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Abstract

Positivity phenomena in higher order elliptic Dirichlet problems as e.g. in
the clamped plate equation are in general rather subtle. It depends on the
domain and on the particular form of the operator whether there are com-
parison principles or not. Until now most papers concentrated on positivity
with respect to the right-hand side, i.e. on positivity of the Green function
itself. In the present paper we focus on the role of the boundary data, i.e. on
positivity of certain Poisson kernels. While it is expected that the Poisson
kernel of highest order behaves similarly as the Green function, it may be
surprising that for Dirichlet problems of arbitrary order and in any dimen-
sion there is also a positivity result with respect to a second Poisson kernel.
Furthermore a perturbation theory for this result is developed.
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1 Introduction

Like Boggio [Bol] and Hadamard [Ha] (1901/08) one might conjecture that positive
data f >0, ¢ > 0, v > 0 in the Dirichlet problem

(=A)%u = fin Q,

Ou

(1)
u|0Q =1, ( 81/) |02 = ¢,
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yield positive solutions v > 0. Here 2 C R” is a smoothly bounded domain
and v is the exterior unit normal at 9. In two dimensions (1) is the clamped
plate equation. Here §2 is the shape of the plate, f is the perpendicular load, the
boundary data ¢ and v describe the “clamping” and u is the deflection of the plate.

Most authors concentrated on the Green function G, o for the Dirichlet prob-
lem (1) in case of homogeneous boundary data ¢ =1 = 0. In Gy 5, o the 2 stands
for biharmonic and n for the dimension. Boggio [Bo2| could show by explicit cal-
culation that if 8 = B is the (unit) ball the Green function Gy, := G pn,p for
any power (—A)™ with Dirichlet boundary conditions is positive. The case that
) = B turned out to be a special case. Numerous counterexamples (see Duffin [Du],
Garabedian [Ga], Coffman and Duffin [CD], Shapiro and Tegmark [ST] and many
others) have shown that this result actually does not hold in arbitrary domains €.

A perturbation theory for Boggio’s positivity result has been developed by the
authors in [GS1] with respect to lower order terms of the differential operator and
in [GS2] with respect to the domain and the highest order terms of the differential
operator in two dimensions.

In the present note we focus on the role of the boundary data ¢ and v in the
case that the domain Q is the (unit) ball B. Consequently we may assume that
f =0. As we pointed out in [GS3], cf. also [He], if ¢ = 0 the positivity behaviour
of the Dirichlet problem (1) with respect to the highest order boundary datum ¢
is more or less the same as with respect to the right-hand side. But if also ¢ > 0,
1) Z 0 is considered the situation becomes more involved. In the unit ball B we
have the following explicit formula for the solution « of (1) (see [Ni, p. 34]):

@ ule)= [ Koo u)oly) doly) + / Lon(z,y)e(y) dwly), =€ B,
0B 0B

where

11— [a)?

(3) Kan(z,y) = {24+ (n—4z-y—(n—2)[z},

B 2wn, ‘x - y|n+
1 (1—|=?)?
(4)  Lon(w,y) = %on p—y
with € B, y € 0B; w, denotes the (n — 1)-dimensional surface area of the unit
ball. Evidently Ly, > 0 for any n, while K3 , > 0 only for n < 4 and Kj , changes
sign for n > 5.

In the next section we will show that if {2 = B the Dirichlet problem (1) may
be reformulated in such a way that we have a positivity result with respect to
both boundary data in any dimension. Moreover for n < 3 and in particular for
n = 2 the above mentioned result may be sharpened so that if ¢)(xg) > 0 for some
xp € 0B, also negative values for ¢ near x( are admissible.

In the last section we switch to polyharmonic Dirichlet problems of arbitrary
order 2m. We will show, allowing some “small” lower order perturbations of the
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differential operator, positivity with respect to the Dirichlet data of order (m — 1)
and (m — 2) in any dimension n, provided the other boundary data are prescribed
homogeneously and the positivity assumption is posed in a suitable way. In [GS3]
we could only show a perturbation result for n < 3, m = 2.

2 The appropriate positivity assumption for the
clamped plate equation

In order to find the adequate positivity assumption on the boundary data in the
Dirichlet problem

(=A)*u=01in B,

ou

©) ) 0B = ¢,

the key observation is that the negative part of the kernel K5 ,, corresponding to
1 has the same form as the kernel L, ,, corresponding to the datum ¢.

