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Positivity for perturbations
of polyharmonic operators with
Dirichlet boundary conditions in two dimensions.

Hans-Christoph Grunau and Guido Sweers

Abstract

Higher order elliptic partial differential equations with Dirichlet boundary con-
ditions in general do not satisfy a maximum principle. Polyharmonic operators on
balls are an exception. Here it is shown thaRhsmall perturbations of polyhar-
monic operators and of the domain preserve the maximum principle. Hence the
Green function for the clamped plate equation on an ellipse with small eccentricity
is positive.
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1 Historical comments and the main result

Maximum and comparison principles have proved to be a powerful tool in the theory
of second order elliptic differential equations. So, for a better understanding of higher
order elliptic differential equations it is an obvious step to investigate the question
whether similar results do exist there. That iQifs an appropriate bounded domain,
does a function: that satisfies the higher order elliptic differential inequality > 0,

with zero Dirichlet boundary condition, have a fixed positive sign? As an example one
may think of the clamped plate equation

A2y = fin(Q,
{ Ujgq = G Uon = 0-
Here the question can be rephrased as:
For which shapes does upwards pushing imply upwards bending?

The pushing resp. bending is denotedfyesp.u and(2 C R? is the shape.

Throughout this paper only two dimensional domdihs: R? will be considered,
if nothing different is stated. We have to leave the question open, whether the results
of the present paper can be generalized to higher dimensions.

Boggio [3] (1901) and Hadamard [13] (1908) conjectured that in arbitrary reason-
able domaing?, f > 0 impliesu > 0. Boggio in [4] could show this in case of the



ball (2 = B = unit ball). Furthermore, for any polyharmonic operaterA)™ , and
balls B ¢ R", he calculated the Green functia#,, ,, (-, -) for the Dirichlet problem

and showed tha®,, ,, (-,-) > 0in B2. In 1909 Hadamard [14] already knew, that the
positivity conjecture is false in annuli with small inner radius. But he, and also Boggio,
as Hadamard mentioned, believed, that there is no serious doubt, that Green’s function
should be positive at least in convex domains.

Starting about 40 years later, numerous counterexamples [5], [6], [8], [9], [16],
[17], [18], [22], [24] disprove the Boggio-Hadamard conjecture. The most striking
examples have been found by Coffman, Duffin and Garabedian. For example, Garabe-
dian ([9], see also [10, p. 275]) found that in an ellipseRifh with the ratio of the
half axes~ 2, the Green function for the biharmonic operatot changes sign (for an
elementary proof, see also [22]). Coffman and Duffin [6] could show the same result,
i.e. change of sign of Green’s function, in rectangles, including the square. That means
that neither in arbitrarily smooth, uniformly convex domains nor in rather symmetric
domains, we may expect Green’s function to be positive. Things are still worse: even
the first Dirichlet-eigenfunction aA2 need not be unique and of one sign, see [5], [16].

In a recent paper [12] we could show that a polyharmonic operator in a ball which
is slightly perturbed in the lower order terms still has the positivity preserving property
mentioned above. In the present paper we shall show that in two dimensions one can
even allow some small perturbation in the highest order term of the operator as well as
in the shape of the domain and still has the positivity preserving property.

The higher order elliptic problem that we consider is

Lu > 0 inQ,
B (1)
D,u = 0 onoQ,
where
g 0 o \™" 9 \*?
L= — Z Qg (l‘) 371'287% + Z ba (CC) (%) <8(£2) ) (2)

1<i<j<2 o] <2m—1
ai; € C*m=17(Q), b, € C%7(Q) andD,,,u = 0 0ndN is the zero Dirichlet boundary

condition:

<aa) u),, = 0forall awith [a] <m — 1.
x

For the sake of easy statement we define closeness of domains and operators.

Definition 1.1 Lete > 0. We callQ2 e-close in C*k7-sense ta)*, if there exists a
C*7-mappingg : Q* — Q such thaty (Q*) = Q and

lg — IdHck,w(sT*) <e.



