Übungsaufgaben zur Vorlesung "Fixpunktsätze"

- 1. (a) Sei $A \subset \mathbb{R}^n$ abgeschlossen. Man zeige: Es gibt eine Folge $(a_k)_{k \in \mathbb{N}} \subset A$, die dicht in A liegt.
 - (b) Man nennt einen metrischen Raum X separabel, falls er eine abzählbare dichte Teilmenge besitzt. Zeigen Sie in Verallgemeinerung von (a): Jeder Teilraum Y eines separablen metrischen Raumes X ist wieder separabel.
- 2. Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet. Konstruieren Sie eine stetige bzw. eine beliebig oft differenzierbare Funktion $\varphi : \mathbb{R}^n \to \mathbb{R}$, so daß für alle $x \in \mathbb{R}^n$ gilt: $0 \le \varphi(x) \le 1$ sowie

$$\varphi(x) = \left\{ \begin{array}{ll} 1, & \text{ falls } x \in \Omega; \\ 0, & \text{ falls } \mathrm{dist}(x,\Omega) \geq 1. \end{array} \right.$$

- 3. Sei $n \geq 2$. Man zeige: $\mathbb{R}^n \setminus \overline{B_1(0)}$ ist zusammenhängend.
- 4. Sei $n \geq 2$, es sei $f: \mathbb{R}^n \to \mathbb{R}^n$ bijektiv und stetig. Außerdem gelte $\lim_{|x| \to \infty} |f(x)| = \infty$. Man zeige: $f(S^{n-1})$ zerlegt \mathbb{R}^n in genau zwei disjunkte Gebiete, deren gemeinsamer Rand $f(S^{n-1})$ ist.
- 5. Sei $\Omega \subset \mathbb{C}$ ein beschränktes Gebiet, dessen glatter Rand $\partial \Omega$ durch die glatte reguläre einfach geschlossene Kurve $\gamma: [a,b] \to \mathbb{C}, t \mapsto \gamma(t) = x(t) + iy(t)$ gegeben werde. Dabei sei der Durchlaufsinn von γ so gewählt, daß durch

$$\nu(t) = \frac{1}{\sqrt{x'^2(t) + y'^2(t)}} \left(y'(t), -x'(t) \right)$$

ein $\ddot{a}u\beta eres$ Einheitsnormalenfeld an $\partial\Omega$ in $z=\gamma(t)=x(t)+i\,y(t)$ gegeben werde. Weiter seien f,g in einer Umgebung von $\overline{\Omega}$ definiert und stetig differenzierbar. Man definiert allgemein das Kurvenintegral

$$\int_{\gamma} (f dx + g dy) := \int_{a}^{b} (f(\gamma(t)) \cdot x'(t) + g(\gamma(t)) \cdot y'(t)) dt.$$

Der Satz von Stokes lautet dann:

$$\int_{\gamma} (f \, dx + g \, dy) = \int_{\Omega} \left(-\frac{\partial f}{\partial y} + \frac{\partial g}{\partial x} \right) \, d(x, y).$$

- (a) Leiten Sie den Satz von Stokes für den Spezialfall $\Omega = B_R(0)$ direkt aus dem Hauptsatz der Differential- und Integralrechnung her.
- (b) Leiten Sie den allgemeinen Satz von Stokes aus dem Satz von Gauß her.
- 6. (a) Man bestimme den Abbildungsgrad $d(z \mapsto \bar{z}, B_R(0), 0)$.
 - (b) Beweisen Sie den Fundamentalsatz der Algebra, indem Sie auf geeignetem $B_R(0)$ den Abbildungsgrad von $z \mapsto z^k$ bestimmen.

7. Gegeben sei ein Polynom *n*–ten Grades

$$P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0, \quad a_j \in \mathbb{C}.$$

Ist es möglich, daß für alle $z \in \mathbb{C}$ mit |z| = 1 gilt:

8. (a) Die Abbildung $u: \mathbb{R}^2 \cong \mathbb{C} \to \mathbb{R}$ sei zweimal stetig differenzierbar und habe in 0 ein strenges lokales Maximum bzw. Minimum bzw. Sattel, d. h. $\nabla u(0) = 0$ und Hess u(0) negativ definit bzw. positiv definit bzw. indefinit.

Betrachte das Gradientenfeld $f(z) = u_x(z) + iu_y(z)$.

Man zeige: ind (f, 0) = 1 bzw. 1 bzw. -1.

