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Abstract

On non-Kahler manifolds the notion of harmonic maps is modified to that of Hermitian harmonic
maps in order to be compatible with the complex structure. The resulting semilinear elliptic system is
notin divergence form.

The case of noncompact complete preimage and target manifolds is considered. We give conditions
for existence and uniqueness of Hermitian-harmonic maps and solutions of the corresponding parabolic
system, which observe the non-divergence form of the underlying equations. Numerous examples illus-
trate the theoretical results and the fundamental difference to harmonic maps.

1 Introduction

Let M be a Hermitian manifold of complex dimensiom with Hermitian metric(yag(z))aﬁ:1 ., and
let N be a Riemannian manifold of real dimensiorwith metric (gjk(x))j k1. n and the Levi-Civita-
connection, which in local coordinates is given by means of the Christoffel syrﬁlég{s;). We look for
Hermitian harmonic maps : M — N, which are defined as solutions of the semilinear elliptic system
ozB 82u£ — + ]:‘E %qu’]f
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0 >:0, (=1,...,n. (1)

We focus on the case, where the Hermitian manifoldas Kahler, and where the systef (1)rist in
divergence form. This system was studied first by Jost and[Yau [JY]: As they explain, in contrast with the
harmonic map system, this system is compatible with the holomorphic structuve diney obtain beside

others existence and uniqueness results, which cover the Dirichlet problepj for (1) on compact preimage
manifolds with boundary. Subsequent work of Chienl [Ch] covers the cdarget manifoldsvith boundary.
Extensions of existence and uniqueness results for the Dirichlet problem as obtained in the work of Jost and
Yau [JY] to noncompact complete preimage manifolds were first considered by Lei Ni [LN]. He requires
the bilinear form corresponding to the “holomorphic Laplace operatorfuioctionsu : M — R
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to be bounded from below by a positive multiple fif, v*>. Such a condition is adequate — although very
restrictive — in the selfadjoint setting, but does not really seem to fit in the nonselfadjoint framework on
non-Kahler manifolds.

We impose an invertibility condition on the holomorphic Laplace operator between suitably chosen
function spaces, see Assumptjgn 1 below. These function spaces are defined in terms of decay conditions at
“infinity”. The preimage and image spaces for the solution operator for the holomorphic Laplacian may be
chosen different, and hence our condition is very flexible and applies to many different situations. Even in
the selfadjoint setting of harmonic maps this condition still applies, wheray be a singular value of the
Laplace-Beltrami operator. In this sense, the present note also extends work of Li arid Tam [LT].

For an extensive discussion we refer to Subsedtioh 2.3 below. There it will become clear that this
invertibility condition is even weaker than assuming thas not a spectral value for the holomorphic
Laplace operator, defined as a closed unbounded operator in one fixed function space.

The holomorphic Laplace operator coincides with the usual Laplace operator if and only if the manifold
M is Kahler. That means that we focus on the case, where the holomorphic Laplatidsetadjoint.

Further we have to assume that there is an initial mapping M — N, such that the Hermitian-
harmonic differential operator, applied &9 decays suitably ato. Then we can show the existence of a
Hermitian-harmonic map : M — N, which is homotopic td and which approaché&sat co. This main
result is contained in Subsectioni2.2

In [CT] examples of harmonic diffeomorphisms are given which are homotopic to the identity. One
might expect to see similar examples for Hermitian harmonic maps. In Sgction 2.4 we prove that in a series
of manifolds including the ones in_[ILT], it is not possible for the identity to satisfy the decay condition
mentioned above. We believe that in those cases there do not exist Hermitian harmonic diffeomorphisms
homotopic to the identity. It is not only in this respect that the complex structure of the preimage manifold
and the nonselfadjoint principal part of the elliptic system complicate the construction of relevant exam-
ples. In future work we want to study the question whether the notion of Hermitian harmonic map may be
modified in order to resolve the incompatibilities between the complex structure on the preimage and the
Riemannian structure on the target manifold.

Originally, existence of harmonic as well as of Hermitian-harmonic maps was proved via the seeming
detour of the corresponding parabolic equations. The reason is the lack of compactness properties of the
underlying elliptic systems. That this approach works out also for non divergence form systems with a
nonlinearity quadratic in the gradient, was observed first inl [vVW]._In [JY], the parabolic method was applied
to the study of Hermitian-harmonic maps, and the required stability and convergence prope€tfes in
norms were found. In the present paper, as well ds in [LN], the exhaustion procedure will work directly on
the elliptic level. Nevertheless it is interesting to know, whether solutiors to (1) may be obtained as limits for
t — oo of the corresponding parabolic system also in our noncompact situation. This question is addressed
and answered in Sectiph 3. To ensure convergence we need to impose a decay condition on the linear heat

operator
o -
(at - A) %

which is related to the invertibility condition for the holomorphic Laplace operator. This decay condition
is discussed and illustrated in Subsecfiorj 3.2 with help of the same series of examples as for the elliptic
system.
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2 The elliptic Hermitian-harmonic map system

2.1 Preliminaries

In this section, after explaining the notation, we collect some basic results from the fundamental papers on
Hermitian-harmonic maps by Jost and Yaul[JY] and Lei Ni[LN].

First we specify and explain our notation. et be a complete Hermitian manifold of complex dimen-
sionm with Hermitian metric

(7@3(2))%5:1,...,711

in local coordinates. Byyaﬁ we denote the transposed inverse matrix

> (sa(2) = 5.

o=1,....m
With respect to this metric, the length of a holomorphic tangential vecter (w', ..., w™) atz € M in
local coordinates is given by
lwl>=" > wy,5(z)a”.
a,B=1,....m

Furthermore, lefV be a complete Riemannian manifold of real dimensiomith metric

(gj k)j,kzl,...,n

Lk k
Z gjeg = 5j
{=1,...,n

in local coordinates, its inverse

and the Christoffel symbols

~ I~ ., (Oges  Oge  Ogre
r,=-) ¢ > 7 — :
ke 2 ;g (8xk Tt T o
While on the target manifoldv, we consider the Levi-Civita connection of the metric, we choose a different
connection on the preimage manifald. We choose a suitable holomorphic torsion free connection such
that the “holomorphic Laplace operator” takes the form as abovg in (2).

Further we need to define the tension field for any smooth map/ — N according to the chosen

connections 5 -
3 0“u ou! Ou
t._ B [ Ml =
(o(u))” =~ <az°‘825 +ijaza azﬁ> , (=1,...,n. (3)

The first result we need to mention concerns the energy density fungtionwhich for any smooth
mapu : M — N is defined in local coordinates as follows

o O Ou*

=, 4
(i (4)

e(u) := (gjr o u)
If we assumey : M — N to be a Hermitian harmonic map andto have nonpositive sectional curvature,
then according to [JY, p. 225, formula (5)], for any relatively compact operf2set M we have the
following differential inequality )
— Ae(u) < C(Q)e(u). (5)

The constan’ is expected to blow up in general, wh@ris approachingy/. For the reader's convenience
we sketch the proof of [5) in AppendiX B.
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One should observe that by the Hopf-Rinow-theorem (seelelg. [A, 1.37]) the compact subigedseof
precisely the bounded closed sets.

