Übungsaufgaben: Partielle Differentialgleichungen I Serie 10

Prof. Dr. H.-Ch. Grunau , PD Dr. B. Rummler

Wintersemester 2020/21

1) Beweisen Sie, dass ein stetiger linearer (Spur-)Operator $\gamma : \mathbb{W}_1^1(B_1(\underline{0})) \to \mathbb{L}_1(\partial B_1(\underline{0}))$ existiert, so dass

$$\forall u \in \mathbb{C}^1(\overline{B_1(\underline{0})}) : u_{|_{\partial B_1(\underline{0})}} = \gamma(u)$$
 gilt.

Hinweis. Beweisen Sie die Behauptung

$$||u|_{\partial B_1(\underline{0})}||_{\mathbb{L}_1(\partial B_1(\underline{0}))} \le C||u||_{\mathbb{W}_1^1(B_1(\underline{0}))}$$

mit Hilfe des Gaußschen Integralsatzes zunächst für $u \in \mathbb{C}^1(\overline{B_1(\underline{0})})$ und wenden Sie anschließend ein Dichtheitsargument an.

2) (Abgabe-Aufgabe) Gegeben seien ein beschränktes Gebiet $\Omega \subset \mathbb{E}^n$ und eine Funktion $f \in \mathbb{L}_2(\Omega)$. Eine Funktion $u \in \mathbb{H}_o^2(\Omega) \cong \mathbb{W}_{2,o}^2(\Omega)$ heißt eine schwache Lösung des Problems

$$\begin{cases} \Delta^2 u = f & \text{in } \Omega, \\ u = 0 & \text{auf } \partial \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{auf } \partial \Omega, \end{cases}$$
 (*)

falls für alle Testfunktionen $\psi \in \mathbb{H}_{\rho}^{2}(\Omega)$ gilt:

$$\int_{\Omega} \Delta u \, \Delta \psi \, d\underline{x} = \int_{\Omega} f \psi \, d\underline{x}.$$

Man beweise, dass zu jedem $f \in \mathbb{L}_2(\Omega)$ genau eine schwache Lösung $u \in \mathbb{H}_o^2(\Omega)$ des Problems (*) existiert.

 $\mathit{Hinweis}$. Betrachten Sie auf dem linearen Vektorraum $W^2_{2,o}(\Omega)$ das Skalarprodukt

$$\langle u, v \rangle_{\tilde{\mathbb{H}}^2_o} := \int_{\Omega} \Delta u \, \Delta v \, d\underline{x}$$

und zeigen Sie, dass dieses eine zu $\|.\|_{\mathbb{H}^2_o(\Omega)}$ äquivalente Norm induziert.

3) Sei $\Omega \subset \mathbb{E}^n$ ein beschränktes Gebiet. Wir nennen $u \in \mathbb{H}^1_o(\Omega)$ eine schwache Oberlösung für $-\Delta u \geq 0$ in Ω , u = 0 auf $\partial \Omega$, falls für alle *nichtnegativen* Testfunktionen $\psi \in \mathbb{H}^1_o(\Omega)$ gilt:

$$u \in \mathbb{H}_o^1(\Omega), \qquad \int_{\Omega} \nabla u \cdot \nabla \psi \, d\underline{x} \ge 0.$$

Man zeige, dass für solche schwachen Oberlösungen stets gilt:

$$u \ge 0$$
 f.ü. in Ω .

4) Man beweise, dass die Funktion $\gamma:(0,\infty)\times\mathbb{E}^n\to\mathbb{E}^1$

$$\gamma(t,\underline{x}) := \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{||\underline{x}||^2}{4t}}$$

eine Lösung der Wärmeleitungsgleichung

$$\gamma_t - \Delta \gamma = 0$$

ist.

- 5) Sei n=1 und $u(t,x)=v\left(\frac{x^2}{t}\right)$ für $t>0,\,x>0.$
 - (a) Man zeige, dass

$$u_t = u_{xx}$$
 für $t > 0, x > 0$

genau dann, wenn

$$4zv''(z) + (2+z)v'(z) = 0$$
 für $z > 0$ gilt . (*)

(b) Man zeige, dass die allgemeine Lösung von (*)

$$v(z) = c_1 \int_1^z e^{-s/4} s^{-1/2} ds + c_2$$

lautet.

(c) Man leite $v\left(\frac{x^2}{t}\right)$ bezüglich x > 0 ab und man wähle eine spezielle Konstante c_1 so, dass man für $\frac{\partial u}{\partial x} = u_x$ die eindimensionale Fundamentallösung erhält.