- (b) Sei $u:\mathbb{R}^2\to\mathbb{R}$ zweimal stetig differenzierbar, für ein geeignetes R gelte: für $|z|\geq R$ ist u(x,y)=ax+by, $\mathrm{mit}\ a,b\in\mathbb{R},\,a^2+b^2\neq 0$. Ferner habe u einen nichtdegenerierten kritischen Punkt wie in a). Man zeige: Dann hat u mindestens einen weiteren kritischen Punkt.
- 9. Anhand von einfachen Beispielen "prüfe" man die Notwendigkeit der Bedingungen $\omega(r)=0$ für $r\leq \delta$ und für $r\geq \varepsilon$.
- 10. Sei $\Omega \subset \mathbb{R}^n$ beschränkt und offen.
 - (a) Sei $x_0 \in \mathbb{R}, x_0 \notin \partial\Omega$. Man bestimme den Abbildungsgrad von $f = \sigma(Id x_0), \quad \sigma \in \mathbb{R} \setminus \{0\}$.
 - (b) Sei $f \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ bijektiv, $f^{-1} \in C^1$, $f \neq 0$ auf $\partial \Omega$. Man bestimme $d(f, \Omega, 0)$ mit Hilfe der Transformationsformel.
- 11. Für hinreichend glattes $f, f|\partial\Omega\neq 0$, und glattes Ω definiere man $d(f,\Omega,0)$ mit Hilfe eines Oberflächenintegrals und vergleiche mit der ursprünglichen Definition des Abbildungsgrades für Funktionen $\mathbb{C}\to\mathbb{C}$.
- 12. Sei $\Omega \subset \mathbb{R}^n$ beschränkt und offen, $0 \in \Omega, f : \overline{\Omega} \to \mathbb{R}^n$ sei stetig. Für alle $x \in \partial \Omega$ gelte:

$$f(x) \cdot x > 0.$$

Dann besitzt f in Ω eine Nullstelle.

13. Sei $f: [a_1, b_1] \times \ldots \times [a_n, b_n] \to \mathbb{R}^n$ stetig. Es gelte für i = 1, ..., n, $x_j \in [a_j, b_j]$ $(j \neq i)$:

$$f_i(x_1, ..., x_{i-1}, a_i, x_{i+1}, ..., x_n) \ge 0$$

und

$$f_i(x_1, ..., x_{i-1}, b_i, x_{i+1}, ..., x_n) \le 0.$$

Man zeige: f besitzt eine Nullstelle.

14. Sei Ω offen, beschränkt und konvex. Man zeige, daß der Brouwersche Fixpunktsatz auch auf $\overline{\Omega}$ gilt.

Hinweis: Arbeiten Sie mit dem in der Veranstaltung vorgestellten Minkowski-Funktional.

Zusatz: Was kann man sagen, wenn $K \neq \emptyset$ kompakt und konvex ist, aber nicht mehr notwendigerweise innere Punkte enthält, und $f: K \to K$ stetig ist?

- 15. Sei n ungerade, $f: S^{n-1} \to S^{n-1}$ sei stetig. Dann gibt es ein $\zeta \in S^{n-1}$ mit $f(\zeta) = \zeta$ oder $f(\zeta) = -\zeta$.
- 16. Sei $f: \overline{B_1(0)} \to \mathbb{R}^n$ stetig, für alle $x \in \overline{B_1(0)}$ gelte $f(x) \neq 0$. Dann existieren Zahlen $\lambda_1 > 0, \lambda_2 < 0$ und Punkte $\zeta_1, \zeta_2 \in S^{n-1}$ mit $f(\zeta_1) = \lambda_1 \zeta_1$, $f(\zeta_2) = \lambda_2 \zeta_2$.
- 17. (Satz von Borsuk-Ulam)

Sei $\Omega \subset \mathbb{R}^n$ beschränkt, offen und symmetrisch mit $0 \in \Omega$. Sei $f : \partial \Omega \to \mathbb{R}^m \hookrightarrow \mathbb{R}^n$, m < n, stetig.

Dann existiert $\zeta \in \partial \Omega$ mit $f(\zeta) = f(-\zeta)$.

Beispiel: $n=3, m=2, \Omega={\rm Erde}\ f(x)={\rm Temp.\choose Druck}\Rightarrow {\rm An\ zwei}\ {\rm antipodalen\ Punkten}$ auf der Erdoberfläche stimmen Druck und Temperatur überein.

- 18. Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ stetig und lokal injektiv, für $|x| \to \infty$ gelte $|f(x)| \to \infty$. Man zeige: $f(\mathbb{R}^n) = \mathbb{R}^n$.
- 19. Sei $\varphi \in C^2(\mathbb{R}^n,\mathbb{R})$ mit $\varphi(x) \to -\infty$ für $|x| \to +\infty$ und $\nabla \varphi(x) \neq 0$ für $|x| \geq R, R > 0$ geeignet.