The next important result is due to Lei NiL[LLN, Corollary 3.5]. For this we need first to explain the
geodesic homotopy distance between two smooth homotopic mapdy : M — N. Let us recall a result
of von Mangoldt-Hadamard-Cartan. Fix a homotdpybetween: andv, then, since the target manifold is
nonpositively curved, for any € M there is precisely one geodesic arc connectifig) andv(z) in the
same homotopy class as the original arc giverfhyMoreover this geodesic arc is length minimizing. See
e.g. [J2, Lemma 8.7.1]. The geodesic homotopy distance

pi= pl2) == pluz), v(2))

is defined as the length of this geodesic arc.
According to [LN, Corollary 3.5]p satisfies the following fundamental differential inequality:

~Ap <4 (llo@)l + llo)]). (6)

In the next section, we will construct Hermitian-harmonic maps by an exhaustion procedure and by solving
a boundary value problem fdr|(1) on compact submanifold3/ofThe above estimate will turn out to be
essential for getting first estimates for the approximate solutiof$ to (1).

2.2 Existence and uniqueness results

We first introduce spaces of suitably decaying functions (at “infinity”), which are adequate in our nonselfad-
joint and noncompact framework.

Definition 1. For > 0, let
CO%M) = {f:M —R; fis continuous and (7)
there exists;y € M and a constan€' = C(f) such that f(z)| < C (14 d(z, 20)) "} .

Assumption 1 (Invertibility of the holomorphic Laplace operator).
We assume that there exist positive numbpeys > 0 such that for every e Cg(M), there exists precisely
one solutionu € CY, (M) of

—Au= finM.

Theorem 1 (Existence and uniqueness of Hermitian harmonic maps)Assume thad/ is a noncompact
complete Hermitian manifold such that for the holomorphic Laplace operatbron M, the Assumptio 1
is satisfied with positive numbeys 1/ > 0. Further let N be a complete Riemannian manifold with
nonpositive sectional curvature ad: M/ — N a smooth map witkjo (h)|| € C(M).

Then there exists a Hermitian harmonic map M — N, which is homotopic t&. Moreover, ifp
denotes the homotopy distance betweamdh, we havep € CB,(M). Finally, in this class, the solution is
unique.

Proof. The fundamental idea is as in the paper [LN]. Here, however, we replace the “selfadjoint” tools by
the appropriate nonselfadjoint analogues. ((&t), . be a compact smooth exhaustioniaf According
to Theorem 6 of the paper [JY] by J. Jost and S.-T. Yau, there exist solution®;, — N of the Dirichlet
problems

O‘(uk) =0 in Qp,

ur = h on oy, (8)

ug homotopic toh,  with respect t@2y,.
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In order to show convergence ¢f;) to a Hermitian harmonic map : M — N, it is enough to prove
local boundedness of the energy density functiens,). As in [LN] we start with global bounds for the
homotopy distances;, betweeny;, andh andpy, , betweenu; andu,.

We first introduce a comparison function, the existence of which is ensured by Assufrjption 1: Since
lo(h)]| is assumed to be i@, (M), we find a smooth functiol’ e CS,(M), such that

— AV =4]o(h)| in M. (9)

In particular,V (z) decays uniformly, ag(z, zy) — oc. Together with the strong maximum principle, which
can be easily proven by passing to local coordinates and by exploiting the connectedhgsthisf gives
first V' > 0 and then by repeating the argument:

vV > 0. (10)

By (6), the coincidence qf;, andh on 92, and [10), we find the following inequalities for the homotopy
distancep;, betweenu, andh:

“App < AJo(h)] = —AVin®y
/),1<;|8Q/C = O<V|an.

From the maximum principle, we get the uniform bound:
0<pe <V, (11)

whereV € 02, (M) is the comparison function, introduced 9) above.

In a second step we will exploit the differential inequality (5) for the energy density) of the ap-
proximate Hermitian harmonic maps.

We take a local.!-bound fore(uy) from [LN} pp. 344/345]: For some fixed) € M and anyR > 0,
we have with a suitable constant

e(ug) < C. (12)
Br(20)

This bound holds true also in our situation since we have shown the maximum bolind (3,1 pfmve.

Eventually from this locaL'-bound ), we get locdl*>*-bounds by making use of the local maximum
principle [GT, Theorem 9.20] for elliptic operators, which are not in divergence form. First we work in
sufficiently small open sets dff, where simply one chart is sufficient. The holomorphic Laplace operator
in these local coordinates satisfies the assumptions of the local maximum principle and we exploit the
differential inequality }

—Ae(uk) < Cloce(ur)-

See [(}); the constant can be found at least on compact subskfs &econd, since by the Hopf-Rinow
theorem (see e.g[_[A, 1.37]), all tis¢, are compact, we get there with help of a bootstrapping argument
uniform C*“-bounds and hence convergence to a smooth solutafrthe Hermitian harmonic map system

@.
It is easy to see thai and h are homotopic. For this purpose we extend: Q2 — N by h to a
continuous mapping; : M — N. Further letu, := h. Obviously,i;, andiy; are homotopic; fok € Ny

let Hy, : {%H, k%rl} x M — N be continuous withH, (ﬁp ) =y, andHj, (%H, ) = @g41. Defining
H : [0,1]]xM — N,

H(t,.) = Hy(t,.), ifte[k%z,k%l]’
Uy if t =0,
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we get a homotopy betweenandh.
We conclude frol) and locally uniform convergence that p < VV and hence € CS, (M).
Finally we prove uniqueness of the solutiorwith the mentioned properties. Lét: M — N be an
arbitrary Hermitian-harmonic map of cla§ (M) homotopic toh, such thap(a, h) € Cp, (M). By @ we
know
—Ap(u,u) <0

and, by the previous arguments, that
0 < p(u, @) < p(u,h) + p(i, h) € Cpy(M).
Hence for every > 0 outside a sufficiently large balbz(zy) around an arbitrary, € M we have
p(u,u) <e.

By the maximum principle this implieg(u, @) < ¢ on all of M for everye > 0 and hencep(u, 1) = 0.
This impliesu = . 0

2.3 Examples

First, with help of some examples, we want to discuss the invertibility condition on the holomorphic Laplace
operator, i.e. Assumptidr] 1. We are basing our first examples on the following simple resuilt:

Lemmal. Letn > 2, o € (0,5 —1). Then, for every continuoug : R” — R with |f(z)| < C (1 +
|z|2)~2~1, we find precisely one strong solution R™ — R of

— Au=finR", (13)

such that
u(z)] < C(1+ |2]*)~.

Proof. We define
v(z) == (14 |z*)~®

as a barrier function and calculate:

—Av(z) = 2an(l+|z/) " —dala+ 1)|z|*(1 + |z>) "> 2
> cna(l+ 2?77

where the positive constasy ,, is given by

Cna = 4o (g —(a+ 1)) .
In order to find a solution t¢ (13), we solve the corresponding Dirichlet problems with homogeneous bound-
ary data on the ball$3;, around the origin with radiug. Since a suitable multiple af will serve as a
barrier function for the approximate solutiops |, after selecting a suitable subsequence we will have local
convergence it and weakly inl/2? for arbitrarily largep towards an entire solution 3), obeying the
same bound’ v(x).

