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Abstract

We consider the Willmore boundary value problem for surfaces of revolution where, as
Dirichlet boundary conditions, any symmetric set of position and angle may be prescribed. Us-
ing direct methods of the calculus of variations, we prove existence and regularity of minimising
solutions. Moreover, we estimate the optimal Willmore energy and prove a number of qualita-
tive properties of these solutions. Besides convexity-related properties we study in particular
the limit when the radii of the boundary circles converge to 0, while the “length” of the surfaces
of revolution is kept fixed. This singular limit is shown to be the sphere, irrespective of the
prescribed boundary angles.

These analytical investigations are complemented by presenting a numerical algorithm based
on C'-elements and numerical studies. They intensively interact with geometric constructions
in finding suitable minimising sequences for the Willmore functional.
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1 Introduction

1.1 The Willmore problem

Given a smooth and immersed surface I' C R3, the Willmore functional is defined by

W) := [ H*dA
/

with H the mean curvature of the immersion and dA its area element.
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The functional W is of geometric interest, and it models the elastic energy of thin shells or
biological membranes. It applies further in image processing and even in string theory (see e.g.
[He, HP, Ni, KL, Z]). In these applications one is usually concerned with minima or, more generally,
with critical points of the Willmore functional. Such a critical point I' C R? has to satisfy the
Willmore equation

ArH +2H(H* - K)=0 onT, (1.2)

where Ar denotes the Laplace-Beltrami operator on I', and K is the Gauss curvature of the surface.
A solution of this non-linear fourth-order differential equation is called Willmore surface.

Although introduced already in the 19th century (see i.g. [P]), it was Willmore’s work [Wi]
which popularised again the investigation of the Willmore functional. Various existence and
regularity results for closed Willmore surfaces of prescribed genus were extensively discussed in
the literature. We want to mention in particular Bauer-Kuwert and Simon [BK, Sn| for exis-
tence of closed Willmore surfaces of prescribed genus, Kuwert-Schétzle and Leschke-Pedit-Pinkall
[KS1, KS2, LPP] for closed Willmore surfaces of fixed conformal class and Riviere [R] for a far
reaching regularity result. We refer to [DDG] for a more extensive survey.

In the present paper we are interested in surfaces with boundaries. Therefore, we need to
add to (1.2) appropriate boundary conditions. A discussion of possible choices can be found in
Nitsche’s survey article [Ni] along with corresponding existence results. Nitsche’s results are based
on perturbation arguments and require severe smallness conditions on the boundary data, which
are by no means explicit. Furthermore, using methods from geometric measure theory, Schéatzle
proved in [Sch] existence and regularity of branched Willmore immersions in S™ with prescribed
boundary conditions. By working in S", some compactness problems could be overcome. On the
other hand, when pulling back these immersions to R" it cannot be excluded that they contain
the point co. Due to the generality of his approach it seems to us that no topological information
of the solution can be extracted from the existence proof. For numerical algorithms and numerical
analysis for boundary value problems for the Willmore equation and the corresponding parabolic
flow we mention Deckelnick, Droske, Rumpf and Dziuk (see [DD, DR, Dz] and references therein).

To prove existence of a priori bounded solutions to boundary value problems for the Willmore
equation (1.2) with some specified further properties like e.g. the topological type or being a graph
without imposing smallness conditions on the data seems to be a quite difficult task. Equation
(1.2) is highly nonlinear and of fourth order and so, lacking any form of a general maximum or
comparison principle. Most of the well established techniques from second order problems like
e.g. the De Giorgi-Nash-Moser theory seem to break down completely in higher order problems.
In order to start working on a theory of classical bounded smooth solutions for the Willmore
boundary value problem we think that it is a good and appropriate strategy to investigate situ-
ations enjoying symmetry. Although then, one has an underlying ordinary differential equation,
understanding solvability of the corresponding boundary value problems is by no means straight-
forward. In this spirit the one-dimensional Willmore problem or so called elastica were studied in
[DG1, DG2|. Klaus Deckelnick and two of the authors investigated in [DDG] symmetric Willmore
surfaces of revolution where the position and zero slope were prescribed on the boundary. By a
number of refined geometric constructions it was possible to work with a priori bounded minimising
sequences. Although the differential equation is one-dimensional, the geometry is to a large extent
two-dimensional: Great difficulties arising from the interaction between the principal curvatures
of the unknown surface are already present.

The previous work [DDG] was devoted to special Dirichlet boundary data. While the position
at the boundary could be prescribed arbitrarily, one had to restrict to a zero boundary angle.
Arbitrary boundary angles are subject of the present paper.



1.2 Main results

In the present paper we will investigate a particular Dirichlet boundary value problem for (1.2).
Namely, we consider surfaces of revolution I' C R? which are generated by rotating a smooth
function u: [—1,1] — (0, 00) about the x = x;-axis. Then, I' can be parametrised as follows:

(x,0) — f(z,p) = (z,u(x) cosp,u(x)sinp), =€ [-1,1], ¢ €][0,27]. (1.3)

We consider the Willmore problem under symmetric Dirichlet boundary conditions where the
height u(+1) = o > 0 and an arbitrary angle v/(—1) = 8 = —4/(1), € R, are prescribed at the
boundary. The case 5 = 0 has been studied in [DDG]. Our main result is the following.

Theorem 1.1 (Existence and regularity). For each a > 0 and each 3 € R, there exists a positive
symmetric function u € C*([-1,1],(0,00)), i.e. wu(z) > 0 and u(x) = u(—=x), such that the
corresponding surface of revolution T' C R3 solves the Dirichlet problem for the Willmore equation

(1.4)

{ ArH +2H(H?> - K)=0 in (—1,1),
u(—=1) =u(+1) = «, u(—=1) = —u/(+1) = 3.

The solution we find has the following additional properties:
1. If aB > 1, then v’ <0 in (0,1] and |u/'(z)| < B for all x € [-1,1].
2. IfaB <1 and B3>0, thenu' <0 in (0,1) and [u'(z)| < L for all x € [-1,1].

