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Abstract

We study a semilinear fourth order elliptic problem with exponential nonlinearity.
Motivated by a question raised in [Li], we partially extend known results for the corre-
sponding second order problem. Several new difficulties arise and many problems still
remain to be solved. We list the ones we feel particularly interesting in the final section.
Mathematics Subject Classification: 35J65; 35J40.

1 Introduction

In the last forty years a great deal has been written about existence and multiplicity of
solutions to nonlinear second order elliptic problems in bounded and unbounded domains of
R

n (n ≥ 2). Important achievements on this topic have been obtained by applying various
combinations of analytical techniques, among all of them we only mention the variational and
topological methods. For the latter, especially when the main interest is focused on existence
of positive solutions, the fundamental tool which has been used is the maximum principle
[A1] and its consequences [GNN].

For higher order problems, a possible failure of the maximum principle causes several
technical difficulties. This fact is very likely the reason why the knowledge on higher order
nonlinear problems is far from being reasonably complete as in the second order case.

One of the most interesting and intensively studied second order model problems that
exhibits several peculiar features of most nonlinear elliptic equations is the so–called Gelfand
problem [G, Section 15],







−∆u = λeu in Ω

u = 0 on ∂Ω.
(1)

Here Ω is a bounded smooth domain in R
n (n ≥ 3) and λ ≥ 0 is a parameter. This problem

appears in connection with combustion theory [G, JL] and stellar structure [C]. From a

∗The work of G.A. and F.G. was supported by the MURST project “Metodi Variazionali ed Equazioni
Differenziali non Lineari.”
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mathematical point of view, one of the main interests is that it may have both unbounded
(singular) solutions and bounded (regular) solutions, see [BV, GMP, MP2]: by the results
in [CR, BCMR] it is known that there exists λ∗ > 0 such that if λ > λ∗ there exists no
solution of (1) (neither regular nor singular) while if 0 ≤ λ < λ∗ there exists a minimal
regular solution Uλ of (1) and the map λ 7→ Uλ is smooth and increasing. In the unit ball
B, the bifurcation picture of radial solutions is rather complete. There is always a singular
solution uσ := −2 log |x| with corresponding parameter λσ = 2(n− 2). If n ≥ 10 the solution
branch consists only of minimal solutions and terminates at λ∗ = λσ in the singular solution.
If 3 ≤ n ≤ 9, then λ∗ > λσ and the extremal point (λ∗, U∗) is a turning point. The branch
bends back and meanders infinitely many times around λσ, while approaching the singular
solution uσ. We refer to [BV, Figure 1] for the pictures. The interested reader may see also
[BE] for an account on motivations and related results.

Some interesting generalizations of (1) have been considered in the framework of second
order quasilinear operators. We refer to [GPP] for equations associated to the p–Laplace
operator and to [J, JS] for the case of the k–Hessian operator.

The aim of this paper is to give a contribution to the solution of a special case of a problem
formulated in [Li, Section 4.2 (c)], namely:

Is it possible to obtain a description of the solution set for higher order semilinear equations
associated to exponential nonlinearities?

Recently, the interest on higher order nonlinear problems due to its exciting and promising
developments became increasingly evident especially for fourth order equations [PT]. Fol-
lowing this trend, in this paper we shall consider the fourth order version of (1), a semilinear
elliptic problem which involves the biharmonic operator, more precisely







∆2u = λeu in B

u =
∂u

∂n
= 0 on ∂B.

(Pλ)

Here B denotes the unit ball in R
n (n ≥ 5) centered at the origin and ∂

∂n
the differentiation

with respect to the exterior unit normal i.e. in radial direction; λ ≥ 0 is a parameter. We
are interested in two kinds of solutions of (Pλ), regular solutions and singular solutions, see
Definition 1 in the next section. We restrict our attention to the case n ≥ 5 where the
nonlinearity is supercritical. In low dimensions 1 ≤ n ≤ 4 the problem is subcritical and has
a different behaviour, see Remark 4 at the end of the following section.

Many techniques, familiar from second order equations like the maximum principle, are
not available here. But since we restrict ourselves to the ball, at least a comparison principle
is available, see Lemma 1 below. Moreover, in fourth order equations, one usually does
not succeed in finding suitable nontrivial auxiliary functions satisfying again a differential
inequality. This is a serious difficulty in proving Theorem 1 (cf. the proof of [BCMR, Theorem
3]) and it is overcome by carefully exploiting the properties of the exponential nonlinearity
and the construction of minimal solutions, basing upon the already mentioned comparison
principle. Finally, when looking for radial solutions, one may perform a phase space analysis
for the corresponding system of ODEs. Here, the phase space is no longer two dimensional,
where the topology is relatively simple and the Poincaré-Bendixson-theory is available, but
we have to work in a four-dimensional phase space. Some of the resulting difficulties could
be overcome only with computer assistance.
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This paper is organized as follows: in the next section we state some definitions and the
main results contained in this work (see Theorems 1–5 below). The content of Section 3
through Section 7 is devoted to the proofs of these theorems. Section 8 contains some results
on the stability of regular solutions of (Pλ) and a list of open problems that we consider of
some interest and related to the main results of this paper. Finally in Section 9 we describe
the algorithm used in the computer assisted proof of Theorem 4.

2 Main results

We first make precise in which sense we intend a function to solve (Pλ). For this purpose, we
fix some exponent p with p > n

4
and p ≥ 2. The definitions and results below do not depend

on the special choice of p.

Definition 1. We say that u ∈ L2(B) is a solution of (Pλ) if eu ∈ L1(B) and

∫

B

u∆2v = λ

∫

B

euv for all v ∈ W 4,p ∩ H2
0 (B). (2)

We say that a solution u of (Pλ) is regular (resp. singular) if u ∈ L∞(B) (resp. u 6∈ L∞(B)).

Clearly, according to this definition, regular and singular solutions exhaust all possible
solutions. Note that by standard regularity theory for the biharmonic operator (see [ADN]),
any regular solution u of (Pλ) satisfies u ∈ C∞(B). Note also that by the positivity preserving
property of ∆2 in the ball [B] any solution of (Pλ) is positive, see also Lemmas 1 and 3 below
for a generalized statement. This property is known to fail in general domains. For this
reason, we restrict ourselves to balls also in Theorems 1 and 2; cf. also Open Problem 8 in
Section 8.

We also need the notion of minimal solution:

Definition 2. We call a solution Uλ of (Pλ) minimal, if Uλ ≤ uλ a.e. in B for any further
solution uλ of (Pλ).

In order to state our results, we denote by λ1 > 0 the first eigenvalue for the biharmonic
operator with Dirichlet boundary conditions







∆2u = λ1u in B

u =
∂u

∂n
= 0 on ∂B;

(3)

it is known from the mentioned positivity preserving property and Jentzsch’s (or Krein–
Rutman’s) theorem that λ1 is isolated and simple and that the corresponding eigenfunctions
do not change sign.

We may now state

Theorem 1. There exists

λ∗ ∈
[

14.72(n − 1)(n − 3),
λ1

e

)
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such that
(i) (Pλ) admits a minimal regular solution Uλ for all λ < λ∗ and no solutions if λ > λ∗.
(ii) The map λ 7→ Uλ(x) is strictly increasing for all x ∈ B. Moreover, there exists a

solution U∗ of (Pλ∗) which is the pointwise limit of Uλ as λ ↑ λ∗.
(iii) Uλ → U∗ in the norm topology of H2

0 (B) as λ ↑ λ∗.
(iv) The extremal solution U∗ and all the minimal solutions Uλ (for λ < λ∗) are radially

symmetric and radially decreasing.

It is remarkable that at λ∗ there is an immediate switch from existence of regular minimal
solutions to nonexistence of any (even singular) solution. The only possibly singular minimal
solution corresponds to λ = λ∗. This result is known from [BCMR] for the second order
problem (1), but the method used there may not be carried over to fourth order problems.
Nevertheless, the result extends to the biharmonic case. The proof is given in Lemma 5
below.

We may also characterize the uniform convergence to 0 of Uλ as λ → 0 by giving the precise
rate of its extinction:

Theorem 2. For all λ ∈ (0, λ∗) let Uλ be the minimal solution of (Pλ) and let

Vλ(x) =
λ

8n(n + 2)

[

1 − |x|2
]2

.

Then, Uλ(x) > Vλ(x) for all λ < λ∗ and all |x| < 1, and

lim
λ→0

Uλ(x)

Vλ(x)
= 1 uniformly w.r.t. x ∈ B.

A complete result in the spirit of Gidas–Ni–Nirenberg [GNN] does not hold for fourth
order equations under Dirichlet boundary conditions. It has been recently proved by Sweers
in [Sw] that for general semilinear autonomous biharmonic equations in a ball under Dirichlet
boundary conditions we may have positive radially symmetric solutions which are not radially
decreasing, provided the right hand side is not positive everywhere. This phenomenon may
not occur in our situation, however, it is not known whether any smooth solution of (Pλ) is
radially symmetric. Moreover, also in the second order case it is not known whether singular
solutions are always radially symmetric. Nevertheless, Theorem 1 suggests to pay particular
attention to radially symmetric solutions. In this context, we put r = |x| and consider the
functions u = u(r).

First of all, we introduce a new notion of solution which seems to be the natural framework
for radially symmetric solutions:

Definition 3. We say that a radial singular solution u = u(r) of (Pλ) is weakly singular
if the limit limr→0 ru′(r) exists.

We do not know whether every singular solution is also weakly singular. In the second
order case, Joseph–Lundgren [JL] reduce (1) to a system of two ODE’s and study its phase
portrait in R

2; using Bendixson’s Theorem, they show that singular solutions are also weakly
singular. For the fourth order equation (Pλ) a similar argument should be carried out in
R

4 (see Section 3) where a general result of Bendixson’s type does not hold. Therefore, the
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equivalence between singular and weakly singular solutions seems out of reach in our context,
see Open Problem 5 in Section 8.

If we seek radially symmetric solutions, we may rewrite problem (Pλ) as (0 < r ≤ 1)



















d4u
dr4 + 2(n−1)

r
d3u
dr3 + (n−1)(n−3)

r2
d2u
dr2 − (n−1)(n−3)

r3
du
dr

= λeu(r)

u(1) = 0

du
dr

|r=1= 0.

(4)

In [GPP, JL, MP2] the second order equation (1) was reduced to a system of two au-
tonomous ordinary differential equations. Here, we reduce (4) to a system of four equations.
First, we make the change of variables

s = log r v(s) = u(es) s ∈ (−∞, 0] (5)

so that (4) becomes



















d4v
ds4 + 2(n − 4)d3v

ds3 + (n2 − 10n + 20)d2v
ds2 − 2(n − 2)(n − 4)dv

ds
= λe4s+v(s)

v(0) = 0

dv
ds

|s=0= 0;

(6)

then, we set






























v1(s) = v′(s) + 4

v2(s) = −v′′(s) − (n − 2)v′(s)

v3(s) = −v′′′(s) + (4 − n)v′′(s) + 2(n − 2)v′(s)

v4(s) = −λev(s)+4s.