Uniqueness is immediate from Liouville’s theorem. O
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Example 1. Let us consided! = C™, m > 2, with the standard euclidean metric, so that the holomorphic
Laplacian is also the standard oné\.. Then, according to the previous lemma, Assumgtjon 1 is satisfied
with anyp € (2,2m) andy’ = p — 2.

In this example, the holomorphic Laplace operator is selfadjoint. Although we do not focus on this case here,
this observation shows: Even(ifis a singular value of the Laplace operator, our invertibility assumption
may still be satisfied.

In order to cover also nonselfadjoint examples, we would like to eduip= C™, m > 2 with the
conformal metric

Yag(2) = (L4 [2) o
The holomorphic Laplace operator then becomes
~A=—(1+zHA,

with A, being the euclidean Laplace operator. LI%((C’“, v (% )m (dzi ANdZ2) A A (dzm AdZp)) =
L2 (1 + )™ (5)" (dzt AdZ1) A ... A(dzm A dZy))), the holomorphic Laplacian is not self-
adjoint.

Since the Kahler form is given by

1—|— 12|%)” Zdza/\dza

we compute

dw = S(L+[2P) 72 Y 2(Zpdzs A dza A dZ + 2gdza A dZ A d25) 0.
a,B

This means that)M, v) is not a Kahler manifold, what is important, since otherwise Hermitian-harmonic
maps are harmonic.
Again, Lemma [L shows, that for any smogtiwith | £(2)| < C(1 + |2?)™%, « € (0,m — 1), we find a
solutionu of )
—Au=f inC™
with |u(z)| < C(1 + |2]?)~®. However, with this metric we have
d(z,0) ~log(1+|2%),  |z| ~ exp(d(z,0)) -

This example doesn't fall under our formulation of Assumpfipn 1. However it shows that the choice of the
metric

Ta3() = (14 [2) ' ap.
and of the corresponding holomorphic Laplace operator
~A=—(1+ A
may be reasonable. Sinke(1 + |z|?) ~ d(0, z), where|z| is the euclidean norm ant{z, 0) the distance
in our metric to the origin, we should find a refinement of Leniina 1, which involves logarithmic terms:

Lemma 2. Let the dlmensmn bﬁ > 2 and leta > 0 be a real number. Then for evefy: R” — R with
|f(z)] < C (log(2+ |z[*)) """, we find precisely one solutian: R" — R of

— (1 + |z|*))Au = finR", (14)

such that
lu(z)] < C (log(2 + |z|*))



8 H.-Ch. Grunau, M. Kiihnel

Proof. Similarly as in the proof of Lemmg 1 we look for a suitable comparison function. First let us work
with an auxiliary number > 2, which will be fixed in the course of the following calculations. We define

v(z) := (log(A+ \$|2))_a

and calculate:

n a|?
~Av(x) = 20 (log(A+[af?) " (A e |‘x\2>2>

22

—do(a+ 1) (log(A + |aU|2))_a_2 (A_LW
> 2a(n - 2) log(A +[a) " s {1207 flogta +ja) '}
> a(nA—2) (1og(A + |90|2))7a71 1+1|$|2a

provided A is chosen large enough in dependencexorr 0 andn > 2. As in the proof of Lemma]1,
we have now: For every continuous functigrwith |f(z)| < C (log(A + |x]2))7a71 we have precisely
one solutionu of —(1 + |z[*)Au(z) = f(z)inR" with |u(z)| < C (log(A+ [z[*))”“. But since the
strictly positive function(0, oo) > 7 + log(2 + r2)/log(A + r?) is bounded from above and below, this
immediately gives the statement of our lemma. d

Example 2. LetM = C™, m > 2 be equipped with the conformal metric
Yag(2) = (L4 [21) " b0,
such that the holomorphic Laplace operator is
A =—(1+]z)A.

with A, being the euclidean Laplace operator. Then satisfies the invertibility condition Assumpt@n 1
with anyu > 1 andy’ = p — 1.

The second purpose of this subsection is to discuss the decay conditieri/o| € C{)(M). For this we
construct some prototype manifold$ and N and suitable “initial mapsh : M — N.

Example 3. OnR?, the rotational symmetric metrig = dr?+(r2+r*)d$? has strictly negative curvature.
If we now chooseV = R? x R? with the metricg = prigo + prigo. wherepr; : N — R? denotes the
projections onto thé-th copy ofR?, then(N, ¢g) has nonpositive sectional curvature.

As for the manifold)M we first choosel/ = C? with the Hermitian metric

1

w(d21 ® le + dZQ ® ng)

’:}(/ =
Then itis easy to see that the geodesic lenifth 0) ~ log(1 + |2|2).
Now M := M\ B;(0) shall be regarded as a manifold with boundas (0). The proof of the theorem
works in the same way for thi&/ where additionally. = h on 9B;(0) can be satisfied.

If we defineh : M — N via
z
h(2)

" TERP
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the norm of the tension fielfiz(h)|| can be computed to be

21T +202) _ 7]

70N = S0 =P = 2+ oy

and hencélo (h)| € C}(M) for everyp > 0.
Applying Examplg P for. > 1 yields by Theorem|1 a Hermitian-harmonic map A/ — N homo-
topic toh with u = h atdB;(0) and approaching at infinity. In particularu is not a constant map.

Example 4. Let M = (S')?>™~! x (—1,1), m > 2, be equipped with the following complex structure:
DenoteH := {z € C||S3(z)| < 1} and takg(C™~! x H)/T' = M, wherel is the cartesian lattice of rank
2m — 1.

For the choice of the metric, denote byhe noncompact parameter with range (—1,1). Then the
metric

'704,@ = f(s)(saﬁ

in cartesian coordinates I&invariant and not hler unlessf is constant. We denote by the induced
metric on)M . We choosé > 0 and

Fs) = 62(1 —[s)™2072 for1/2 < |s| <1,
T als) for |s| < 1/2,
such thatu(s) > O forall |s| < 1/2andf € C*°(—1,1). )
Since for|s| close tol one hasi(z,0) ~ (1 — 1s])7% — 1 := d(s), the metricy is complete.

We can prove that A(1 +d)~* > C(1+d)~*'~2 as long asy’ < 1 and|s| > 1/2: Since
(1+d(s) ™ = (1—[s)™,
we get even

A ) =~ (s
_wa g op') (1= |s|)2+2(1 — |s[)o 2
— “l(lg‘w(l — |s])2u+2)

_ w(—o) - OM) (1 4 d(s)) -2,

Now we remark thab(s) = 1 + (1/4 — s?) satisfies—Ab > 0 for everye > 0. We define

( )_{ (14d(s))~* for |s| > 1/2,
T (4 d(1/2) " b(s) for |s| < 1/2.