Remark 1. For convexQ*, k& > 1 ande small we easily find thay is bijective
and even thay~! € C*7(Q), [lg~" — Id|| @) = O(e). Local injectivity follows
directly. SinceQ2* is assumed to be convex, we find

v
v

lz—yl—lg(x) —z —(9(y) —y)l
z—yl — [(g—Id)||pole—yl > (1—g)]|z—yl,

implying thatg is globally injective.

lg (z) — g (y)]

Y

Definition 1.2 Lete > 0 and letL be as above. We call the operatére-close in
C*7-sense tq—A)™ on, if additionally a;; € C*7(Q) and

lai; = 0sjll orn @y < &

Ballooga) < e

Remark 2. Fore small, L is uniformly elliptic.

Our main result shows that it is the large deviation from the constant flexure of the ball
that yields a change of sign for the Green function:

Theorem 1.3 There existgy, = £¢(m) > 0 such that, fore € [0,e9) we have: If
90 € C*™7, () is e-close inC*™-sense taB and L is e-close inC*™~!7-sense to
(—A)™ on(, then every, # 0 that satisfieg1) is strictly positive irf.

Remark 3. In principle ey = £o(m) could be calculated explicitly. We expect
eo(m) \, 0 asm — oo.

The theorem will be proven in two steps. First we will assume= 4J,; and con-
sider “small” perturbations of the domain, see Section 2. This result and the theory of
canonical forms will allow for perturbations of the leading coefficients of the operator
too, see Section 3.

Corollary 1.4 LetE. = {(z1,22);2} + (1 4+ ¢) 23 < 1} denote ellipses close to the
unit ball. There exists,,, > 0 such that for alle| < &,,, the Green function is positive

for
(-A)"u=f inkE.,
D,,u=0 onokE..

Remark 4.In 1951 Garabedian showed in [9] (see also [10, p. 275]) that the Green
function on some eccentric ellipses (ratio of half axe& for m = 2) changes sign.
Our Corollary answers the question whether the Green function changes sign on any
ellipse that is not a ball.



2 Domain perturbations

Throughout the rest of this paper we may assume 1.
We take the crucial lemma from our previous paper [12, sect. 5], which has been
proved by means of Green'’s function estimates.

Lemma 2.1 There is ady = do(m) > 0 such that the following holds. L&t be
a simply connected, bounded smo6th™-domain, L be as in Theoreni.3 with
a;; = 6;j. Leth : B — Q be a biholomorphic mapping with € C*™(B), h=! €
C?m(Q).
If
h=Tdlgans <

[1ballco @y < do,

for |a|] < 2m, then the Green function df in 2 under homogeneous Dirichlet bound-
ary conditions is positive.

Remark 1. The existence of holomorphic mappings with qualitative properties as
in the lemma is ensured by theorems of Riemann and Warschawski, see [19].

Remark 2. An explicit conformal mapping from the unit ball to any ellipse is given
in the note of H. A. Schwarz [21]. So one could think that Corollary 1.4 above could
be proven by an explicit analysis of this mapping. But, since elliptic functions are
involved, this seems to be at least very difficult.

This example shows the need for a notion of closeness of domains as in Definition
1.1. Such a condition may be checked more easily.

Theorem 1.3 withu;; = §;; will be proven, if we can show that?™-closeness to the
ball with respect to differentiable mappings implies al&4" ! -closeness with respect
to holomorphic mappings.

Proposition 2.2 Let §y be given. Then there is somg = ¢¢(dp, m) > 0, such that
for e € [0,e0) we have the following.

If the C?™7-domain) is e-close inC?™-sense taB, then there is a biholomorphic
mappingh : B — Q, h € C?*™7(B), k=t € C?™7(Q) with

[P = Id]| c2m-15) < do.

Proof. Let g : B — Q be a mapping according to Definition 1.1 such that
llg — Id||cem @) < €. The number is assumed to be small enough. According
to [7], cf. also [23, sect. 4.2], the holomorphic mapping' : Q — B, which has the
desired qualitative properties, may be constructed in the following way. First set

w(z) :=27G(x,0).



