII
j,i := b(wi,uL,p,wj)
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rII
j,i := b(uL,p,wi,wj) (= −rII

i,j) , i, j = 1, 2, ..., N

One can understand the Galerkin approximation by
the use of the eigenfunctions of the Stokes operator A
as a Helmholtz projection on solenoidal vector fields.
These Helmholtz projection generates a projection er-
ror, from what follows that the pressure p and the
Galerkin approximations p

�N of the pressure p are in
the kernel of the projection. It is possible to recon-
struct the Galerkin approximations p

�N and the pres-
sure p itself by the solution of an inhomogeneous Pois-
son equation. We note, that p

�N is calculable as a
function of the solutions gj(t), j = 1, ..., N, of (S) in
the form of Fourier coefficients in the eigenfunctions
of the scalar Laplacian with homogeneous Neumann
conditions and in harmonic pressures resulting in the
harmonic pressure gradient parts of the Stokes eigen-
functions.

4 Numerical Experiments and Results

The first part in the numerical treatment of our prob-
lem is the generation of the autonomous systems of
ordinary differential equations (S).

One has to fix the kind of flow (channel flow or pipe
flow), the period l and after that an upper bound λ
for the eigenvalues - respectively N = N(λ) as the
dimension of the Galerkin space.

Under these assessments of default parameters are
the Stokes eigenfunctions {wj(x)}N

j=1 generated by
Maple preprocessing tools. These eigenfunctions are
used as input parameters for universalized tools of
combined C- and MAPLE-routines together with im-
plemented rules of general addition theorems in the
form of allocation-lists in the generation of the coeffi-
cients of the system (S) of ordinary differential equa-
tions. The result of the preprocessing work is a binary
list of data (coefficients) representing the N equations
of the system (S).

The main step in the numerical treatment of the
Galerkin approximations of the Navier-Stokes equa-
tions are studies of the numerical solutions of the sys-
tems (S) in the dependence of the energetic Reynolds
number Re, the control parameter ψ and the initial
values gj(0) := gj,0 ∀j = 1, 2, ..., N, as free parame-
ters.

Sometimes we will use the notation g(0) for the vec-
tor of the initial values [g1(0), g2(0), ..., gN (0)]T.
We note that the initial values gj(0) := gj,0 = 0, ∀j =

1, 2, ..., N, (resp. g(0) = 0) stand for the scaled lami-
nar velocities uL as initial values of the Navier-Stokes
systems.

We have applied Dormand-Price methods (DO-
PRI5) and Runge-Kutta-Fehlberg (RKF45) methods
(cf. [14]) with step size control for the numerical so-
lution of the systems (S).

From a physical point of view, one can understand
the small initial values gj,0 for all j = 1, ...., N as
small perturbations of the laminar flow at the time
t = 0. (This agrees completely with experimental re-
sults where the laminar velocity field is also a reali-
sation of the real flow in the domain of over-critical
Reynolds numbers (e.g. if the walls are sufficiently
smooth).) In other words, the initial conditions for
the gj have been chosen as small random values out
of a ball of radius σ around the origin 0 in RN :
Bσ(0) := {g(0) ∈ RN :

∑N
j=1(gj(0) − 0)2 =∑N

j=1(gj,0)2 ≤ σ2}
If the initial conditions gj,0 have a distance smaller

than ρ < σ from the origin in RN , where ρ depends
on the Reynolds number Re and on the the parameter
ψ, our numerical solutions of the autonomous systems
of ordinary differential equations (S) tend to the zero
of RN . The reason is the asymptotic stability of the
laminar flow in the sense of Ljapunov. The radius
ρ of this ball of asymptotic stability depends nearly
exponentially on the Reynolds number Re.

Let us introduce the kinetic energy E(t) of
the approximated remaining velocity by: E(t) :=∑N

j=1(gj(t))2

The kinetic energy E(t) was elected as the mas-
ter indicator for the evaluation of the solutions in our
studies. The behavior in time of E(t) shows whether
the solution of the systems (S) tends to the origin of
RN (asymptotic stability) or not ?

The numerical experiments were the following: The
numerical solutions of the Galerkin equations were cal-
culated for several intervals of time and a set of initial
values for varying parameters Re and ψ. The proper-
ties of these solutions were studied with respect to the
behavior of the kinetic energy E(t). In this sense the
kinetic energy E(t) was also applied as an indicator-
measure of turbulence or bifurcations.

In a second turn of studies, the numerical solutions
were calculated for a set of parameters Re and ψ with
fixed initial values chosen as random values out of
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spherical shells around the origin of RN and for fixed
intervals of time.