Then we compute fop € C3°(M), ¢ > 0
/ (—A*¢) vfmdz > (¢f™) (1/2) <g: (; - o) - % @ + o))
e (5 (-5-0) - 5 (-5 +0))

_ m— m— o —e / d~,(1/2) 7 H
= (65 (1/2) + (6™ ( 1/2))( vy Cz<1/2>>(”d<1/2))

!

0

Y
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for ¢ sufficiently small. Hence(s) € Cg,(M) is a supersolution and we proceed like before to prove the
validity of Assumptior[]l withy' = — 2, p > 2 anddé(p — 2) < 1. Hence we have proved:

Lemma 3. Let M := (S!)?™~! x (—1,1) be like in Exampl€|4. 1§ > 0, > 2 andd(u — 2) < 1, then
Assumptiof |1 is valid with’ := p — 2.

Now we construct a starting map The idea is to fix the values in both infinite edges and to interpolate
such that|o(h)|| € CP(M).
For this purpose denot¥ = B;(0) C R" equipped with the Poincametricg = Wézj.

Proposition 1. If M islike in Exampl@N is the unit ball with the Poincd metric, andh : C™ 1 x H —
R" a I'-invariant C2-map with bounded first and second derivatives and the in@@&* ' x H) ¢ N
being precompact iV, then there is a Hermitian-harmonic map: M — N homotopic to the quotient
maph : M — N.

Proof. It suffices to prove thato (h)|| € Cf)(M ) for someu > 2. For this purpose we chooge< . < 2+1%.
Then Lemma 3 shows that Assumptjgn 1 is valid. We note\ﬂ’fﬁq < < ﬁ for the given Poincdr
metric, which Is an easy calculation. By assumption,

r
1—r2

0 .
< K
<Cu, |ooh

2 ~ .
‘ a *h] SCL

02902P

andr(z) := |h(z)| < ¢ < 1inC™ ! x H. Now we can estimate

1 — |g|)4+46 C 2
o' @ ! P?)? (Cl e —3r2>>

4+46

lo(h)”

IN

Cu(1 —
Cu(1 —

IN A

|])
|s])%

Cy(1 + d(s)) 72,

if 2 < pu <2+ 2. By our choice eve2 < y < 2+ 3 holds. O

2.4 Negative Results

Harmonic maps sometimes may be thought of as diffeomorphisms or deformations of the identity in an

appropriate setting. If, for examplé/ = N is the unit ball, N equipped with the Poincametric and\/

with a slightly perturbed Poincametric, in [LT] it is proved that there is a harmonic map M — N

homotopic to the identity. This suggests to chobsas an identity map and to use Theorem 1 in order to

obtain a Hermitian-harmonic map homotopiditoT his idea fails in many examples, in particula\ff = N

is the unit ball with the Poincérmetric. We will prove that in this case the assumptions of Theptem 1 are

not satisfied. We have to leave open whether there are Hermitian-harmonic maps homotopic to the identity.
Since we are now going to inquire into rotational symmetric metrics, let us collect some basic knowl-

edge.

Lemma 4. Let B,.(0) C R* be equipped with a rotational symmetric Riemannian metritetz ¢ B,.(0)
andT" be a geodesic connectingand0. ThenI is a line segment.
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Proof. First we note that by rotational symmetry the geodesic equations tell us that the line segment between
x and0 is a geodesic. Now take € I" near0 such that there is only one geodesic throygmnd0. This

has to be the line segment connectingnd(. Since the line through and0 is the unique geodesic with
tangent directiod” (y) in y, we conclude thak is the line segment betweerando. g

If 0 ¢ Q we obtain a somewhat weaker result:

Lemmab5. Let] ¢ RT be an open interval and x S*~! = O < RF be an annulus equipped with
a rotational symmetric Riemannian metricof the form~y = pri~, + pr3vs (polar block form’). Let
x,y € M be collinear with0. Then the shortest geodesic betweendy is a line segment.

Proof. By assumption,
v = a(r)dr® + bij(r)dpide;,
with a > 0, (b;;) > 0. If I" : [0,1] — Q is a path connecting andy, then

2 1 2
dF¢. dly, dr,
R > —
/ \/ ds ds ds _/0 “ ds ds

if I denotes the line segment betweeandy. O

Remark 1. Note that the polar block form condition of Lemfrja 5 is satisfiedi§ conformal to the eu-
clidean metric.

First we show the positive result that the Poirgchall is within the range of Assumptiph 1:

Example 5. Let M = D* := {z € C?| |z| < 1} equipped with the Poincérmetricy := Wda@
Then Assumptidn 1 is valid fer > 1 andy/ := p — 1.

Proof. Sincey is rotational symmetric, Lemnja 4 states that geodesics throaghlines, hence the distance
function is given by

lz2l 9
d(0,z) = / Wdt = 2artankf|z|).
0

For a rotational symmetric functiofir) onRR* the ordinary Laplacian is given by
9> 30
A= (a 5+ Tar) 4

S0 we compute

— A’ (p +1) (42 Ap'r (41
A(A + 2artantir)) ™" = W(A + 2artanhfr))~(#+2) m(A + 2artankr)) =+
64/ w+1)
) (A + 2artant{r))
and hence
_A(A + 2artanr)) " — —3(1 —12)2A(A + 2artantfr))#

= —1/ (i + 1)(A + 2artank{r)) "¢ *? 4 'r(A + 2artantr)) Y

(1 _ 2.2
+3M(12T)(A+2artanr(r)) (W'+1),
T
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Elementary calculations show that the coefficient.4f+ 2artantir))~(*'+1) is strictly decreasing,

o (, 31 —r?
or <,u1"+ 2r <0

and hence

If we now choosed > 1/ + 1, then

—A(A + 2artanl{r)) ™" > C(A + 2artankr)) ™ "1,

with C .= A=4=1
With arguments as above this implies that Assumption (1) is satisfied fqu any andy’ := p — 1. O

Now we turn our attention to the norm of the tension field. We will see that this is the crucial point.

Proposition 2. If M is a complex manifold with Hermitian metrigsand, and ifid : (M,~) — (M, %)
denotes the identity map, then we define

A7 = 577 (Fag.5 — Vags)
With this vector field given we obtain o
lo(id)|[* = 5 A°A2.
This formula simplifies in the conformal case:

Proposition 3. If v = f3,5,9 = fd,3 with smooth real valued positive functiofisf, then||o(id)|| =
V\f‘ In particular, if y = 5 = fd,3, then||o(id)|| = m 1) ’V ’

Example 6. In particular, if M = B = B,(0) C C™ andy = 7 = = ‘
then

e )25 5 isthe Poincaé metric,

fotiay) = D).

Sollo(id)|| ¢ Cp(M) for the Poinca case, we do not even have decay to zero. We set this result in a more
general framework now.

