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Preface

Linear elliptic equations arise in several models describing various phenomena in
the applied sciences, the most famous being the second order stationary heat equa-
tion or, equivalently, the membrane equation. For this intensively well-studied linear
problem there are two main lines of results. The first line consists of existence and
regularity results. Usually the solution exists and “gains two orders of differenti-
ation” with respect to the source term. The second line contains comparison type
results, namely the property that a positive source term implies that the solution
is positive under suitable side constraints such as homogeneous Dirichlet bound-
ary conditions. This property is often also called positivity preserving or, simply,
maximum principle. These kinds of results hold for general second order elliptic
problems, see the books by Gilbarg-Trudinger [197] and Protter-Weinberger [346].
For linear higher order elliptic problems the existence and regularity type results re-
main, as one may say, in their full generality whereas comparison type results may
fail. Here and in the sequel “higher order” means order at least four.

Most interesting models, however, are nonlinear. By now, the theory of second
order elliptic problems is quite well developed for semilinear, quasilinear and even
for some fully nonlinear problems. If one looks closely at the tools being used in
the proofs, then one finds that many results benefit in some way from the positivity
preserving property. Techniques based on Harnack’s inequality, De Giorgi-Nash-
Moser’s iteration, viscosity solutions etc., all use suitable versions of a maximum
principle. This is a crucial distinction from higher order problems for which there is
no obvious positivity preserving property. A further crucial tool related to the max-
imum principle and intensively used for second order problems is the truncation
method, introduced by Stampacchia. This method is helpful in regularity theory, in
properties of first order Sobolev spaces and in several geometric arguments, such
as the moving planes technique which proves symmetry of solutions by reflection.
Also the truncation (or reflection) method fails for higher order problems. For in-
stance, the modulus of a function belonging to a second order Sobolev space may
not belong to the same space. The failure of maximum principles and of truncation
methods, one could say, are the main reasons why the theory of nonlinear higher
order elliptic equations is by far less developed than the theory of analogous second
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order equations. On the other hand, in view of many applications and increasing in-
terest especially in the last twenty years, one should try to develop new tools suitable
for higher order problems involving polyharmonic operators.

The simple example of the two functions x 7→±|x|2 shows that already for the bi-
harmonic operator the standard maximum principle fails. Nevertheless, taking also
boundary conditions into account could yield comparison or positivity preserving
properties and indeed, in certain special situations, such behaviour can be observed.
It is one goal of the present exposition to describe situations where positivity pre-
serving properties hold true or fail, respectively, and to explain how we have tackled
the main difficulties related to the lack of a general comparison principle. In the
present book we also show that in many higher order problems positivity preserving
“almost” occurs. By this we mean that the solution to a problem inherits the sign
of the data, except for some small contribution. By the experience from the present
work, we hope that suitable techniques may be developed in order to obtain results
quite analogous to the second order situation. Many recent higher order results give
support to this hope.

A further goal of the present book is to collect some of those problems, where the
authors were particularly involved, and to explain by which new methods one can
replace second order techniques. In particular, to overcome the failure of the maxi-
mum principle and of the truncation method several ad hoc ideas will be introduced.

Let us now explain in some detail the subjects we address within this book.

Linear higher order elliptic problems

The polyharmonic operator (−∆)m is the prototype of an elliptic operator L of order
2m, but with respect to linear questions, much more general operators can be con-
sidered. A general theory for boundary value problems for linear elliptic operators
L of order 2m was developed by Agmon-Douglis-Nirenberg [4, 5, 6, 148]. Although
the material is quite technical, it turns out that the Schauder theory as well as the
Lp-theory can be developed to a large extent analogously to second order equations.
The only exception are maximum modulus estimates which, for linear higher order
problems, are much more restrictive than for second order problems. We provide a
summary of the main results which hopefully will prove to be sufficiently wide to
be useful for anybody who needs to refer to linear estimates or existence results.

The main properties of higher – at least second – order Sobolev spaces will be
recalled. Since more orders of differentiation are involved, several different equiv-
alent norms are available in these spaces. A crucial role in the choice of the norm
is played by the regularity of the boundary. For the second order Dirichlet problem
for the Poisson equation a nonsmooth boundary leads to technical difficulties but,
due to the maximum principle, there is an inherent stability so that, when approxi-
mating nonsmooth domains by smooth domains, one recovers most of the features
for domains with smooth boundary, see [46]. For Neumann boundary conditions
the situation is more complicated in domains with rather wild boundaries, although
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even for polygonal boundaries they do not show spectacular changes. For higher
order boundary value problems some peculiar phenomena occur. For instance, the
so-called Babuška and Sapondžyan paradoxes [28, 357] forces one to be very care-
ful in the choice of the norm in second order Sobolev spaces since some boundary
value problems strongly depend on the regularity of the boundary. This phenomenon
and its consequences will be studied in some detail.

Positivity in higher order elliptic problems

As long as existence and regularity results are concerned, the theory of linear higher
order problems is already quite well developed as explained above. This is no longer
true as soon as qualitative properties of the solution related to the source term are
investigated. For instance, if we consider the clamped plate equation{

∆ 2u = f in Ω ,

u = ∂u
∂ν

= 0 on ∂Ω ,
(0.1)

the “simplest question” seems to find out whether the positivity of the datum implies
the positivity of the solution, Or, physically speaking,

does upwards pushing of a clamped plate yield upwards bending?

Equivalently, one may ask whether the corresponding Green function G is positive.
In some special cases, the answer is “yes”, while it is “no” in general. However,
in numerical experiments, it appears very difficult to display the negative part and
heuristically, one feels that the negative part of G – if present at all – is small in a
suitable sense compared with the “dominating” positive part. We discuss not only
the cases where one has positive Green functions and develop a perturbation theory
of positivity, but we shall also discuss systematically under which conditions one
may expect the negative part of the Green function to be small. We expect such
smallness results to have some impact on future developments in the theory of non-
linear higher order elliptic boundary value problems.

Boundary conditions

For second order elliptic equations one usually extensively studies the case of
Dirichlet boundary conditions because other boundary conditions do not exhibit
too different behaviours. For the biharmonic equation ∆ 2u = f in a bounded do-
main of Rn it is not at all obvious which boundary condition would serve as a role
model. Then a good approach is to focus on some boundary conditions that describe
physically relevant situations. We consider a simplified energy functional and de-
rive its Euler-Lagrange equation including the corresponding natural boundary con-
ditions. We start with the linearised model for the beam. From a physical point of
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view, as long as the fourth order planar equation is considered, the most interest-
ing seem to be not only the Dirichlet boundary conditions but also the Navier or
Steklov boundary conditions. The Dirichlet conditions correspond to the clamped
plate model whereas Navier and Steklov conditions correspond to the hinged plate
model, either by neglecting or considering the contribution of the curvature of the
boundary. Each one of these boundary conditions requires the unknown function
to vanish on the boundary, the difference being on the second boundary condition.
These three boundary conditions have their own features and none of them may be
thought to play the model role. We discuss all of them and emphasise their own pe-
culiarities with respect to the comparison principles, to their variational formulation
and to solvability of related nonlinear problems.

Eigenvalue problems

For second order problems, such as the Dirichlet problem for the Laplace operator,
one has not only the existence of infinitely many eigenvalues but also the simplicity
and the one sign property of the first eigenfunction. For the biharmonic Dirichlet
problem, this property is true in a ball but it is false in general. Again, a crucial role
is played by the sign of the corresponding Green function. Concerning the isoperi-
metric properties of the first eigenvalue of the Dirichlet-Laplacian, the Faber-Krahn
[162, 253, 254] result states that, among domains having the same finite volume it
attains its minimum when the domain is a ball. A similar result was conjectured to
hold for the biharmonic operator under homogeneous Dirichlet boundary conditions
by Lord Rayleigh [350] in 1894. Although this statement has been proved only in
domains of dimensions n = 2,3, it is the common feeling that it should be true in
any dimension. The minimisation of the first Steklov eigenvalue appears to be less
obvious. And, indeed, we will see that a Faber-Krahn type result does not hold in
this case.

Semilinear equations

Among nonlinear problems for higher order elliptic equations one may just mention
models for thin elastic plates, stationary surface diffusion flow, the Paneitz-Branson
equation and the Willmore equation as frequently studied. In membrane biophysics
the Willmore equation is also known as Helfrich model [227]. Moreover, several
results concerning semilinear equations with power type nonlinear sources are also
extremely useful in order to understand interesting phenomena in functional analysis
such as the failure of compactness in the critical Sobolev embedding and in related
inequalities.

One further motivation to study nonlinear higher order elliptic reaction-diffusion
type equations like
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(−∆)mu = f (u) (∗)

in bounded domains is to understand whether the results available in the simplest
case m = 1 can also be proved for any m, or whether the results for m = 1 are special,
in particular as far as positivity and the use of maximum principles are concerned.
The differential equation (∗) is complemented with suitable boundary conditions. As
already mentioned above, if m = n = 2, equation (∗) may be considered as a non-
linear plate equation for plates subject to nonlinear feedback forces, one may think
e.g. of suspension bridges. In this case, (∗) may also be interpreted as a reaction-
diffusion equation, where the diffusion operator ∆ 2 refers to (linearised) surface
diffusion.

The first part of Chapter 7 is devoted to the proof of symmetry results for pos-
itive solutions to (∗) in the ball under Dirichlet boundary conditions. As already
mentioned, truncation and reflection methods do not apply to higher order problems
so that a suitable generalisation of the moving planes technique is needed here.