Lemma 2.1. Let s € R, s > 2(n —4). Then for

(6) IA{Zm,s(-rvy) = K27n(xay) + SL2,n(xay)7 HANS Ba Yy € an
we have
I%'g}ms(x,y) > 0.

Proof. We observe that for © € B, y € B (i.e. |y| = 1) we have

L (1=[z[*)? [n 2 1 2
K. = T I g2 - (- 4|z —
n (1-|z*)?® 1
= 4w ‘.’Ii—y|n+2 - §(n_4)L2n($ay)

O

Proposition 2.2. Let o € C°(9B), v € C'(0B) and s > 3(n —4). If we assume
that

P(x) >0 and @(x) > sp(x) forx € IB,

then the uniquely determined solution u € C*(B) N C*(B) of the Dirichlet problem
(5) is positive:

u>0 nB.
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Proof. From (2) and (6) we obtain:

u(z) = Kz,n(w,y)@b(y)dw(yH/ Lo n(z,y)e(y) dw(y)
oB oB

Lan(.9) (p(4) = s0(y) ) du(y).

O

Ko (2, )0 (y)dw(y) + /

oB oB

Remarks. 1) For n = 1,2, 3, also negative values for s are admissible.
2) On Bp := {z € R" : |z] < R} the condition is s > 5= (n — 4).

We are interested in whether this positivity result remains under perturbations
of the prototype problem (5). Since in higher order Dirichlet problems quite similar
phenomena can be observed, we develop the perturbation theory for the biharmonic
Dirichlet problem (5) as a special case of the perturbation theory for the polyhar-
monic Dirichlet problem (7) below. The latter is subject of the following section.

3 Higher order equations. Perturbations

In what follows we always assume m > 2.
First we consider the polyharmonic prototype Dirichlet problem:

(=A)"u =0 in B,
9 J
<) u=20 on 9B for j=0,...,m—3,
ov
(7) 9 m—2
3 u=1 ondB,
v
9 m—1
(_3) u=¢ onJB.
v
No uniform positivity result can be expected with respect to the boundary data of
order 0,...,m — 3, as we will explain below in the example following Proposition

3.2. So we prescribe these data homogeneously. Such behaviour is in contrast with
the radially symmetric case u = u(]z|) (cf. Soranzo [So, Proposition 1, Remark
9]). For a different way of formulating the Dirichlet problem involving powers of
the Laplacian for the boundary data see the remark at the end of this section.

After some elementary calculations we find from [Ed] or directly from (2) that
for p € C°(OB), 1 € C*(dB) the solution u € C?™(B)NC™ 1 (B) to the Dirichlet
problem (7) is given by

(8) ulx)= /a Kol 0)00) doly) + /a Lnal@)e)de(y). @€ B,



Positive boundary data in clamped plate equations 5

where
- 1 (1= Jz[*)™
o Kpn(zy) = 2m (m —2) w, |z —y[*+2
(1 = Jof?) = (n 2= mle =y}
1 (1— =)™

3

10) L =
( ) m,n(ﬂfay) 2m—1(m_1)!wn ‘x_y|n

with « € B, y € 0B. Like in Section 2 we have the following results.

Lemma 3.1. Let s € R satisfy s > 2(n — 2 —m)(m —1). Then for

(11) Kpns(@,y) = Kpn(r,y) + sLyn(z,y), x€B, yecoBb,
we have

Kpyns(z,y) > 0.

Proof.
: 1 (1— =)™
2m (m —2)lw, |z —y|*t?

.{n(l C )+ (me (2 —m)) 2 —yz}.

Proposition 3.2. Let ¢ € C°(0B), ¢ € C*(0B) and s > 5(n—2—m)(m—1). If
P(x) >0 and @(x) > syp(x) forx € IB,

then the uniquely determined solution u € C?*™(B) N C™~Y(B) of the Dirichlet
problem (7) is positive:

u>0 in B.

O

Remark. On Br = {z € R™ : |z < R} the condition is s > 5%(n—2—m)(m —1).