Here G is the Green function for-A in 2 under homogeneous Dirichlet condition.
Next define the conjugate harmonic function

i 0 0
*(x) = - déy + — s, ),
= [ (- pgw© dat prn© )
where the integral is taken with respect to any curve fépto z in 2\ {0}. w* is well
defined up to multiples di=. One finds that~! is well defined by

h=Y(x) := exp (—w (x) —iw* (z)) for = € Q,

whereR? andC are identified. The functioh—! maps0 onto0 and the poin% some-
where into the positive real half-axis. Moreover, foe 9 we find that|h ' (z)| =
lexp (—iw* (z))] = 1 and hencé~! (9Q2) C 9B. Forz € Q\ {0} we havew (z) > 0
and henceh~!(z)| < 1implying ! (Q) C B.

The Green functiowd#(x, 0) is defined by

1 _
G(J),O) :—%(log\ﬂ—r(aj)), era

where
{ Ar= 0 in Q,

r(z) = ¢(z):=log|z| forz e ON.
Since _
h=(z) = zexp (—r (z) —ir* (z)) for = € Q,
again identifyingR? andC, one finds that

[Fllam-s @y = O) 3)

will imply ||h—1—Id|\C2m,1@ = O(e) and consequentlyh—Id|| cem-1 (5 = O(e).
The estimate in (3) will follow from the extension of the boundary data to some
» onQ with
H@Hcm(ﬁ) =0(e). 4)

Indeed, the estimate ffr|| o g, is immediate by the maximum principle. Further-
more, by means of elliptic estimates for second order equations (see [1, Theorem 7.3],
[11, chapt. 6.4]) we find|7||c2m-1.- ) = O(e). Note that due to the closeness(of
to B in C?™-sense, according to Definition 1.1, the constants in these estimates may
be chosen independently Qf

It remains to show the existence of soththat satisfies (4). This is done as follows.
Since( is e-close toB in C?™-sense, one can show that o 9)|,, May be extended
to ¢, on B with ||| s2m (B) = O(e). That means we have to estimate the “tangential
derivatives” ofp o g|,, only.

Sety) (t) := ¢ (g (cost,sint)). We are done, if we have shown that

(4) 4| e

max max
7=0,...,2m t€[0,27]



We observe that(t) = O(e), sincelog |g(cost, sint)| = log (1 + O(e)) = O(e). Let
us denotej(t) := g(cost,sint). Forj > 1 a tedious application of chain and product
rule yields:

J |ev|
e% ~ Pl ~
= > ((D%)0g) > diay [ ()" 5"
lo]=1 PLt e Do =3 =1
1<m
with some suitable coefficient; , 5 6, = 1 forl = 1,...,aq and 3, = 2 for
Il =a+1,...,|al. We want to compare this with the corresponding expression

with ¢ replaced byld. Denotegy(t) = Id o (cost,sint).

(&) = i (((Da@)og—(Da@)og()>+(Da90)0§0> x

||

X Z dj, QPH (( di ﬁz) (%)plg(()ﬁz)) + (ddt)plg(()ﬂl)>

P14+ ..+ Pla =]
1<m

Sincep (go(t)) = log|(cost,sint)| = 0, all expressions containing, only (and not
a difference), sum up to zero. In the remaining sum, every term contains at least one
factor of the form

(D) og—(D%)ogy or (L) (ng)_g(()ﬁz)).

Fore small, each of these factors is at mé¥t). The other factors remain uniformly
bounded with respect to€ [0, ), €9 chosen appropriately. We come up with

i
s, mox ()"0 =0
as required. O
3 Operator perturbations
Denote
o 0
Lo=— Z aij(m)aTciach' (5)

1<i<j<2

First we assume that;; € C3(12), that(2 is convex and thab2 € C3. In order to
simplify the notation we will use in the major part of this sectigny) instead of
(1‘1, .1‘2) and set = ail, b:= 0,12 andc := a99.