Equation (∗) deserves a particular attention when f (u) has a power-type be-
haviour. In this case, a crucial role is played by the critical power s = (n+2m)/(n−
2m) which corresponds to the critical (Sobolev) exponent which appears whenever
n > 2m. Indeed, subcritical problems in bounded domains enjoy compactness prop-
erties as a consequence of the Rellich-Kondrachov embedding theorem. But com-
pactness is lacking when the critical growth is attained and by means of Pohožaev-
type identities, this gives rise to many interesting phenomena. The existence theory
can be developed similarly to the second order case m = 1 while it becomes im-
mediately quite difficult to prove positivity or nonexistence of certain solutions.
Nonexistence phenomena are related to so-called critical dimensions introduced by
Pucci-Serrin [347, 348]. They formulated an interesting conjecture concerning these
critical dimensions. We give a proof of a relaxed form of it in Chapter 7. We also
give a functional analytic interpretation of these nonexistence results, which is re-
flected in the possibility of adding L2–remainder terms in Sobolev inequalities with
critical exponent and optimal constants. Moreover, the influence of topological and
geometrical properties of Ω on the solvability of the equation is investigated. Also
applications to conformal geometry, such as the Paneitz-Branson equation, involve
the critical Sobolev exponent since the corresponding semilinear equation enjoys
a conformal covariance property. In this context a key role is played by a fourth
order curvature invariant, the so-called Q-curvature. Our book does not aim at giv-
ing an overview of this rapidly developing subject. For this purpose we refer to the
monographs of Chang [89] and Druet-Hebey-Robert [149]. We want to put a spot
on some special aspects of such kind of equations. First, we consider the question
whether in suitable domains in euclidean space it is possible to change the euclidean
background metric conformally into a metric which has strictly positive constant Q-
curvature, while at the same time, certain geometric quantities vanish on the bound-
ary. Secondly, we study a phenomenon of nonuniqueness of complete metrics in hy-
perbolic space, all being conformal to the Poincaré-metric and all having the same
constant Q-curvature. This result is in strict contrast with the corresponding problem
involving constant negative scalar curvature.
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We conclude the discussion of semilinear elliptic problems with some obser-
vations on fourth order problems with supercritical growth. Corresponding second
order results heavily rely on the use of maximum principles and constructions of
many refined auxiliary functions having some sub- or supersolution property. Such
techniques are not available at all for the fourth order problems. In symmetric situa-
tions, however, they could be replaced by different tools so that many of the results
being well established for second order equations do indeed carry over to the fourth
order ones.

A Dirichlet problem for Willmore surfaces of revolution

A frame invariant modeling of elastic deformations of surfaces like thin plates or
biological membranes gives rise to variational integrals involving curvature and area
terms. A special case is the Willmore functional∫

Γ

H2 dω,

which up to a boundary term is conformally invariant. Here H denotes the mean
curvature of the surface Γ in R3. Critical points of this functional are called
Willmore surfaces, the corresponding Euler-Lagrange equation is the so-called
Willmore equation. It is quasilinear, of fourth order and elliptic. While a num-
ber of beautiful results have been recently found for closed surfaces, see e.g.
[35, 156, 262, 263, 264, 371], only little is known so far about boundary value prob-
lems since the difficulties mentioned earlier being typical for fourth order problems
due to a lack of maximum principles add here to the difficulty that the ellipticity
of the equation is not uniform. The latter reflects the geometric nature of the equa-
tion and gives rise e.g. to the problem that minimising sequences for the Willmore
functional are in general not bounded in the Sobolev space H2. In this book we
confine ourselves to a very special situation, namely the Dirichlet problem for sym-
metric Willmore surfaces of revolution. Here, by means of some refined geometric
constructions, we succeed in considering minimising sequences of the Willmore
functional subject to Dirichlet boundary conditions and with suitable additional C1-
properties thereby gaining weak H2- and strong C1-compactness. We expect the
theory of boundary value problems for Willmore surfaces to develop rapidly and
consider this chapter as one contribution to outline directions of possible future re-
search in quasilinear geometric fourth order equations.
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Chapter 1
Models of higher order

The goal of this chapter is to explain in some detail which models and equations
are considered in this book and to provide some background information and com-
ments on the interplay between the various problems. Our motivation arises on the
one hand from equations in continuum mechanics, biophysics or differential geom-
etry and on the other hand from basic questions in the theory of partial differential
equations.

In Section 1.1, after providing a few historical and bibliographical facts, we recall
the derivation of several linear boundary value problems for the plate equation. In
Section 1.8 we come back to this issue of modeling thin elastic plates where the full
nonlinear differential geometric expressions are taken into account. As a particular
case we concentrate on the Willmore functional, which models the pure bending en-
ergy in terms of the squared mean curvature of the elastic surface. The other sections
are mainly devoted to outlining the contents of the present book. In Sections 1.2-
1.4 we introduce some basic and still partially open questions concerning qualitative
properties of solutions of various linear boundary value problems for the linear plate
equation and related eigenvalue problems. Particular emphasis is laid on positivity
and – more generally – “almost positivity” issues. A significant part of the present
book is devoted to semilinear problems involving the biharmonic or polyharmonic
operator as principal part. Section 1.5 gives some geometric background and moti-
vation, while in Sections 1.6 and 1.7 semilinear problems are put into a context of
contributing to a theory of nonlinear higher order problems.

1.1 Classical problems from elasticity

Around 1800 the physicist Chladni was touring Europe and showing, among other
things, the nodal line patterns of vibrating plates. Jacob Bernoulli II tried to model
these vibrations by the fourth order operator ∂ 4

∂x4 + ∂ 4

∂y4 [54]. His model was not
accepted, since it is not rotationally symmetric and it failed to reproduce the nodal
line patterns of Chladni. The first use of ∆ 2 for the modeling of an elastic plate

1



2 1 Models of higher order

is attributed to a correction of Lagrange of a manuscript by Sophie Germain from
1811.

For historical details we refer to [79, 249, 324, 397]. For a more elaborate history
of the biharmonic problem and the relation with elasticity from an engineering point
of view one may consult a survey of Meleshko [299]. This last paper also contains a
large bibliography so far as the mechanical engineers are interested. Mathematically
interesting questions came up around 1900 when Almansi [8, 9], Boggio [62, 63]
and Hadamard [221, 222] addressed existence and positivity questions.

In order to have physically meaningful and mathematically well-posed problems
the plate equation ∆ 2u = f has to be complemented with prescribing a suitable set
of boundary data. The most commonly studied boundary value problems for second
order elliptic equations are named Dirichlet, Neumann and Robin. These three types
appear since they have a physical meaning. For fourth order differential equations
such as the plate equation the variety of possible boundary conditions is much larger.
We will shortly address some of those that are physically relevant. Most of this book
will be focussed on the so-called clamped case which is again referred to by the
name of Dirichlet. An early derivation of appropriate boundary conditions can be
found in a paper by Friedrichs [173]. See also [58, 141]. The following derivation is
taken from [387].

1.1.1 The static loading of a slender beam

If u(x) denotes the deviation from the equilibrium of the idealised one-dimensional
beam at the point x and p(x) is the density of the lateral load at x, then the elastic
energy stored in the bending beam due to the deformation consists of terms that
can be described by bending and by stretching. This stretching occurs when the
horizontal position of the beam is fixed at both endpoints. Assuming that the elastic
force is proportional to the increase of length, the potential energy density for the
beam fixed at height 0 at the endpoints a and b would be

Jst(u) =
∫ b

a

(√
1+u′(x)2−1

)
dx.

For a string one neglects the bending and, by adding a force density p, one finds

J(u) =
∫ b

a

(√
1+u′(x)2−1− p(x)u(x)

)
dx.

For a thin beam one assumes that the energy density stored by bending the beam is
proportional to the square of the curvature:

Jsb(u) =
∫ b

a

u′′(x)2

(1+u′(x)2)3

√
1+u′(x)2 dx. (1.1)
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Formula (1.1) for Jsb highlights the curvature and the arclength. A two-dimensional
analogue of this functional is the Willmore functional, which is discussed below in
Section 1.8. Note that the functional Jsb does not include a term that corresponds to
an increase in the length of the beam which would occur if the ends are fixed and
the beam would bend. That is, the function in H2 ∩H1

0 (a,b) minimising Jsb(u)−∫ b
a pu dx should be an approximation for the so-called supported beam which is

free to move in horizontal directions at its endpoints.
For small deformations of a beam an approximation that takes care of stretching,

bending and a force density would be

J(u) =
∫ b

a

( 1
2 u′′(x)2 + c

2 u′(x)2− p(x)u(x)
)

dx,

where c > 0 represents the initial tension of the beam which is also fixed horizontally
at the endpoints.

The linear Euler-Lagrange equation that arises from this situation contains both
second and fourth order terms:

u′′′′− cu′′ = p. (1.2)

If one lets the beam move freely at the boundary points (and in the case of zero initial
tension), one arrives at the simplest fourth order equation u′′′′ = p. This differential
equation may be complemented with several boundary conditions.

Fig. 1.1 The depicted boundary condition for the left endpoints of these four beams is “clamped”.
The boundary conditions for the right endpoints are respectively “hinged” and “simply supported”
on the left; on the right one finds “free” and one that allows vertical displacement but fixes the
derivative by a sliding mechanism.

The mathematical formulation that corresponds to the boundary conditions in
Figure 1.1 are as follows:

• Clamped: u(a) = 0 = u′(a), also known as homogeneous Dirichlet boundary con-
ditions.

• Hinged: u(b) = 0 = u′′(b), also known as homogeneous Navier boundary condi-
tions. This is not a real hinged situation since the vertical position is fixed but the
beam is allowed to slide in the hinge itself.

• Simply supported: max(u(b),0)u′′′(b) = 0 = u′′(b). In applications, when the
force is directed downwards, this boundary condition simplifies to the hinged
one u(b) = 0 = u′′(b). However, when upward forces are present it might happen
that u(b) > 0 and then the natural boundary condition u′′′(b) = 0 appears.
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• Free: u′′′(b) = 0 = u′′(b).
• Free vertical sliding but with fixed derivative: u′(b) = u′′′(b) = 0.

The second and third order derivatives appear as natural boundary conditions by
the derivation of the strong Euler-Lagrange equations.

If the beam would be moving in an elastic medium, then, again for small devia-
tions one adds a further term to J and finds

J(u) =
∫ b

a

( 1
2 (u′′)2 + γ

2 u2− pu
)

dx.

This leads to the Euler-Lagrange equation u′′′′+ γu = p.

Also a suspension bridge may be seen as a beam of given length L, with hinged
ends and whose downward deflection is measured by a function u(x, t) subject to
three forces. These forces can be summarised as the stays holding the bridge up as
nonlinear springs with spring constant k, the constant weight per unit length of the
bridge W pushing it down, and the external forcing term f (x, t). This leads to the
equation {

utt + γuxxxx =−ku+ +W + f (x, t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,
(1.3)

where γ is a physical constant depending on the beam, Young’s modulus, and the
second moment of inertia. The model leading to (1.3) is taken from the survey papers
[270, 295].

The famous collapse of the Tacoma Narrows Bridge, see [16, 61], was the con-
sequence of a torsional oscillation. McKenna [295, p. 106] explains this fact as fol-
lows.

A large vertical motion had built up, there was a small push in the torsional direction to
break symmetry, the instability occurred, and small aerodynamic torsional periodic forces
were sufficient to maintain the large periodic torsional motions.

For this reason, a major role is played by travelling waves. If one neglects the
effect of external forces and normalises all the constants, then (1.3) becomes

utt +uxxxx =−u+ +1 . (1.4)

In order to find travelling waves, one seeks solutions of (1.4) for (x, t) ∈ R2 of the
kind u(x, t) = 1 + y(x− ct) where c > 0 denotes the speed of propagation. Hence,
the function y satisfies the fourth order ordinary differential equation

y′′′′+ c2y′′+(y+1)+−1 = 0 in R .