(7)

Finally, we obtain the following (nonlinear) differential system:































v′
1(s) = (2 − n)v1(s) − v2(s) + 4(n − 2)

v′
2(s) = 2v2(s) + v3(s)

v′
3(s) = (4 − n)v3(s) + v4(s)

v′
4(s) = v1(s)v4(s)

(8)

with initial conditions
v1(0) = 4, v4(0) = −λ. (9)

It turns out that (8) admits only the two stationary points P1 = (4, 0, 0, 0) and P2 =
(0, 4n − 8, 16 − 8n,−8(n − 2)(n − 4)), see Section 3.1. Then, in Section 3.2, we prove the
following result:

Theorem 3. Let u = u(r) be a radial solution of (Pλ) and let

V (s) = (v1(s), v2(s), v3(s), v4(s))

5



be the corresponding trajectory relative to (8). Then:
(i) u is regular (i.e. u ∈ L∞(B)) if and only if

lim
s→−∞

V (s) = P1.

(ii) u is weakly singular if and only if

lim
s→−∞

V (s) = P2.

Our next results concern the existence of weakly singular solutions and a lower bound λ∗
min

on the value of λ∗. For all n = 5, . . . , 16 we prove the existence of λσ such that (Pλσ) admits
a weakly singular solution, we provide a lower and upper bound on the value of λσ. For all
n = 5, . . . , 16 let λmin

σ and λmax
σ be given in Table (10) and for all n = 5, . . . , 10 let λ∗

min be
given in Table (10).

Theorem 4. For all n = 5, . . . , 16 there exists λσ ∈ [λmin
σ , λmax

σ ] such that (Pλσ) admits a
weakly singular solution Uσ. In particular, λσ > 8(n − 2)(n − 4).

For all n = 5, . . . , 10 the value of λ∗ is larger than λ∗
min.

In Section 6 we use Theorem 3 to show that Theorem 4 is equivalent to some intersection
properties of the unstable manifolds of P1 and P2 with the hyperplane v1 = 4. The remaining
part of the proof of Theorem 4 is divided in two parts. First, in Section 6 a rigorous bound on
the location of the unstable manifold close to the stationary point is obtained by analytical
methods. Then, the intersection of the manifold with the hyperplane and its location are
proved by a computer assisted algorithm, see Section 9. Let us explain exactly what we mean
by a computer assisted proof:

Definition 4. A proof is called computer assisted if it consists in finitely many elemen-
tary operations, but their number is so large that, although each step may be written down
explicitly, it is only practical to perform such operations with a computer.

We believe that a weakly singular solution exists in any dimension n ≥ 5, but since our type
of proof requires a finite number of steps for each value of n, we cannot prove this conjec-
ture. We performed the computer assisted proof for n = 5, . . . , 16 because the “interesting”
phenomena of (Pλ) arise in these dimensions.

We expect the “singular parameter” λσ and the singular solution to be unique. However,
also for this statement, we do not yet have a proof. See Open Problem 3 in Section 8 below.

The following table summarizes our results: λ∗ and λσ are the best, purely numerical,
estimates for the values, up to two decimal digits, while the numbers λmin

σ , λmax
σ and λ∗

min are
rigorously computed values as stated in Theorem 4.
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n λσ λ∗ λmin
σ λmax

σ λ∗
min

5 113.19 236.49 113.11 113.26 235.89

6 260.82 362.10 260.72 260.86 361.34

7 449.55 524.70 449.45 449.60 523.16

8 679.45 728.36 679.04 679.55 724.50

9 950.28 976.66 949.58 950.49 969.81

10 1261.79 1272.09 1260.71 1262.23 1268.48

11 1613.78 1615.77 1610.89 1615.30

12 2006.09 2006.11 1997.53 2010.41

13 2438.60 2438.60 2403.42 2457.15

14 2911.21 2911.21 2843.32 2947.17

15 3423.83 3423.83 3260.54 3514.51

16 3976.40 3976.40 3597.37 4211.88

(10)

Remark 1. We point out that both the approximate numerical computation and the com-
putation with rigorous estimate on the error for λ∗ become very difficult as n increases. For
this reason the best rigorous estimate we have on λ∗

min for n ≥ 11 is nothing but for λmin
σ ,

while the best numerical estimate we have on λ∗ for n ≥ 13 is λσ. These values of n may
be improved with a more accurate algorithm, but we do not feel that this would lead to a
qualitative improvement of the result.

From Table (10) we immediately get

Corollary 1. For all n = 5, . . . , 10 we have λσ < λ∗.

Remark 2. We have numerical evidence that λσ < λ∗ for n = 11, 12 as well, but λ∗ − λσ

is much smaller than the rigorous estimate of the numerical error, therefore we do not have
a proof. For n ≥ 13 the values of λσ and λ∗ are closer than the numerical error, therefore
we cannot even provide a conjecture supported by numerical evidence. If one could show
uniqueness of the singular parameter λσ and that in fact λσ < λ∗ in dimensions n ≤ 12, one
could conclude that here, the extremal solution U∗ is either regular or “strongly singular” (i.e.
limr→0 ru′(r) does not exist). For n ≥ 13 we expect the extremal solution U∗ to be weakly
singular. See Open Problems 3, 4 and 5 in Section 8.

To complete the numerical inspection of the problem we provide the following picture,
which shows the (regular) solution for n = 5 and λ = λ∗:
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Theorem 3 states that any weakly singular solution u = u(r) of (4) corresponds to a (weakly
singular) solution v = v(s) of (6) which satisfies v(s) ≈ −4s as s → −∞: this is because
v(s) = −4s is precisely the stationary point P2. Hence, as a further consequence of Theorem
3, we have that any weakly singular solution Uσ behaves asymptotically like −4 log r as r → 0.
Moreover, as may be checked by a simple calculation, the function r 7→ −4 log r solves the
equation and the first boundary condition in (Pλ) for λ = 8(n− 2)(n− 4) but not the second
boundary condition (recall also λσ > 8(n − 2)(n − 4) by Theorem 4). Contrary to what
happens for the second order equation (1), the explicit form of the radial weakly singular
solution seems not simple to be determined, see also Proposition 1 below. To this end, we
characterize it further by means of the following

Theorem 5. Let Uσ be a weakly singular solution with λσ > 8(n− 2)(n− 4) as it is obtained
in Theorem 4 for 5 ≤ n ≤ 16. Then,

Uσ(r) = −4 log r + W (r)

where W is a bounded function satisfying

lim
r→0

W (r) = W0 := log
8(n − 2)(n − 4)

λσ

< 0

and (at least) one of the two following facts holds true:
(i) W (r) − W0 changes sign infinitely many times in any neighbourhood of r = 0;
(ii) W (r) ≥ max[W0, 2r

2 − 2] for all r ∈ (0, 1].
If n ≥ 13, case (ii) necessarily occurs.
Finally, the function W (r) is not analytic, i.e. not a convergent power series in r2 close to
r0 = 0.

Remark 3. It is quite surprising that the asymptotic behaviour of weakly singular solutions
of (Pλ) is the same as the one of the quasilinear equation −∆4u = λeu, see [GPP]. Here −∆p

denotes the p–Laplace operator.

We conclude this section with a short remark concerning the behaviour of (Pλ) in low
dimensions.

Remark 4. In dimensions 1 ≤ n ≤ 4 the problem is subcritical and has a different behaviour.
In particular, there are no singular solutions.
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The minimal solution is constructed as in the present paper. There is a parameter λ∗ > 0
such that for any λ ∈ (0, λ∗) there is precisely one minimal stable positive solution. Taking
this one as “trivial” solution, with help of variational techniques (which only apply in a
subcritical setting) one finds a second positive “large” solution, above the minimal solution
and unstable. For λ > λ∗ there is no positive solution. Concerning the bifurcation diagram,
one expects a smooth branch emanating from 0, extending until λ∗, where it bends back and
approaches λ = 0, while the L∞ norm of the solutions blows up. See also [We, Wi].

3 Characterization of regular and weakly singular ra-

dial solutions

In this section we perform a phase space analysis for the system (8), which corresponds to
the radial version of (Pλ). This gives some insight on which behaviour of regular and of
weakly singular radial solutions may be expected in dependence on the space dimension.
These results are essential for the proofs of Theorems 4 and 5. For the proofs of Theorems 1
and 2 one may directly skip to Sections 4 and 5.

3.1 Analysis of the stationary points

It is easy to verify that system (8) has only two stationary points:

P1 = (4, 0, 0, 0) and P2 = (0, 4n − 8, 16 − 8n,−8(n − 2)(n − 4)).

In order to linearize (8) in a neighbourhood of P1, we must just replace (8)4 with

v′
4(s) = 4v4(s).

Then, the linearized system has two distinct positive eigenvalues µ1 = 2, µ2 = 4 and two
distinct negative ones µ3 = 2 − n, µ4 = 4 − n. We conclude that P1 is a hyperbolic point
independently of the dimension.

Eigenvectors corresponding to the positive eigenvalues µ1, µ2 in the neighbourhood of P1

have the form
α1(1,−n, 0, 0) and α2(−1, n + 2, 2n + 4, 2n2 + 4n),

where α1, α2 ∈ R \ {0}. Therefore, the tangent hyperplane to the unstable manifold of P1

consists of those points in R
4 whose coordinates can be represented as

(α1 − α2,−nα1 + (n + 2)α2, (2n + 4)α2, (2n
2 + 4n)α2) (11)

with α1, α2 ∈ R.
Similarly, the tangent hyperplane to the stable manifold of P1 is spanned by eigenvectors

corresponding to negative eigenvalues of the linearized system, that is,

α3(1, 0, 0, 0) and α4(1,−2, 2n − 4, 0),

where α3, α4 ∈ R \ {0}.
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Now consider the second critical point P2 of (8). In its neighbourhood the linear approxi-
mation of (8)4 (the only nonlinear equation) takes the form

v′
4(s) = −8(n − 2)(n − 4)v1(s).

Therefore, the eigenvalues of the linearized system in the neighbourhood of P2 are the
solutions of the fourth order algebraic equation

ν(ν − 2)(ν + n − 2)(ν + n − 4) − 8(n − 2)(n − 4) = 0;

hence,

ν1,2,3,4 =
1

2

(

4 − n ±
√

M1(n) ± M2(n)
)

,

where M1(n) = n2 − 4n + 8 = (n − 2)2 + 4 > (n − 2)2 and M2(n) = 4
√

68 − 52n + 9n2.
Therefore,

ν1 =
1

2

(

4 − n +
√

M1(n) + M2(n)
)

and ν2 =
1

2

(

4 − n −
√

M1(n) + M2(n)
)

are real numbers. It is easy to see that

ν2 < 0 < ν1 for all n ≥ 4.