Second order linear equations in two variables can be reduced to a canonical form.
See e.g. [10, p. 66-68]. For equations of elliptic type it means that there exist qua-
siconformal transformationée,y) — (&,7) such that withv (z,y) = V (£,1) we
have

(Lov) (x,y) = A(€,n) (— AV (&,n) —w (&) - VV (€,7)).- (6)

For references about reduction to canonical form see e.g. [2], [10], [20]. Here we have
to deal with geometrically very simple domains. In this case some global properties of
the mappindz, y) — (&, n) can be shown rather directly. For the reader’s convenience
we include these proofs in the following.

For the transformation that we use we fix the boundary condition of the second
component) to equal the second component of the identity.

We find that, satisfies the second order elliptic boundary value problem

Mn=0in§Q,
(7
1N =y onos,
with M defined by
M¢:£a¢x+b¢y+8b¢x+c¢y (®)

0z ac — b2 37/ Vac—v2

Lemma 3.1 Let (2 be as above. The(¥) has a unique solutiony € C?7(Q) and
Vn # 0in €. Moreover, every level ling, ;(€2), defined by

g’]vt(ﬁ) = {($7y> € Q;U(ffyy) = t}7

with min{y; (z,y) € Q} <t < max{y; (z,y) € 2}, consists of on€'*-arc connect-
ing two boundary points.

Proof. Existence and regularity foy follows from standard elliptic theory. We have
to show thatvn # 0. First we fixp € 09Q. If the tangential direction (p) atp is not
parallel(1,0) , then22 = 2% = 7, (j5) # 0 andVy is not parallel withn (p) , where
n (p) is the normal direction. If (p) and(1,0) are parallel, then, sinc@ is convex
eithern > 7 (p) orn < n(p) on 9Q and not identical), the maximum principle and
Hopf's boundary point Lemma implgg (p) > 0. It shows thatVn # 0 on 92 and
hence that the Brouwer degréeg(Vn, 2, 0) is well defined. Moreover, we will show
that the homotopy0, 1] x 92 — R2, (¢,p) — t(0,1) + (1 — t)Vn(p) is admissible.
This is obvious for the two poingswith 7(p) and(1, 0) parallel. If7(p) and(1,0) are
not parallel,t(0,1) + (1 — t)Vn(p) = 0 for ¢t € [0,1], p € 9Q would give: ¢ # 1,
12(p) = 0,my(p) = t/(t—1), hence) # 75(p) = ZL(p) = nu(p)71(p) +7 (p)72(p) =
T2(p) - t/(t — 1), a contradiction. Consequently we have

deg (Vn,Q,0) = deg((0,1),9,0) = 0.

Now suppose thatVn (p) = 0 for somep € Q. Then the Carleman-Hartman-
Wintner Theorem (see [20] and the appendix) implies thistan isolated zero o¥/y



and moreover, that the local degree\of at p satisfiesdeg (Vn, B. (p),0) < 0 (for
somes > 0 small). By the additivity property of the degree we obtain a contradiction
with deg (Vn,,0) = 0. HenceVy # 0in Q.

SinceVn # 0in Q the level lines ar€'!. Note that the maximum principle implies
that every component of a level s@f;’t ={penp >tyorQ,, ={pc
Q;n(p) < t} has to intersect the boundary. Sin@eis convex and because of the
boundary condition for; the boundary level sel(@Q);it and (0%), , are connected

and hence the level seﬁs;t andQ, , are (simply) connected. The last claim of the
Lemma follows from the fact that

(@) = 00, ) N O, ).

U
The first componenrg is defined up to a constant by the Beltrami equations
€&y = inj_cgg inQ,
ang+bny : (9)
§y=——==5 InQ.

We fix £ by £ (0,0) = 0. Since the differential equation in (7) implies that, = &,
and since? is simply connected, we find thatis well defined by (9). Denote

F(z,y) = (& (z,y),n(z,y)) (10)

andQ* = F (Q).

Lemma 3.2 Let Q,n and ¢ be as above. Then the transformatiéh: Q — Q* is
bijective and its Jacobian satisfies

Jr >00nQ.