The general behavior of the kinetic energies E(t) of
the solutions of the systems (S) observed as a func-
tion of the scaled time t is monotonic decreasing for
initial values g(0) out of the ball of asymptotic stabil-
ity with the radius ρ = ρ(Re, ψ), which depends on
the Reynolds number Re and the parameter ψ. The
function E(t) returns to zero in a finite interval of the
time t in this case:
E(t) → 0 for t→ to − 0 with to ≤ 3.2 - and E(t)

is equal to zero for all t with t > to.
The function E(t) shows an aperiodic oscillating be-

havior for initial values g(0) chosen as values out of
spherical shells with a radius σ at σ > ρ(Re, ψ). There
exists for all over-critical Re and all ψ (with the ex-
ception of ψ = 0 and ψ = π in the pipe flow) positive
constants e = e(Re, ψ) > 0 and ê = ê (Re, ψ) > 0
such that ê > E(t) > e nearly independent of the
initial kinetic energy E(0). The long-time behavior of
the solutions in E(t) is also governed by ê and e in
the same way.
We remark that this statement is true for the channel
flows in general. But it is also worth to explain the
exceptions ψ = 0 and ψ = π for pipe flows in detail:

For pipe flows is the critical Reynolds number Re =
Recrit. ≈ ∞ at ψ = 0, π, 2π. (These are the cases of
pure Couette flows.) So are values of ψ out of a vicin-
ity of these numbers (ψ = 0, π, 2π) for pipe flows the
sole exception, where our statement does not apply.
We reemphasize that ψ = 0, π, 2π stand for the pure
boundary-driven Couette (angular momentum) pipe
flow and ψ = π/2, 3π/2 stand for the pure pressure-
driven Poiseuille flow in pipes.

Our numerical investigations provide good agree-
ments with experimental results for critical Reynolds
numbers, when the initial values has been taken in the
order of the magnitude of physical perturbations (the
perturbation-radius σ).

Especially we have got the critical Reynolds num-
bers for the border cases of the general pipe flows:

ReCOUETTE
crit. ≈ ∞, RePOIS.

crit. ∈ (1400, 20000)

and the critical Reynolds numbers for the Couette
flows and for the Poiseuille flows in channels:

ReCOUETTE
crit. ∈ (360, 500) RePOIS.

crit. ∈ (630, 900) .

Much to our surprise we found time periodic non-
laminar solutions of a constant kinetic energy E(t, Re)
at fixed ψ-values out of a small ψ-interval (ψ ≈
π/6) about a range of Reynolds numbers Re (Re ∈
(1700, 6000)) for pipe flows. In this case the rotation
of the pipe acts stabilizing to the pressure-driven part
of the velocity, like a bullet is stabilized by the spiral
fluted barrel of a gun.

The time mean values of the coefficients of the re-
maining velocity field are defined by

gj :=
1

T − t0

⎛
⎝ T∫

t0

gj(t) dt

⎞
⎠ ≈ 1

n1

n1∑
i=1

gj(ti) ,

ti ∈ [t0, T ] , j = 1, . . . , N ,

where n1 is the number of Dormand-Price - resp.
Runge-Kutta-Fehlberg time steps, ti are the calcu-
lation points in time and t0 is a time for which the
kinetic energy starts to show an aperiodic oscillating
behavior between an upper and lower level. The mean
velocities are given for the general channel flow by

u N (x2) = uL(x2)

+
1

2l · 2l(T − t0)

T∫
t0

l∫
−l

l∫
−l

uN (t,x) dx1 dx3 dt

≈uL(x2) +
∑

i�∈I�

gi� wi�(x),

and for the general pipe flow by

u N (r) =uL(r)

+
1

4lπ(T − t0)

T∫
t0

2π∫
0

l∫
−l

uN (t,x) dx1 dϕdt

≈uL(r) +
∑

i�∈I�

gi� wi�(x),

where the sets of significant coefficients I� are equal to
the sets of indices of the Stokes eigenfunctions, which
are pure functions of x2 or of r respectively. It is worth
noting that the time averages gi� with i� ∈ I� assume
much larger values than the time averages of all the
other coefficients gj .

The time averaged mean velocities u N(x2) are il-
lustrated on the left hand side of Figure 1 for a set
of parameters ψ (ψ ∈ [0, π]) at the Reynolds num-
ber Re = 1500 in comparison with the correspondent
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ψ ψ
x2 x2

u1
N u1

N

Fig.1: Behavior of the mean velocities u N (x2) in the channelfor ψ ∈ [0, π] at Re = 1500 in comparison
with the laminar velocities uL.