Moreover, for 5 ≤ n ≤ 12, we have M1(n) − M2(n) < 0, while for n ≥ 13 there holds
M1(n) − M2(n) > 0. Therefore, for 5 ≤ n ≤ 12 the eigenvalues

ν3 =
1

2

(

4 − n +
√

M1(n) − M2(n)
)

and ν4 =
1

2

(

4 − n −
√

M1(n) − M2(n)
)

are complex conjugate with the real part

Re ν3 = Re ν4 =
1

2
(4 − n) < 0,

while for n ≥ 13 both ν3 and ν4 are real, ν3 < 0 and ν4 < 0.
This analysis implies that for all n ≥ 5 the critical point P2 of system (8) is also hyper-

bolic, but its stable manifold is 3–dimensional and the unstable manifold is 1–dimensional.
Moreover, taking into account that for 5 ≤ n ≤ 12 we have Imν3 = −Imν4 6= 0, we deduce
from the general theory of critical points (see for example [A2]) that for these values of n
(and only for them) trajectories in the stable manifold of P2 locally have the form of a spiral.

3.2 Proof of Theorem 3

We first consider regular solutions. It will prove to be useful to have the following meaning
of v1, . . . , v4 in terms of derivatives of u in mind:































v1(s) = es u′ (es) + 4

v2(s) = −e2s · ∆u (es)

v3(s) = −e3s (∆u)′ (es)

v4(s) = −λe4seu(es).

(12)
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If u is a regular solution of (Pλ), then u, u′, ∆u and (∆u)′ stay in particular bounded for
r ↘ 0, i.e. for s → −∞. So, we get immediately from (12) the first part of the statement.

To prove the converse, assume that

lim
s→−∞

(v1(s), v2(s), v3(s), v4(s)) = P1

so that
lim
r↘0

ru′(r) = lim
r↘0

r2∆u(r) = lim
r↘0

r3(∆u)′(r) = lim
r↘0

r4eu(r) = 0. (13)

The first limit yields in particular that for r > 0 small enough:

u(r) ≤ −1

2
log(r), eu(r) ≤ r−1/2.

Using the differential equation (Pλ) and the growth conditions (13) (observe n > 4), we
obtain successively for r close to 0:

(∆u)′(r) = O(r1/2), ∆u(r) = O(1), u′(r) = O(r), u(r) = O(1).

That means that u is regular.

Next, we characterize weakly singular solutions. All the limits are intended as s → −∞;
with c we denote generic constants.

Note first that if lim V (s) = P2 then the solution is weakly singular.
In order to prove the converse, we claim that

v′(s) → −4. (14)

To this end, we exclude all the other cases; recall that lim v ′(s) exists by definition of weakly
critical solution.

(A) It cannot be lim v′(s) = c ∈ (−∞,−4).
For contradiction, if lim v′(s) = c < −4, then by (7)1 we infer

lim v1(s) = c + 4 < 0 (15)

and by (7)4 we get
v4(s) → −∞. (16)

Write (8)3 as
d

ds
[e(n−4)sv3(s)] = e(n−4)sv4(s)

so that by (16) we infer that the map s 7→ e(n−4)sv3(s) is decreasing in a neighbourhood of
−∞ and therefore it admits a limit. If e(n−4)sv3(s) → c ≥ 0 then by (8)3 and (16) we get
v′
3(s) → −∞ and hence v3(s) → +∞. If e(n−4)sv3(s) → c < 0 then v3(s) → −∞. In any case

we obtain
|v3(s)| → +∞. (17)

A completely similar (but slightly more involved) argument shows that (8)2 and (17) entail

|v2(s)| → +∞. (18)
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Finally, (8)1 (15) and (18) furnish |v′
1(s)| → +∞ which contradicts (15).

(B) It cannot be v′(s) → −∞.
For contradiction, assume that v′(s) → −∞: then by (7)1 we have

v1(s) → −∞ (19)

and by (7)4 we get
v4(s) → −∞; (20)

moreover,
v(s)

s
→ −∞. (21)

We may rewrite (8)3 as

d

ds
[e(n−4)sv3(s)] = e(n−4)sv4(s) = −λens+v(s) → −∞,

where the second equality is just (7)4 and the infinite limit is a consequence of (21): the
previous limit yields e(n−4)sv3(s) → +∞ and, in turn,

v3(s) → +∞. (22)

Similarly, we may rewrite (8)2 as

d

ds
[e−2sv2(s)] = e−2sv3(s) → +∞,

where the infinite limit is a consequence of (22): hence, we deduce that e−2sv2(s) → −∞
which, together with (8)2 and (22), shows that v2(s) → −∞. Inserting this into (7)2 gives
v′′(s) + (n − 2)v′(s) → +∞ and therefore v′(s) + (n − 2)v(s) → −∞: hence,

there exists σ < 0 such that v′(s) + (n − 2)v(s) < 0 for all s ≤ σ.

We rewrite this inequality as

d

ds
[e(n−2)sv(s)] < 0 for all s ≤ σ;

integrating it over [s, σ] and taking into account that v(σ) > 0, we infer that

there exists K > 0 such that v(s) ≥ Ke(2−n)s for all s ≤ σ.

Using (5) and returning to the function u (solution of (Pλ) and (4)), this shows that

there exists K > 0 such that u(r) ≥ K

rn−2
for all r ≤ eσ;

this contradicts eu ∈ L1(B).

(C) It cannot be lim v′(s) = c ∈ (−4, 0].
For contradiction, if lim v′(s) = c ∈ (−4, 0], then by (7)1 we infer

lim v1(s) = c + 4 > 0 (23)
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and by (7)4 we get
v4(s) → 0. (24)

Then, from (8)3 we deduce
v3(s) → 0, (25)

because otherwise, we would get a similar contradiction as in Case (A). Next, from (8)2 and
(25) we obtain

v2(s) → 0. (26)

Since by assumption, v1 has a limit, we deduce that necessarily v1(s) → 4. This, together
with (24) (25) and (26) contradicts part (i) proved above.

By (A) (B) (C), the statement (14) is proved. This shows that v1(s) → 0: inserting this
into (8)1 gives v2(s) → 4(n − 2). Inserting the latter into (8)2 yields v3(s) → −8(n − 2);
finally, inserting this into (8)3 gives v4(s) → −8(n − 2)(n − 4). This completes the proof of
(ii). �

Remark 5. If in case (ii) of Theorem 3 we do not assume that lim v ′(s) exists, then we can
merely show that lim inf v′(s) ≤ −4 ≤ lim sup v′(s). Clearly, if one could prove that both
inequalities are in fact equalities, then we would have again (14).

4 Proof of Theorem 1

We denote by K the cone of nonnegative L2–functions in B,

K = {u ∈ L2(B); u(x) ≥ 0 for a.e. x ∈ B}

and (for the sake of completeness) we prove a weak formulation of Boggio’s positivity pre-
serving property [B], which we extensively use:

Lemma 1. Assume that u ∈ L2(B) satisfies

∫

B

u∆2v ≥ 0 for all v ∈ K ∩ H4 ∩ H2
0 (B) ;

then u ∈ K. Moreover, one has either u ≡ 0 or u > 0 a.e. in B.

Proof. (i) Take any ϕ ∈ K ∩ C∞
c (B) and let vϕ be the unique (classical) solution of







∆2vϕ = ϕ in B

vϕ = ∂vϕ

∂n
= 0 on ∂B .

Then, by the classical Boggio’s principle [B] we infer that vϕ ∈ K. Hence, vϕ is a possible
test function for all so chosen ϕ and therefore

∫

B

uϕ =

∫

B

u∆2vϕ ≥ 0 for all ϕ ∈ K ∩ C∞
c (B) .

This shows that u ∈ K.
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(ii) By (i) we know that u ∈ K. So, assume that u 6> 0 a.e. in B and let φ denote the
characteristic function of the set {x ∈ B; u(x) = 0} so that φ ≥ 0, φ 6≡ 0. Let v0 be the
unique (a.e.) solution of the problem







∆2v0 = φ in B

v0 = ∂v0

∂n
= 0 on ∂B .

Then,

v0 ∈
(

⋂

q≥1

W 4,q(B)

)

⊂ C3(B)

and by Boggio’s principle [B] we have v0 > 0 in B. By the biharmonic analogue of Hopf’s
Lemma in balls (see [GS, Theorem 3.2] which also holds if ∆2v0 ∈ Lp(B) for some p > n/2)
we necessarily have ∆v0 > 0 on ∂B. This last inequality allows us to state that for all
v ∈ C4(B) ∩ H2

0 (B) there exists t1 ≤ 0 ≤ t0 such that v + t0v0 ≥ 0 and v + t1v0 ≤ 0 in B.
This, combined with the fact that

∫

B

u∆2v0 =

∫

{u=0}

u = 0 ,

enables us to show that both

0 ≤
∫

B

u∆2(v + t0v0) =

∫

B

u∆2v and 0 ≥
∫

B

u∆2(v + t1v0) =

∫

B

u∆2v .

Hence, we have for all v ∈ C4(B) ∩ H2
0 (B)
∫

B

u∆2v = 0.

We need to show that C4(B) ∩ H2
0 (B) is dense in H4 ∩ H2

0 (B). For this purpose, take any
function U ∈ H4(B) ∩ H2

0 (B) and put f := ∆2U . We approximate f in L2(B) by C∞(B)–
functions fk and solve ∆2Uk = fk in B under homogeneous Dirichlet boundary conditions.
We then even have Uk ∈ C∞(B), and by L2–theory there holds ‖Uk−U‖H4(B) → 0 as k → ∞.

By the previous statement we may now conclude:

for all v ∈ H4 ∩ H2
0(B) :

∫

B

u∆2v = 0.

Since u ∈ L2(Ω), we may take as v ∈ H4∩H2
0 (B) the solution of ∆2v = u under homogeneous

Dirichlet boundary conditions. This finally yields u ≡ 0. �

In particular, thanks to Lemma 1 we may establish a result in the spirit of [BCMR]:

Lemma 2. For all f ∈ L1(B) such that f ≥ 0 a.e. in B there exists a unique u ∈ L1(B)
such that u ≥ 0 a.e. in B and which satisfies

∫

B

u∆2v =

∫

B

fv for all v ∈ C4(B) ∩ H2
0 (B);

moreover, there exists C > 0 (independent of f) such that ‖u‖1 ≤ C‖f‖1.
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Proof. Uniqueness follows by means of the observation that L∞–functions may be approxi-
mated by a pointwise convergent but uniformly bounded sequence of C∞

c (B)–functions. This
is applied to truncations of u and suitable test functions v are obtained from approximations
of the truncations of u by solving the biharmonic Dirichlet problems.

Existence follows by truncating f and by arguing as in the proof of [BCMR, Lemma 1], the
only difference being the positivity preserving property which is standard for the Laplacian:
in our case we invoke Lemma 1. �

Combining the method of proof of Lemmas 1 and 2, one also has

Lemma 3. Assume that u ∈ L1(B) satisfies

∫

B

u ∆2v dx ≥ 0 for all v ∈ K ∩ C4(B) ∩ H2
0 (B),

then u ≥ 0 a.e. in B.