3. If B <0 and avarsinh(—3) > /1 + (2, then v’ > 0 in (0,1].
4. If B <0 and carsinh(—f) < \/1 + 32, then u has at most one critical point in (0,1).

The proof is obtained by combining Theorems 3.11, 3.18, 4.17, 4.24, 4.39, 4.48 and Lemmas 3.1,
3.20 and 4.1.

It may appear surprising that we find axially symmetric solutions of the Willmore boundary
value problem for all values of @ > 0 and 3 € R. For example, axially symmetric critical points of
the area functional (i.e. minimal surfaces)

1
A(T) = 21 / @)/ - (@2 da
1

exist only for u(1) = a > o where
1
o= o cosh(b*) = 1.5088795.. .. (1.5)

and b* > 0 is the solution of the equation cosh(b*) = b*sinh(b*), b* = 1.1996786.... Minimal
surfaces of revolution, so called catenoids, are obtained for any b € (0,00) by rotating the curve
x — ¢ cosh(bz) around the z-axis. Not only for boundary data a € (0, a*) these catenoids cease to
exist, but according to [DHKW, Chapter 6.1, Theorem 3], there is no connected minimal surface
solution at all — whether symmetric or not — for o < 1.

According to our result, for any set of symmetric Dirichlet boundary data, we always find at
least one solution to the Willmore boundary value problem. For non-symmetric Dirichlet data —e.g.
u(1) # u(—1) — we expect a different picture. Analytical and numerical experiments suggest that
one may be forced to impose conditions on the data u(—1),u(1),u' (—1),% (1) which deviate not
too much from the symmetric setting. We feel that it might be even possible to prove nonexistence



within the class of surfaces of revolutions generated by graphs for quite unsymmetric sets of data.
For these data, however, existence may possibly still hold true in the class of parametric surfaces
of revolution.

In order to prove our existence result Theorem 1.1, as in [DDG], we consider symmetric C1:!-
functions satisfying the boundary conditions and we study the minimisation problem in this
class. In this setting, we prove that we may pass from arbitrary to suitable minimising sequences
satisfying strong a priori bounds. We obtain these bounds by explicit geometric constructions
which lower the Willmore energy. A key observation in doing so is the correspondence between
the Willmore functional on surfaces of revolution and a curvature functional on curves in the
hyperbolic half plane. The geometric constructions use geodesics of the hyperbolic half plane as
well as catenoids, i.e. minimal surfaces of revolution. The obtained a priori bounds on the elements
of the suitably modified minimising sequence ensure the required compactness and yield the desired
existence result. In the setting of the hyperbolic half plane a classification of possible curvature
functions in terms of elliptic functions of the arc length of the unknown curves is available, see
[LS1, LS2]. However, we did not see a possibility to develop these results towards explicit formulae
for boundary value problems (1.4). Moreover, we think that the geometric constructions performed
in the present paper help to a good extent to understand the geometric shape of minimisers.

It remains as an interesting question whether these solutions minimise the Willmore energy
also in the class of all immersed surfaces satisfying the same Dirichlet boundary conditions. For
8 # 0 and a@ — oo the energy bounds of Chapter 6 indicate that presumably this will not be the
case. We expect that there might be parametric Willmore surfaces of revolution with much smaller
Willmore energy.

Uniqueness is a further issue we have to leave open. We think that similarly as in the one-
dimensional analogous problem [DG1, Theorem 2] it should be possible to prove uniqueness and
continuous dependence on data of energy minimising Willmore surfaces of revolution which are
generated by graphs.

As can be seen from the statement of Theorem 1.1, the behaviour of those solutions of the
Willmore equation constructed there depends not only on whether 3 > 0 or 8 < 0. In both cases
we have to make further distinctions. It seems that we have to treat all these cases separately. The
switch between the different cases occurs when having explicit solutions. These solutions mark
the values of the parameters where the qualitative behaviour of solutions changes. If a8 = 1 then
a solution is given by an arc of the circle with centre in the origin and going through the point
(1, ). This is a geodesic in the hyperbolic half plane. The corresponding surface of revolution
is part of a sphere which is the simplest possible closed Willmore surface. These geodesics of
the hyperbolic half plane play an important role when studying the case 5 > 0. For § < 0 and
aarsinh(—0) = /1 + (32, the catenoid u(z) = cosh(bx)/b with b = arsinh(—/) is a minimal surface
solution. Catenoids come into play in our constructions in addition to the hyperbolic geodesics
when studying the case § < 0. This interplay between two prototype Willmore surfaces gives rise
to some technical difficulties. For # < 0 and || large, numerical calculations clearly display almost
catenoidal and almost spherical (hyperbolically geodesic) parts of solutions.

Conformal invariance is a key feature of the Willmore functional and of Willmore surfaces. Ro-
tation and translation are frequently employed, and scaling invariance is most important through-
out the whole paper. On the other hand, inversions are not addressed here since in most cases they
do not preserve the particular shape (1.3) of surfaces of revolution generated by graphs. Within
this framework, only the relatively simple case oG > 1 could have been reduced to results in parts
of the complementing cases, which are much more involved especially when 3 < 0. In particular,
boundary data with g < 153‘2 cannot be reduced to different cases because here, inversion does
not yield graphs. But inversions are nevertheless quite interesting also here. Depending on «,
they directly yield parametric Willmore surfaces of revolution which are not generated by graphs




for a range of tangent vectors pointing to the left in x = —1 and to the right in z = 1. This is
remarkable in so far as the general discussion of parametric surfaces of revolution is expected to
be more difficult than that in the present paper.

Besides existence we also study further qualitative and asymptotic properties of solutions. A
natural question is what happens to the solutions constructed in Theorem 1.1 when 3 € R is fixed
and « goes to 0. We prove that they converge to the sphere centered at the origin with radius 1.

Theorem 1.2. Fiz § € R. For a > 0 let uq be a solution to problem (1.4) as constructed in
Theorem 1.1. Then, uq converges for o\, 0 to x +— /1 — 2% in C".(—1,1) for any m € N.

For a proof see Theorem 5.8.