This is a nonlinear version of (1.2). We refer to the papers [270, 271, 295, 297, 298]
and references therein for variants of these equations and for a number of results
and open problems related to suspension bridges.
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1.1.2 The Kirchhoff-Love model for a thin plate

As for the beam we assume that the plate, the vertical projection of which is the
planar region Ω ⊂ R2, is free to move horizontally at the boundary. Then a simple
model for the elastic energy is

J(u) =
∫

Ω

(
1
2 (∆u)2 +(1−σ)

(
u2

xy−uxxuyy
)
− f u

)
dxdy, (1.5)

where f is the external vertical load. Again u is the deflection of the plate in ver-
tical direction and, as above for the beam, first order derivatives are left out which
indicates that the plate is free to move horizontally.

This modern variational formulation appears already in [173], while a discussion
for a boundary value problem for a thin elastic plate in a somehow old fashioned
notation is made already by Kirchhoff [249]. See also the two papers of Birman
[57, 58], the books by Mikhlin [303, §30], Destuynder-Salaun [141], Ciarlet [102],
or the article [103] for the clamped case.

In (1.5) σ is the Poisson ratio, which is defined by σ = λ

2(λ+µ) with the so-called
Lamé constants λ ,µ that depend on the material. For physical reasons it holds that
µ > 0 and usually λ ≥ 0 so that 0 ≤ σ < 1

2 . Moreover, it always holds true that
σ > −1 although some exotic materials have a negative Poisson ratio, see [265].
For metals the value σ lies around 0.3 (see [280, p. 105]). One should observe that
for σ >−1, the quadratic part of the functional (1.5) is always positive.

For small deformations the terms in (1.5) are taken as approximations being
purely quadratic with respect to the second derivatives of u of respectively twice
the squared mean curvature and the Gaussian curvature supplied with the factor
σ −1. For those small deformations one finds

1
2 (∆u)2 +(1−σ)

(
u2

xy−uxxuyy
)
≈ 1

2 (κ1 +κ2)
2− (1−σ)κ1κ2

= 1
2 κ

2
1 +σκ1κ2 + 1

2 κ
2
2 ,

where κ1, κ2 are the principal curvatures of the graph of u. Variational integrals
avoiding such approximations and involving the original expressions for the mean
and the Gaussian curvature are considered in Section 1.8 and lead as a special case
to the Willmore functional.

Which are the appropriate boundary conditions? For the clamped and hinged
boundary condition the natural settings, that is the Hilbert spaces for these two sit-
uations, are respectively H = H2

0 (Ω) and H = H2∩H1
0 (Ω). Minimising the energy

functional leads to the weak Euler-Lagrange equation 〈dJ(u),v〉= 0, that is∫
Ω

(∆u∆v+(1−σ)(2uxyvxy−uxxvyy−uyyvxx)− f v) dxdy = 0 (1.6)

for all v∈H. Let us assume both that minimisers u lie in H4(Ω) and that the exterior
normal ν = (ν1,ν2) and the corresponding tangential τ = (τ1,τ2) = (−ν2,ν1) are
well-defined. Then an integration by parts of (1.6) leads to
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0 =
∫

Ω

(
∆

2u− f
)

v dxdy +
∫

∂Ω

(
∂

∂ν
∆u
)

v ds

+ (1−σ)
∫

∂Ω

((
ν

2
1 −ν

2
2
)

uxy−ν1ν2 (uxx−uyy)
)

∂

∂τ
v ds

+
∫

∂Ω

(
∆u+(1−σ)

(
2ν1ν2uxy−ν

2
2 uxx−ν

2
1 uyy

)) ∂

∂ν
v ds. (1.7)

• Following [141] let us split the boundary ∂Ω in a clamped part Γ0, a hinged
part Γ1 and a free part Γ2 = ∂Ω\(Γ0∪Γ1), which are all assumed to be smooth.
Moreover, to keep our derivation simple, we assume that Γ2 has empty relative
boundary in ∂Ω , i.e. it is a union of connected components of ∂Ω .
On Γ0 one has u = uν = 0. The type of boundary conditions on Γ0 are generally
referred to as homogeneous Dirichlet.
On Γ1 one has u = 0 and may rewrite the second boundary condition that appears
from (1.7) as

∆u+(1−σ)
(
2uxyν1ν2−uxxν

2
2 −uyyν

2
1
)

= σ∆u+(1−σ)
(
2uxyν1ν2 +uxxν

2
1 +uyyν

2
2
)

= σ∆u+(1−σ)uνν = σ (uνν +κuν)+(1−σ)uνν

= uνν +σκuν = ∆u− (1−σ)κuν . (1.8)

Here κ is the curvature of the boundary. We use the sign convention that κ ≥ 0
for convex boundary parts and κ ≤ 0 for concave boundary parts.
On Γ2, which we recall to have empty relative boundary in ∂Ω , an integration by
parts along the boundary shows∫

Γ2

(
∂

∂ν
∆u
)

v ds+(1−σ)
∫

Γ2

((
ν

2
1 −ν

2
2
)

uxy−ν1ν2 (uxx−uyy)
)

∂

∂τ
v ds

=−
∫

Γ2

(1−σ)
(

uττν +
∂

∂ν
∆u
)

v ds.

Summarising, on domains with smooth Γ0,Γ1,Γ2 one finds the following bound-
ary value problem:

∆ 2u = f in Ω ,

u = ∂u
∂ν

= 0 on Γ0,

u = ∆u− (1−σ)κ
∂u
∂ν

= 0 on Γ1,

σ∆u+(1−σ)uνν = (1−σ)uττν + ∂

∂ν
∆u = 0 on Γ2.

The differential equation ∆ 2u = f is called the Kirchhoff-Love model for the
vertical deflection of a thin elastic plate.

• The clamped plate equation, i.e. the pure Dirichlet case when ∂Ω = Γ0, is as
follows: {

∆ 2u = f in Ω ,

u = ∂u
∂ν

= 0 on ∂Ω .
(1.9)
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Notice that σ does not play any role for clamped boundary conditions. In this
case, after an integration by parts like in (1.7), the elastic energy (1.5) becomes

J(u) =
∫

Ω

(
1
2 (∆u)2− f u

)
dx

and this functional has to be minimised over the space H2
0 (Ω).

• The physically relevant boundary value problem for the pure hinged case when
∂Ω = Γ1 reads as {

∆ 2u = f in Ω ,

u = ∆u− (1−σ)κ
∂u
∂ν

= 0 on ∂Ω .
(1.10)

See [141, II.18 on p. 42]. These boundary conditions are named after Steklov due
the first appearance in [379]. In this case, with an integration by parts like in (1.7)
and arguing as in (1.8), the elastic energy (1.5) becomes

J(u) =
∫

Ω

(
1
2 (∆u)2− f u

)
dx− 1−σ

2

∫
∂Ω

κ u2
ν dω; (1.11)

for details see the proof of Corollary 5.23. This functional has to be minimised
over the space H2∩H1

0 (Ω).
• On straight boundary parts κ = 0 holds and the second boundary condition in

(1.10) simplifies to ∆u = 0 on ∂Ω . The corresponding boundary value problem{
∆ 2u = f in Ω ,
u = ∆u = 0 on ∂Ω ,

(1.12)

is in general referred to as the one with homogeneous Navier boundary condi-
tions, see [141, II.15 on p. 41]. On polygonal domains one might naively expect
that (1.10) simplifies to (1.12). Unless σ = 1 this is an erroneous conclusion and
instead of κ

∂u
∂ν

one should introduce a Dirac-δ -type contribution at the corners.
See Section 2.7 and [293].

1.1.3 Decomposition into second order systems

Note that the combination of the boundary conditions in (1.12) or (1.10) allows for
rewriting these fourth order problems as a second order system{

−∆u = w and −∆w = f in Ω ,
u = 0 and w = 0 on ∂Ω ,

(1.13)

respectively {
−∆u = w and −∆w = f in Ω ,

u = 0 and w =−(1−σ)κ
∂u
∂ν

on ∂Ω .
(1.14)
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The boundary value problems in (1.13) can be solved consecutively. Indeed, for
smooth domains the solution u coincides with the minimiser in H2∩H1

0 (Ω) of

J(u) =
∫

Ω

(
1
2 (∆u)2− f u

)
dx. (1.15)

For domains with corners this is not necessarily true. For a reentrant corner a phe-
nomenon may occur that was first noticed by Sapondžyan, see Section 1.4.1 and
Example 2.33.

A splitting into a system of two consecutively solvable second order boundary
value problems is not possible for (1.14). Nevertheless, for convex domains we have
κ ≥ 0 and this fact turns (1.14) into a cooperative second order system for which
some of the techniques for second order equations apply. “Cooperative” means that
the coupling supports the sign properties of the single equations. Cooperative sys-
tems of second order boundary value problems are well-studied in the literature and
will not be addressed in this monograph.

A more intricate situation occurs for the clamped case where a similar approach
to split the fourth order problem into a system of second order equations results in{

−∆u = w and −∆w = f in Ω ,

u = ∂

∂ν
u = 0 and — on ∂Ω .

(1.16)

For most questions such a splitting has not yet appeared to be very helpful. The first
boundary value problem has too many boundary conditions, the second one none at
all. Techniques for second order equations, however, can be used e.g. in numerical
approximations, when the problem is put as follows. Find stationary points (u,w) ∈
H1

0 (Ω)×H1 (Ω) of

F (u,w) =
∫

Ω

(
∇u ·∇w− f u− 1

2
w2
)

dx. (1.17)

The weak Euler-Lagrange equation becomes

〈dF(u,w),(ϕ,ψ)〉=
∫

Ω

(∇u ·∇ψ +∇ϕ ·∇w− f ϕ−w ψ) dx = 0 (1.18)

for all (ϕ,ψ) ∈ H1
0 (Ω)×H1 (Ω). Assuming u,w ∈ H2 (Ω), an integration by parts

gives ∫
∂Ω

∂

∂ν
u ψ dω +

∫
Ω

(−∆u−w) ψ dx+
∫

Ω

(−∆w− f ) ϕ dx = 0.

Testing with (ϕ,ψ) ∈H1
0 (Ω)×H1 (Ω) we find u ∈H2

0 (Ω), −∆u = w and −∆w =
f , thereby recovering (1.16) as Euler-Lagrange-equation for the functional F in
(1.17).