The previous lemmas enable us to make use of the super–subsolutions method:

Lemma 4. Let λ > 0 and assume that there exists ū ∈ K such that eū ∈ L1(B) and

∫

B

ū∆2v ≥ λ

∫

B

eūv for all v ∈ K ∩ W 4,p ∩ H2
0 (B) .

Then there exists a solution u of (Pλ) such that 0 ≤ u ≤ ū a.e. in B.

Proof. Let u0 = ū and for all m ∈ N, define inductively the function um+1 as the unique
solution of

∫

B

um+1∆
2v = λ

∫

B

eumv for all v ∈ W 4,p ∩ H2
0 (B). (27)

Note that by Lemmas 1 to 3 the sequence {um} is well–defined and

um ∈ K , eum ∈ L1(B) , 0 ≤ um+1(x) ≤ um(x) for a.e. x ∈ B for all m ∈ N.

Since this sequence is pointwise decreasing, there exists u ∈ K such that eu ∈ L1(B) and
which is the pointwise limit of {um}. Then, letting m → ∞ in (27) and applying Lebesgue’s
Theorem, we obtain the result. �

Define Λ := {λ ≥ 0; (Pλ) admits a solution} and

λ∗ := sup Λ;

clearly 0 ∈ Λ and so Λ 6= ∅. Moreover, by the implicit function theorem we know that λ∗ > 0.
It follows directly from Lemma 4 that Λ is an interval.

Let λ ∈ Λ; then, there exists uλ satisfying (2). Taking into account that es ≥ es for all
s ≥ 0 with strict inequality whenever s 6= 1, and choosing v = φ1 (the normalized positive
first eigenfunction of (3)) as test function in (2), we get

λ1

∫

B

uλφ1 =

∫

B

uλ∆
2φ1 = λ

∫

B

euλφ1 > λe

∫

B

uλφ1
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which proves that

λ <
λ1

e
for all λ ∈ Λ. (28)

We now prove the most delicate part of Theorem 1, namely that for any λ < λ∗, there
exists a regular solution:

Lemma 5. Assume that for some µ > 0 there exists a (possibly singular) solution u0 of (Pµ).
Then, for all 0 < λ < µ there exists a regular solution of (Pλ).

Proof. Let 0 < λ < µ and consider the (unique) functions u1, u2 ∈ L1(B) satisfying respec-
tively

∫

B

u1∆
2v = λ

∫

B

eu0v for all v ∈ W 4,p ∩ H2
0 (B)

∫

B

u2∆
2v = λ

∫

B

eu1v for all v ∈ W 4,p ∩ H2
0 (B) . (29)

Such functions exist by Lemma 2 and also belong to L2(B) since by Lemma 3 we have

u0 >
λ

µ
u0 = u1 ≥ u2 a.e. in B. (30)

Let ϕ(x) = (1 − |x|2)2; it is readily verified that

ϕ ∈ H2
0 (B), ∆2ϕ = 8n(n + 2). (31)

We also need the following elementary statement:

for all ϑ > 1 and δ > 0 there exists γ > 0 such that eϑs+γ−(1+δ)es ≥ 0 for all s ≥ 0. (32)

Take ϑ = µ/λ, δ = nλ/4µ and choose k > 0 in such a way that

e
µ
λ

s +
8n(n + 2)

λ
k ≥ (1 + δ)es for all s ≥ 0; (33)

this choice is clearly allowed by (32). Thanks to (31) and (33) we find
∫

B

(u1 + kϕ)∆2v =

∫

B

[λeu0 + 8n(n + 2)k]v =

∫

B

[λe
µ
λ

u1+8n(n+2)k]v ≥ λ(1+δ)

∫

B

eu1v = (1+δ)

∫

B

u2∆
2v for all v ∈ K∩W 4,p∩H2

0 (B).

Hence, by Lemma 1 we infer that u2 ≤ u1+kϕ
1+δ

in B; in particular, we get

eu2 ≤ e
k

1+δ
ϕ e

λ
µ(1+δ)

u0

from which we get at once that
eu2 ∈ L

n
4
+µ

λ (B) (34)

since ϕ ∈ L∞(B) and eu0 ∈ L1(B) (recall also our choice of δ). Finally, consider u3 ∈ L2(B)
such that

∫

B

u3∆
2v = λ

∫

B

eu2v for all v ∈ W 4,p ∩ H2
0 (B).
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By (34) and elliptic regularity [ADN], we deduce that

u3 ∈ W 4, n
4
+µ

λ (B) ⊂ L∞(B).

Moreover, by (29), (30) and Lemma 1 we infer that u3 ≤ u2 and hence

∫

B

u3∆
2v ≥ λ

∫

B

eu3v for all v ∈ K ∩ W 4,p ∩ H2
0 (B).

We have so found a weak bounded supersolution u3 of (Pλ) and the statement follows from
Lemma 4. �

With help of Lemma 5 we can now show:

Lemma 6. For all 0 ≤ λ < λ∗, the minimal solution Uλ exists, is regular and radially
symmetric.

Proof. By the preceding lemma we have existence of a regular solution uλ of (Pλ). This may
serve as a (classical) supersolution of (Pλ) while U0 ≡ 0 is a subsolution. Hence, the minimal
solution Uλ of (Pλ) may be obtained as the increasing limit of the following sequence {Um}:







∆2Um+1 = λeUm in B

Um+1 =
∂Um+1

∂n
= 0 on ∂B

(m ≥ 0).

Since U0 is radially symmetric, so is U1; similarly, all the functions Um are radially symmetric:
therefore, their (pointwise) limit Uλ is also radially symmetric. �

The previous lemma allows us to show that the interval Λ is closed: we first remark that the
map λ 7→ Uλ(x) is strictly increasing for all x ∈ B (in view of Lemma 1). If 0 ≤ λ < µ < λ∗,
the minimal solution Uµ of (Pµ) is a (strict) supersolution for (Pλ). Therefore

U∗(x) := lim
λ→λ∗

Uλ(x) ∈ [0,∞] (35)

exists for all x ∈ B. In fact, more can be said about this limit:

Lemma 7. Let U∗ be the function defined in (35). Then U∗(x) is finite for a.e. x ∈ B and
U∗ solves (Pλ) for λ = λ∗. Moreover, Uλ → U∗ in H2

0 (B) as λ ↑ λ∗. Finally, U∗ is radially
symmetric.

Proof. By Lemma 6 we have Uλ ∈ C∞(B) and therefore, by using the generalized Pohozaev
identity [P] by Pucci–Serrin [PS] and by arguing as in the proof of [GMP, Théorème 2] we
obtain that the set {Uλ; λ < λ∗} is bounded in H2

0 (B), hence Uλ ⇀ U∗ in H2
0 (B), up to

a subsequence (this follows by uniqueness of the pointwise limit). This shows that U∗ is
a.e. finite, that U∗ solves (Pλ) for λ = λ∗ and also that U∗e

U∗ ∈ L1(B). Finally, since
Uλe

Uλ ≤ U∗e
U∗, by Lebesgue’s Theorem we deduce that

∫

B

|∆Uλ|2 =

∫

B

Uλe
Uλ →

∫

B

U∗e
U∗ =

∫

B

|∆U∗|2 as λ ↑ λ∗
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which, together with weak convergence, shows that Uλ → U∗ in the norm topology of H2
0 (B);

since the above arguments may be repeated for any sequence in {Uλ; λ < λ∗}, the result
follows without extracting subsequences.

Finally, by Lemma 6, all the minimal solutions Uλ (for 0 < λ < λ∗) are radially symmetric.
Then, by (35) also U∗ is radially symmetric. �

Remark 6. The proof of Lemma 7 may also be obtained by exploiting the stability of the
minimal solution Uλ (see Proposition 4 (i) below) and by arguing as in [BV, Remark 3.3].

Finally, we claim that
λ∗ ≥ 14.72(n − 1)(n − 3). (36)

Indeed, this holds true by Lemma 4 since the function ū(x) = 7.36(1 − |x|)2 is a weak
supersolution (ū ∈ C∞(B̄ \ {0})) of (Pλ) for all λ ≤ 14.72(n − 1)(n − 3).

Proof of Theorem 1. The upper bound for λ∗ follows from (28) and from Lemma 7, the
latter saying that λ∗ ∈ Λ. The lower bound for λ∗ is proved in (36). Statement (i) follows
from Lemmas 5 and 6. The map λ 7→ Uλ(x) is non–decreasing for all x by Lemma 4 and
strictly increasing by Lemma 1; this proves the first part of statement (ii). The second part
of (ii) and (iii) follow from Lemma 7. Finally, the radial symmetry of U∗ and of all the
minimal solutions Uλ (for λ < λ∗) is obtained in Lemmas 7 and 6 respectively. The regular
minimal solutions Uλ (for λ < λ∗) are strictly radially decreasing in view of [So]. Passing to
the limit, we also get that U ∗ is radially decreasing. �

Remark 7. The above analysis does not allow us to establish whether the extremal solution
U∗ is regular, weakly singular or singular. However, since it is radially symmetric, in the first
two cases Theorem 3 below describes the behaviour of U∗ when studied in the phase space
R

4. With our computer assisted proof, we may then find some space dimensions where the
first case certainly occurs, provided that we can also show uniqueness of the weakly singular
solution and the corresponding parameter λσ.

5 Proof of Theorem 2

We first show that
Uλ → 0 uniformly as λ → 0. (37)

Since this is standard, we just briefly sketch its proof. By Theorem 1 we know that

0 < λ < µ < λ∗ =⇒ Uλ(x) < Uµ(x) if |x| < 1.

Then, by multiplying the equation in (Pλ) by Uλ and by integrating by parts we obtain that
‖Uλ‖H2

0 (B) remains bounded. Hence, up to a subsequence, {Uλ} converges in the weak H2
0 (B)

topology to U0 ≡ 0, which is the unique solution of (P0). By convergence of the norms, we
infer that the convergence is in the norm topology. Finally, by pointwise convergence and
elliptic regularity we infer (37).

Next, note that Vλ satisfies






∆2Vλ = λ in B

Vλ =
∂Vλ

∂n
= 0 on ∂B.

(38)
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Therefore, ∆2Uλ > ∆2Vλ and the inequality Uλ > Vλ follows by Lemma 1.
In order to prove the last statement of Theorem 2, note that from (37) we infer

for all ε > 0 there exists λε > 0 such that λ < λε =⇒ ‖Uλ‖∞ < ε.

So, fix ε > 0 and let λ < λε. Then, (38) entails

∆2Uλ = λeUλ < λeε = eε∆2Vλ in B.

This shows that Uλ(x) < eεVλ(x) for all x ∈ B and the result follows by arbitrariness of ε.