With our method of proving existence of solutions we get also information on the qualitative
behaviour of the solutions. In particular, we can characterise the sign of the first derivative as
stated in Theorem 1.1. Looking at the graph of a solution u : [-1,1] — (0,00) as a curve in the
hyperbolic half plane, we study also the sign of its hyperbolic curvature. In Section 2.2 we recall
some basic facts from hyperbolic geometry. However, the meaning of the sign of the hyperbolic
curvature rp[ul(z) in (z,u(x)) is easily explained. One compares the graph of u in (z,u(z)) with
the tangential geodesic circle centered on the z-axis. Negative kp[u](z) means that the graph is
locally inside this circle while xp[u](z) > 0 means that the graph of u is locally outside this circle.
Concerning the sign of the hyperbolic curvature of our solutions we have the following result. We
skip the case a8 = 1, where the solution is a geodesic circle.

Theorem 1.3. For a > 0 and f € R let u € C*°([—1,1],(0,00)) be a solution to problem (1.4)
as constructed in Theorem 1.1. Let kpu] denote the hyperbolic curvature of the curve {(x,u(x)) :
x € [—1,1]}. Then, kp[u] has the following sign properties:

1. If aff > 1, then kp[u](0) < 0 and kplu] has at most one change of sign in (0,1).
2. If af <1 and 8 >0, then kplu] >0 in (—=1,1).

3. If B < 0 and ccarsinh(—3) > /1 + 32, then k[u](0) > 0 and kplu] has at most one change
of sign in (0,1).

4. If B <0 and carsinh(—f) < /1 + 32, then kplu] > 0 in (—1,1).

The proof is obtained by combining Theorems 6.4, 6.7, 6.9 and 6.11.

Numerical calculations give evidence to our feeling that in the case a8 > 1 the hyperbolic
curvature may indeed have a change of sign.

It is not only in this respect that the analytical investigations of the present paper benefit
a lot from numerical simulations. Numerically calculated solutions help in finding qualitative
properties of suitable minimising sequences while, at the same time, analytical insights help to
identify suitable initial data such that the numerical gradient flow method indeed converges. In
Chapter 7, we explain a C'-finite element method, which we think is natural in order to deal
with Dirichlet boundary conditions. It seems that so far, no C'-finite element algorithms are
available for Willmore surfaces. Like in the analytic part we consider the present paper as a first
step also in numerical investigations of Dirichlet problems. We are confident that, basing upon
these experiences, we may develop C'-finite element algorithms also for graphs e.g. over general
two-dimensional domains. This will be subject of future research.

We remark that in particular the Navier boundary value problem is numerically well investi-
gated, where the position of the surface and its mean curvature are prescribed at the boundary.
See e.g. [DD, Dz] and references therein. In this case the Willmore boundary value problem may



be written as a second order system for the position and the mean curvature and continuous finite
elements may be used.

Droske and Rumpf [DR] proposed a level set formulation for the Dirichlet problem and for
closed Willmore surfaces and developed a corresponding piecewise linear continuous finite element
algorithm.

1.3 Organisation of the paper

In Chapter 2 we recall some basic geometric notions which are relevant for our analysis, and
formulate the minimisation problem for the Willmore functional as we shall study it. We explain
that the Willmore functional for surfaces of revolution I' as in (1.3) corresponds to a functional
defined on curves in the hyperbolic half plane. We call this second functional the “hyperbolic
Willmore functional”. This observation was already made by Pinkall and Bryant-Griffiths and
used in [Br, BG, LS2, DDG].

In Chapter 3 we prove Theorem 1.1 in the case 3 > 0 taking advantage of the reformulation
of the minimisation problem in the hyperbolic half plane. For a8 = 1 we have a part of a sphere
as an explicit solution. We distinguish then the cases a8 > 1 and a8 < 1. In both cases we
first prove monotonicity of the energy. The energy is increasing in « for a8 > 1, while it is
decreasing in « for a8 < 1. By geometric constructions we prove that we can restrict ourselves to
minimising sequences satisfying strong a priori bounds, which are as in Theorem 1.1, Properties
1 and 2 respectively. The key ingredient is to insert suitable parts of hyperbolic geodesic circles.
The case a8 < 1 may be viewed as a direct generalisation of the result for 3 = 0 from [DDG]. As
for estimates and existence we proceed exactly like there and are quite brief here for this reason.
However, we improve it by showing that our solution even satisfies v’ < 0 in (0,1). Obtaining a
priori estimates in the case a3 > 1 is more involved since the geodesic circle through the boundary
points does no longer serve as a comparison function.

In Chapter 4 we prove Theorem 1.1 in the case § < 0. For a = ag = /1 + [?/arsinh(—03)
a solution is the catenoid x +— cosh(bz)/b with b = arsinh(—/3). Then, we distinguish the cases
a > ag and o < ag. Here, the requisite geometric constructions in order to achieve strong enough
a priori information on suitably modified minimising sequences do not only involve the hyperbolic
geodesics but also the catenoids as minimal surfaces of revolution. These constructions are different
not only according to the cases o > ag and o < ag, but depend also on whether —3 > aor -8 < «
and whether @ > a* or @ < «*. The parameter o* = min{cosh(b)/b : b € (0,00)} refers to the
smallest boundary height where for some boundary angle one may have a catenoid as solution. If
|3| becomes large and « small it turns out to be somehow delicate to prevent minimising sequences
from getting too close to 0 and to obtain bounds from below. Surprisingly, the case where a > ag
and —( < « is special, because here we can prevent a possible loss of compactness only by further
restricting the class of admissible functions.

In Chapter 5 we study the behaviour of minimisers for a \, 0. We prove that our minimisers
converge locally uniformly in (—1, 1) to the sphere. In Chapter 6 we prove bounds on the Willmore
energy and we study the sign of the hyperbolic curvature of the constructed solutions.

Chapter 7 gives a description of a C'-finite element algorithm for the underlying Willmore
gradient flow. Moreover, numerical studies are performed, and we provide a series of pictures
illustrating typical shapes of solutions within different parameter regimes.