Example. In the triharmonic Dirichlet problem

(—=APu=0 in B,
u=x on 0B,
<88) u=1 ondB,
v
2
(;) u=¢ on JdB,
v



6 H.-Ch. Grunau, G. Sweers

the solution is given by

u(r) = Hs o (z,y)x(y) dw(y) + | Kzn(x,y)(y) dw(y)
OB OB

—|—/ Ls . (z,y)e(y) dw(y), T € B,
OB

where K3, and Ls,, are defined above and
L(1—[z?)?
16wy, |z —y|**t4
An(n+2)(1 = [2[*)? + (n - 4)(n - 8)|z — y[*
—2n(n = 7)(1 = |2|*)|x — y|* — 4nlz — y|*}

H3,n(xay) =

with x € B, y € 0B. For any n, ¢ — y,  “very close” to the boundary, H3 ,, takes
on also negative values. By adding multiples of L3, and K3 ,, only the terms
|z —y|* and (1 — |2|?)|z — y|? in the curved brackets could be effected. In any case
the most dangerous term —4n|z — y|? remains. O

As a starting point for the perturbation theory of Proposition 3.2 we describe
the essential properties ot the integral kernels Ky, ,, s and Ly, p.
For brevity we introduce for the distance to the boundary

(13) dz):=1—|2|, =€B,
and for f,g: M C R¥ — RT we will use the notation:

f~gon M < EIC>0V$€M:éf(m)gg(x)ng(x),
fRXgon M & 3C>0VeeM: f(x)<Cg(x).

Lemma 3.3. a) Let s > 2(n—2—m)(m—1). On Bx 9B (i.e. forx € B,y € 0B)
we have

) <z =y ()™,
(14) Km,n,s(xvy) 2 mal

(15) Lypyn(z,y) ~ |z —y| "d(x)™.

b) If we assume additionally that s > (n—2—m)(m—1) then we have on B x 0B:
<z -y ()™,

= o=y " d(x)™

(16) Kopp.s(z,y) {
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Proof. The claim follows from 1 — |z|> ~ d(x), d(x) < |z — y| and the expression in
(12). O

Remarks. 1) The estimation constants in (16) depend strongly on s.

2) If s = 3(n — 2 — m)(m — 1) then we have K, s(z,y) ~ |z — y|7"2d(x)™*,
ie. for z — 9B\ {y} we have a zero of order (m + 1). We would have expected,
and actually need in order to prove perturbation results, a zero of order m. Conse-
quently in what follows we have to assume s > 1(n—2—m)(m —1). The estimate

m

(16) is more appropriate. But as IA(m,ms(x,y) # |r —y|7"td(x)™ our perturba-
tion result Theorem 3.5 below is (necessarily?) less general than the corresponding
results in [GS1] and [GS2]. In particular we are not (yet?) able to consider domain
perturbations.

For our purposes the following “3-G-type” estimates are essential. We use the
o
multi-index notation D* = []"_, (%) for a € NJ; |a] = >0 ;. We recall
that Gy n = Gpon,p denotes the Dirichlet Green function for (—A)™ in the unit
ball B C R™.

Lemma 3.4. Let s > 2(n—2—m)(m — 1), « € Nj. Then on B x 0B x B (i.e.
forxz € B, y € 0B, z € B) we have the following.

|DzaGm,n($7z)| Xm,n,s(zvy) <
Km,n,s(mvy) B
(17) 1, if o] < 2m —n,

< |.13 _ Z|2m—1—n—|a\ + |y _ Z|2m—1—n—|a|,

if la| > 2m —n.

|D§‘Gm’n(1‘, Z)| LM,n(zay)

<
Lm,n(xay) o
1, if la| <2m —n and n odd,
or if la] < 2m —n,
(18) ’ f lal
<{ log| —— |, if || =2m —n and n even,
- |z — 2|

|£C . Z|2m—n—\a| + ‘y _ Z|2m—n—|a|’

if la| > 2m —n.

Proof. We repeatedly employ d(z) < |z — y| (y € 0B) without mentioning.
a) Proof of (17): We use estimate (16) of Lemma 3.3.
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The case: |a| < 2m —n and n odd, or |a| < 2m —n.
Here we use Corollary A.3.

1D G (%, 2)| Konns (2, )

Km,n,s(x7 y)
Ay a1 i {1, s
— d(x)™
[z—y["
< d(w)- R d(z)2me$lel i {1, 22 AE)E
|z — 2|"
Jy— 27" (e =2+ ly — 2™
. . d(z)\ ?
< depm el = de) B () el

d(z)2m—|a\|y _ Z‘—n—l + d(Z)Zm—n—\a”y _ Z|_1 < |y _ Z‘Qm—l—n—|a\.