The formulation in (1.18) can be used to construct approximate solutions using
piecewise linear finite elements instead of the C1,1 elements that are necessary for
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functionals containing second order derivatives. For smooth domains one may show
that the stationary points of (1.15) and (1.17) coincide. For nonsmooth domains sim-
ilar phenomena like the Babuška paradox might appear, which is described below
in Section 1.4.2, see also Section 2.7.

1.2 The Boggio-Hadamard conjecture for a clamped plate

Since maximum principles do not only allow for proving nice results on geometric
properties of solutions of second order elliptic problems but are also extremely im-
portant technical tools in this field, one might wonder in how far such results still
hold in higher order boundary value problems. First of all it is an obvious remark
that a general maximum principle can no longer be true. The biharmonic functions
x 7→ ±|x|2 have a strict global minimum or maximum respectively in any domain
containing the origin. On the other hand, it may be reasonable to ask for positivity
preserving properties of boundary value problems, i.e. whether positive data yield
positive solutions. In physical terms this question may be rephrased as follows:

Does upwards pushing of a plate yield upwards bending?

The answer, of course, depends on the model considered and on the imposed
boundary conditions. For instance, in the Dirichlet problem for the plate equation∆

2u = f in Ω ,

u =
∂u
∂ν

= 0 on ∂Ω ,
(1.19)

there is – at least no obvious way – to take advantage of second order comparison
principles and in this sense, it may be considered as the prototype of a “real” fourth
order boundary value problem. On the other hand, the plate equation complemented
with Navier boundary conditions (1.12) can be written as a system of two second
order boundary value problems and enjoys a sort of comparison principle. In par-
ticular, under these conditions it is obvious that f ≥ 0 implies that u≥ 0. However,
when adding lower order perturbations, the case of a so-called noncooperative cou-
pling may occur and this simple argument breaks down. In this case, the positivity
issue becomes quite involved also under Navier boundary conditions, see e.g. [309].

A significant part of the present book will be devoted to discussing the following
mathematical question.

What remains true of: “ f ≥ 0 in the clamped plate boundary value problem (1.19) implies
positivity of the solution u≥ 0”?

In view of the representation formula

u(x) =
∫

B
G∆ 2,Ω (x,y) f (y)dy,
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one equivalently may wonder whether the corresponding Green function is positive
or even strictly positive, i.e. G∆ 2,Ω > 0? Lauricella ([268], 1896) found an explicit
formula for G∆ 2,Ω in the special case of the unit disk Ω = B := B1(0) ⊂ R2. Bog-
gio ([63, p. 126], 1905) generalised this formula to the Dirichlet problem for any
polyharmonic operator (−∆)m in any ball in any Rn and found a particularly ele-
gant expression for the Green function, see Lemma 2.27. In case of the biharmonic
operator in the two-dimensional disk B⊂ R2, this formula reads:

G∆ 2,B(x,y) =
1

8π
|x− y|2

∣∣∣|x|y− x
|x|

∣∣∣/|x−y|∫
1

(v2−1)
v

dv > 0. (1.20)

Positivity is here quite obvious since∣∣∣∣|x|y− x
|x|

∣∣∣∣2−|x− y|2 = (1−|x|2)(1−|y|2) > 0.

Almansi ([8], 1899) found an explicit construction for solving ∆ 2u = 0 with pre-
scribed boundary data for u and uν on domains Ω ⊂ R2 with Ω = p(B) and
p : B→Ω being a conformal polynomial mapping. Probably inspired by Almansi’s
result and supported by physically plausible behaviour of plates, Boggio conjec-
tured (see [221, 222]) that for the clamped plate boundary value problem (1.19), the
Green function is always positive.

In 1908, Hadamard [222] already knew that this conjecture fails e.g. in annuli
with small inner radius (see also [316]). He writes that Boggio had mentioned to
him that the conjecture was meant for simply connected domains. In [222] he also
writes:

Malgré l’absence de démonstration rigoureuse, l’exactitude de cette proposition ne paraı̂t
pas douteuse pour les aires convexes.

Accordingly the conjecture of Boggio and Hadamard may be formulated as fol-
lows:

The Green function G∆ 2,Ω for the clamped plate boundary value problem on convex do-
mains is positive.

Using the explicit formula from [8] for the “limaçons de Pascal”, see Figure 1.2,
Hadamard in [222] even claimed to have proven positivity of the Green function
G∆ 2,Ω when Ω is such a limaçon.

However, after 1949 numerous counterexamples ([107, 108, 150, 176, 252, 278,
326, 367, 370, 389]) disproved the positivity conjecture of Boggio and Hadamard.
The first result in this direction came by Duffin ([150, 152]), who showed that the
Green function changes sign on a long rectangle. A most striking example was found
by Garabedian. He could show change of sign of the Green function in ellipses with
ratio of half axes ≈ 1.6 ([176], [177, p. 275]). For an elementary proof of a slightly
weaker result see [370]. Hedenmalm, Jakobsson and Shimorin [226] mention that
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sign change occurs already in ellipses with ratio of half axes≈ 1.2. Nakai and Sario
[317] give a construction how to extend Garabedian’s example also to higher dimen-
sions. Sign change is also proven by Coffman-Duffin [108] in any bounded domain
containing a corner, the angle of which is not too large. Their arguments are based
on previous results by Osher and Seif [326, 367] and cover, in particular, squares.
This means that neither in arbitrarily smooth uniformly convex nor in rather sym-
metric domains the Green function needs to be positive. Moreover, in [120] it has
been proved that Hadamard’s claim for the limaçons is not correct. Limaçons are a
one-parameter family with circle and cardioid as extreme cases. For domains close
enough to the cardioid, the Green function is no longer positive. Surprisingly, the
extreme case for positivity is not convex. Hence convexity is neither sufficient nor
necessary for a positive Green function. One should observe that in one dimension
any bounded interval is a ball and so, one always has positivity there thanks to Bog-
gio’s formula.

For the history of the Boggio-Hadamard conjecture one may also see Maz’ya’s
and Shaposhnikova’s biography [294] of Hadamard.

Fig. 1.2 Limaçons vary from circle to cardioid. The fifth limaçon from the left is critical for a
positive Green function.

Despite the fact that the Green function is usually sign changing, it is very hard
to find real world experiments where loss of positivity preserving can be observed.
Moreover, in all numerical experiments in smooth domains, it is very difficult to
display the negative part and heuristically, one feels that the negative part of G∆ 2,Ω

– if present at all – is small in a suitable sense compared with the “dominating”
positive part. We refine the Boggio-Hadamard conjecture as follows:

In arbitrary domains Ω ⊂ Rn, the negative part of the biharmonic Green’s function G∆ 2,Ω
is small relative to the singular positive part. In the investigation of nonlinear problems,
the negative part is technically disturbing but it does not give rise to any substantial addi-
tional assumption in order to have existence, regularity, etc. when compared with analogous
second order problems.

The present book may be considered as a first contribution to the discussion
of this conjecture and Chapters 5 and 6 are devoted to it. Chapter 4 provides the
necessary kernel estimates. Let us mention some of those results which we have
obtained so far to give support to this conjecture. For any smooth domain Ω ⊂ Rn

(n≥ 2) we show that there exists a constant C = C(Ω) such that for the biharmonic
Green’s function G∆ 2,Ω under Dirichlet boundary conditions one has the following
estimate from below:

G∆ 2,Ω (x,y)≥−C dist(x,∂Ω)2 dist(y,∂Ω)2.
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This means that although in general, G∆ 2,Ω has a nontrivial negative part, this be-
haves completely regular and is in this respect not affected by the singularity of the
Green’s function. Qualitatively, only its positive part is affected by its singularity.
See Theorem 6.24 and the subsequent remarks. Moreover, in Theorems 6.3 and 6.29
we show that positivity in the Dirichlet problem for the biharmonic operator does
hold true not only in balls but also in smooth domains which are close to balls in
a suitably strong sense. Although being a perturbation result it is not just a conse-
quence of continuous dependence on data. The problem in proving positivity for
Green’s functions consists in gaining uniformity when their singularities approach
the boundaries.

Finally, in Section 5.4 positivity issues for the biharmonic operator under Steklov
boundary conditions are addressed. With respect to positivity it may be considered,
at least in some cases, to be intermediate between Dirichlet conditions on the one
hand and Navier boundary conditions on the other hand, see Theorems 5.26 and
5.27.

1.3 The first eigenvalue

It is well-known that for general second order elliptic Dirichlet problems the eigen-
function ϕ1 that corresponds to the first eigenvalue is of one sign. In case of the
Laplacian such a result can be proven directly sticking to the variational characteri-
sation of the first eigenvalue

Λ1,1 := min
v∈H1

0 \{0}

∫
|∇v|2 dx∫
|v|2 dx

=
∫
|∇ϕ1|2 dx∫
|ϕ1|2 dx

by comparing |ϕ1| with ϕ1. For quite general and even non-selfadjoint second order
Dirichlet problems the same result is proven by using more abstract results such as
the Kreı̆n-Rutman theorem. The first approach uses the truncation method and so,
a version of the maximum principle, while the Kreı̆n-Rutman theorem requires the
presence of a comparison principle. A simple alternative is provided by the dual
cone method of Moreau [311]. This approach, which is explained in Section 3.1.2,
is on one hand restricted to a symmetric setting in a Hilbert space but on the other
hand, can also be applied in semilinear problems.

Considering Ω 7→ Λ1,1(Ω) in dependence of the domains Ω being subject to
having all the same volume as the unit ball B ⊂ Rn one may wonder whether this
map is minimised for Ω = B. Indeed, this was proved by Faber-Krahn [162, 253,
254] and, moreover, balls of radius 1 are the only minimisers.
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1.3.1 The Dirichlet eigenvalue problem

Whenever the biharmonic operator under Dirichlet boundary conditions has a
strictly positive Green’s function, the first eigenvalue Λ2,1 is simple and the cor-
responding first eigenfunction is of fixed sign, see Section 3.1.3. Related to the first
eigenvalue is a question posed by Lord Rayleigh in 1894 in his celebrated mono-
graph [350]. He studied the vibration of (planar) plates and conjectured that among
domains of given area, when the edges are clamped, the form of gravest pitch is
doubtless the circle, see [350, p. 382]. This corresponds to saying that

Λ2,1(B)≤Λ2,1(Ω) whenever |Ω |= π (1.21)

for planar domains (n = 2). Szegö [388] assumed that in any domain the first eigen-
function for the clamped plate has always a fixed sign and proved that this hypoth-
esis would imply the isoperimetric inequality (1.21). The assumption that the first
eigenfunction is of fixed sign, however, is not true as Duffin pointed out. In [152],
where he explains some counterexamples, he referred to this assumption as Szegö’s
conjecture on the clamped plate. Details of these counterexamples can be found in
[153, 154, 155].