2 Geometric background

2.1 Surfaces of revolution

We consider any function v € C*([~1,1],(0,00)). Rotating the curve (z,u(x)) C R? about the
r-axis generates a surface of revolution ' C R3 which can be parametrised by

I': f(z,¢) = (v,u(z) cosp,u(z)sing) € R, =z € [-1,1], ¢ € [0,2n).

The term “surface” always refers to the mapping f as well as to the set I'. The condition u > 0
implies that f is embedded in R? and in particular immersed.

Let x1 and k2 denote the principal curvatures of the surface I' C R?, that is k1 = —u/(x)(1 +
u/(w)z)_% and kg = (u(z)\/1+ v/(x)2)7L. Tts mean curvature H and Gaussian curvature K are

_ kitke u’(x) 1 _ 1 u(z) /
T TG P A s WY e 2U<I>U’<l’>< ) ’

u”(a:)
u(l+u'(2)?)?

K = Kikg = —

The Willmore energy of T' defined in (1.1) is the integral over the surface of the mean curvature
squared. In particular, written in terms of the function u it has the form

1

2
_r u’(z) — 1 w(x)+/ u'(x)? dx
W(F) = 2/1<(1_|_u/(x)2)3/2 u(x> 1+u’(a:)2> ( ) 1+ ( )2d . (2.1)

2.2 Surfaces of revolution as elastic curves in the hyperbolic half plane

Following [Br, BG], the construction of axially symmetric critical points I of the Willmore func-
tional can be reduced to finding elastic curves in the upper half-plane R? := {(z,y) € R? : y > 0}
equipped with the hyperbolic metric ds% = y% (dx?® + dy?). Geodesics are circular arcs centered
on the z-axis and lines parallel to the y-axis; the first will play a crucial role in this work.

Let s — (s) = (71(s),72(s)), where we do not raise the indices, be a curve in R parametrised
with respect to its arc length, i.e.

71(5)% +75(s)

! Y2(s)?

Then, its curvature is given by

wn(s) = ‘@((58))2 HEE 75525 (i s (%)) 22)

For graphs [—1,1] 2 z — (z,u(z)) € R?, formula (2.2) yields

B _u(x)Qi 1 _ u(z)u” (x) 1
ralul(z) = o' (z) du (u(l‘) 1 +u,(x)2) (1 + u/(2)2)3/2 + 1 +u/($)2. (2.3)

Using identity (2.3), we compute for the squared hyperbolic curvature times the hyperbolic line
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2
N o | _
alul S G e VT
!

u 1 2 u'
= - u/1+u24+4——
{(1+u’2)3/2 um} (1+u?)

U”
= 4HuV/14u? 44—
2

(14 u?)

N

We define the hyperbolic Willmore energy as the elastic energy of the graph of u in the hyperbolic
half plane and compare it with the original Willmore functional W(I") defined in (2.1).

1 1

M@@%:/mWﬁd%mL:/nWlezwam:iVWD+4/tHj;ﬁmm; (2.4)
v -1 -1

where I" is the surface of revolution obtained by rotating the graph of w.
Lemma 2.1 (Duality of Wj,(u) and W(T')). The hyperbolic energy Wh(u) of a curve u € R% and
the Willmore energy of the corresponding surface of revolution T C R3 satisfy

1
()

Mﬂw:iwwﬂ41+wwy

-1

This observation goes back to Pinkall and Bryant-Griffiths [Br, BG], see also [LS1, LS2]. The
present derivation is adapted from [DDG, Section 2.2].

In proving Theorem 1.1, we benefit a lot from this duality between the Willmore functional
and the hyperbolic Willmore energy. We do not only take technical advantage from this result,
but we think that switching between both functionals helps to a good extent in understanding
underlying geometric features.

Concerning the Euler-Lagrange equation for critical points of the hyperbolic Willmore func-
tional W), one has:

Lemma 2.2. Assume that u € C*([—1,1],(0,00)) is such that for all p € C5°([—1,1],(0,00)) one
has that 0 = %Wh(u + to)|i=0. Then, u satisfies the following FEuler-Lagrange equation

ﬁdd( 11(3@)2%@))‘Hh<x>+§ﬂh<x>3=o7 re(-1y,  (25)

with Kk, = kplu] as defined in (2.3).

When parametrised by the hyperbolic arc length s, equation (2.5) takes the simple form
%ﬁh(s) — kn(s) 4+ 3kn(s)® = 0. This equation was discussed in detail in [LS1] and curvatures of
solutions were classified in terms of elliptic functions of the hyperbolic arc length s. However, we
do not see any possibility to solve directly and explicitly our Willmore boundary value problem

(1.4) basing upon this classification.

2.3 Statement of the Willmore problem

The Willmore boundary value problem (1.4) will be solved by minimising the hyperbolic Willmore
functional within the following class of functions:



Definition 2.3. For a > 0 and 8 € R we introduce the function space
Nog = {u e C"([~1,1],(0,00)) : u positive, symmetric, u(1) = o and u'(—1) =3} (2.6

as well as
Mz :=inf {Wp(u) : u€ Nog}. (2.7)

Lemma 2.1 gives that

B
Vit

for the surface I' of revolution generated by u € N, g. Since we are working with Dirichlet boundary
conditions we may switch between the two functionals depending on which one is more convenient.

In the following sections we will prove existence of solutions us g € Ny g N C*>([—1,1],R) such
that Wy (ua,3) = Ma,g. Only in the case of parameters treated in Subsection 4.2.3, N, g has for
technical reasons to be replaced by a smaller set of admissible functions. The axially symmetric
surface I'y g which is generated by w4, g is solution of the Willmore boundary value problem (1.4).
See [DG3, Lemma 1] for an elementary calculation of the Euler-Lagrange equation in this particular
setting. For a general survey on the Willmore functional, corresponding Euler-Lagrange equations
and natural boundary conditions we refer to the survey article by Nitsche [Ni], cf. also [Th, p.
56]. The Euler-Lagrange equation for the Willmore functional in nonparametric form was already
discussed by Poisson [P, p. 224].