Let Q2 ¢ C™ be a rotational symmetric domain, equipped with a rotational symmetric metvitiich
obeys the polar block form condition of Leming 50if¢ Q. Let.S C Q be a sphere centered inwith
radiusrg. Then, forr > 0 chooser € Q with |z| = r and define

D(r) :=dist(z, S).
Obviously,D(r) is well-defined and for any fixes € S the functionD(r) obeys
D(r) <d(z,s) < D(r)+ C,

whereC depends only oi;;(rp). Hence statements about growthdf:, s) are equivalent to those about
D(r) and independent of the choices $fands. A calculation similar to that in the proof of Lemma 5
shows that distc, .S) is realized by the segment of the line containingnd0. If 0 € 2 we setr := 0, i.e.
D(r) =d(r,0).
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Proposition 4. Let{2 ¢ C™ be equipped with a rotational symmetric, complete metraonformal to the
euclidean such thalo (id)|| € CY(2) for A > 1. ThenD(r) has linear growth. In particular2 = C™.

1

7 We calculate

Proof. We denotey = f¢,5 and abbreviaté :=

=

2

—A
(D)2 < CD

~(n-1)]

Jotid)] = (m — Dl = (m 1) (5.}

for D > 0. SinceD is strictly increasing for > rg, this implies forD > 0

1

< ClDfAD/.

D/

Integration yields
Var (In D', [rg + &,7]) < C3 — Co D',

If » > ro + e increases, Vafln D', [ry + €, 7]) is increasing, as well aB(r), hence
Var (In D', {r > ro +¢}) < Cs.
This implies
0<Cy<D'(r)<Cs

for all r > r¢ and hence
Cyr + Cgs < D(’l“) < Cyr + Cf.

Very similar arguments apply for < ro, if 0 ¢ Q. Hence0 € 2 andQ = C™. 0

Proposition 5. Any rotational symmetric Hermitian metricon C™, which has nonpositive sectional cur-
vature is either euclidean ab(r) := d(0, r) has superlinear growth.

Proof. First, we reduce to the case = 1: If M has nonpositive sectional curvature afids a complex
plane through), then M N E has also nonpositive sectional curvature. On the other hand,if s is
euclidean or has superlinear growth for some pl&r@ntainingd, we conclude by the rotational symmetry
that this holds also foy. So we assume now = 1.

With notation as above, we compute for= f(r)dz ® dz = ¢(r?)dz ® dz ands := r?

d(s)Riziz = — [25 (0" (s)B(s) — (¢'(5))?) +2¢/(5)9(s)] -

This implies
2¢%(s(In¢)" + (In¢)’) = 0.
We abbreviatéln ¢)' =: . SinceR = — =51, the maximum principle implies that(r) is increasing and

hencef’(r) > 0 and alsap’(s) > 0. So we conclude
Y > 0.

We claim thaty)(s) > 0 for s > 0 unlessy) = 0. To prove this we assume that there @re s; < s
such that)(s;) > 0 andy(s2) = 0. Then

0< /52(31//(5) +1(s))ds = s21p(s2) — s19(s1) = —s19(s1) <0,

S1

what is a contradiction. Henag(s) > 0 for all s > 0 or ¢ = 0. The last case is the euclidean case.
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So we assume(s) > 0 for s > 0. Let us fix somesy > 0.
Then we compute for all > sg:

/
1
s+ >0 = —>-—=
P s
= Iny > Ci —lIns
= (lng¢) > % with Cy > 0
= B(s) > C35“2 with C5 > 0
= f(?’) > C'37’2C2
= D(r) > Cy+ Csr't with Cy, C5 > 0

In the computations we always integrate fregno s. O

Corollary 2. If M < C™ allows for a rotational symmetric complete metric conformal to the euclidean
with nonpositive sectional curvature afjd(id)|| € C{(M) for someX > 1, thenM = C™ and the metric
is the euclidean metric multiplied with a constant. In particutaid) = 0.

These results illustrate that there is no obvious example, where the identiti/megy serve as initial map
h.

In order to construct nontrivial Hermitian-harmonic maps, one might look for manifoldgwitinfinite
ends as in Examp[g 4 above. However, if one wants to chéfse N in this case, one has to observe the
following obstruction:

Remark 2. N = R"™\ {0} does not admit a complete, nonpositively curved metria:for 3. If we would
have a nonpositively curved metric, the Cartan-Hadamard-theorem would implRthat the universal
cover of N. SinceN is simply connected for > 3, N would have to be isomorphic fR”. But since
Tn—1(R") = 0 andm,_1(N) = Z, this is not the case.

3 The corresponding parabolic system

3.1 Existence and convergence results

Originally in the fundamental work of Jost and Yau [JY], as in many contributions to the harmonic map
system, existence results were obtained via the seeming detour of the corresponding heat system

?;: =o(u) on(0,00) x M,
u(0) = h, (15)
un~h at infinity, homotopic to each other

The initial map is chosen as in Theorémm 1, and here, the notation “initial map” as well as the homotopy
betweerh andu become more transparent.

Similarly as in Theorem|1 we get existence of a global solutiof tp (15) and also convergesweeo
smooth map : M — N for a sequence, — oo by means of an exhaustion procedure.
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Theorem 3 (Global Existence). Assume thafi/ is a noncompact complete Hermitian manifold such that
for the holomorphic Laplace operaterA on M, the Assumpti 1is satisfied with positive numbegs >

0. Further letN be a complete Riemannian manifold with nonpositive sectional curvaturé add — N

a smooth map witjo (h)|| € Cp)(M).

Then there exists a global smooth solution: [0,00) x M — N to (15) such thatu(t, .) is for
everyt > 0 homotopic toh. For the homotopy distance(t, . ) between:(.) andu(¢, . ), we have that
p(t) € C)), (M) uniformly int.

Moreover there exists a sequernge— oo such thatu(t, . ) converges to a smooth map: M — N,
being homotopic t& and converging ta at “infinity”.

Proof. As above, lef); be a compact exhaustion &f. According to[[JY, Proof of Theorem 6] , there exist
smooth solutions, : [0, 00) x Q — N of the initial boundary value problems

(ug) —o(ux) =0 in0,00) x Q,

u(t, z) = h(x) for (¢,x) € [0,00) x O,
ug(0,.)=h on €2,

ug homotopic toh, with respect t@2y,.

(16)

We first need to show thz#%(t x) ‘ are uniformly bounded. For this purpose we note that according

to formula [LN, (6.2)],||2%(t, z)|| satisfies an initial boundary value problem for the following differential
inequality
J 1 ouy, .
— =z —* <
<8t 4A) ' T (, x)” <0 in[0,00) x Q,
’ 8uk H =0 for (¢,x) € [0,00) x O, 17)
ouy,
W(O,x) = |lo(h)(x)|| for z € Q.