The case: |a| = 2m —n and n even.
We use Lemma A.2.

‘D?Gmm(xa 2)| Km,n,s(za Y)

Kmm,S(xa Y)
m max{m—|a|,0} m
d(z) . d(x) . d(z) d(z)
log <2+ Iw_z‘)mm{l, |l__z‘} rrun{l7 \w—z|} To—y " ¥t
- d(xz)™
lo—y|™
m
< (14 d(z) d(x)"™d(z)™ min < 1, d(z)
|z — z| |z — z|
max{m—|«al,0}
.mm{Ljfg} [y — 27" (2 — 2"+ Jy — 2I7)
= {d@) )"y — 27 e = 2]+ d(w) () y - 2l
+d(z) ()" |y — 2T e = 2
() " d() "y = 2| e — 27
m max{m—|«a|,0}
-min 4 1, d(z) min< 1, d(2)
|z — z| |z — 2|
min{m,n}
< dl) "y o e ()

<d(x)>max{mn,0}( d(Z) max{m—|a|,0}

|z = 2|

d(z)
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+d(x) " d(2)"y — 2| ((ﬁi)’”

d(2) ()" — 2 e — 2| (

d(l’) min{m,n}—1
|z = 2|

. (;@>max{mn,0} (|xd<_2)z|>max{m|a,0}

N O e N =)

~ @)y = Ay — 2] )y — 2 e — 2!
< e -2y — o

The case: |a| > 2m —n and |o| < m.
We use Lemma A.2.

‘D?Gm,n(ina Z)| Km,n,s(za y)

Km,n,s(xay)
. x m . z m—\o/| z)™
) |x_z|2m7n*|a‘ mln{l’ ‘iigl} mln{L |i(72):‘} |Zd,(y‘)n+1
—_ d(at)'rn
Jz—y[™
< d(w) md(2)" e — 2Py — 2
@) ") " " n
~m1n{1,|$_2|} mm{l’|x—z (le — 2" + ly — 2|")
_ . e (@) N[ dz) "
< d mA( N\ — 2m—|a|,, n—1
< da) (e = sl -t (L) (L
d m
) dla)m e - Pl — ol (52)
< d(z)2m—|a\|y _ Z‘—n—l + |x _ Z|2m—n—|a\|y _ Z‘_l
< |:L‘ _ z|2m—1—n—\a| + ‘y _ Z|2m—1—"—\a|.

The case: |a| > 2m —n and |a| > m.

‘D?Gm,n(xa Z)| Km,n,s(zv y)

Km,n,s(x7 y)

m m
—n— . d d '
|ZZ7 — Z|2m n |a‘ min {1, T(I; } 7|Z (;‘)n T

= OR
lz—y[™

d(z)""d(z)" |z — 2Py — 27

PN
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i {1 AT g2

|z — 2|

< (o) ) 2y o
d((E) min{m,n} @ max{m—n,0}
|z — 2| d(z)
M) Mg — z|2mmnlal, oyt
+d(z)md(2)" e — 2] ly — 2| (Md)
< d(z)min{m,n}|x _ Z|m—|a\+max{m—n,0}|y . Z‘_n_l

+|.7J _ Z|2m—n—\a|‘y _ Zl—l
< |£C _ Z|m7|a\+max{mfn70}|y _ Z|min{mfn,0}7l

o = zfpmonlelly — |

< o — zPmmimnlel oy — g2motonslel by Holder’s inequality.

b) The proof of (18) is almost analogous to the above reasoning with the obvious
simplification: In the numerator ﬁ has to be replaced by ﬁ Only the
case |a| = 2m —n and n even is different and will be carried out here.

The case: |a| = 2m —n and n even.

We use Lemma A.2.