Subsequently, concerning Rayleigh’s conjecture, Mohr [310] showed in 1975
that if among all domains of given area there exists a smooth minimiser for Λ2,1
then the domain is a disk. However, he left open the question of existence. In 1981,
Talenti [392] extended Szegö’s result in two directions. He showed that the state-
ment remains true under the weaker assumption that the nodal set of the first eigen-
function ϕ1 of (3.1) is empty or is included in {x ∈Ω ; ∇ϕ1 = 0}. This result holds
in any space dimension n ≥ 2. Moreover, for general domains, instead of (1.21) he
showed that

CnΛ2,1(B)≤Λ2,1(Ω) whenever |Ω |= en

where 0.5 < Cn < 1 is a constant depending on the dimension n. These constants
were increased by Ashbaugh-Laugesen [24] who also showed that Cn→ 1 as n→∞.

A complete proof of Rayleigh’s conjecture was finally obtained one century later
than the conjecture itself in a celebrated paper by Nadirashvili [315]. This result was
immediately extended by Ashbaugh-Benguria [22] to the case of domains in R3.

More results about the positivity of the first eigenfunction in general domains
and a proof of Rayleigh’s conjecture can be found in Chapter 3.

1.3.2 An eigenvalue problem for a buckled plate

In 1910, Th. von Kármán [403] described the large deflections and stresses produced
in a thin elastic plate subject to compressive forces along its edge by means of a sys-
tem of two fourth order elliptic quasilinear equations. For a derivation of this model
from three dimensional elasticity one may also see [174] and references therein. An
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interesting phenomenon associated with this nonlinear model is the appearance of
“buckling”, namely the plate may deflect out of its plane when these forces reach a
certain magnitude. We also refer to more recent work in [48, 101].

The linearisation of the von Kármán equations for an elastic plate over planar
domains Ω ⊂ R2 under pressure leads to the following eigenvalue problem{

∆ 2u =−µ∆u in Ω ,
u = ∆u− (1−σ)κuν = 0 on ∂Ω .

(1.22)

Miersemann [301] studied this eigenvalue problem and he was one of the first to ap-
ply the dual cone setting of Moreau [311] to a fourth order boundary value problem.
He could show that on convex C2,γ -domains the first eigenvalue for (1.22) is simple
and that the corresponding eigenfunction is of fixed sign. The setting introduced by
Moreau will be also most convenient for a number of nonlinear problems as we shall
outline in Chapters 3 and 7, see in particular Sections 7.2.3 and 7.3.

We also consider the Dirichlet eigenvalue problem{
∆ 2u =−µ∆u in Ω ,
u = uν = 0 on ∂Ω ,

(1.23)

related to (1.22) and where the least eigenvalue µ1(Ω) represents the buckling load
of a clamped plate. Inspired by Rayleigh’s conjecture (1.21), Pólya-Szegö [343,
Note F] conjectured that

µ1(B)≤ µ1(Ω) whenever |Ω |= π (1.24)

for any bounded planar domain Ω ⊂R2. And again, using rearrangement techniques
they proved (1.24) under the assumption that the solution u to (1.23) is positive, see
[343, 388]. Unfortunately, as for the clamped plate eigenvalue, this property fails
in general, for instance in the square (0,1)2, see Wieners [412]. Without imposing
this sign assumption on the first eigenfunction, Ashbaugh-Laugesen [24] proved the
bound γµ1(B)≤ µ1(Ω) whenever |Ω |= π for γ = 0.78 . . . which is, of course, much
weaker than (1.24).

A complete proof of (1.24) is not yet known. A quite well established strategy
which could be used to prove (1.24) involves shape derivatives, see e.g. [228]. It
mainly consists in three steps.

1. In a suitable class of domains, prove the existence of a minimiser Ωo for the map
Ω 7→ µ1(Ω).

2. Prove that ∂Ωo is smooth, for instance ∂Ωo ∈C2,γ , in order to be able to compute
the derivative of Ω 7→ µ1(Ω) and to impose that it vanishes when Ω = Ωo.

3. Exploit the just obtained stationarity condition, which usually gives an overde-
termined condition on ∂Ωo, to prove that Ωo is a ball.

In Section 3.2 we show how Item 1 has been successfully settled by Ashbaugh-
Bucur [23] and how Item 3 has been achieved by Weinberger-Willms [415], see
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also [244, Proposition 4.4]. Therefore, for a complete proof of (1.24), “only” Item
2 is missing!

1.3.3 A Steklov eigenvalue problem

Usually, eigenvalue problems arise when one studies oscillation modes in the re-
spective time dependent problem in order to have a physically well motivated theory
and representation of solutions.

However, in what follows, a most natural motivation for considering a further
eigenvalue problem comes from a seemingly quite different mathematical question.
We explain how L2-estimates for the Dirichlet problem for harmonic functions link
with the Steklov eigenvalue problem for biharmonic functions.

Let Ω ⊂ Rn be a bounded smooth domain and consider the problem{
∆u = 0 in Ω ,
u = g on ∂Ω ,

(1.25)

where g ∈ L2(∂Ω). It is well-known that (1.25) admits a unique solution u ∈
H1/2(Ω) ⊂ L2(Ω), see e.g. [275, Remarque 7.2, p. 202] and also [237, 238] for
an extension to nonsmooth domains. One is then interested in a priori estimates,
namely in determining the sharp constant CΩ such that

‖u‖L2(Ω) ≤CΩ‖g‖L2(∂Ω).

By Fichera’s principle of duality [170] (see also Section 3.3.2) one sees that CΩ

coincides with the inverse of the first Steklov eigenvalue δ1 = δ1(Ω), namely the
smallest constant a such that the problem{

∆ 2u = 0 in Ω ,
u = ∆u−auν = 0 on ∂Ω ,

(1.26)

admits a nontrivial solution. Notice that the “true” eigenvalue problem for the hinged
plate equation should include the curvature in the second boundary condition, see
(1.8). The map Ω 7→ δ1(Ω) has several surprising properties which we establish
in Section 3.3.2. By rescaling, one sees that δ1(kΩ) = k−1δ1(Ω) for any bounded
domain Ω and any k > 0 so that δ1(kΩ)→ 0 as k→ ∞. One is then led to seek
domains which minimise δ1 under suitable constraints, the most natural one being
the volume constraint. Smith [373] stated that, analogously to the Faber-Krahn result
[162, 253, 254], the minimiser for δ1 should exist and be a ball, at least for planar
domains. But, as noticed by Kuttler and Sigillito, the argument in [373] contains a
gap. In the “Note added in proof” in [374, p. 111], Smith writes:

Although the result is probably true, a correct proof has not yet been found.
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A few years later, Kuttler [258] proved that a (planar) square has a first Steklov
eigenvalue δ1(Ω) which is strictly smaller than the one of the disk having the same
measure. The estimate by Kuttler was subsequently improved in [165]. Therefore,
it is not true that δ1(Ω ∗) ≤ δ1(Ω) where Ω ∗ denotes the spherical rearrangement
of Ω . For this reason, Kuttler [258] suggested a different minimisation problem
with a perimeter constraint; in [258, Formula (11)] he conjectures that a planar disk
minimises δ1 among all domains having fixed perimeter. He provides numerical ev-
idence that on rectangles his conjecture seems true, see also [259, 261]. In Theorem
3.24 we show that also this conjecture is false and that an optimal shape for δ1 does
not exist under a perimeter constraint in any space dimension n ≥ 2. In fact, under
such a constraint, the infimum of δ1 is zero.

The spectrum of (1.26) has a nice application in functional analysis. In Section
3.3.1 we show that the closure of the space spanned by the Steklov eigenfunctions
is the orthogonal complement of H2

0 (Ω) in H2∩H1
0 (Ω).

1.4 Paradoxes for the hinged plate

The most common domains for plate problems that appear in engineering are poly-
gonal ones. On the straight boundary parts of a polygonal domain the hinged bound-
ary conditions (1.10) lead to Navier boundary conditions (1.12). Without taking care
of a possible singularity due to “κ = ∞” in the corners it would mean that the so-
lution no longer depends on the Poisson ratio σ . Sapondžyan [357] noticed that
the solution one obtains by solving (1.12) iteratively does not necessarily have a
bounded energy. Babuška noticed in [28] that the difference between (1.10) and
(1.12) would mean that by approximating a curvilinear domain by polygons, as is
done in most finite elements methods, the approximating solutions would not con-
verge to the solution on the curvilinear domain.

Although both paradoxes are usually referred to by the name Babuška, they do
cover different phenomena as we will explain in more detail.

1.4.1 Sapondžyan’s paradox by concave corners

One might expect that the problem that appeared in these paradoxes is due to a
boundary condition not being well-defined in corners. Indeed, the curvature that
appears in the boundary condition is singular and apparently leads to a δ -distribution
type contribution. By adding appropriate extra terms in the corners there is some
hope to find the real solution. The situation for reentrant corners can be ‘worse’.
Due to Kondratiev [65, 251], Maz’ya et al. [288, 289], Grisvard [199] and many
others, it is well-known that corners may lead to a loss of regularity. It is less known
that a corner may lead to multiple solutions, that is, the solution depends crucially
on the space that one chooses.
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An example where two different solutions appear naturally from two straightfor-
ward settings goes as follows. Both fourth order boundary value problems, hinged or
Steklov (1.10) as well as Navier (1.12) boundary conditions, allow a reformulation
as a coupled system, see (1.14) and (1.13), respectively. In the latter case, one tends
to solve by an iteration of the Green operator for the second order Poisson problem.
This approach works fine for bounded smooth domains, but whenever the domain
has a nonconvex corner, one does not necessarily get the solution one is looking for.
Indeed, for the fourth order problem the natural setting for a weak solution to the
Navier boundary value problem would be H2∩H1

0 (Ω). The second Navier bound-
ary condition ∆u = 0 would follow naturally on smooth boundary parts from the
weak formulation where u satisfies∫

Ω

(∆u∆ϕ− f ϕ) dx = 0 for all ϕ ∈ H2∩H1
0 (Ω). (1.27)

However, for the system in (1.13) the natural setting is that one looks for function
pairs (u,v)∈H1

0 (Ω)×H1
0 (Ω). In [320] it is shown that for domains with a reentrant

corner both problems have a unique solution but the solutions u1 to (1.13) and u2
to (1.27) are different. Indeed, there exist a constant c f and a nontrivial biharmonic
function b that satisfies (1.13) with zero Navier boundary condition except in the
corner such that u1 = u2 + c f b. The related problem for domains with edges is con-
sidered in [319]. We refer to Section 2.7 for more details and an explicit example.