By means of the parabolic maximum principle, we conclude that forkaauyd all(¢, x) € [0, 00) x Qi we

have
Ouy,

ot
Next we need &°° bound forp,, on any|0, T'] x 2x, where agaimy (¢, =) denotes the homotopy distance be-

tweenuy(t, ) andh(z). For this purpose we again introduce a nonnegative barrier funiz’tieng,(M),
such that

—, (&)

< max[|o(h(z))]). (18)

— AV =4]o(R)| in M. (19)

Furthermore we note that the crucial estim@e (6) generalizes to smooth time dependentimdpsoc) x
M — N as follows:

0 ou ov
<at_4A> ol )gHat—a(u) +‘at—a(v) . (20)
We conclude
) - 0 1z .
(at — le) pr < |lo(h)]| < (({)t 4A> V. in[0,00) x Q,
et ) =0 < V(z) for (t,) € [0,00) x O, (1)

pr(0,2) =0 < V(x) for x € Q.
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By means of the parabolic maximum principle, we get for(alk) € [0, c0) x Qy
pr(t, ) < V(z), (22)

i.e. the desired uniformi> bound for thep, and hence for they,; = p(ux, u;). Analyzing and correcting
carefully the argument given in_[LN, pp. 351-352], one obtains for’Bny 0 and any relative compact
Q C M auniform (ink andT") bound for
T+42
T Q

From this we want to deduce a local maximum bounc:fay; ), which by means of standard linear parabolic
theory will allow to pass to the limit and to obtairgébobal smooth solution td (15). For this purpose we may
assume tha is contained in one single coordinate chart, and we take from [LN, (6.5)ttha) satisfies
a differential inequality of the form
(8 Ay C(Q)) e(ur) <0 (23)
ot 4 k)=

The constantC'(2) may be suitably chosen independentlykof Here we have to apply the local maxi-
mum principle for parabolic operators not in divergence form, which can be adapted|ffom [L, Theorem
7.21]. (For an extensive discussion we refer to Proposjtlon 7 in the appendix.) This gives a bound for
max|r1 742« B €(ux) for sufficiently small balls contained 2, which depends omaxe(h), B, Q2 and
the L!-bound one(uy), but not onT. Hence we have found a maximum bound for the gradient, which is
local in space, buglobal in time

Homotopy between andh is shown as in the proof of Theorérm 1. Moreover we note that the homotopy
distance is also bounded by € C?, (M):

p(t, 1‘) = p(u(t, .%'), h(x)) < V('r) (24)
The stated convergence now follows from the (uniform in time, local in space) boundedngsg Jodnd
the global boundedness P (¢, z) || by standard linear parabolic theory. O

Next, we want to prove that this global solution converges to a (stationary) Hermitian-harmonic map
M — N. Here it seems that we need something stronger than Assurption 1. As additional hypothesis we
formulate:

Assumption 2 (Decay properties).

We assume that there exists a positive number 0 such that for every € Cg(M), we have decay of
max v(t, . ) towards0 for every bounded solution of the initial value problem for the heat equation with
the holomorphic Laplace operator and as initial datum. Moreover we assume that the solution of the
initial value problem is unique in the class of all uniformly bounded function®dh] x M.

The formulation of Assumptioh| 2 suggests the use of a comparison function, what is a great difficulty for
arbitrary metrics. Hence it would be more adequate to find a spectral reformulation. This is aimed at by
the following Lemma. We denot8y, 4, := {rexp(i¢)|¢1 < ¢ < ¢} andCy (M) := C)_y(M) for the
bounded continuous functions in order to avoid confusion with compactly supported functions.

Lemma 6. Assume that;, — Au = 0 has a unique bounded solution for every initial datyne CS(M)
and moreover

I(—A + )\)_1||B(03(M),05(M)) <C
uniformly for all A € Sy, 4, for certainz/2 < ¢; < 7, —m/2 > ¢ > —n. Then Assumptidnj 2 holds.
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Proof. The key ingredient is the keyhole integral. Iét= I'; + I's + I's be a path irC such that

Iy = {rexp(ig1)r € [1;00)}
[y = {exp(ig)|$ € [¢1; d2]}
s = {rexp(igs)|r € [1;00)}.

Then we can define a semigroup (cf. elgl [Fr, Part I1])
exp(At) = — / exp(M)(—A + A)1dA
2 Jr

as operator iB(C} (M), CP(M)), since we assumed the uniform boundednegs-d + \)~!. It has the
property

%(exp(At)u) = Aexp(At)u.
Cauchy’s integral formula implies that integration oveyields the same as integration oveft for ¢ > 0.

Hence

~ 1 - —1
lep(At)| = — / exp(M) (<A +2) " dx
27T F/t
1 D
— A4+ Z
5t /Fexp()\)< + t> d\
< 1/ ol (=a+2) |l
= omt JIP t
C
< -
S AL
Cl
= t 5
sincecos(¢1) < 0 andcos(¢2) < 0. )
Hence the unique bounded solution= exp(At)y satisfies
!/
max v(t, z) < ¢ H(P”
xeM t
So Assumption 2 is valid. O

The meaning and relevance of Assumpfibn 2 will be extensively discussed in the examples in subséction 3.2
below. With help of this assumption, we may now state:

Theorem 4 (Convergence to a Hermitian-harmonic map).

Let the assumptions of Theorgin 3 be satisfied as well as Assufrjption 2 with the asumeAssumption| 1.
Then, for the solutionu(¢, . ) of the time dependent Hermitian-harmonic map sys@] (15), there exists a
sequence, — oo such thatu(tx, . ) converges to a Hermitian harmonic map M — N.

Proof. It remains to show a decay result fionx,, ||%||. The latter is achieved by means of the differential

inequality
0 1:\|0u ,
— — — — <
(E)t 4A) ‘ T (t,x)H <0 in[0,00) x M, o5
‘ (22;(0,:1:) = |lo(h)(2)]| forz e M.
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Since|| 24| is uniformly bounded, Assumpti@ 2 gives decayt@st — oo. O

3.2 Examples

In the remainder, we show that Assumpt|dn 2 is likewise satisfied in all the examples treated above in
Subsection 2]3.

Example 7. Let M = C™ and~y = 4,5 be the euclidean metric. Then Assumpﬁpn 2 holds true.

Proof. Assumeyp € C})(M) with y < 2m, for simplicity we specialize tdp(y)| < (1 + [y])~>*™ ¢ with
a € (0;1] ande > 0 such thakam + ¢ = p. Since the fundamental solution of the heat equation is

(t,z) = Cot " ex —@
) ] p At )

the solutionv(t, =) of the initial value problem witlp as initial datum is given by

pitol = ol fem (1) sty

" </QXP (—W)lla dy)l a </ SO(y)Iidy)a
)

. 1. .
since|p|« is integrable,

o ( foo (-5 ) a) ™

= o (7 [[e(- 0z
— ()™,

IN

IN

IN

If > 2m, theny is integrable and hence
lu(t,x)| < Cyt™™.

This proves the validity of Assumptign 2 for the euclidean case for every0. O

To be able to treat the case of Exanjgle 2, we have to formulate a maximum principle for the corresponding
Laplace operator.

Lemma7. LetM = C™ andy = (1 +r?)7'4,5. If u : M x [0;7] — R is bounded and satisfies
(—A + %)u > 0,u(x,0) > 0, thenu > 0.

Proof. We imitate the proof of the euclidean case like giveriin [Di, V,4,Thm4.1]. We take the function
v(z,t) := (1 + |z[?) exp(dmt) > 1+ |z]?,
which also satisfies the heat equation, {-€A + %)v = 0. For the function

We = U+ EV
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we hence get

(—A + ;)t)we > 0, w.(x,0) >0
and w.(z,t) > 0 outside a compact s€t. x [0;7] C M x [0;7]. Now using the parabolic maxi-
mum principle for the bounded domaiii. x [0; 7] we see thaiv. > 0 everywhere. Hence(z,t) =
lim. 0 we(z,t) > 0. O

Now we are able to continue Example 2.