6 Proof of Theorem 4

The proof of Theorem 4 is obtained with computer assistance. We first describe the numerical
procedure used to obtain the approximate values for λσ and λ∗, then we show how the
algorithm can be made rigorous. We maintain here the same notations as in Section 3.
The computation of λσ is somehow simpler than the computation of λ∗, since the unstable
manifold of P2 is one–dimensional. We choose a point v̄ = P2 +re1 where e1 is an eigenvector
corresponding to the unstable manifold and r is some small value. We solve the system (8)
with v̄ as initial condition and we look for the intersection of the solution with the hyperplane
v1 = 4. The choice of a positive or negative r leads to different results, since the manifold is
made of two branches: it turns out that one branch never appears to intersect the hyperplane,
while the other branch always does. Since we are proving the existence of one solution, we can
neglect the first branch and focus on the second one. If the solution intersects the hyperplane
v1 = 4 at some point v̂ = (v̂1, v̂2, v̂3, v̂4) such that v̂4 < 0, by Theorem 3 and by equation (7)
we have numerical evidence of a singular solution at λ = −v̂4.

In order to compute the value of λ∗ we have to study the two–dimensional unstable manifold
of P1. The direction on the tangent hyperplane can be parametrized by an angle ϑ. In order
to find the largest value for λ we use a directional shooting method, i.e. we choose some value
ϑ (the shooting direction) and solve the equation with starting point v̄ = P1 + r(e1 sin ϑ +
e2 cos ϑ), where e1 and e2 are the orthonormalized eigenvectors corresponding to the (tangent)
unstable manifold and r > 0 is some small arbitrarily chosen value. If the solution intersects
the hyperplane v1 = 4 at some point v̂ = (v̂1, v̂2, v̂3, v̂4) such that v̂4 < 0, then by Theorem 3
and by equations (7) and (8) we have numerical evidence of a regular solution for λ = −v̂4.
By varying ϑ we can look for the maximal value of λ.

Of course these procedures do not lead to an exact value for two reasons. First, we can only
choose v̄ on the unstable manifold of the linearized equation, and although we know that we
are close to the manifold of the full equation, we are not exactly on it. Second, the algorithm
used to solve the differential equation provides an accurate, but not rigorous, solution. We
address the problem of proving that a branch of the unstable manifold of P2 does intersect
the hyperplane v1 = 4 and of computing a rigorous estimate for the values λσ and λ∗ in the
next sections.

6.1 Rigorous bounds for the manifolds

We first address the general problem of computing rigorous bounds for the location of the
unstable manifold in the neighbourhood of a stationary hyperbolic point of an ordinary
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differential equation. The same technique could be applied to the stable manifold as well,
but in this paper we are not interested in it.

Let f ∈ C2(Rd, Rd), d ≥ 2. We consider the equation ẋ = f(x) and we assume that 0 is a
hyperbolic stationary point. Then

ẋ = Ax + N(x), (39)

where
A = ∇f(0), N(x) = O(|x|2) as x → 0 (40)

and all eigenvalues of A have nonzero real part. Let ϕ(x, t) be the flow induced by equation
(39) and let ϕA(x, t) be the flow induced by the linear equation ẋ = Ax. Let S0 (resp. U0) be
the span of all eigenvectors corresponding to the eigenvalues with negative (resp. positive)
real part. S0 (resp. U0) is called the stable (resp. unstable) subspace, and it is characterized
as follows: S0 (resp. U0) is the set of points x ∈ R

d such that ϕA(x, t) → 0 as t → +∞
(resp. t → −∞). It is well known that the full equation also admits a stable manifold S
(resp. an unstable manifold U) still defined as the set of points x ∈ R

d such that ϕ(x, t) → 0
as t → +∞ (resp. t → −∞). Such manifold is tangent at the origin to S0 (resp. U0). If
S0 (resp. U0) is empty, then there exists a neighbourhood of the origin which is a subset of
U (resp. S). We are interested in the case when both manifolds are nontrivial and we wish
to study the intersection of the unstable manifold with some other manifold P . In order
to achieve this goal, we consider a point x̄ ∈ U \ {0} and study ϕ(x̄, t). If we can prove
that ϕ(x̄, t0) ∈ P for some positive t0, then we infer that U ∩ P 6= ∅ and we also know the
intersection point. The main problem to address is that the only point of the manifold we
know precisely is the origin: the other points lie very close to U0, at least in a neighbourhood
of 0, but we do not know their explicit position. We proceed as follows.

There exists an invertible matrix M such that B := M−1AM is block diagonal, i.e. the
canonical basis {ei} of R

d is split in S ′
0 ∪ U ′

0, where S ′
0 = span{e1, . . . , em} is the stable

eigenspace and U ′
0 = span{em+1, . . . , ed} is the unstable eigenspace. If we let y = M−1x

equation (39) writes
ẏ = By + M−1N(My) =: g(y). (41)

By (40), for all ε > 0 there exists β > 0 such that |N(x)| ≤ β |x|2 for all |x| ≤ ε. Let α < 0
be the maximum of the real parts of the eigenvalues with negative real parts, γ = − α

βm2
1m2

,

m1 = ‖M‖ and m2 = ‖M−1‖. Choose ε > 0, let β > 0 as above, choose a vector ŷ ∈ U ′
0 \ {0}

of norm r ≤ ε and choose k > 1. Let Ps be the orthogonal projection onto S ′
0, let Pu be the

orthogonal projection onto the linear space spanned by ŷ and let

Ξ =
{

y ∈ R
d :

γ

k
|Psy| ≤ |Puy|2 ≤ r2

}

. (42)

We show that, under a suitable choice of k > 1 and 0 < r ≤ ε, for all y ∈ ∂Ξ such that
|Puy| < r the flow is inward, i.e. given ȳ ∈ Ξ we want the solution of the Cauchy problem
ẏ(t) = g(y(t)), y(0) = ȳ to leave Ξ only through the set {y ∈ ∂Ξ : |Puy| = r}. If this happens,
then for all ŷ ∈ U ′

0 satisfying |ŷ| = r either the unstable manifold intersects the set

κ := κŷ := ŷ +

{

ỹ ∈ S ′
0 : |ỹ| ≤ k

γ
r2

}

, (43)

or it is entirely contained in Ξ. As a result, to study a branch of the unstable manifold it is
sufficient to exclude the second case and consider the initial value problem for all ȳ ∈ κ.
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Lemma 8. Choose ε > 0 and k > 1. Let α, β, γ, m1, m2 and Ξ be as above and let

r = min

{

εγ

m1

√

γ2 + k2
, 1,

√
k − 1

k
γ,

γ

2

}

. (44)

For all ȳ ∈ ∂Ξ such that 0 < |Puȳ| < r we have

(g(ȳ), Psȳ) < 0. (45)

Proof. Let ŷ = Psȳ, ỹ = Puȳ, r̂ = |ŷ| and r̃ = |ỹ|. Since r̃ < r ≤ εγ

m1

√
γ2+k2

, then |Mȳ| ≤ ε

and therefore |N(ȳ)| ≤ β |ȳ|2. We have

(Bȳ, ŷ) + (M−1N(Mȳ), ŷ) = (Bŷ, ŷ) + (N(Mȳ), (M−1)tŷ)

≤ αr̂2 + βm2
1m2(r̂

2 + r̃2)r̂ .

Then, a simple computation shows that (45) is implied by

1

2

(

γ +
√

γ2 − 4r̃2
)

> r̂ >
1

2

(

γ −
√

γ2 − 4r̃2
)

. (46)

The first inequality is satisfied because r̂ < r ≤ γ
2
. To show the second one, note that for all

ȳ ∈ ∂Ξ, 0 < |Puȳ| < r by (42) we have r̂ = k
γ
r̃2 and

1

2

(

γ −
√

γ2 − 4r̃2
)

<
k

γ
r̃2 if r̃ <

√
k − 1

k
γ .

Since r̃ < r, then (46), and subsequently (45) hold. �

We need a condition which ensures that the invariant manifold is not entirely contained
in Ξ, but it intersects κ at some point. Let α′ be the minimum of the real parts of the
eigenvalues of B with positive real parts.

Lemma 9. If r, α, α′, k and Ξ are as above and

α′ +
α

γ

(

r +
k2

γ2
r3

)

> 0, (47)

then there exists δ > 0 such that (g(ȳ), Puȳ) ≥ δ|Puȳ|2 for all ȳ ∈ Ξ and therefore the
component of the flow in the direction of the unstable manifold is always increasing in Ξ,
together with its first derivative.

Proof. Choose δ > 0 satisfying

βm2
1m2

(

r +
k2

γ2
r3

)

≤ α′ − δ.

Fix ȳ ∈ Ξ and let ŷ = Psȳ, ỹ = Puȳ, r̂ = |ŷ| and r̃ = |ỹ|. By (47) and the definition of γ such
δ exists. We have

(Bȳ, ỹ) + (M−1N(Mȳ), ỹ) = (Bỹ, ỹ) + (N(Mȳ), (M−1)tỹ)

≥ α′r̃2 − βm2
1m2

(

r̂2 + r̃2
)

r̃ ≥ δr̃2,

because r̂ ≤ k
γ
r̃2 by the definition of Ξ. �
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Lemma 10. Let r, α, α′, k, ŷ and κ be as above. The unstable manifold tangent to ŷ
intersects κ.

Proof. By Lemma 9 the unstable manifold cannot be entirely contained in Ξ. By Lemmas
8 and 9 it can only exit through κ. �

In the next subsection we apply these ideas in order to prove Theorem 4.

6.2 The computer assisted proofs

We apply the general result stated in the previous subsection to the system (8).
We first consider the point P1 = (4, 0, 0, 0). Let x = v−P1. The system (8) takes the form

(39) with

A1 =

















2 − n −1 0 0

0 2 1 0

0 0 4 − n 1

0 0 0 4

















,

N(x) = (0, 0, 0, x1x4) and α = 4 − n.
If we consider the linearization at P2 = (0, 4n − 8, 16 − 8n,−8(n − 2)(n − 4)) and set

x = v − P2, then system (8) can be written as (39) with

A2 =

















2 − n −1 0 0

0 2 1 0

0 0 4 − n 1

−8(−4 + n)(−2 + n) 0 0 0

















and again N(x) = (0, 0, 0, x1x4). From Section 3.1 we know that if n = 5, . . . , 12 the eigen-
values are ((4 − n)/2 + iσ, (4 − n)/2 − iσ, λ1, λ2), where λ1 < (4 − n)/2 < 0 and λ2 > 0. It
turns out that α = (4 − n)/2. If n ≥ 13 all eigenvalues are real and

α = 2 − 1

2
n +

1

2

√

8 − 4n + n2 − 4
√

68 − 52n + 9n2.

We remark that, since the nonlinear part is very simple, it is possible to obtain a better
estimate for the coefficients β, m1, and m2 than the one we had in Section 6.1.

In the following, let M be the matrix that diagonalizes either A1 or A2 and let |Mi| be the
(Euclidean) norm of the i–th row of M .

Lemma 11. For all y1, y2 ∈ R
4 the following inequality holds:

(N(My1), (M
−1)ty2) ≤ |M1| |M4|

∣

∣(M−1)t
4

∣

∣ |y1|2 |y2| .