Man zeige, daß für alle $r \geq R$ gilt:

$$d(\nabla \varphi, B_r(0)) = (-1)^n.$$

Anleitung: Man arbeite auf Niveaumengen für φ .

Für geeignetes Ω und $x \in \overline{\Omega}$ betrachte man das Anfangswertproblem

$$u_t(t,x) = \nabla \varphi(u(t,x)), \quad t \ge 0,$$

 $u(0,x) = x$

und zeige, daß für alle t > 0 gilt:

$$d(u(t,.) - Id, \Omega) = d(\nabla \varphi, \Omega).$$

Schließlich zeige man, daß für hinreichend große t und $x \in \partial \Omega$ der "Fluß" u(t,x) relativ klein zu Id(x) = x ist.

- 20. Man überlege sich die Produktformel für den Abbildungsgrad mit Hilfe von Hilfssatz 3.7, dabei können die beteiligten Abbildungen und die auftretenden "Null-"Stellen als so regulär wie benötigt angenommen werden.
- 21. Sei $f \in C^1(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$, es gebe ein $\omega > 0$, so daß für alle $(t, x) \in \mathbb{R} \times \mathbb{R}^n$ gilt: $f(t + \omega, x) = f(t, x)$. Ferner sei $\varphi \in C^2(\mathbb{R}^n)$, $\varphi(x) \to -\infty$ für $|x| \to \infty$; es gebe ein R > 0, so daß für alle $|x| \ge R$ und $t \ge 0$ gilt:

$$\nabla \varphi(x) \cdot f(t, x) > 0.$$

Man zeige, daß die Differentialgleichung

$$u'(t) = f(t, u(t))$$

eine ω -periodische Lösung besitzt.

22. (Satz von Jentzsch)

Sei $\emptyset \neq C^{\circ} \subset C \subset \mathbb{R}^n$ und C kompakt, für den Integralkern $K \in C^0(C \times C)$ gelte K(x,y) > 0 für alle $x,y \in C$.

Man zeige: Es gibt einen positiven Eigenwert $\lambda>0$ und eine strikt positive Eigenfunktion $f\in C^0(C)$ von

$$\int_C K(x,y)f(y)dy = \lambda f(x).$$

23. Sei V ein Banachraum.

Man zeige: $M \subset V$ ist präkompakt $\Leftrightarrow \overline{M}$ ist kompakt.

24. Sei V ein Banachraum, $F:V\to V$ sei eine stetige Abbildung, so daß für jede beschränkte Menge $B\subset V$ das Bild F(B) präkompakt ist. Außerdem existiere eine Zahl $K\in\mathbb{R}$ mit der folgenden Eigenschaft:

Ist $x \in V$ für ein $\tau \in [0, 1]$ Lösung der Gleichung $x - \tau F(x) = 0$, so ist $||x|| \le K$. Dann gilt: F hat in V einen Fixpunkt.

(Methode der a-priori-Schranken.)

Hinweis: Mit Hilfe von F konstruiere man eine kompakte Abbildung $F: \overline{B_{K+1}(0)} \to \overline{B_{K+1}(0)}$.

- 25. Sei V ein Banachraum, $M \subset V$. Dann sind äquivalent:
 - (i) *M* ist präkompakt.
 - (ii) Zu jedem $\delta > 0$ existiert eine Zahl $n \in \mathbb{N}$ und n Punkte $x_1, ..., x_n \in M$ mit $M \subset \bigcup_{j=1}^n B_{\delta}(x_j)$.

Hinweis: Man verwende die Äquivalenz von Folgen- und Überdeckungskompaktheit.

26. Sei V ein Banachraum, $(x_k)_{k\in\mathbb{N}}$ eine Folge, die keine (in V) konvergente Teilfolge besitzt. Dann gibt es ein $\delta > 0$ und eine Teilfolge $(x_{k_i})_{i\in\mathbb{N}}$, so daß für alle $i \neq j$ gilt:

$$||x_{k_i} - x_{k_j}|| \ge \delta.$$

27. Sei $\Omega \subset V$ offen; die Abbildung $F: \Omega \to V$ heißt in $x_0 \in \Omega$ (Fréchet-) differenzierbar, falls gilt:

Es gibt eine beschränkte lineare Abbildung $A:V\to V$, ein $\varepsilon>0$ und eine Abbildung $R:B_\varepsilon(x_0)\to V$ mit $\lim_{x\to x_0}\frac{\|R(x)\|}{\|x-x_0\|}=0$, so daß F in $B_\varepsilon(x_0)$ die Darstellung besitzt:

$$F(x) = F(x_0) + A(x - x_0) + R(x).$$

In diesem Fall heißt $A=:DF(x_0)$ das (Fréchet-) Differential von F im Punkte x_0 .