Example 8. Let us consider the conformal metr’ygg =1+ r2)_15a3 onM = C™, m > 2. Then again
Assumption |2 holds true.

Proof. Recall that the geodesic lengff0, z) ~ In(1+72). The decay of the solution of the corresponding
heat equation is proven by comparison to a test function. Let us consider

w(t,z) = (A+In(147r%) +t)7"

Now we verify

if A is chosen big enough, givenandm.
We compute

<—A + ;) w o= u(((4m —5)A —4pu — )1 + (4m — 5)r*In(1 + %) + (4m — 5)r’t

F(4m —1)A+ (4m — 1) In(1 +r2) + (dm — l)t)
) (1 +1In(1 4+ %) + t)7u72 (1 + 7“2)71
Obviously, (—A + &) w > 0, if
(4m —5)A—4p—4 > 0.
So, givenu andm > 2 we choosed > 1 such that this inequality is satisfied.
Since for an exact bounded solution with(0, z)| € C}(M) we have|v(0,z)] < Cw(0,x), the
parabolic maximum principle stated in Lemfrja 7 proves
lo(t,z)| < Cw(t,x) < Ct™H.
The uniqueness in the class of bounded solutions immediately follows by LEfnma 7 and the observation

thatw is a solution of the heat equation with zero initial data if and onlyaifis.
Hence Assumptiop]2 is valid for gl > 0. O

Finally, we come back to Examglé 4. Again we first have to prove a maximum principle.

Lemma 8. Let M = (S')2™~1 x (—1,1) withy = 6%(1 — |s|) 720 725,,5 for 1/2 < |s| < 1 like in Example
[ 1w : M x [0;T] — Ris bounded and satisfiés-A + 2 )u > 0 andu(z, 0) > 0, thenu > 0.
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Proof. Like in the proof of Lemm@? itis sufficient to construct a supersolutignt) such thatnf,co.7 v(s, t) —

oo for s — +1. The choice
. t
0(s, 1) := (1 — log(1 — [s])) exp(53)

works for|s| > 1. Since for|s| < 3 there exist&>' = C(T') > 0 such that

0
S
( A—i—at)v_ C,

the functionu(s, t) := o(s, t) + Ct is a supersolution satisfying the required conditions. O

Example 9. Let M be like in Examplg]4. Then Assumptign 2 is valid.

Proof. Let us definga); := a(a+1)-...- (a+1i—1),(a)y := 1 for reala and integeri. Denote the
Kummer function

F(a,b,z) := 1Fi(a,b,2) Z

'L:O l !

which is convergent for ali, if b is not a negative integer. We will make use of the following properties:

0 = 2 (a,b,z)+(b—z)3F(a,b,z)—aF(a,b,z) (26)

“922 0z
Fla,b,z) = rga)) exp(2)2°7 (1 + O(|2|™Y)) if R(z) > 0 (27)
F(a,b,z) = exp(2)F(b—a,b,—z) (28)
aF(a+1,b,2) = aF(a,b,z)—l—zaazF(a,b,z). (29)

All these properties can be found n [AS] 8%1.1,13.1.4,13.1.27,13.4.10.
As a comparison function we choose

1 1
w(s,t) :=t°F <—c, 1+ % —1(1 — \s|)_25t_1> )

where we choosmax(—z—ld, —£) < ¢ < 0. By the first Kummer transformati08) this becomes

1 1 11
w(s, t) = t7exp(—5 (1 - s~ Xt Y F <1 +o5 Tol+ g (01— \s|)25t1> ,

and now we see easily tha(s, t) > 0. By (27) for fixeds andt — 0 the functionw(s, t) is continuously
extendable te = 0 and

w(s,0) = C(1—|s))72° > C(1 —|s])" = C(1+d(s)) ™"

By a simple calculation using (26) we can see thét, ¢) is an exact solution to

<—52(1 —|s[)2+2A + ;) w(s,t) =0 (30)
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on M outsides = 0. Since this is not yet the original equation ainds singular ins = 0 we have to do
some more calculations. First we note that[by (29) ang (28)

1 1
%w(s,t) = a7 'F <—c+ L1+ o= (- |sy)—25t—1>

1 1 1 1
= ¢! exp(—(1 - |s)~2t Y F (25 +e 1t oe (1 - |s|)25t1>
< 0,

sincec < 0, % +c¢ > 0andF(a,b,z) is positive, ifa,b, z > 0. From this and the fact that(s,t) is a

solution of [30) we deduce that
—Aw(s,t) >0

forall 0 # s,t > 0. If we determineC’ > 0 such thatCa(s) < §2(1 — |s|)=2~2 for |s| < 3 then

w(s,t) == w(s,Ct) satisfies
< 0
—A+ — | >
< +8t> w(s,t) >0

for s # 0. So, for the sake of simplicity let us assume that 1.
Now we are considering > 0. Then, again by (39) anfl (28)

9 051 — o1 _ 1oL 26,
asw(s,t) = —2ct(1 —s) <F< c+1,1+25, 4(1 |s|) ™=t

RS PR T |
F( c,1+26, 4(1 |s])~=°t ))

1 1 11
_ c(1 _ \—1 - o\ —264—1 - - o\ —264—1

= 25ct(1 —s)” " exp( 4(1 s)”°t )<F<1+25—|—c,1—|—25,4(1 s)” =t )

1 11
Y AN 1 (1 — —20,—1
(25—1—0, +25,4( 5)" %%t ))

< 0

again byc < 0 and the property thaf'(a, b, z) > F(d’,b, 2) if a> a >0,b,z>0.
Finally, with this in mind we are going to prove that A + %)w(s,t) > 0in a weak sense. We

recall the definition of the conformal factofsanda resp. in Exampl¢]4. We compute fgi(s,t) €
Co° (M % (0,T)),¢ 20

/M /(OI) w(s,t) ((-A* — ;) ¢(s,t)> ™ dtdx

> a(0)™! /OT <(?;;’(0 —0,t) — %—f(o +0, t)> $(0,t)dt > 0.

Moreover, sincea%w(s,t) < 0fors > 0, we see that

1 1
w(s,t) <w(0,t) =t°F (—c, 1+ 2% —4t1> <2t°—0

fort > 1.
Using the maximum principle stated in Lemfrja 8 yields the statement. O



22 H.-Ch. Grunau, M. Kiihnel

A A general local parabolic maximum principle

For the reader’s convenience we shall outline the derivation of a local parabolic maximum principle, which
is even more general than we need it in the proof of Thegiem 3. Of particular interest is the dependence of
the estimation constants among others on the elliptic operator and the size and shape of the domains. To a
large extent, we follow/ [L, Ch. VII].