W(T) = g Wi (u) + 4

Remark 2.4. The Willmore energy is invariant under rescaling. l.e. if u is a positive function
in CbY([—r,7],(0,00)) for some r > 0, then the function v € CY1([—1,1],(0,00)) defined by
v(x) = u(rz)/r has the same hyperbolic Willmore energy as u, that is,

T

Wh(v) = /m,zl[v] dsplv] = /n,zl[u] dsp[ul.

-

Here, kp,[u] is the hyperbolic curvature of v as defined in (2.3) and Wy, (v) is the hyperbolic Willmore
energy of v as defined in (2.4).

3 Existence result: The case 7 >0

In this section we consider 8 > 0 and keep it fixed, while « varies in the positive real numbers.

For the value of a such that a3 = 1 we have an explicit solution of (1.4). This is the arc of the
circle with centre at the origin and going through the point (1, «). This solution is in particular
a geodesic curve in the hyperbolic half plane. It marks the point where there is a change in the
behaviour of the energy. For af > 1 the energy M, g, defined in (2.7), is monotonically increasing
in «, while for af < 1 it is monotonically decreasing in «.

Minimising sequences are suitably modified by means of parts of geodesic circles in order to
achieve strong enough a priori estimates ensuring compactness. In this respect the case a8 > 1 is
more involved than the case a8 < 1, because here there is no canonical comparison function from
above. However, one can pass to minimising sequences where the derivative is maximal in x = —1.
The case a8 < 1 is quite similar to and contains the main result Theorem 1.1 from the previous
work [DDG] as a special case. However, this simplicity is due to referring to its main geometric
construction. Here, a geodesic circle provides an obvious upper bound. Moreover, we prove an
extra property of the solution u constructed there, namely that «/(xz) < 0 on (0,1).

10



3.1 The case aff = 1: The circle
Here, we have an explicit solution.

Lemma 3.1. For each o > 0 and (3 such that a3 = 1, the part of the sphere T C R3 generated
as a surface of revolution by the function u(z) = V1+ o? — 22, x € [—1,1] solves the Dirichlet
problem (1.4).

Moreover, the corresponding surface of revolution is the unique minimiser of the Willmore

functional (1.1) among all axially symmetric surfaces generated by graphs of symmetric functions
in C1([-1,1],(0,00)) such that v(+1) = a and v'(1) = —3.

Proof. Since kplu] = 0 in [—1,1], the claim follows from Lemma 2.1 and the definition of the
hyperbolic Willmore functional in (2.4). O

3.2 The case aff > 1
3.2.1 Monotonicity of the optimal energy

In this paragraph we prove that the Willmore energy is increasing in . The proof is divided into
the next four lemmas. First, we prove that it is enough to consider functions in N, g which are
decreasing in [0,1]. The proof will refer to a main result of the previous work [DDG, Theorem
3.8], which involves a number of refined geometric constructions. We emphasise that obvious
constructions like reflections do not yield the following result.

Lemma 3.2. For each u € N, g with only finitely many critical points, we find a functionv € Nq g
having at most as many critical points as u, with lower Willmore energy than u and satisfying
V'(x) <0 for all x € [0,1].

Proof. Assume that u does not have the claimed property. Then, there exists xg € (0, 1) such that
[—z0, z0] is the largest possible symmetric interval with the property u'(zp) = 0 and «/(z) < 0 in
(z0,1]. Using a rescaled version of [DDG, Theorem 3.8] we substitute u||_y, ,,] by a symmetric
positive Ch!-function defined on the same interval, having the same boundary values as v in z,
having lower Willmore energy than u|_y, ..}, having at most as many critical points as u|[_z ]
and decreasing in [0, zo]. The so obtained function v is element of N, g, it has at most as many
critical points as u, Wh(v) < Wh(u) and v'(z) <0 in [0,1]. O

In the proof we need only that G > 0. Notice further that one could substitute u“_wo’xo} with
an appropriately rescaled solution of the Willmore problem with § = 0 and height u(xo)/xo as
constructed in [DDG, Theorem 1.1]. This statement, however, does not give control of the number
of critical points. With arguments introduced below we shall see — a posteriori — that we could
indeed achieve v’ < 0 on (0, z9).

In the next lemma, we construct for any u € N, g which is decreasing in [0, 1] a function with
the same boundary values having lower Willmore energy than u and being defined in a larger
interval.

Lemma 3.3. Assume that u € Ny g has only finitely many critical points and satisfies u'(z) < 0
for all x € [0,1]. Then, for each o € [1,af), there exists a positive and symmetric function
uy € CH([—p, 0], (0,00)) such that uy(0) = a, ub(0) = =0, ul(xz) <0 for all x € [0, 0], u, has at
most as many critical points as u, and, furthermore, one has

/mh[ug]Q dsplug] < Wh(u).
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Proof. The construction is similar to the one of [DDG, Lemma 3.3]. The situation there differs
from the present one in the non-vanishing boundary conditions for u’. There we decrease the energy
by shortening the interval, while here it is elongated.

Let r € (0,1) be a parameter. The (euclidian) normal to the graph of w in (7, u(r)) has direction
(—u'(r),1). The straight line generated by this normal intersects the z-axis left of r, since u is
decreasing. We take this intersection point (c(r),0) as centre for a geodesic circular arc, where
the radius is chosen such that this arc is tangential to the graph of w in (r,u(r)). In particular,
the radius is given by the distance between (¢(r),0) and (r,u(r)). We build a new symmetric
function with smaller hyperbolic curvature integral as follows: On [c(r),r] we take this geodesic
arc, which has horizontal tangent in ¢(r), while on [r, 1] we take u. By construction, this function
is Ct1([e(r), 1], (0,00)) and decreasing. We shift it such that ¢(r) is moved to 0, and extend this to
an even function, which is again C1'!, now on a suitable interval [—£(r), £(r)], with £(r) = 1 — ¢(r)
and ¢(r) = r +u(r)u/(r). This new function has the same boundary values as u, at most as many
critical points as u, and, by construction, a smaller curvature integral. Our construction yields the
claim since r — £(r) is continuous and such that lim, o ¢(r) = 1 and lim, ~ £(r) = af. O

Re[ma]rk 3.4. Notice that, by concavity of the geodesic circles, uj,(z) > —v in [0, o] if u'(x) > —y
in |0, 1].

a) cn 0 r 1 b) ° -1 0 1 °
Figure 1: Proof of Lemma 3.3.