Fig.2: Kinematic pressure p
�N in a pipe flow at Re = 1450 and ψ = π/4.

laminar velocities uL(x2) on the right hand side of
Figure 1. One can understand the change of the pa-
rameters ψ in Fig.1 in such a way that the flow starts
as a pure Couette flow in the channel, passes the pure
pressure-driven Poiseuille flow at ψ = π/2 and arrives
the pure Couette flow at ψ = π, whereas the walls
are moved in comparison with ψ = 0 with the same
velocity but in the opposite direction.

The planes with u 1
N (x2) = 0 and (x2, ψ) ∈

[−1, 1]× [0, π] are displayed in Figure 1 as grey shaded
planes in both graphical representations to give an op-

portunity to compare the mean velocities u 1
N (x2) with

the laminar mean velocities u1
L(x2) for fixed values of

the parameter ψ. We note, that the non-physical re-
gions of calculated backflows (cf. ψ = 0) are to under-
stand in causal relationship to the well known Gibbs
phenomenon at Fourier’s series. Especially, one can
regard the low-dimensional Galerkin spaces for our
calculations as finite Fourier’s series, including only
two even modes and two odd modes for the correction
of u 1

N (x2).
We have developed combined C- and MAPLE-
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routines for the reconstruction of the scaled kinematic
pressure p

�N . In this routines is calculated p
�N (t, x) as

a function of the solutions gj(t), j = 1, ..., N, of the
system (S) in the form of Fourier coefficients in the
eigenfunctions of the scalar Laplacian with homoge-
neous Neumann conditions and in harmonic pressures
resulting in the harmonic pressure gradient parts of
the Stokes eigenfunctions.

The scaled kinematic pressure p
�N = pL + p

�N on
cut planes through the scaled pipe is shown in the Fi-
gure 2. The kinematic pressure corresponds a pipe
flow at a Reynolds number Re = 1450 and ψ = π/4.
The boundary of the pipe is illustrated there as the
green transparent surface. The scale for the kinematic
pressure has been chosen from light blue (for large
kinematic pressure) to red (for small kinematic pres-
sure).

The agreement of our calculations with other
experimental data for the root-mean-square values of
the fluctuating velocities and the Reynolds stresses
is less satisfactory. These results are to understand
as a consequence of the Gibbs phenomenon again.
We illustrate these quantities as examples in the
Figures 3 and 4, where we have chosen to picture the
calculations for a pure Poiseuille flow in a channel at
Re = 2217 (and ψ = π/2).

10.5-0.5-1
0

2

1.5

1

0.5

0

i = 1

i = 3

i = 2

ui
rms/uτ

x2

�

�

Fig.3: rms-values ui
rms/uτ , i = 1, 2, 3 in a

channel flow at Re = 2217 and ψ = π/2.

5 Conclutions

We have proposed and discussed the application of
Stokes eigenfunctions to the numerical solutions of the
Navier-Stokes equations in this paper. The big advan-

10.5-0.5-1
0

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

−u1
′
u2

′
/(uτ )2

x2

�

�

Fig.4: Calculated shear stress -u1
′
u2

′
/(uτ )2 in

comparison with Eckelmann’s [15]
measurements (+ + +) in a channel flow at
Re = 2217 and ψ = π/2.

tage of these method consist in their nature. These
method is derivable directly from the mathematical
treatment of the Navier-Stokes equations.

From a physical point of view are the Stokes eigen-
functions to understand as the physical modes of a
crawling flow, that means: the Stokes eigenfunctions
are predestinated for the construction of the general
solution-spaces of the Navier-Stokes equations. One
has to note, that the use of such Stokes eigenfunctions
is restricted to special geometries of the domains for
the viscous flows - and special boundary conditions.

Currently, the available mathematical tools give the
possibility to use the Stokes eigenfunctions explicit
for (and in) the development of numerical tools for
the calculation and investigastion of features for the
channel flow and for the pipe flow of incompressible
Newtonian fluids.

We have found that such tools are qualified for the
determination of critical Reynolds numbers and also
for investigations to the bifurcation behavior of so-
lutions of the Navier-Stokes equations. The evalua-
tion of our numerical investigations shows very good
agreements with measurements for the transition from
laminar to turbulent flows in the vicinity of the critical
Reynolds numbers.

The direct calculations of the mean velocities, of the
Reynolds stresses and of the root-mean-square values
are less satisfactory, but due to the small dimension
of our approximation space most probably.

However, one can hope to eliminate these disad-
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vantages by the use of Galerkin spaces of a moderate
larger dimension.

Finally it is to note, that our tools and investiga-
tions are able to provide substantial contributions to
the mathematical understanding of transition to tur-
bulent flows in channels and pipes.
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