Proof. ~ SinceF is continuous up to the boundaf(2) = F(). For the bijectivity
note thatVyn # 0 in Q impliesV¢ # 0in Q andJr > 0 on (2. Indeed

Jr =det (VE Vn) = (ani + 2bngny + 0772) >0 (12)

1
vac — b?

implies V¢ # 0 in Q. The inequality in (11) also implies thatis strictly monotone
on any level line/, .(©2). Since we know from the previous lemma that every level
line ¢, +(€2) consists of one component, the strict monotonicity dfplies that the
transformation(z,y) — (&,n) is globally bijective. Notice that (11) in itself would

only imply that the transformation is locally bijective. O

It remains to show that this transformation is close to the identity whengyées
close to—A.



Lemma 3.3 Now suppose additionally tha@i? is C?™". Let A, w, £ andn be as in
(6). For all § > 0 there iss > 0 such that ifL is e-close inC?™~17-sense to-A on
Q, then

1EC),n () = Tdlgom~ <9,
||A(£777) - 1||c2m_1,»y S (57
[w (&0l gam—2. < 6.

Proof. First we considef). Note thatg (z,y) = n (x,y) — y satisfies
_ 9 b lé) c H
M¢ — 0z (\/acflﬂ) T oy (\/acfb2> In Q’
¢ =00n9Q,
with M as in (8). Sinced,g is e-close inC?™~17-sense to- A we find that
()8 ()
Oz ac — b2 oy ac — b?

Sincedf is C*™7 it follows again by elliptic estimates for second order equations (see
[1, Theorem 7.3], [11, chapt. 6.4]) that

=0 (e)

C2m—2,7

[8llgam.~ = O (e). (12)

Hence||n. || c2m-1., = O () and|n, — 1| s2m-1., = O (). Moreover, using (9) we
find thaty (x,y) = £ (z,y) — « satisfies

Yy = ﬁnﬁr(\/ﬁ—l)nw(ny—l%
¢y = _\/agbe N — \/acbfb2 My
Since
- -1 = 0 (8) )

Vac—b? Cc2m—1,7

b _
Vac—b? -0 O2m—1,y =0 (5)’

\/acc—b2 -1 Co2m—1,9 = 0 (6)’

V) = (0, Dllgem-—y = Ofe),

we find ||V p2m-1., = O (g) . From (0,0) = 0 it follows that

[Pl gamn = O (e) - (13)
From (12) and (13) we conclude tha€ (-) , 1 (-)) — Id|[c2m~ = O (¢) .



A andw remain to be estimated. With [10] we calculate that

A = a2 + 20,8, + &,
T
w = 1 alyr + ngmy + nyy
AN\ angg + 2b0gy + Ny ’

SlnceHa - 1||Can—1,'y 3 HbHCmel,'y P ||C - 1||02n171."/ ) ||£:v - 1H027n—1,'y 9 Hé‘yHCZm—l,:y
and hencé|&.z || cam-2 5 [€ayllcom—2v 5 1€yyllom-—2., are all of orderO (e) we fi-
nally have
A= 1lgan-sr = O,
lwllgansn = O().
O

Now we switch back to the original notationj; = a, a2 = 2b, ass = ¢, (1, x2)
instead of(x, y).

Corollary 3.4 Let L be as in(2) and leto2 € C*™7. For all § > 0 there ise > 0
such that the following holds. Suppose that the operdigras in (5) is e-close in
C?m—17-sense to-A. Then there ig : Q — R? such that

1. F(Q) is é-close inC*™7-sense td,

2. if u satisfies

Lu > 0 inQ,
D u 0 onof,

thenU (F (z)) := u (z) satisfies

L > in F (Q
U 0 iInF(Q)), (14)
D, U = 0 ondF(Q),
with N
la|<2m—1
and .
S e~ bao F‘ <6 (16)

la|<2m—1

Proof. The transformatiorF is defined above. The property in follows from the
previous Lemma. The results th follow from tedious but straigthforward calculus.