By Lemma 3.2, we can remove the assumption that «/(z) <0 in [0,1] from Lemma 3.3.

Lemma 3.5. Assume that uw € Ny g has only finitely many critical points. Then, for each o €
[1,af), there exist a positive and symmetric function u, € CH1([—o, 0], (0,00)) such that u,(0) = «,
u’g(g) = -0, u’g(az) < 0 for all x € [0, 0], u, has at most as many critical points as u, and,
furthermore, it holds that

/ ltg)? dsn[ug) < Wi(u).

Proof. By Lemma 3.2 there exists v in N, g having at most as many critical points as u, with
lower Willmore energy than u and satisfying v'(x) < 0 in [0, 1]. The claim follows from Lemma 3.3
applied to v. ]

By rescaling we obtain:

Lemma 3.6. For each u € N, g having only finitely many critical points and for each y € 71, ]
there exists a symmetric function v € C%([~1,1],(0,00)) having at most as many critical points
as u and satisfying: v(+£1) =, v'(1) = =8, v'(x) < 0 in [0,1] and Wy(v) < Wh(u).

12



Proof. If v € (871, a] the claim follows from Lemma 3.5 by rescaling. If v = $~! we choose

v(z) == /14+~% — 22 O

The previous lemma gives that the optimal Willmore energy M, g, defined in (2.7), is increasing
in a.

Proposition 3.7. We have Mz 3 > M, g for all o, a such that a > o >

I

Proof. Since polynomials are dense in H 2(—1, 1), a minimising sequence for My g may be chosen in
Ng, g, which consists of symmetric and positive polynomials. Lemma 3.6 proves the statement. [J

In Proposition 6.2 we prove that even lim,_.o, M, g = +00.

3.2.2 Properties of minimising sequences

In the next two lemmas we introduce geometric constructions and show that on minimising
sequences, by possibly inserting parts of geodesic circles and rescaling, we may assume that
0> (x) > —p and = + u(z)u'(x) <0 for z € [0, 1].

We first employ the elongation procedure of Lemma 3.3 and rescaling to achieve the derivative
bounds.

Lemma 3.8. For each v € N, g with only finitely many critical points there exists v € N, g having
at most as many critical points as u, with lower Willmore energy than w and such that

—B < (x) <0 for all x € [0,1].

Proof. By Lemma 3.2 there exists w € N, g having at most as many critical points as u with
lower Willmore energy than u and such that w'(x) < 0 in [0,1]. If moreover, w'(x) > —f the
claim follows with v = w. Otherwise there exists a first 1 € (0,1) with w'(x1) = —f such
that in particular w'(z) > —f on [0,2;] . By using a scaled version of Lemma 3.3 we dilate the
function w|[_,, 5, by inserting an arc of a geodesic circle. For each ¢ € (w1, w(z1)3) there exists
w, € CH1([—p, 0], (0, 00)) with lower Willmore energy than W[_z, 2], With at most as many critical
points as wl{_s, 5,] and such that wy(+0) = w(z1) and wj(g) = —B3. Notice that by concavity of
the geodesic circles wj,(z) > —f in [0, o]. We choose ¢ = w(x1)/a and v to be equal to w, being
rescaled to the interval [—1,1]. The choice of ¢ is such that we dilate the graph of w|( ;) until we
reach the line y — ay. This construction is illustrated in Figure 2. 0

first point
with

| |

| |

| |

| |

| |

| |

\a
b) [P b C)
Figure 2: Proof of Lemma 3.8.

We now add the property = + u(z)u/(x) < 0 for x € [0,1] to those of the previous lemma by
possibly inserting a suitable part of a geodesic circle.
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Lemma 3.9. For each u € N, g having only finitely many critical points, there exists v € Ny g
having at most as many critical points as u, with lower Willmore energy than u and satisfying

0> (z) >~ and 0 > z + v(z)v'(x) for all z € [0,1].

Proof. By Lemma 3.8 there exists w € N, g with lower Willmore energy than u, having at most
as many critical points as u and such that —f < w'(x) < 0 in [0,1]. We consider the function ¢
defined in [0, 1] by

o(x) ==z 4+ w(z)w'(z).

Note that ¢(0) =0 and ¢(1) < 0. If ¢ <0 in [0, 1] then the claim follows with w = v. Otherwise,
there exists zp € (0, 1) such that ¢(xg) = 0 and ¢ £ 0 in a left neighbourhood of xy. Then, the
normal line at (zg,w(zo)) to the graph of w passes through the origin and we can substitute w over
[—xo, zo] by a geodesic circular arc lowering the hyperbolic Willmore energy. This new function
yields the claim. Notice that with this construction, due to the concavity of circles, the property
—fB < w' <0 is preserved and that we do not add critical points. ]

The following proposition summarises how by making use of Lemmas 3.8 and 3.9 we may pass
to minimising sequences satisfying suitable a priori bounds.

Proposition 3.10. Let (ux)ren be a minimising sequence for My g in Nq g such that each uy has
only finitely many critical points. Then, there exists a minimising sequence (vg)ken C Nog such
that for all k € N it holds: v has at most as many critical points as ug, Wh(vg) < Wy (ug),

0>z +vp(z)v(x) and — B < v (x) <0 for all z € [0,1]

and  V1+a?2—22 <wvg(z) <+(a+ B)%—22 for all z € [-1,1]. (3.1)

3.2.3 Proof of the existence theorem

The proof of the following theorem follows the lines of the proof of [DDG, Theorem 3.9].