1.4.2 The Babuška paradox

In the original Babuška or polygon-circle paradox one considers problem (1.10) for
f = 1 and when Ω = Pm ⊂ B (m ≥ 3) is the interior of the regular polygon with
corners e2kπi/m for k ∈ N, namely{

∆ 2u = 1 in Pm,

u = ∆u = 0 on ∂Pm.

If um denotes the solution of this problem extended by 0 in B\Pm, it can be shown
that the sequence (um) converges uniformly to

u∞(x) :=
3
64
− 1

16
|x|2 +

1
64
|x|4

which is not the solution to the “limit problem” (where κ = 1), namely{
∆ 2u = 1 in B,

u = ∆u− (1−σ)κ
∂u
∂ν

= 0 on ∂B

unless σ = 1, see Figure 1.3.
For more details on this Babuška paradox see Section 2.7.
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...

Fig. 1.3 The Babuška or polygon-circle paradox. On polygonal domains (1.10)=(1.12); on curvi-
linear domains (1.10)6=(1.12). Approximating curvilinear domains by polygonal ones does not give
the correct limit solution to the hinged plate problem.

1.5 Paneitz-Branson type equations

Let (M ,g) be an n–dimensional Riemannian manifold with n > 4. The conformal
Laplacian is frequently studied and well understood and one may be interested in
higher order analogues. Again, the biharmonic case is particularly interesting. The
metric g is subject to a conformal change gu := u

4
n−4 g, u > 0, and one wonders about

the existence of a fourth order differential operator enjoying a conformal covariance
property such that for all ϕ ∈C∞(M ) one has

(Pn
4 )u(ϕ) = u−

n+4
n−4 (Pn

4 )(uϕ).

Here, Pn
4 denotes the desired operator with respect to the background metric g, while

(Pn
4 )u refers to the conformal metric gu. Indeed, Paneitz [329, 330] and Branson

[66, 67] found the following conformal covariant fourth order elliptic operator

Pn
4 := ∆

2−
n

∑
i, j=1

∇
i
(

(n−2)2 +4
2(n−1)(n−2)

Rgi j−
4

n−2
Ri j

)
∇

j +
n−4

2
Qn

4

on M , where ∆ = 1√
g ∂i
(√

ggi j∂ j
)

denotes the Laplace-Beltrami operator with re-
spect to g in local coordinates, Ri j the Ricci-tensor and R the scalar curvature. More-
over, ∇ jϕ = ∑

n
k=1 g jk∂kϕ gives the gradient of a function and

n

∑
i=1

∇
iZi =

n

∑
i, j=1

1
√

g
∂i
(√

ggi jZ j
)

the divergence of a covector field. A key role is played by the following fourth order
curvature invariant

Qn
4 :=− 2

(n−2)2 |(Ri j)|2 +
n3−4n2 +16n−16

8(n−1)2(n−2)2 R2− 1
2(n−1)

∆R,

the so-called Q-curvature. Here |(Ri j)|2 = ∑
n
i, j,k,` gi jgk`RikR j`. The transformation of

the corresponding Qn
4-curvature under this conformal change of metrics is governed

by the Paneitz equation

Pn
4 u =

n−4
2

(Qn
4)uu

n+4
n−4 . (1.28)
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In analogy to the second order Yamabe problem (for an overview see [381, Section
III.4]), obvious questions here concern the existence of conformal metrics with con-
stant or prescribed Q-curvature. Huge work has so far been done by research groups
around Chang-Yang-Gursky and Hebey, as well as many others. For a survey and
references see the books by Chang [89] and by Druet-Hebey-Robert [149]. Diffi-
cult problems arise from ensuring the positivity requirement of the conformal factor
u > 0 and from the necessity to know about the kernel of the Paneitz operator. These
problems have only been solved partly yet.

In order to explain the geometrical importance of the Q-curvature, we assume
now for a moment that the manifold (M ,g) is four-dimensional. Then, the Paneitz
operator is defined by

P4
4 := ∆

2−
4

∑
i, j=1

∇
i
(

2
3

Rgi j−2Ri j

)
∇

j

in such a way that under the conformal change of metrics gu = e2ug one has

(P4
4 )u(ϕ) = e−4uP4

4 (ϕ).

In order to achieve a prescribed Q-curvature on the four-dimensional manifold
(M ,gu), one has to find u solving

P4
4 u+2Q4

4 = 2Qe4u,

where Q4
4 is the curvature invariant

12Q4
4 =−∆R+R2−3|(Ri j)|2.

In this situation, one has the following Gauss-Bonnet-formula∫
M

(
Q+

1
8
|W |2

)
dS = 4π

2
χ(M ),

where W is the Weyl tensor and χ(M ) is the Euler characteristic. Since χ(M ) is a
topological and |W |2dS is a pointwise conformal invariant, this shows that

∫
M QdS

is a conformal invariant, which governs e.g. the existence of conformal Ricci pos-
itive metrics (see e.g. Chang-Gursky-Yang [90, 91]) and eigenvalue estimates for
Dirac operators (see Guofang Wang [407]). All these facts show that the Q-curvature
in the context of fourth order conformally covariant operators takes a role quite anal-
ogous to the scalar curvature with respect to second order operators.

Getting back to the general case n > 4, let us outline what we are going to prove
in the present book. We do not aim at giving an overview – not even of parts – of
the theory of Paneitz operators but at giving a spot on some aspects of this issue.
Namely, in Section 7.9 we address the question whether in specific bounded smooth
domains Ω ⊂ Rn (n > 4) there exists a metric gu = u4/(n−4)(δi j) being conformal
to the flat euclidean metric and subject to certain homogeneous boundary condi-
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tions such that it has strictly positive constant Q-curvature. In view of the nonexis-
tence results in Section 7.5.1 one expects that for generic domains the corresponding
boundary value problems do not have a positive solution. Hence, in geometrically
or topologically simple domains, such a conformal metric does in general not ex-
ist. Nevertheless, the boundary value problems have nontrivial solutions in topo-
logically or specific geometrically complicated domains (see Section 7.9). For the
Navier problem, i.e. u = ∆u = 0 on ∂Ω , one can also show positivity of u so that
it may be considered as a conformal factor and one has such a nontrivial conformal
metric as described above. Under Dirichlet boundary conditions, which could be
interpreted as vanishing of length and normal curvature of the conformal metric on
∂Ω , the positivity question has so far to be left open. The same difficulty prevents
Esposito and Robert [161] from solving the Q-curvature analogue of the Yamabe
problem.

In Section 7.10 the starting point is the hyperbolic ball B = B1(0)⊂ Rn which is
equipped with the Poincaré metric gi j = 4δi j/(1−|x|2)2. This metric has constant
Q-curvature Q ≡ 1

8 n(n2− 4) and we address the question, whether there are fur-
ther conformal metrics gu = u4/(n−4)g having the same constant Q-curvature such
that the resulting manifold is complete. Somehow surprisingly there exists infinitely
many such metrics and even infinitely many among them have negative scalar curva-
ture. This high degree of nonuniqueness is in sharp contrast with the corresponding
question for the scalar curvature. There is no further conformal complete metric
having the same constant negative curvature as g, see [279].

1.6 Critical growth polyharmonic model problems

The prototype to be studied is the semilinear polyharmonic eigenvalue problem{
(−∆)mu = λu+ |u|s−1u, u 6≡ 0 in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1.
(1.29)

Here Ω ⊂ Rn is a bounded smooth domain, n > 2m, λ ∈ R; s = (n+2m)/(n−2m)
is the critical Sobolev exponent. If m = 2 and λ = 0 we are back in the situation dis-
cussed in the previous section with a euclidean background metric. The existence
theory for (1.29) can be developed similarly to the second order case m = 1 while it
becomes immediately quite difficult or even impossible to prove positivity or nonex-
istence of certain solutions. In particular, thanks to a Pohožaev identity [339, 340]
one can exclude the existence of solutions to (1.29) in starshaped domains whenever
λ < 0 but as far as the limit case λ = 0 is considered, things change dramatically
in the two situations where m = 1 and m ≥ 2. With a suitable application of the
unique continuation principle (see e.g. [247, 345]), one can exclude when m = 1 the
existence of any solution to (1.29) in starshaped domains even for λ = 0. In order to
apply the same principle to (1.29) when m≥ 2 one would need to know the boundary
behaviour of more derivatives than those already included in the Dirichlet boundary
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conditions and provided by the Pohožaev identity. Therefore, when m ≥ 2 one can
try to prove nonexistence of positive solutions in strictly starshaped domains, see
Theorem 7.33 for the case m = 2. Unfortunately, this result is not satisfactory since
positivity is not ensured in general domains, see also the discussion in the next sec-
tion. So far, only in balls a more satisfactory discussion can be given. We refer to
Section 7.5.1 for an up-to-date state of the art.

A first natural question is then to find out whether the nonexistence result for
λ = 0 really depends on the geometry of the domain and starshapedness is not
just a technical assumption. The answer is positive. For instance, problem (1.29)
with m = 2 and λ = 0 admits a solution in domains with small holes and in some
contractible non-starshaped domains, see Section 7.9. A second natural question
then arises. Do the nonexistence results also depend on the boundary conditions
considered? It is known that (1.29) admits no positive solution if m = 2, λ = 0,
Ω is starshaped and Navier boundary conditions are considered, see [307, 398]
and also Section 7.6. Moreover, in Section 7.7 we address the same problem under
Steklov boundary conditions when m = 2 and Ω is a ball. We find all the values of
the boundary parameter a in (1.26) for which the critical growth equation in (1.29)
admits a positive solution.

Problem (1.29) in the case m = 1 has been studied extensively by Brezis-
Nirenberg [72] who also discovered an interesting phenomenon when Ω is the unit
ball. There exists a positive radial solution to (1.29) for every λ ∈ (0,Λ1,1) if n≥ 4
and for every λ ∈ ( 1

4Λ1,1,Λ1,1) if n = 3. Moreover, they could show that in the
latter case problem (1.29) has no nontrivial radial solution if λ ≤ 1

4Λ1,1. Here and
in the sequel Λm,1 denotes the first eigenvalue of (−∆)m in B under homogeneous
Dirichlet boundary conditions.

Pucci and Serrin [348] raised the question in which way this critical behaviour of
certain dimensions depends on the order 2m of the semilinear polyharmonic eigen-
value problem (1.29). They introduced the name critical dimensions.

Definition 1.1. Let Ω ⊂Rn be a ball. The dimension n is called critical if there is a
positive bound Λ > 0 such that a necessary condition for the existence of a nontrivial
radial solution to (1.29) is λ > Λ .