LetQ C R™ x R be a domain. We denote the coordinatés- (z,t) € R" x R(resp.Y = (y, s)). In
this section we consider the operator

Lu = —u; + CLijDijU +b'Diu + cu

with real valued bounded measurable coefficients. Moreover we assume the symmetriq attix be
positive semidefinite. We abbreviaf® := det (a*/) andD* := Dw+i. FurthermoreA(X) denotes the
maximal and\(X) the minimal eigenvalue of”/ (X). The functionu is considered in. € WfﬁlleC(Q) N
C%(2). As usual we denote b the parabolic boundary and I£ the bottom of the domaif.

We define the upper contact etu) to be the set of alk € Q2 \ P such that there existse R™ such
that

w(X) +&(y —z) = u(Y) (31)

for all Y with s < ¢. This impliesu; > 0, —D?*u > 0 on E(u).

If Q= Bgr x (0,T), we write E™ (u) for the subset ofZ(u) in whichu > 0 and

+

R\§|<u(X)—§-m<supu7. (32)
Q
Similarly, we denote by (u) the set of alE = (¢, h) € R™"*! such that
ut
RI¢| < h < sup —. (33)
Q 2

First we quote the global version of a maximum principle involviifgnorms.

Proposition 6 [L} Theorem 7.1]. LetQ2 = By x (0,T) andu € C%1(2) N C%(Q) satisfyingLu > f with
¢ < kin Q, wherek is a nonnegative constant. Then

f
D n+1,E+(w) 7

ZE’EJF(U)) + 1 andw(z,t) := exp(—kt)u — suppq (exp(—k.)u™).

supu < exp(kT) (sup ut 4+ (n)BoRn%1
Q PO

with By := R~

Our goal is to prove the local counterpart of the preceding result. The crucial point will be to estimate

by || f|ln+1 and the weakest possible “norm” af Since we will argue by means of a scaling argument

in the next proof, let us consider the degrees of the coefficients with respect to the two-parameter group
R? 2 (2 + ka,t — [t). A simple calculation shows:

degR = (-1,0)
degT = (0,-1)
dega”? = (=2,1)
degb = (-1,1)
dege = (0,1)
degf = (0,1)
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For the following result, cf.[[L, Theorem 7.21].

Proposition 7 (Local parabolic maximum principle). LetQ = Bg x (—T,0) andu € W2, () N
C%(Q) satisfyingLu > f. Assume further that

A> X >0, A<Ay, ‘b’SB, c < ¢p.
Then for anyp > 0 and0 < p < 1 there exist€’ depending only op, p and
—n _oy L 2 2—1
AN "TR™*)n+1(coR*+ BR+ Ao+ R°T™")
such that )
supu < C (1975 [u* [, + (TR £ )

P

Proof. By approximation, we may assume thate C%1(Q) N C°(Q2). We note that both sides of the
claimed inequality are invariant under the scaling

z—lx,t — kt.

Hence it suffices to prove the theorem for= Q(1) = B; x [—1,0].
For this purpose we defing:= (1 — |z|>)* (1 + ¢)T andn := ¢4 for ¢ > 2. We define the operatd?
as principal part of. by
Pv:= —v + aijDijv.

We will apply it to v = nu. This yields
Pv > nf —n(b'Diu + cu) + uPn + 2a” DiuDjn.

We will calculate the terms separately. First we note that by Cauchy’s inequality

v
1 — |z

|Dv| < onET(v). (34)

From this it is easy to see that &1 (v)

v

[Du| < 2(1+q) o (35)

In order to compute: Py — again onE™ (v) — we first note that, < qg. Next we use(a/) > 0 to
conclude

’

aijDijn > —2q (tr (aij))

RS

hence
v

uPn > —q(1+ 2tr aij)g > —q(1+ 2nA)C (36)

Finally, we have to compute’ D;uD;n. This splits up into the surﬁ:%Diijn — j‘?i;ijijn. For
the first summand we obtain dit (v) using [34)

)
afDﬂ)Djﬁ
n

v
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The second summand can be estimated

¥ 2
—vDmnDjn| < M < 4N,
n ¢
hence
ij v
a’ DyuDjn > —4gA(1 + q)? (37)
Adding up [35)[(3p) and (37) yields
Pv > nf —v¢? (e¢® + (2(1 4 )bl + (1 + 2nA)) ¢ + 8¢(1 + 2¢)A)
> nf — Co(*D" (38)

on E+(v), whereC can be chosen as

C=2¢(4(1+q) +n) A" "™ (co+ B+ Ag + 1).

Note that the uniqgue homogenization@to an element of degre€e, 0) (in (&, 1)) gives the form mentioned
in the theorem. Since = 0 onPQ and P is an operator witth = ¢ = 0 we can apply Propositidr 6 with
w = v andk = 0. This yields withc; = ¢;(n):

swpv < ([ 2]+ €106 ) < @l + 162

If p > n+ 1, we use Hlder's inequalityp¢ —2 < »+ andn > (1 — p)?? on pQ to conclude the claim of
the theorem. Here we may choage- 2.

n+1

2(n+1)

2 2
If p<n+ 1, we note thav¢—2 = wav' e, We choose = - and compute

_ __p_ L 1_n+l
lv¢ 2] S(sgpv)l T |t S€Slg12pv+02(n,1?)€ Pl

by Young's inequality. Now we choose:= (2¢;C) ! and proceed like before. O

B The energy differential inequality

If u: M — N satisfies the Hermitian harmonic system andhas nonpositive sectional curvature,[in[[JY]
an energy inequality is given which we are using several times. This is why we sketch the proof here.

Proposition 8. If V has nonpositive sectional curvature, then for every relatively compact opencet
there exists a constaidt(2) such that o2

—Ae(u) < C(Q)e(u).
Proof. First we fixz € M and choose coordinates such thatiresp.u(x)

Yag =003 9ij = Oijy  Gijk = 0.
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With these choices the left hand side becomes

ZZ(V&S ]“’ (39)

+ [’y%ﬁ J u + 70‘5 ’55] (40)

+ [’75 6uﬁ+75 a jﬁ(g] (41)

+ Z { W5ty + 1 “,aa} (42)

- Z [ aégu at “]aujaaa} ) (43)

+ Z Gijki © u)ul%ulguzauja (44)
a,d

For (39) we obtain the inequality

Z Z*y&;ujauj- < Ae(u),

whereA can be estimated by bounds of terms,gf and their second derivatives.
In a similar way we can estimate (40) by

4m
2275 ua(su +75 U]a“jgg < mC(e|D*u? + 7e(u))

for anye > 0. The constant depends qﬁﬁ and their first derivatives. The same holds true (42).
It is not hard to see thdt (42) equals

S (st 1 sus) = D%l
7 a0

For (43) + (44]) we have to use the Hermitian harmonic map system and the nonpositivity of the sectional
curvature to conclude that

J J oaJ » kol i ,J
Z Z [u aéSu a T Walsss| T (9i.k1 © wufsu suloug
a76 j

I T i .0 .k L
= -2 ZRijkl(UfaU?(;U,aU,g + ufo—zuféu7au75) > 0.

a,d
Putting all together yields
—Ae(u) < Ae(u) + 2mC <5|D2u|2 + 4me(u)> - 1|D2u|2.
g

Choosings < (16mC)~! yields the claimed inequality. O
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