Theorem 3.11 (Existence and regularity). For each o« > 0 and 3 such that o8 > 1 there exists
a function u € C*®([—1,1],(0,00)) such that the corresponding surface of revolution T' C R3 solves
the Dirichlet problem (1.4). This solution is positive and symmetric, and it has the following
properties:

-3 <d(x) <0 and x + u(x)u'(x) <0 in (0,1]

(3.2)
as well as V14 a2 —a2? <wu(z) < /(a+p)?—22 in[-1,1].
Proof. Let (ug)ren € Nq,g be a minimising sequence for M, g such that Wy (uy) < My g+ 1 for
all k € N. By the density of polynomials in H?(—1,1) and Proposition 3.10 we may assume that
each element uy, of the minimising sequence satisfies (3.1). We can estimate the Willmore energy
from below as follows:

1 1 1
" 2 "
1
Wilu,) = /dem/(“k(@adx+/ dz
—1 —1

1
a 102 da — 46 .
- (1+52)2/1uk(x) V1+ 32



Thus, (ug)gey is uniformly bounded in H?(—1, 1), and, eventually, after passing to a subsequence,
Rellich’s embedding theorem ensures the existence of u € H?(—1,1) such that

up —u in H*(—=1,1) and up — u € CY([~1,1],(0,00)).
Making use of the strong convergence in C*([—1,1]) and the weak convergence in H?(—1,1) of the
sequence (uy)gen, we have

1

uu 1 43
Myg+o(l) = Wy(u :/kdx+ dxr — + o(1
a,B ( ) h( k) (1+u’2)g 1 um m ( )

—_
—_

v

/u,,zud:c+ ; dx — 1P +0(1) = Wh(u) + o(1)
1 (1—|-u’2)g el uV1+u? \/1"‘52 " .
Thus, u minimises W, in the class of all positive and symmetric H?(—1, 1)-functions v satisfying
v(£l) = a, v/(+1) = —f, and, therefore, u weakly solves (2.5). Moreover, since the elements of
the minimising sequence satisfy (3.1) then w satisfies z + u(z)u/(z) < 0 and —3 < ¥/(z) < 0 in
(0,1]. From the first inequality it follows that «' < 0 in (0, 1].

The proof of smoothness of the solution is exactly as in [DDG, Theorem 3.9, Step 2].

Finally we show that u satisfies x + u(z)u/(x) < 0 in (0,1]. Indeed, if z¢ 4+ u(xo)u'(x0) = 0
for some xy € (0,1] then reasoning as in Lemma 3.9 and using that M, g = W (u), we see that u
equals an arc of a geodesic circle in [—zg, zo]. But u being a solution of (2.5) implies by uniqueness
of the initial value problem that u is a geodesic circular arc on [—1,1]. But such an arc cannot
satisfy the boundary conditions when a8 > 1. O

In Lemma 6.3 we prove further that «’ is a decreasing function in [0, 1].
Proposition 3.12. Let a3 > 1. Then, Mg 3 > M, g for all & such that o > a.

Proof. Let ug be a solution of (1.4) for boundary values & and [ as constructed in Theorem 3.11.
By proceeding as in Lemma 3.5, i.e. inserting an appropriately chosen circular arc, we get a
function v € N, g such that Wy,(v) < Wh(ug). We prove that this inequality is in fact strict. As
we have seen in the proof of Theorem 3.11, uz cannot be equal to an arc of a geodesic circle in
an interval. Hence, by introducing a piece of a geodesic circle the energy strictly decreases. The
claim follows since Wy, (v) > M, 3. Notice that, for the same reason, also this last inequality is
strict. O

3.3 The case aff <1

The method of proof is related to that for the case af > 1 but much simpler. The results are,
in some sense, dual. For the monotonicity of the energy in the case a8 > 1, we have constructed
a function with lower Willmore energy and defined in a bigger interval. Now, with the same
construction, the function is defined in a shorter interval. Moreover, we show that in this case we
can confine ourselves to functions satisfying = + u(x)u/(z) > 0 in (0,1]. A lower bound for the
derivative follows directly from this inequality. We proceed quite similarly as in the case 8 = 0,
which was discussed in the previous paper [DDG| and which is included here.

3.3.1 Monotonicity of the optimal energy

In this case the Willmore energy is decreasing in . The proof is as in paragraph 3.2.1. For the
sake of conciseness we formulate only the results.
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Lemma 3.13. Assume that w € N, has only finitely many critical points. Then, for each
o € [ap,1], there exist a positive and symmetric function u, € CY([—p, 0], (0,00)) such that
ug(0) = a, uy(0) = =B, w,(x) <0 for all v € [0, 0], up has at most as many critical points as u,
and, furthermore, one has

/ luig)? dsn[ug) < Wi(u).

In the next two results, for 5 = 0 we interpret 1/ as oc.

Lemma 3.14. For eachu € N, g having only finitely many critical points and for each y € [, B
there exists a symmetric function v € CH1([-1,1],(0,00)) having at most as many critical points
as u and satisfying: v(£l) =, v'(1) = =8, v'(x) < 0 in [0,1] and Wh(v) < Wh(u).

Proposition 3.15. It holds that Mz g > M, g for all o, such that 0 < o < a <

Q=

3.3.2 Properties of minimising sequences

In the next lemma we show that we can restrict ourselves to functions which are decreasing in (0, 1]
and satisfy x + u(z)u/(x) > 0 in (0,1]. A priori bounds follow directly from these observations.

Lemma 3.16. For each u € N, g with only finitely many critical points there exists v € Ny g with
lower Willmore energy than u, having at most as many critical points as v and such that

0 <z +ov(x)(z) and v'(x) <0 for all x € [0,1].

Proof. By Lemma 3.2 and the following remark there exists w € N, g with lower Willmore energy
than u, having at most as many critical points as u and such that w'(z) < 0 in [0,1]. Let us
consider the function ¢ defined in [0,1] by ¢(z) := = + w(z)w’(z). Note that ¢(0) = 0 and
©(1) > 0. If ¢ > 0 in [0, 1] then the claim follows with w = v. Otherwise, there exists z¢ € (0,1)
such that ¢(zg) = 0 and ¢ > 0 in (xo,1]. Then, the normal line at (zo,w(zp)) to the graph
of w passes through the origin and we can substitute w over [—zg, o] by a geodesic circular arc
lowering the hyperbolic Willmore energy. The new function so obtained yields the claim. With
this construction we do not add critical points. O

The following proposition characterises suitably modified minimising sequences.