Proof. We have

(N(My1), (M
−1)ty2) = (My1)1(My1)4((M

−1)ty2)4,
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where we denoted by (Av)i the i–th component of the vector (Av), i.e. the scalar product of
the i–th row of A with the vector v. The conclusion follows by the definition of |Mi|. �

By the above lemma we infer that γ may be obtained as

γ = − α

|M1| |M4| |(M−1)t
4|

(48)

and ε may be chosen arbitrarily.
To compute a rigorous enclosure [λmin

σ , λmax
σ ] for the value of λσ we fix n and we compute

the value γ in (48). We can choose k > 1 and r > 0 satisfying (44) and (47). We have
some degree of arbitrariness: we prefer a small r in order to have a small set κ, but we also
like a large r in order to reach the hyperplane with fewer time steps. It is also convenient
to have the smallest possible k, since it also implies a smaller set κ. We have to make an
empirical choice by trying different values and selecting the best trade–off. It turns out that
it is convenient to choose r first, set

k =
γ2 −

√

γ4 − 4r2γ2

2r2
(49)

and check whether (47) holds. Since the unstable manifold in P2 is one–dimensional, we have
to choose between two possible directions. The numerical experiment gave us the correct
direction. Once we choose r and compute k we have the set κ as given in (43). We should
compute the evolution of all points in κ and its intersection with the hyperplane v1 = 4. This
would require a very long computer time, but since two solutions of (39) cannot intersect,
then it is enough to compute the evolution of the points in the boundary of κ, provided
we can prove that the trajectories of all point in the interior of κ also reach the hyperplane
v1 = 4. This can be checked by the following lemma.

Lemma 12. Set

κ′ := κ′
ŷ := ŷ +

{

ỹ ∈ S0 : |ỹ| =
k

γ
r2

}

. (50)

Assume that the trajectories of all points in κ′ intersect the hyperplane v1 = 4 and do not
intersect the hyperplane (2 − n)v1 − v2 + 4(n − 2) = 0. Let κ̂ be the intersection of all such
trajectories with v1 = 4.

Then the trajectories of all points in κ also intersect the hyperplane v1 = 4 and the inter-
section takes place in the region bounded by κ̂.

Proof. Since v′
1 = (2−n)v1 −v2 +4(n−2), then v′

1 is positive and bounded away from zero
for all points of the trajectories starting from κ′. Then, by the uniqueness and continuous
dependence on the initial condition of the Cauchy problem, it follows that the union τ(κ′)
of such trajectories is a “tube” in R

4 and the trajectories of all points in κ \ κ′ cannot exit
τ(κ′). Then v′

1 is also positive and bounded away from zero for all points starting in κ and
the trajectory of every point in κ reaches v1 = 4 in a finite time. �

Our strategy is as follows: we compute the intersection of the flow starting from all points
in κ′ with the hyperplane v1 = 4. If all the trajectories intersect the hyperplane, we have
a proof that the singular solution exists; furthermore the envelope in the v4–direction of all
intersections yields the desired λ–interval. Note that the set κ′ is the image of S2 through
an invertible affine map, therefore we need an efficient discretization of a sphere.
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Lemma 13. For all n = 5, . . . , 16 let r = .001, let k be as in (49) and κ′ = κ′
ŷ as in (50). For

a suitable choice of the direction ŷ in the one dimensional unstable manifold U0, the following
conclusions hold:

1. The flow starting in κ′ intersects the hyperplane v1 = 4.

2. The absolute value of the first coordinate of the intersection point is in the interval set
[λmin

σ , λmax
σ ] defined in (10).

3. The flow starting in κ′ and ending on the hyperplane v1 = 4 does not intersect the
hyperplane (2 − n)v1 − v2 + 4(n − 2) = 0.

The proof is by computer assistance, as described in Section 9.
In order to compute a rigorous lower bound for λ∗ we consider the trajectories of points

in the unstable manifold of P1 and compute the intersection with the hyperplane v1 = 4.
Since the manifold is two dimensional, we have to decide the direction to follow: we use the
numerical results presented above to compute the direction that gives the highest possible
value for λ. We define κ as above, and we wish to prove that all trajectories starting from κ
intersect the hyperplane v1 = 4. We also need to estimate the location of such intersections.
It would save some computer time to restrict the computation to the boundary of κ as in the
proof of Lemma 13, but we cannot proceed as in Lemma 12 because P1 lies on the hyperplane
v1 = 4 and therefore v1 cannot be monotone. Furthermore, since the unstable manifold has
now dimension 2, we do not have the topological argument (the tube) used before. On the
other hand, in this case we only have to consider a region which is the affine image of a disk,
therefore it is feasible to compute the trajectory for all point in the disk.

Lemma 14. For all n = 5, . . . , 10, let r = .001 if n ≤ 9 and r = .0001 if n = 10; let ŷ = P1 +
r(e1 sin ϑn +e2 cos ϑn), where e1 and e2 are the eigenvectors of A1 with unit norm and positive
first component corresponding respectively to the eigenvalues 2 and 4 and ϑ5 = 6.2829856,
ϑ6 = 6.28298854, ϑ7 = 6.2829901, ϑ8 = 6.2829918, ϑ9 = 6.2829914, ϑ10 = 6.28316589, let k
be as in (49) and let κ be as in (43).

1. The flow starting at all points of κ intersects the hyperplane v1 = 4.

2. The absolute value of the first coordinate of the intersection point is larger than λ∗
min

displayed in (10).

We point out that this statement only shows that there exists a regular solution for some
value of λ obtained as the intersection of a one–dimensional submanifold of the unstable
manifold with the hyperplane v1 = 4. Since we cannot exclude that there exists a solution
for a larger value of λ, we only have a lower bound for λ∗.

The proof of Theorem 4 follows by Lemmas 10–14.

7 Proof of Theorem 5

In this section we use both the PDE notation ∆2 and the ODE notation with primes denoting
differentiation (with respect to r or s, depending on the context).
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We assume that Uσ is any radial weakly singular solution of (Pλσ) with

λσ > 8(n − 2)(n − 4). (51)

In particular, we deal with those solutions obtained in Theorem 4, see also Table (10). Then,
by Theorem 3 (ii), we know that

Uσ(r) = −4 log r + o(| log r|) as r → 0.

Therefore, we define the function

W (r) := Uσ(r) + 4 log r

and we study its behaviour. After some calculations, we find that it weakly solves the
equation























∆2W =
1

|x|4 [λσe
W − 8(n − 2)(n − 4)] in B

W = 0 on ∂B
∂W

∂n
= 4 on ∂B.

(52)

The proof of Theorem 5 follows from the next two lemmas and Proposition 1 at the end of
this section.

Lemma 15. Assume (51) and assume that W ∈ C4(0, 1] weakly solves (52) (W = W (r));
then

lim
r→0

W (r) = log
8(n − 2)(n − 4)

λσ

= W0 < 0. (53)

Moreover, at least one of the two following facts holds true:
(i) the function W (r) − W0 changes sign infinitely many times in any neighbourhood of

r = 0;
(ii) W (r) ≥ max[W0, 2r

2 − 2] for all r ∈ (0, 1].

Proof. The negativity of W0 follows from (51) while (53) is a consequence of Theorem 3.
Assume that case (i) in the statement does not occur; we first claim that

W (r) ≥ W0 for all r ∈ (0, 1]. (54)

For contradiction, assume that (54) does not hold; then, there exists R̄ ∈ (0, 1) such that
W (R̄) < W0 and two cases may occur:

First case: there exists R ∈ (0, 1) such that W ′(R) = 0 and W0 ≤ W (r) < W (R) for all
r ∈ (0, R). In this case, let H(r) = W (r)− W (R) so that H(r) < 0 for all r ∈ (0, R); on the
other hand, H weakly solves the problem







∆2H = ∆2W ≥ 0 in BR

H =
∂H

∂n
= 0 on ∂BR

so that by Lemma 1, one gets H(r) ≥ 0 for all r ∈ (0, R), a contradiction.
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Second case: there exists R ∈ (0, 1) such that W ′(R) = 0 and W0 ≥ W (r) > W (R) for all
r ∈ (0, R). In this case, H(r) = W (r) − W (R) satisfies both H(r) > 0 for all r ∈ (0, R) and







∆2H = ∆2W ≤ 0 in BR

H =
∂H

∂n
= 0 on ∂BR

giving again a contradiction.
We have so proved (54): hence, if we define the function φ(r) = W (r) + 2 − 2r2 we infer

that φ = φ(|x|) weakly satisfies






∆2φ = ∆2W ≥ 0 in B

φ =
∂φ

∂n
= 0 on ∂B;

this yields φ(r) ≥ 0, namely W (r) ≥ 2r2 − 2 for all r ∈ (0, 1].
We have so proved that if (i) does not occur then (ii) holds true, that is, the statement.�

In high dimensions the previous alternative breaks down and we can describe the behaviour
of weakly singular solutions:

Lemma 16. If n ≥ 13, then case (i) of Lemma 15 cannot occur.

Proof. Let W = W (r) and W0 be as in Lemma 15 and consider the function

Z(s) = W (es) − W0 s ∈ (−∞, 0).

Then, since W satisfies (52), we deduce that

L4Z + p(s)Z = 0 s ∈ (−∞, 0), (55)

where L4Z = Z ′′′′ + 2(n − 4)Z ′′′ + (n2 − 10n + 20)Z ′′ − 2(n − 2)(n − 4)Z ′ and

p(s) = −8(n − 2)(n − 4)
eZ(s) − 1

Z(s)
.

Note that p(s) is well–defined for all s < 0 and that, by (53), p(s) → −8(n − 2)(n − 4) as
s → −∞. In particular, for all ε > 0 there exists sε < 0 such that

p(s) ≥ −[8(n − 2)(n − 4) + ε] for all s ≤ sε. (56)

Since n ≥ 13, for sufficiently small ε, the linear equation

L4Z − [8(n − 2)(n − 4) + ε]Z = 0 (57)

admits four linearly independent solutions of “exponential type”, namely Zi(s) = eνis for
some νi ∈ R (i = 1, ..., 4), see also the discussion in Section 3.1. Hence, (57) is nonoscillatory
in (−∞, 0) according to the definition in [E]. Therefore, by (56) and [E, Corollary 1], also
(55) is nonoscillatory in (−∞, 0) and the statement follows. �

Let us conclude this section with the observation that an explicit form of the weakly singular
solution Uσ seems not so easy to be obtained:
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Proposition 1. Assume that the function W is a solution of (52) as considered in Lemma 15.
Then the function W = W (r) is not analytic in r close to 0.