Pucci and Serrin [348] showed that for any m the dimension n = 2m+1 is critical
and, moreover, that n = 5,6,7 are critical in the fourth order problem, m = 2. They
suggested

Conjecture 1.2 (Pucci–Serrin).
The critical dimensions are precisely n = 2m+1, . . . ,4m−1.

In Section 7.5.2 we prove a weakened version of this conjecture. This nonex-
istence phenomenon has a functional analytic interpretation, which is reflected in
the possibility of adding L2–remainder terms in Sobolev inequalities with critical
exponent and optimal constants in any bounded domain Ω , see Section 7.8.
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1.7 Qualitative properties of solutions to semilinear problems

Radial symmetry of positive solutions to suitable semilinear higher order Dirichlet
problems in the ball is obtained thanks to a suitable implementation of the moving
planes procedure, see Section 7.1.2. One of the crucial steps in the moving planes
procedure consists in comparing the solution u in a segment of the ball with its
reflection ur across the hyperplane which bounds the segment, see e.g. [195, Lemma
2.2]. For second order problems the comparison follows from suitable versions of
the maximum principle since ur ≥ u holds a priori on the boundary of this segment.
This information however is not enough for higher order problems, and therefore the
classical moving planes method fails. We employ a different technique to carry out
the moving planes mechanism, using the integral representation of u in terms of the
Green function of the polyharmonic operator (−∆)m in B under Dirichlet boundary
conditions.

As repeatedly emphasised, linear higher order boundary value problems in gen-
eral do not enjoy a positivity preserving property. This feature may also be observed
in nonlinear problems. Let us illustrate this situation for the subcritical model prob-
lem corresponding to (1.29), namely{

(−∆)mu = λu+ |u|p−1u, u 6≡ 0 in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,
(1.30)

where 1 < p < s. Thanks to some compactness, which is not available for (1.29),
one may find a nontrivial solution to (1.30) as a suitable constrained minimum pro-
vided that λ < Λm,1. If m = 1 one can easily prove that such a minimum is positive
just by replacing it with its modulus and by applying the maximum principle. This
procedure fails in general if m≥ 2, even if Ω is a ball. This problem is discussed in
detail in Section 7.2.

Bifurcation branches of solutions to nonlinear problems depending on some pa-
rameter λ are often quite complicated to be figured out. The case where only pos-
itive solutions are considered is much simpler. This situation is well illustrated by
the so-called (second order) Gelfand problem [194, 239] where the nonlinearity is
of exponential type, namely λeu. A similar behaviour can be observed for the “ap-
proximate problem” where the nonlinearity is λ (1 + u)p. For this power-type non-
linearity, the bifurcation branch for the second order problem appears particularly
interesting in the supercritical case p > n+2

n−2 . In order to find out whether a similar
behaviour can also be observed in higher order problems, one has to face the pos-
sible lack of positivity of the solution. As already discussed in Section 1.2 this can
be overcome so far only in some particular situations, such as the case where Ω is
a ball. In Section 7.11 we carefully study the branch of solutions to this biharmonic
supercritical growth problem with the help of a suitable Lyapunov functional. Our
study also takes advantage of the radial symmetry of positive solutions in the ball.
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1.8 Willmore surfaces

At the beginning of this chapter the modeling of thin elastic plates was explained
in some detail. There, curvature expressions were somehow “linearised” in order
to have a purely quadratic behaviour of the leading terms of the energy functionals.
This simplification results in linear Euler-Lagrange equations, which are justified for
small deviations from a horizontal equilibrium shape. As soon as large deflections
occur or a coordinate system is chosen in such a way that the equilibrium shape is
not the x-y-plane, one has to stick to the frame invariant modeling of the bending
energy in terms of differential geometric curvature expressions. When compared
with the “linearised” energy integral (1.5) in Section 1.1, the integral∫

Γ

(
α +β (H−H0)2− γK

)
dω (1.31)

with suitable constants α,β ,γ,H0 may serve as a more realistic model for the bend-
ing and stretching energy of a thin elastic plate, which is described by a two-
dimensional manifold Γ ⊂ R3. Here, H denotes its mean and K its Gaussian cur-
vature. According to [324], α is related to the surface tension, β and γ are elastic
moduli, while one may think of H0 as some preferred “intrinsic” curvature due to
particular properties of the material under consideration. Physically reasonable as-
sumptions on the coefficients are α ≥ 0, 0≤ γ ≤ β , βγH2

0 ≤ α(β−γ), which ensure
the functional to be positive definite. For modeling aspects and a thorough expla-
nation of the meaning of each term we refer again to the survey article [324] by
Nitsche. A discussion of the full model (1.31), however, seems to be out of reach at
the moment, and for this reason one usually confines the investigation to the most
important and dominant term, i.e. the contribution of H2.

Given a smooth immersed surface Γ , the Willmore functional is defined by

W (Γ ) :=
∫

Γ

H2dω.

Apart from its meaning as a model for the elastic energy of thin shells or biological
membranes, it is also of great geometric interest, see e.g [413, 414]. Furthermore,
it is used in image processing for problems of surface restoration and image in-
painting, see e.g. [105] and references therein. In these applications one is usually
concerned with minima, or more generally with critical points of the Willmore func-
tional. It is well-known that the corresponding surface Γ has to satisfy the Willmore
equation

∆ΓH+2H(H2−K) = 0 on Γ , (1.32)

where ∆Γ denotes the Laplace-Beltrami operator on Γ with respect to the induced
metric. A solution of (1.32) is called a Willmore surface. An additional difficulty
here arises from the fact that ∆Γ depends on the unknown surface so that the equa-
tion is quasilinear. Moreover, the ellipticity is not uniform which, in the variational
framework, is reflected by the fact that minimising sequences may in general be un-
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bounded in H2. A difficult step is to pass to suitable minimising sequences enjoying
sufficient compactness in H2 and C1.

In the past years a lot of very interesting work has been done, mainly on closed
Willmore surfaces, see e.g. [35, 60, 156, 262, 263, 264, 287, 355, 361, 371, 372]. For
instance, one knows about minimisers of the Willmore energy of prescribed genus
and about global existence and convergence of the Willmore flow to the sphere
under explicit smallness assumptions which, by means of counterexamples, have
been proved to be sharp.

The situation changes if one considers boundary value problems. Except for
small data results, our knowledge is still somehow limited, see e.g. [50, 115, 116,
138, 360] and references therein.

Possible boundary value problems for the linear plate equation were discussed in
Section 1.1 above to some extent. In the nonlinear context here, one could discuss
the same issue, but now considering the geometric terms instead of their linearisa-
tions. For details again we refer to [324]. Here we will be concerned with a Dirich-
let problem for Willmore surfaces where, in some particularly symmetric situations,
results are available. These are not just small data results or application of linear
theory combined with the implicit function theorem. Let us mention an important
recent contribution by Schätzle [360]. He proved a general result concerning exis-
tence of branched Willmore immersions in Sn with boundary which satisfy Dirichlet
boundary conditions. Assuming the boundary data to obey some explicit geomet-
rically motivated smallness condition these immersions can even be shown to be
embedded. By working in Sn, some compactness problems could be overcome; on
the other hand, when pulling pack these immersions toRn it cannot be excluded that
they contain the point ∞. Moreover, in general, the existence of branch points cannot
be ruled out, and due to the generality of the approach, it seems to us that only lit-
tle topological information about the solutions can be extracted from the existence
proof. We think that it is quite interesting to identify situations where it is possi-
ble to work with a priori bounded minimising sequences or where solutions with
additional properties like e.g. being a graph or enjoying certain symmetry proper-
ties can be found. In view of the lack of general comparison principles and of the
highly nonlinear character of (1.32) this is a rather difficult task. In order to outline
directions of future research we think that it is a good strategy to investigate first
relatively special situations which e.g. enjoy some symmetry.

This is exactly the subject of Section 8. We restrict ourselves to surfaces of revo-
lution satisfying Dirichlet boundary conditions. In this class we can find minimising
sequences enjoying sufficient compactness properties thereby constructing a classi-
cal solution where a number of additional qualitative properties are obtained. While
the underlying differential equation is one-dimensional the geometry is already two-
dimensional. The interplay between mean and Gaussian curvature in (1.32) already
causes great difficulties.



Chapter 2
Linear problems

Linear polyharmonic problems and their features are essential in order to achieve the
main tasks of this monograph, namely the study of positivity and nonlinear prob-
lems. With no hope of being exhaustive, in this chapter we outline the main tools
and results, which will be needed subsequently. We start by introducing higher order
Sobolev spaces and relevant boundary conditions for polyharmonic problems. Then
using a suitable Hilbert space, we show solvability of a wide class of boundary value
problems. The subsequent part of the chapter is devoted to regularity results and a
priori estimates both in Schauder and Lp setting, including also maximum modulus
estimates. These regularity results are particularly meaningful when writing explic-
itly the solution of the boundary value problem in terms of the data by means of a
suitable kernel. Focusing on the Dirichlet problem for the polyharmonic operator,
we introduce Green’s functions and the fundamental formula by Boggio in balls.
We conclude with a study of a biharmonic problem in nonsmooth domains explain-
ing two paradoxes which are important in particular when approximating solutions
numerically.

2.1 Polyharmonic operators

Unless otherwise specified, throughout this monograph Ω denotes a bounded do-
main (open and connected) of Rn (n ≥ 2). The smoothness assumptions on the
boundary ∂Ω will be made precise in each situation considered. However, we shall
always assume that ∂Ω is Lipschitzian so that the tangent hyperplane and the unit
outward normal ν = ν(x) are well-defined for a.e. x ∈ ∂Ω , where a.e. means here
with respect to the (n− 1)-dimensional Hausdorff measure. When it is clear from
the context, in the sequel we omit writing “a.e.”

The Laplacian ∆u of a smooth function u : Ω → R is the trace of its Hessian
matrix, namely

∆u :=
n

∑
i=1

∂ 2u
∂x2

i
.

25
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We are interested in iterations of the Laplace operator, namely polyharmonic oper-
ators defined inductively by

∆
mu = ∆(∆ m−1u) for m = 2,3, ... .

Arguing by induction on m, it is straightforward to verify that

∆
mu = ∑

`1+...+`n=m

m!
`1! ...`n!

∂ 2mu

∂x2`1
1 ...∂x2`n

n
.

The polyharmonic operator ∆ m may also be seen in an abstract way through the
polynomial Lm : Rn→ R defined by

Lm(ξ ) = ∑
`1+...+`n=m

m!
`1! ...`n!