Man zeige: Ist $F: \Omega \to V$ kompakt und in $x_0 \in \Omega$ differenzierbar, so ist $DF(x_0)$ eine kompakte lineare Abbildung, bildet also beschränkte Mengen auf präkompakte ab.

28. Sei $V=c^0=$ Menge aller reellen Nullfolgen $=\{x=(x_\ell)_{\ell\in\mathbb{N}}:x_\ell\in\mathbb{R},\lim_{\ell\to\infty}x_\ell=0\},$ zusammen mit $\|x\|:=\|x\|_{c^0}=\max_{\ell\in\mathbb{N}}|x_\ell|$ wird V ein Banachraum (ohne Beweis). Sei $F:V\to V, F(x)=(x_\ell^2)_{\ell\in\mathbb{N}}.$ Man zeige:

F ist an jeder Stelle $x \in V$ Fréchet-differenzierbar, und DF(x) ist eine kompakte lineare Abbildung. Dagegen ist $F|\overline{B_1(0)}$ nicht kompakt.

D. h., die Umkehrung von Aufgabe 27 gilt nicht.

29. Sei $\Omega \subset V$ offen, $F:\Omega \to V$ sei kompakt und in $x_0 \in \Omega$ Fréchet-differenzierbar. Das Differential $Id-DF(x_0)$ sei injektiv. Ferner habe Id-F in x_0 eine Nullstelle: $x_0-F(x_0)=0$. Man zeige: Die Nullstelle x_0 ist isoliert, und es gilt:

$$\operatorname{ind}(Id - F, x_0) = \operatorname{ind}(Id - DF(x_0), 0).$$

Hinweis: Aufgabe 27.

30. Zusätzlich zu den Voraussetzungen von Aufgabe 29 gelte: V ist ein Hilbertraum , d. h. es gibt ein Skalarprodukt, so daß für alle $x \in V$ gilt: $||x||^2 = \langle x, x \rangle$.

Das Differential von F in x_0 sei selbstadjungiert – für alle $x,y \in V$ ist $\langle DF(x_0)x,y\rangle = \langle x,DF(x_0)y\rangle$ – und besitze in $(1,\infty)$ $N\in\mathbb{N}_0$ Eigenwerte $\lambda_1,\ldots\lambda_N$; jeder Eigenwert wird entsprechend seiner Vielfachheit aufgeführt.

(Die endliche Anzahl in $(1, \infty)$ folgt bereits aus der Kompaktheit von $DF(x_0)$).

Man zeige: $ind(Id - F, x_0) = (-1)^N$.

- 31. Sei $\Omega \subset V$ offen, beschränkt, $0 \in \Omega$. Sei $F : \overline{\Omega} \to V$ kompakt und $d(Id F, \Omega) \neq 1$. Man zeige: Dann hat F einen positiven Eigenwert, d. h. es gibt $x \in \Omega, x \neq 0, \lambda > 0$, so daß $F(x) = \lambda x$.
- 32. Sei $\Omega\subset V$ offen, beschränkt, $F:\overline{\Omega}\to V$ sei kompakt, $0\not\in (Id-F)(\partial\Omega)$, es gelte $d(Id-F,\Omega)\neq 0$. Die Abbildung $G:V\to V$ genüge der Lipschitz-Bedingung $\|G(x)-G(y)\|\leq K\|x-y\|$ für alle $x,y\in V$ mit einer geeigneten Konstanten K>0. Man zeige: Es gibt ein $\varepsilon_0>0$, so daß für jedes $|\varepsilon|\leq \varepsilon_0$ die Gleichung

$$x = F(x) + \varepsilon G(x)$$

eine Lösung $x \in \Omega$ besitzt.

Anleitung: Man zeige für hinreichend kleine $|\varepsilon|$, daß

- $Id \varepsilon G$ ein Homöomorphismus von V ist (Banachscher Fixpunktsatz),
- für $x \in V$ die Abbildung $[0,1] \ni \tau \to (Id \varepsilon \tau G)^{-1}(x)$ stetig ist,
- daß $[0,1] imes \overline{\Omega} \to V, H(\tau,x) = (Id \varepsilon \tau G)^{-1} F(x)$ eine zulässige Homotopie ist.