‘D?Gm,n(x7 Z)| me(zv Y)

Linn(2,y)
m max{m—|«|,0} m
d(x) . d(x) : d(z) d(z)
log (2 + |:zzfz\) min {1, = } min {1, = } R
— d(x)™
[z—y[™
3 m m —n n n
< ngI|)m> A"y — 27 (je — ="+l — =)
max{m—|«a|,0}
-min min 1, d(z)
|x — z| |z — 2|
= log ( ) )T d(2) "y — 2|7 — 2"
min{m,n} d(ﬂl‘) max{m—n,0} d(z) max{m—|«a|,0}
— 2| d(z) |z — z|
_ d(z)\"™
1 md(z —
- Og( ) - (i)
=

log 3 d(z)"y — z|™" + log 3 =< log 3 .
|z — 2| |z — z| |z — 2|
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The estimates (17) and (18) in the Lemma above are integrable with respect to
z € B uniformly in € B, y € 9B, if |a] < 2m — 2. Our main result is a direct
consequence of this fact.

Theorem 3.5. Let s > £(n—2—m)(m—1). Then there ezists eg = eo(m,n,s) > 0
such that the following holds.

If Iballcrai @) < €0 for |af < 2m — 2, then for every ¢ € C%0B), ¢ € CY(OB)
with

Y >0
@ = st
the Dirichlet problem

} on 0B, Y £0 or p Z0,

(—A)"u+ > bo(x)D*u=0 in B,
la|<2m—2
9 J
(—%) u=20 on 0B for j=0,...,m — 3,
(19) 9 m—2
<_8) u=1 on 0B,
v
m—1
(—aa) U= on 0B,
v

has a strictly positive solution u € W2 (B)NC™ Y (B) (p > 1 arbitrary):

loc

u>0 in B.

Proof. For existence and regularity we refer to [ADN] and [Ag]. First we assume
additionally that v € C™*27(0B), ¢ € C™*17(0B). We denote $5 = ¢ — s1b and
we let p > 1 be arbitrary. The operator

Lonnpa(a) = /@ Lol )pul) doly)

maps Ly - CFYI(OB) - O (B) < W2H(B),
]&m,n,sd)(I) = - Km,n,s(x, y)¢(y) dw(y)

maps Kons: C™127(8B) — C?™7(B) — W?™P(B), while the Green operator

G f () = /B G (2, 9) 1 () dy

maps G, @ LP(B) — W*™P(B) N Wy"?(B), see [ADN]. We write A :=
2 la|<2m—2 ba(.)D*. The solution of (19) is given by u = =Gy, nAu + Komom.sth +
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Lonn®s O (T4 GmnA)tt = Kopns®h + Lonn@s. Here T+ G n A is a bounded lin-
ear operator in W2™P?(B) N W™ (B), which for sufficiently small ¢ is invertible.
Hence

U = (T4 GmnA) " Kot + (T + G A) ™ Lonn@s

= ]Cm,n,sd) + Z (*gm,n-A)Z Km,n,squ

i=1

+£m,n¢)s + Z (_g'm,n-A)Z ‘cm,n@&
=1

We only show how to deal with the first series containing I€m7n7s, the second series
containing L,, , is treated in the same way with some obvious simplifications. For
1 > 1 we integrate by parts. As A is of order < 2m —2 and ’ém,ms?ﬁ vanishes on 0B
of order m — 2 no additional boundary integrals arise. By means of Fubini-Tonelli
we obtain for x € B:

(_gm,nA)i K:m,n,sw(x) = (_1)1 / Gm,n(xa Zl)Azl Gm,n(zla 22) ce.
z21€B z2€B
. 'Azi,l Gm,n(ziflvzi)
z;,€EB
Azi Km,n,s(ziv y)w(y) dw(y)dzz codz
yeoB

(—1)i/ . (.A:IGm)n(m,zl)) / . (Azsz7n(Z]_722))

N / (A% Gron(zio1, ) / Ropos (20, 9) () do ()2 . dy
2,€B yeOB

/ //aB G (2, 21)) (A2, Gmn(21,22)) - -

Gm n(zz 1, Zz)) Km n S(Z’H y)¢(y)dw(y)d(217 ceey Zl)

Here A*. = Z|a|§2m72(_1)|a‘Da(ba . ) is the (formally) adjoint operator of the
perturbation A. By virtue of Lemma 3.4 we find:

S ' / Km,n S(xa y) |AZ1 Gm’ng‘r, Zl){ Km’nﬁs('zl? y)
8B JB B KHL,?’L,S(:E; y)
. |Az2 Gm,n(zl, 22) Km,n,s(Z% y) .