10



Indeed we find

( 2 —aijaiaij> U (F(x)) =

1<i<j<2

m—1
( > amada> A((AU)OF(I)w~((VU)oF(x)>)

1<i<j<2

Am<((A)mU> oF(m)) Y ga() ((%)“U) o F(z).

o] <2m—1

The coefficientg,, have at least one derivative dfof order between and2m — 2 as
a factor Furthermore, in thg, appear derivatives up to ordgm — 2 of w, a,; and

F. SlnceH( AH = O (e) forall g with 1 < || < 2m — 2 the claim in (16)
follows with help of Lemma 3.3. O

Proof of Theorem 1.3. Combine the results of Lemma 2.1, Proposition 2.2 and
Corollary 3.4. O

A Appendix; on a result by Carleman, Hartman and
Wintner

The next theorem is a corollary of the Carleman-Hartman-Wintner Theorem (see [20]).
Their result has no direct extension to higher dimensional domains. For the sake of
completeness we include a proof.

Theorem A.1 Let() be a domain irR? and let
L p—
Z 83: 833] M Z
1<i<5<2 1<5L2

be uniformly elliptic onQ with a,;,b; € C?(2). Suppose thap € C?(Q) satisfies
L¢ = 0in Q and is non-constant. If € Q is such thatV¢ (p) = 0, thenp is an
isolated singularity:

there exists: > 0 such thatB, (p) C QandV¢ # 0on B, (p)\ {p},
and moreover
deg (V¢, B, (p),0) < 0.

Proof. From the uniform ellipticity ofL it follows that there exish;, A2 > 0 and an
orthogonal matrixQ, with det @ = 1, such that

o (Gl ) )e= (3 L)

11



With the transformatiod’ : R? — R2, defined by

1 T
U (o1,22) = (Q( Gt 0 ) (2)+(2 ))
0 (A2) 22 P2
we find thaty (z) := ¢ (Uz) — ¢ (p) satisfies a uniformly elliptic equatiohy =
0 on Uv() with the operatorl, satisfyinga; (0) = dg (0) = 1, @12 (0) = 0.
Moreovery (0) = 0 and Ve (0) = 0. Hence we may use the Carleman-Hartman-
Wintner Theorem (see [20, Th. 7.2.1]). We will also use the result [20, Th. 7.2.4].

Sincey (z) = o(|z|) as|z| — 0 it follows that eithery (2) = 0 on U, or there
existsm € NT with

Nl

Pz 72‘9022
im Pa "= e\ {0} 17
|z|—0 (Zl +ZZQ) \{ } ( )

If (2) = 00onU™Q thenp(x) = ¢(p) on Q. Now suppose thap (z) # 0. Then
there isr* > 0 with B, (0) C U™ Q andV (z) # 0 for z € B, (0)\ {0}. Henced
is an isolated zero d¥» and a homotopy argument shows that

deg (Vi, B« (0),0) =
= deg ((Re(a(z1 +i22)™), —Im (a(z1 + iz2)™)), B, (0),0),

implying thatdeg (Vy, By« (0),0) = —m < 0. Now take a ballB, (p) such that
B,.(p) C UB,~ (0). SinceVy # 0 on B,- (0)\ (U™ B,(p)) we have

deg (Vp, By (0),0) = deg (Vp, U™ (B, (p)),0) .

According to Heinz [15, Lemma 7], this degree may be defined as follows. For some
e > 0 we have|lVy| > cond (U™ (B, (p))). Any x € C°(R?,R) with suppy C
B.-(0), ¢ € (0,1) to be chosen below, anfl, x(z) dz = 1 is a normalized admissible
testing function foiV . We have

—m = deg (V(p, U™ (B, (p)) 70) -

L g N X (Vo (2)) det< o) ol ) o

w(wows) vy ae (@7 ( 1T 07 ) =
Uinv(Br(p))

= [ @@y vy e 98B 020 e 0] an

Br(p)
oo’

We note thatlet U’ > 0 and introduce

X € C°(R*,R), X(p) := det (U") x (pU").

Here

< o=
>

Ko @
S~——

12



As
/Rgfc(p)dp=/wdet(U) x(pU)dpz/RZx(Z)da

X is a hormalized admissible testing function @, provided that above has been
chosen sufficiently small. We conclude by

B _ ¢11(p) P12 (p) _ 5
0>—m= /BT@X(W) (p)) det< bm (0) o (1) ) dp = deg (V¢, B, (p) ,0).

O
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