Proposition 3.17. Let (ux)ren be a minimising sequence for My g in N, g such that each uy has
only finitely many critical points. Then, there exists a minimising sequence (vg)ken C Nog such
that for all k € N: vy has at most as many critical points as ug, Wy (vr) < Wy (ug) and satisfying:

0 < x4 vp(z)v(x), vi(z) <0 and vy (x) > —oi = —a forallz e [0, 1],

3.3
and a < vg(x) < Vi4+a2—22 foralze [—1,1]. (3:3)

3.3.3 Proof of the existence theorem

Thanks to Proposition 3.17 we prove now existence of a solution. The following result is a direct
generalisation of [DDG, Theorem 1.1]. Its proof appears to be relatively simple but one should
observe that via Lemma 3.2 the main constructions of [DDG, Theorem 3.8] are essentially used.

Theorem 3.18 (Existence and regularity). For each o > 0 and each > 0 such that aff < 1
there exists a function u € C*°([—1,1],(0,00)) such that the corresponding surface of revolution
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I' C R3 solves the Dirichlet problem (1.4). This solution is positive and symmetric, and it has the
following properties:

“I< u'(z) <0 and x + u(x)u' (z) > 0 in (0,1], and o <u(z) < V1+a2 —22 in [-1,1]. (3.4)

Q

Proof. Let (ur)gen € Nao,g be a minimising sequence for M, g such that Wy (ux) < My g+ 1 for
all k € N. By Proposition 3.17 and the density of polynomials in H?(—1,1) we may assume that
each element u of the minimising sequence satisfies (3.3). The rest of the proof is on the same
line as that of Theorem 3.11. O

Proceeding as in the proof of Proposition 3.12, one can show that the energy is strictly de-
creasing.

Proposition 3.19. Leta >0, >0 and of < 1. Then, Mz g > Mg for all @ € (0,a).

Also in this case, we can prove an additional qualitative information on our solution of (1.4)
constructed in Theorem 3.18, namely that v’ < 0 in (0,1). This property is expected but here, it
is slightly more involved to prove it when compared with the dual case a8 > 1. It will prove to
be helpful also for the constructions in the case 8 < 0.

Lemma 3.20. Let u be a solution of (1.4) minimising the hyperbolic Willmore energy in N, g as
constructed in the proof of Theorem 3.18. Then, u satisfies v’ < 0 in (0,1).

Proof. We assume by contradiction that there exists zp € (0,1) such that u/(zp) = 0. This zero
of ' is isolated because otherwise, by reflection and uniqueness for the initial value problem for
(2.5), u were even about xg. In view of v/ < 0 on [0, 1] this would imply that u/(z) = 0 for z close
to xg. This, however, is impossible since constants do not solve (2.5).

Then there exist a,b € (0,1) such that a < zg < b, ¥/(a) = W/ (b), v/(z) > u/(a) for all
x € (a,b). Finally, by choosing a,b close enough to zp and |u'(a)| small enough we may achieve
that (u(b) + u/(b)(a — b))(—u/(b)) < a which will be used to insert a piece of a solution according
to Theorem 3.18 on [—a, al.

We construct a function v € N, with lower Willmore energy than w and with non-zero
derivative in xg as follows. v|j 1) is equal to u|p 1. Then v|, ;) equals the line starting at (b, u(b))
with derivative u/(b) and ending at (a,u(b) + u/(b)(a — b)). It remains to define v on [0,a).
Here v equals a solution of (1.4) in the interval [—a,a] with boundary values w(+a) = v(a) and
w'(a) = v/ (a) obtained by a rescaled version of Theorem 3.18. Here we use that, by construction,
v(a)(—u/(a)) < a. See Figure 3.

It remains to show that v has strictly lower Willmore energy than w. We first compare the
energies in [—a, a]. Since v(a) > u(a) and v'(a) = u/(a) by a rescaled version of Proposition 3.19
we see that the Willmore energy of v|[_a’a} is strictly lower than the Willmore energy of u|[_a7a].
Now we compare the energies in [a,b]. From the definition of v and since «/(a) = u/(b) we have

b
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where in the last step we used that v(z) > u(z) in [-1,1] and |[¢'| > |u/| in [a,b]. Comparing the
total Willmore energies we then have Wy, (u) > Wy (v). A contradiction since u is the minimiser
for Maﬂ in Naﬁ- L]

2. V|jo,5) SOlUtion
according to

1. straight line

Figure 3: Proof of Lemma 3.20.

4 Existence result: The case 3 <0

In this section we consider § < 0 fixed, while « varies in the positive real numbers.

The case f < 0 is quite different from G > 0. In the latter, our constructions were based on
inserting parts of geodesic circles. Here, also catenoids will play an important role. Each of these
minimal surfaces is generated by the graph of u(x) := cosh(bx)/b, z € [—1,1], for some b > 0.
They are solutions of (1.4) for particular values of & and . Given 5 < 0 we denote

ag = with b = arsinh(—/). (4.1)

cosh(b)

b
Notice that agarsinh(—8) = /1 + 2. We comment on these particular solutions in some more
detail in the next subsection. Then, the cases a > ag and a < ag have to be treated separately.
In the first case the energy is increasing for « increasing, while in the second case it is decreasing
for « increasing. Moreover, the behaviour of the solution we construct is different in the two cases.
If o > ag the solution satisfies v/ > 0 in (0,1] while for & < ag a further critical point could
in principle appear in (0,1). An intuition for this is given by looking for a function of the kind
v(x) = cosh(A(x — d))/\ choosing A and d suitably such that v satisfies v(1) = @ and v'(1) = —f.
If o > ag, then d < 0. This tell us that, in some sense, there is not enough space for a catenoid.
On the other hand, if & < ag, then d > 0 so there is too much space for a catenoid. One could
think that a further critical point should show up in (0,1) together with a solution for 5 = 0 in
the inner part. By Lemma 5.2 this will certainly happen for « close enough to 0. However, we
are not able to determine the precise range of o € (0, ag) where this extra local minimum may be
observed. The function ucy(x) =2 — V2 —2? for z € [