Proof. For contradiction, let ak = W (2k)(0)/(2k)! and assume that

W (r) =
∞
∑

k=0

akr
2k

is a convergent power series for r close to 0. Since W is regular, the r.h.s. of the equation in
(52) is bounded as r → 0 and we necessarily have

a0 = log
8(n − 2)(n − 4)

λσ

, a1 =
W ′′(0)

2
= 0. (58)

Then,

W (k)(r) =
W ′′′′(0)

(4 − k)!
r4−k + O

(

r5−k
)

as r → 0 (k = 1, 2, 3)

and hence

n(n + 2)

3
W ′′′′(0) = ∆2W |r=0 =

λσea0W ′′′′(0)

24
=

(n − 2)(n − 4)

3
W ′′′′(0)

where we have used (52) and (58). This shows that W ′′′′(0) = 0 and a2 = 0.
We now proceed by induction. Assume that for some k ≥ 2 we have shown that a1 = ... =

ak = 0; we claim that ak+1 = 0. Once we show this, we achieve a contradiction and the
statement follows. Note that λσeW − 8(n − 2)(n − 4) = 8(n − 2)(n − 4)[eW−a0 − 1] and, by
induction assumption,

1

r4

(

eW−a0 − 1
)

= ak+1r
2k−2 + O

(

r2k
)

.

Therefore, from (52) we get:

(

d

dr

)2k−2

∆2W
∣

∣

∣

r=0
= 8(2k − 2)!(n − 2)(n − 4)ak+1. (59)

On the other hand, recalling the radial form of ∆2 (see the l.h.s. of (4)) and taking into
account that (as r → 0)

W ′(r) ∼ W (2k+2)(0)

(2k + 1)!
r2k+1 , W ′′(r) ∼ W (2k+2)(0)

(2k)!
r2k,

W ′′′(r) ∼ W (2k+2)(0)

(2k − 1)!
r2k−1 , W ′′′′(r) ∼ W 2k+2(0)

(2k − 2)!
r2k−2.

We also deduce that
(

d

dr

)2k−2

∆2W |r=0 = 2k(2k + 2)(n + 2k)(n + 2k − 2) · (2k − 2)! ak+1.

Combining this with (59), we get

ak+1 {2k(2k + 2)(n + 2k)(n + 2k − 2) − 8(n − 2)(n − 4)} = 0.

Since the term in brackets is strictly positive, this yields ak+1 = 0. �
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8 Further results and open problems

First, we discuss the stability of the linearizations around regular solutions of problem (Pλ).
For this purpose we observe that the minimal solution depends continuously on λ:

Proposition 2. Let as before denote Uλ the minimal solution of (Pλ). Then, [0, λ∗) 3 λ 7→
Uλ ∈ C4,α(B) is continuous from the left. Moreover, if λ0 ∈ [0, λ∗) is such that the first
eigenvalue of the linearization LUλ0

:= ∆2 − λ0 exp(Uλ0) is strictly positive, then λ 7→ Uλ is
also continuous in λ = λ0.

Proof. Let λk ↗ λ0. Since Uλk
≤ Uλ0 and since the (Uλk

)k are monotonically increasing,

we get Ũ := limk→∞ Uλk
first in any Lq–space, then by elliptic theory in W 4,q and finally

in C4,α(B). Hence, also Ũ solves (Pλ0), and 0 < Ũ ≤ Uλ0 . We conclude that Ũ = Uλ0 by
minimality of Uλ0 .

The second statement follows from the implicit function theorem and again the monotonic-
ity of Uλ in λ. �

The next statement extends some results of [CR] to the biharmonic case, see Proposition
2.15 there. In order to show the sign condition of eigenfunctions we use a decomposition
method with respect to pairs of dual cones.

Proposition 3. Let u be a regular solution for (Pλ), where λ ∈ (0, λ∗]. Let the first eigenvalue
µ1 of the linearization Lu := ∆2 − λeu under Dirichlet boundary conditions be nonnegative:
µ1 ≥ 0. Then every eigenfunction of Luϕ = µ1ϕ is of fixed sign. Moreover, if v ∈ C4(B̄)
solves ∆2v ≥ λev in B and v = ∂v

∂n
= 0 on ∂B, then it follows that v ≥ u. Finally, if µ1 = 0,

then we even have v = u.

Proof. In order to show that the first eigenfunction ϕ of Lu is of fixed sign, we need to explain
a decomposition technique with respect to dual cones, which was found in the abstract setting
by Moreau [Mo] and adapted to biharmonic Dirichlet problems in [GG]. As usual we equip
H2

0 (B) with the scalar product

(u, w)H2
0

:=

∫

B

∆u ∆w dx.

Let here denote
K =

{

u ∈ H2
0 (B); u ≥ 0 a.e. in B

}

,

the convex closed cone of nonnegative H2
0–functions and

K′ =
{

u ∈ H2
0(B); for all w ∈ K : (u, w)H2

0
≤ 0
}

its dual cone in H2
0 of weak subsolutions of the clamped plate equation. By Lemma 1 we see

that K′ ⊂ −K. For any w ∈ K′ we even have that either w ≡ 0 or w < 0 in B.
Assume now by contradiction that ϕ is not of fixed sign. Then, according to [Mo], we may

decompose
ϕ = ϕ1 + ϕ2
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with ϕ1 ∈ K, ϕ2 ∈ K′ and ϕ1 ⊥ ϕ2 in H2
0 (B). By assumption we have that ϕ1 ≥ 0, ϕ1 6≡ 0

and ϕ2 < 0. But then

0 ≤ µ1 = inf
w∈H2

0 (B)\{0}

∫

B

(

(∆w)2 − λ exp(u)w2
)

dx
∫

B
w2 dx

≤
∫

B

(

(∆(ϕ1 − ϕ2))
2 − λ exp(u)(ϕ1 − ϕ2)

2
)

dx
∫

B
(ϕ1 − ϕ2)2 dx

<

∫

B

(

(∆(ϕ1 + ϕ2))
2 − λ exp(u)(ϕ1 + ϕ2)

2
)

dx
∫

B
(ϕ1 + ϕ2)2 dx

=

∫

B

(

(∆ϕ)2 − λ exp(u)ϕ2
)

dx
∫

B
ϕ2 dx

= µ1,

a contradiction. Hence, ϕ is of fixed sign, say ϕ ≥ 0, and in a second step we may conclude
from the equation and the strict positivity of the biharmonic Green function (in the ball)
that ϕ > 0.

We consider now u and v as in the statement. For τ ∈ [0, 1] we look at

∆2 (u + τ(v − u)) − λ exp (u + τ(v − u)) (60)

≥ ∆2 (u + τ(v − u)) − λ (τ exp(v) + (1 − τ) exp(u)) ≥ 0.

Since (60) equals 0 for τ = 0, its first derivative at τ = 0 must be nonnegative:

∆2(v − u) − λeu(v − u) =: f ≥ 0. (61)

If µ1 > 0 a decomposition trick as above applied to the functional w 7→
∫

B
((∆w)2 − λeuw2 −

fw)dx shows that v ≥ u.
If µ1 = 0, we test (61) with the positive first eigenfunction ϕ and get

∆2(v − u) − λeu(v − u) = 0.

That means that also the first derivative of (60) with respect to τ = 0 vanishes, so that the
second derivative needs to be nonnegative:

−λeu (v − u)2 ≥ 0.

But this immediately yields v = u. �

Concerning the stability behaviour of the linearizations around regular solutions, we have:

Proposition 4. Let λ > 0, let u be a regular solution of (Pλ), let Lu = ∆2 − λeu be the
linearized operator at u and let µ1 = µ1(Lu) be the smallest eigenvalue of Lu; then

(i) if λ < λ∗ and u is the minimal solution, then µ1 > 0;
(ii) if λ < λ∗ and u is not the minimal solution, then µ1 < 0;
(iii) if λ = λ∗ and the extremal solution u = U∗ is regular, then µ1 = 0.

Finally, if Uλ denotes the minimal (regular) solution of (Pλ) and µ1(λ) = µ1(LUλ
), then, the

map λ 7→ µ1(λ) is decreasing.
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Proof. (i) The monotonicity of µ1(λ) follows immediately from the variational characteriza-
tion

µ1(λ) = inf
w∈H2

0 (B)\{0}

∫

B
(∆w)2 dx −

∫

B
exp(Uλ)w

2 dx
∫

B
w2 dx

and from the monotonicity of Uλ with respect to λ. By Proposition 2 we see that the function
λ 7→ µ1(λ) is continuous from the left on (0, λ∗) and even on (0, λ∗], provided the extremal
solution U∗ is regular.

Assume by contradiction that there exists a λ̃ ∈ (0, λ∗) with µ1(λ̃) ≤ 0. We put

λ0 := sup {λ ≥ 0 : µ1(λ) > 0} ≤ λ̃ < λ∗.

According to the mentioned continuity from the left, we have µ1(λ0) ≥ 0. If we assume
µ1(λ0) > 0, then the second part of Proposition 2 would give µ1(λ) > 0 also for some λ > λ0,
a contradiction. Consequently we have µ1(λ0) = 0. Let u = Uλ0 > 0 be the corresponding
minimal solution:

∆2u = λ0e
u in B, u = ∇u = 0 on ∂B.

Consider any λ ∈ (λ0, λ
∗) with minimal solution v = Uλ > 0:

∆2v = λev in B, v = ∇v = 0 on ∂B.

Since λ > λ0, Proposition 3 applies and yields v = u and hence λ = λ0, a contradiction.
(ii) Let Uλ be the minimal solution for (Pλ) so that u ≥ Uλ. If the linearization around u
had nonnegative first eigenvalue, then Proposition 3 would also yield u ≤ Uλ so that u and
Uλ necessarily coincide, contradiction.
(iii) Assume that the extremal solution u = U∗ is regular. By continuity, we have µ1 ≥ 0.
If µ1 > 0 the implicit function theorem would also yield solutions for some λ > λ∗. A
contradiction, so that µ1 = 0. �

Open Problem 1. Does (ii) of Proposition 4 extend to weak solutions u as formulated in
[BV, Theorem 3.1]?

We now turn to the extremal solution U∗. We first suggest the

Open Problem 2. Do we have uniqueness of weak solutions for (Pλ∗)? By Proposition 4
(iii) and arguing as in Lemma 2.6 in [BV] one obtains that if the extremal solution is regular
then it is unique even in a weak sense. However, without the regularity assumption on U∗,
the proof seems much more difficult; we refer to [Ma] for the corresponding result related to
the second order problem (1). In particular, the proof of a result in the spirit of [Ma, Lemma
2.1] requires a new trick, probably of the same kind as the one we used to prove Lemma 5.

Perhaps, the precise characterization of all singular solutions Uσ and the corresponding
“singular” parameters λσ is the most interesting and difficult problem we have to leave open
in the present paper.

Open Problem 3. Is the singular parameter and the weakly singular solution unique? In
order to construct a weakly singular radial solution, according to Theorem 3, one has to
follow the unstable branch arising from P2. One can do so in two (opposite) exit directions.
In one direction we actually find at most (and presumably precisely) one solution by the
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result of Soranzo [So]: the solution of the PDE has to be strictly decreasing. We emphasize
that this result extends to the class of weakly singular radial solutions. For the ODE system
(8) this means that any “singular” trajectory may intersect the hyperplane v1 = 4 only once
and cannot come back to it. But we do not have a proof that the unstable branch leaving P2

in the other direction will not intersect the hyperplane v1 = 4 even if numerical experiments
suggest so.