Km,n,s(zlv y)
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. |A;Gm,n(zi—1azl)’ Km,n,s(zivy)
Km,n,s(ziflay)

< (Cox)' [ Rl n)bs) doty) = (Coo) (Kin?) (@)

Y(y)d(z1, .. -, 2i)dw(y)

Analogously we have:
(=G )’ Linn?s(@)] < (Cozo) (Lmonts) (@),

The constants Cy = Cy(m,n, s), Coy = C’O(m,n) do not depend on i. If g¢g =
go(m,n, s) > 0 is chosen sufficiently small, we come up with

1 . 1
(20) u> — Konn,s + 6£m,n§5s~

C
The general case p € C°(dB), ¢ € C1(9B) follows from (20) with help of approx-
imation, the maximum estimates of [Ag] and local LP-estimates [ADN]. O

Remark. The Dirichlet problem (7) may be equivalently reformulated, if m is odd:

(—A)"u=0 in B,
D% =0 on 9B for |a| <m —3,
21 ~
( ) _gA('m—S)/Qu =14 on dB,
v
AM=D/2y, = 3 on 0B;

and if m is even:

(=A)"™u =0 in B,
D% =0 on OB for |a| <m —3,
(22) AM=2)/2¢ — 1[) on 0B,
O Am-2)/2,, _
——A u=¢ onJB.
ov
Comparing with (7) we have
vo=

1
w—i(m—l)(n—l)z/}, if m odd,
p = 1
@—i(m—Q)(n—l)t/J, if m even.
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With regard to Proposition 3.2 positive data
20, $20
yield a positive solution u > 0, provided

1
§(m—1)(n—1)7 if m odd,
%(m —2)(n—1), if m even.

(23) Sm—1)(n—2—m) <

For m odd this condition is always satisfied. In case of m even the condition (23)
is equivalent to n < m?2. In the latter case a perturbation result like Theorem 3.5
requires the strict inequality n < m2. Moreover, it is a straightforward exercise
to find the analogues to Proposition 3.2 and Theorem 3.5 for the boundary value
problems (21) and (22), resp.

A Appendix

For the reader’s convenience we collect a technical lemma and the Green function
estimates from [GS1].

Lemma A.1. On B? (for x,y € B) we have with p,q > 0 fized:

o 20} 280

mm{l W}Nmin{d<y> d(x) d<m>d<y)}7

eyl d(@) dy) |z -y

uin {1, S [y 4P G dlaP Ty,

|x—y\p+q z—yl" |z —yl" |x—y|p+q

win {1, TS b~ min {1 25 i 2

On B? (for x,y € B) we have with p,q >0 and p+ q > 0 fized:
P q P q
o (1 VIO (o A0 Y, e ar)

|x_ylp+q |x—y| |x_y|p+q

Lemma A.2. Let o € N§. Then on B? we have the following.

a) For |a] > 2m —n and n odd, or, |a| > 2m —n and n even:
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— if o] < m then

m—|al m
o . 12m—n—|a] . d(il?) d(y) .
|Dy;Gm,n (z,y)| 2 |z —y mln{l, ‘x_y|2m—|a\ ’

— if |a| > m then

m—n—|« . d(y)m
| D3 G (2, )| = |x*y|2 lad mln{l,m )
: lz =yl

b) For |a] =2m —n and n even:

— if la| < m (that is m < n) then

1DZ G (2,9)] =

d(y) : d(@)" M dy)™) |
= log(2+x_y|> mm{l, |x_y|2m—|oz\ }’

— if |a| > m (that is m > n) then

DG (a0 < 10g (2 1 ) mm{l,M}.

lz —y| y

¢) For |a| <2m —n and n odd, or, || < 2m —n and n even:

— if |a| < m — in then

D3 G (2,9)] 2

in 5, \in

— ifm—%n§|a|§mthen

1DZ G (2,y)] =

m—|al n—m+|a|
< d(y)2m—n—|o¢\ min {1’ d(ﬂj’) d(yzz } :

— if m <|a| then

n—m+|o|
DS G (2,9)] < d ()2 min {1, d(y)} .

|.’II _ y|n—m+|a\

In general the following estimate is weaker than Part ¢) of Lemma A.2 but still
appropriate and more convenient for our purposes.
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Corollary A.3. For |a| < 2m —n and n odd, or, |a| < 2m —n and n even we

have:
1 1
_lp 1 d(z)2"d(y)2"
DS G (2, )] 2 ()" 72"~ d ()" 7" min {1’ M} |
r—y
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