Next, we recall that in [GGM] it was shown that for any open bounded domain Ω ⊂ R
n

there exist C1, C2 > 0 such that the following improved Hardy’s inequality holds:
∫

Ω

|∆u|2 dx ≥ n2(n − 4)2

16

∫

Ω

u2

|x|4 dx + C1

∫

Ω

u2

|x|2 dx + C2

∫

Ω

u2 dx for all u ∈ H2
0 (Ω).

(62)
A similar inequality was used in [BV] in order to establish the space dimensions in which the
extremal solution for (1) is regular or singular. For (Pλ) this seems more intriguing: it is not
clear which is the role of the two remainder terms in (62). Furthermore, as we have seen in
Theorem 5 and Proposition 1, the singular solution is difficult to describe. However, we have
a partial result relating Hardy’s inequality with extremal solutions: clearly, this statement is
weaker than Corollary 1 if n ≤ 10.

Proposition 5. Let λσ and Uσ be as in Theorem 4 and assume that λσ = λ∗. Then, if
n ≤ 12, case (ii) in Theorem 5 cannot occur.

Proof. By Proposition 4 (i), by Theorem 1 (ii)-(iii) and using the notations of Theorem 5,
we infer that

∫

B

|∆φ|2 ≥ λ∗

∫

B

eU∗φ2 = λ∗

∫

B

eW

|x|4φ2 for all φ ∈ H2
0 (B). (63)

For contradiction, if (ii) in Theorem 5 holds, then

λ∗

∫

B

eW

|x|4φ2 ≥ 8(n − 2)(n − 4)

∫

B

φ2

|x|4 for all φ ∈ H2
0 (B).

Since 8(n − 2)(n − 4) > n2(n−4)2

16
whenever n ≤ 12, the last inequality, together with (63),

would improve the best constant in Hardy’s inequality, a contradiction. �

Proposition 5 and Corollary 1 suggest the following question and conjecture:

Open Problem 4. Which are all the space dimensions n ≥ 5 for which λσ < λ∗? We
conjecture that the answer is n ≤ 12. In view of Corollary 1 we know that among these
dimensions n there are at least 5 ≤ n ≤ 10. Moreover, Theorem 5 and Proposition 5 prove
“half” of this conjecture when n = 11, 12. Maybe the proof relies on the interpretation of
the two remainder terms in (62).

Open Problem 5. Show that any radial singular solution is also weakly singular, according
to Definition 3. In particular, this would strengthen the statement of Theorem 3.

If the previous three open problems could be solved in the affirmative, then we could also
conclude that the extremal solution U∗ is singular if and only if n ≥ 13.

We conclude this paper with some further problems. The next one is not yet completely
solved even in the second order case.
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Open Problem 6. Do there exist singular nonradial solutions to (Pλ) for some λ > 0? We
conjecture that the answer is positive, see also Problem 7 in [BV].

The following picture displays the numerically computed value of −v4 of the intersection
of a portion of the unstable manifold of P1 with the hyperplane v1 = 4 in the case n = 5.

15 20 25 30 35 40
x

100

150

200

-v4

More precisely, −v4 is displayed as a function of x := − log(−ϑ). One may observe the
estimated value of λ∗ as the maximum value reached by −v4; furthermore, as ϑ → 0− the
value of −v4 appears to asymptotically reach λσ oscillating around it. This leads us to the
following

Open Problem 7. Assume n ≤ 12. Prove that for every N ∈ N there exists ε = ε(N) > 0
such that for λ ∈ [λσ − ε, λσ + ε] there exist at least N distinct regular radial solutions. For
the second order problem the same statement holds true, see [GPP, Theorem 15].

Open Problem 8. How can one proceed in arbitrary smooth domains where it is known that
comparison principles like Lemma 1 become false? How can one construct and characterize
the minimal solution? Does one have similar bifurcation diagrams as here, while only the
solutions do possibly have small regions, where they become negative? Or does the lack of
comparison principles lead to a completely different behaviour, at least in geometrically very
complicated domains?

9 Appendix: computation techniques

We describe here the algorithm used in the computer assisted proofs. In order to prove
Theorem 4 we need a rigorous estimate of the intersection of a branch of the unstable manifold
with the hyperplane v1 = 4. Since we do not know the exact location of any point of the
manifold, except for the stationary point, we compute the trajectory of the whole set κ′ as
described in Section 6. Since no analytical solution of the equation is available, we estimate
the trajectories of all points of the set and compute the intersections with the hyperplane
v1 = 4 with rigorous error bounds. In order to compute the image of an infinite set of
points, we partition it in boxes with small enough sides, which we call interval sets and we
compute their trajectory using interval arithmetics. More precisely, we start with a Taylor
approximation of order 10, i.e. we estimate the trajectory of an interval by using the Taylor
expansion of order 10 and we estimate the error by the Lagrange remainder. If h is the time
step, we compute a rough but rigorous enclosure D of the trajectory at times [0, h], that is an
interval set D such that the solution of the equation lies in D for all times between 0 and h. By
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Lagrange theorem we estimate the error we make neglecting the remaining terms of the Taylor
expansion by computing x(11)(D)h11

11!
. We compute x(11)(D) (which is an interval enclosing

all possible values assumed by the 11th derivative of the trajectory, therefore enclosing the
Lagrange remainder) using a recursive algorithm for the time derivatives of the solutions (see
Section I.8 in [HNW]). We point out that it takes a finite amount of s-time to go from any
point in κ′ to the hyperplane v1 = 4.

The interval arithmetics algorithms address the problem of computing the trajectory of an
interval and of keeping track of the errors in an elegant and rigorous way, but they introduce
another problem. Indeed, even in the simplest dynamical system, the procedure described
above leads to a very rough estimate of trajectories, due to the wrapping effect which makes
the bounds on the error grow exponentially fast. The wrapping effect is one of the main
problem one faces when trying to do rigorous numerics for ordinary differential equations.

We describe it with one example: consider a square centered at the origin x = [−δ, δ]2 and
the matrix that represents the rotation in R

2 by an angle α

R(α) =





cos(α) − sin(α)

sin(α) cos(α)



 .

Assume for simplicity that 0 < |α| < π/2. If we apply Rα to x and wish to represent the
result by another interval (i.e. another rectangle with sides parallel to the coordinate axes),
we see that we need (cos(α) + | sin(α)|)[−δ, δ]2, therefore, although Rα is an isometry, its
computer realization has a growth factor cos(α) + | sin(α)| > 1. When solving the system of
equations of the harmonic oscillator

ẋ = −y, ẏ = x (64)

the 2π–shift along the trajectory is an identity map, but when we compute it numerically
in interval arithmetics, say with time step h = 2π/N , we have to compose N times the
map induced by R(h). An easy computation shows this computation yields a growth factor
e2π ≈ 535 as h → 0.

We substantially reduce the wrapping effect by using the Lohner algorithm. A complete
description of interval arithmetics and of the Lohner algorithm is beyond the scope of this
paper; we refer to Section 6 in [AZ] and references cited there for an exhaustive treatment of
the topic. More specifically, see [MZ] concerning interval arithmetics and [Lo] for the Lohner
algorithm. For the purpose of this description it suffices to consider the Lohner algorithm as
a finite number of interval arithmetic operations based on the Taylor expansion which, given
equation (8), an (interval) initial condition V0 ⊂ R

4 and a time step h, returns an interval
V1 ⊂ R

4 such that for all points v0 ∈ V0 the solution v(s) of the Cauchy problem with initial
condition v(0) = v0 satisfies v(h) ∈ V1. In other words, the Lohner algorithm provides a
rigorous enclosure of the solution at time h of a given Cauchy problem by performing a finite
number of operations. The fact that the operations involved are finite and purely arithmetical
makes it suitable for the implementation with a computer.

We have to determine the intersection of the trajectory with the hyperplane v1 = 4. Since
we are computing the trajectory of an interval, it takes a finite (nonzero) amount of ‘time’ to
cross the hyperplane, therefore we necessarily introduce another error when estimating the
intersection point and we have to give a rigorous bound for this error as well. We proceed as
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follows. We numerically compute the time s1 required for the flow to reach the intersection.
We compute with the Lohner algorithm the solution V1 of the problem at time s1. We check
if the first component (V1)1 of V1 is contained in (−∞, 4]. If (V1)1 ⊂ (−∞, 4], then no points
in V1 have crossed the hyperplane. If (V1)1 6⊂ (−∞, 4] we choose (arbitrarily) a smaller value
of s1 and repeat the step. Then we roughly compute the time s2 required for the set V1 to
cross the hyperplane. With the Lohner algorithm we compute the solution V2 of the problem
at time s2. We check that all points in V2 have crossed the hyperplane, i.e. (V2)1 ⊂ [4, +∞).
If not, we choose a larger value for s2 and repeat the step. We are only interested in the value
of the fourth component of the solution: since at all points of our interest v ′

4 < 0 (because
v′
4 = v1v4), it suffices to compute the hull of the interval value of v4 before and after the

crossing of the hyperplane. We now have a rigorous proof that the intersection takes place at
some v4 ∈ [min(V2)4, max(V1)4] and this last interval (with the left bound rounded down and
the right bound rounded up) is the value we display in Table (10). For the λ∗ computation
we only display max(V1)4 rounded down, since the other side of the interval does not have
any meaning.

In order to check step 3 in Lemmas 13 and 14, it is not enough to check that the evolution
of all points is in A as defined in Subsection 6.2. Indeed, if the time step is large, it may
happen that some trajectory leaves A and reenters it in a single integration step. We have
therefore to check at every time step that the whole rough enclosure D as defined above is in
A and that the part of the set A which is contained in the flow tube has a trivial topology,
i.e. it does not have holes.

The round–off errors are taken care directly by Mathematica. Such errors may vary by
changing computer and/or operating system, but since they are usually very small when
compared to the wrapping effect, we expect that the proofs can be easily reproduced on any
recent computer obtaining very similar bounds.

To perform the proofs we implemented a version of the whole algorithms in a combination
of Mathematica and C++ under the Linux O.S. More precisely, Mathematica has been used
to handle all the data and to perform a few algorithms which are less demanding for the CPU,
but more complicated to implement. Furthermore Mathematica has been used to make all
numerical experiments and to draw the pictures. On the other hand C++ has been used
for the heavy interval arithmetic computations, where it offered a much higher speed. The
connection between the two languages is obtained by MathLink. The verification of the whole
proof takes a few days of CPU time on a machine equipped with an Athlon XP1700 processor.
A full C++ algorithm would reduce the time at the price of a much more complicated and
less user–friendly programming. We think that this sharing of tasks is almost optimal, as
far as computational speed and simplicity of programming and data handling are concerned.
The reader who desires to reproduce the computer assisted proofs in this paper without
writing the program can use the Mathematica notebook which is provided on the web at
the address http://www1.mate.polimi.it/˜gianni/aggm.nb. The notebook is provided with
comments and instructions.
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Birkhäuser, Boston etc. (2001)
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