(
n

∏
i=1

ξ
2`i
i

)
= |ξ |2m for ξ ∈ Rn.

Formally, ∆ m = Lm(∇). In particular, this shows that Lm(ξ ) > 0 for all ξ 6= 0 so that
∆ m is an elliptic operator, see [5, p. 625] or [275, p. 121]. Ellipticity is a property of
the principal part (containing the highest order partial derivatives) of the differential
operator.

In this chapter, we study linear differential elliptic operators of the kind

u 7→ Au = (−∆)mu+A (x;D)u, (2.1)

where
A : Ω ×Rn×Rn2 × ...×Rn2m−1 → R

is a linear operator containing all the lower order partial derivatives of the function
u. The coefficients of the derivatives are measurable functions of x in Ω . For elliptic
differential operators A of the form (2.1) and under suitable assumptions on f , we
shall consider solutions u = u(x) to the equation

(−∆)mu+A (x;D)u = f in Ω , (2.2)

which satisfy some boundary conditions on ∂Ω . We discuss the class of “admissi-
ble” boundary conditions in Section 2.3. What we mean by solution to (2.2) will be
made clear in each situation considered.

Finally, let us mention that our statements also hold if we replace (−∆)m with
the m-th power of any other second order elliptic operator L; for instance, in Section
6.1 we consider powers of

Lu =−
2

∑
i, j=1

ãi j(x)
∂ 2u

∂xi∂x j
with the matrix {ãi j} being positive definite,

or
Lu =− 2

|∇h|2
∆u with∇h 6= 0.
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2.2 Higher order Sobolev spaces

Before introducing the boundary conditions to be associated to (2.2), we briefly
recall the definition and basic properties of higher order Sobolev spaces and of their
embedding into Lq spaces. In particular, we need to define the traces in order to
give some meaning to the boundary conditions. We restrict our attention to those
statements which will be frequently used in this book. Except in this section, Ω is
assumed to be bounded throughout the whole Chapter 2.

2.2.1 Definitions and basic properties

Given a domain Ω ⊂ Rn, ‖ .‖Lp denotes the standard Lp(Ω)-norm for 1 ≤ p ≤ ∞.
For all m ∈ N+ let us define the norm

u 7→ N(u) :=

(
m

∑
k=0
‖Dku‖p

Lp

)1/p

, (2.3)

where D0u = u,

Dku ·Dkv =
n

∑
i1,...,ik=1

∂ ku
∂xi1 . . .∂xik

∂ kv
∂xi1 . . .∂xik

and |Dku|=
(

Dku ·Dku
)1/2

.

Note that we will specify the domain Ω in ‖ .‖Lp only when it is not clear from the
context. Next, we define the space

W m,p(Ω) := {u ∈Cm(Ω); N(u) < ∞}N
,

that is, the completion with respect to the norm (2.3). Alternatively, W m,p(Ω) may
be defined as the subspace of Lp(Ω) of functions having generalised derivatives up
to order m in Lp(Ω), see [300].

If Ω 6= Rn and its boundary ∂Ω is smooth, then a function u ∈W m,p(Ω) admits
some traces on ∂Ω where, for our purposes, it is enough to restrict the attention to
the case p ∈ (1,∞). More precisely, if ν denotes the unit outer normal to ∂Ω , then
for any u ∈Cm(Ω) and any j = 0, . . . ,m we define the traces

γ ju :=
∂ ju
∂ν j

∣∣∣
∂Ω

. (2.4)

By [275, Théorème 8.3], these linear operators may be extended continuously to the
larger space W m,p(Ω). We set

W m− j−1/p,p(∂Ω) := γ j[W m,p(Ω)] for j = 0, ...,m−1. (2.5)
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In particular, W 1/p′,p(∂Ω) = γm−1[W m,p(Ω)], where p′ is the conjugate of p (that
is, p+ p′ = pp′). We also put

γm[W m,p(Ω)] = W−1/p,p(∂Ω) := [W 1/p,p′(∂Ω)]′

= the dual space of W 1/p,p′(∂Ω), (2.6)

so that (2.5) makes sense for all j = 0, . . . ,m. With an abuse of notation, in the sequel
we simply write u (respectively ∂ ju

∂ν j ) instead of γ0u (respectively γ ju for j = 1, ...,m).

When p = 2, we put Hm(Ω) := W m,2(Ω). Moreover, when p = 2 and m≥ 1 we
write Hm−1/2(∂Ω) = W m−1/2,2(∂Ω) and

H−m+ 1
2 (∂Ω) = [Hm− 1

2 (∂Ω)]′ = the dual space of Hm− 1
2 (∂Ω). (2.7)

The space Hm(Ω) becomes a Hilbert space when endowed with the scalar product

(u,v) 7→
m

∑
k=0

∫
Ω

Dku ·Dkvdx for all u,v ∈ Hm(Ω).

In some cases one may simplify the just defined norms and scalar products. As a
first step, we mention that thanks to interpolation theory, see [1, Theorem 4.14], one
can neglect intermediate derivatives in (2.3). More precisely, W m,p(Ω) is a Banach
space also when endowed with the following norm, which is equivalent to (2.3):

‖u‖W m,p =
(
‖u‖p

Lp +‖Dmu‖p
Lp
)1/p for all u ∈W m,p(Ω), (2.8)

whereas Hm(Ω) is a Hilbert space also with the scalar product

(u,v)Hm :=
∫

Ω

(uv+Dmu ·Dmv)dx for all u,v ∈ Hm(Ω).

Of particular interest is the closed subspace of W m,p defined as the intersection
of the kernels of the trace operators in (2.4), that is for any bounded domain Ω we
consider

W m,p
0 (Ω) :=

m−1⋂
j=0

kerγ j .

Moreover, for bounded domains Ω and for 1 < p < ∞, if p′ is the conjugate of p we
write

W−m,p′(Ω) := [W m,p
0 (Ω)]′ = the dual space of W m,p

0 (Ω) (2.9)

and, for p = 2,
H−m(Ω) := [Hm

0 (Ω)]′ = [W m,2
0 (Ω)]′.

Consider the bilinear form
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(u,v)Hm
0

:=


∫

Ω

∆
ku ∆

kvdx if m = 2k,∫
Ω

∇(∆ ku) ·∇(∆ kv)dx if m = 2k +1,
(2.10)

and the corresponding norm

‖u‖Hm
0

:=

‖∆
ku‖L2 if m = 2k,

‖∇(∆ ku)‖L2 if m = 2k +1.
(2.11)

For general p ∈ (1,∞), one has the choice of taking the Lp-version of (2.11) or the
equivalent norm

‖u‖W m,p
0

:= ‖Dmu‖Lp .

Thanks to these norms, one may define the above spaces in a different way.

Theorem 2.1. If Ω ⊂ Rn is a bounded domain, then

W m,p
0 (Ω) = the closure of C∞

c (Ω) with respect to the norm ‖ .‖W m,p

= the closure of C∞
c (Ω) with respect to the norm ‖ .‖W m,p

0
.

Theorem 2.1 follows by combining interpolation inequalities (see [1, Theorem
4.14]) with the classical Poincaré inequality ‖∇u‖Lp ≥ c‖u‖Lp for all u ∈W 1,p

0 (Ω).
If Ω is unbounded, including the case where Ω = Rn, we define

‖u‖Dm,p(Ω) := ‖Dmu‖Lp(Ω),

Dm,p(Ω) := the closure of C∞
c (Ω) with respect to the norm ‖ .‖Dm,p ,

and, again, let W m,p
0 (Ω) denote the closure of C∞

c (Ω) with respect to the norm
‖ .‖W m,p . In this unbounded case, a similar result as in Theorem 2.1 is no longer true
since although W m,p

0 (Ω) ⊂ Dm,p(Ω), the converse inclusion fails. For instance, if
Ω =Rn, then W m,p

0 (Rn) = W m,p(Rn), whereas the function u(x) = (1+ |x|2)(1−n)/4

belongs to D1,2(Rn) but not to H1
0 (Rn) = H1(Rn).

Theorem 2.1 states that, when Ω is bounded, the space Hm
0 (Ω) is a Hilbert space

when endowed with the scalar product (2.10). The striking fact is that not only
all lower order derivatives (including the derivative of order 0!) are neglected but
also that some of the highest order derivatives are dropped. This fact has a simple
explanation since

(u,v)Hm
0

=
∫

Ω

Dmu ·Dmvdx for all u,v ∈ Hm
0 (Ω). (2.12)

One can verify (2.12) by using a density argument, namely for all u,v ∈ C∞
c (Ω).

And with this restriction, one can integrate by parts several times in order to obtain
(2.12). The bilinear form (2.10) also defines a scalar product on the space Dm,2(Ω)
whenever Ω is an unbounded domain. We summarise all these facts in
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Theorem 2.2. Let Ω ⊂ Rn be a smooth domain. Then the bilinear form

(u,v) 7→


∫

Ω

∆
ku ∆

kvdx if m = 2k,∫
Ω

∇(∆ ku) ·∇(∆ kv)dx if m = 2k +1,
(2.13)

defines a scalar product on Hm
0 (Ω) (respectively Dm,2(Ω)) if Ω is bounded (re-

spectively unbounded). If Ω is bounded, then this scalar product induces a norm
equivalent to (2.3).

2.2.2 Embedding theorems

Consider first the case of unbounded domains.

Theorem 2.3. Let m ∈ N+, 1 ≤ p < ∞, with n > mp. Assume that Ω ⊂ Rn is an
unbounded domain with uniformly Lipschitzian boundary ∂Ω , then:

1. Dm,p(Ω)⊂ Lnp/(n−mp)(Ω);

2. W m,p(Ω)⊂ Lq(Ω) for all p≤ q≤ np
n−mp .

On the other hand, in bounded domains subcritical embeddings become compact.

Theorem 2.4 (Rellich-Kondrachov). Let m∈N+, 1≤ p < ∞. Assume that Ω ⊂Rn

is a bounded Lipschitzian domain, then for any 1≤ q < np
n−mp there exists a compact

embedding W m,p(Ω) ⊂ Lq(Ω). Here we make the convention that np
n−mp = +∞ if

n≤ mp.

Remark 2.5. The optimal constants of the compact embeddings in Theorem 2.4 are
attained on functions solving corresponding Euler-Lagrange equations. We refer to
Section 7.2 for a discussion of these problems where, for simplicity, we restrict
again our attention to the case m = 2.

In fact, if n < mp, Theorem 2.4 may be improved by the following statement.

Theorem 2.6. Let m ∈ N+ and let Ω ⊂ Rn be a bounded domain with Lipschitzian
boundary. Assume that there exists k ∈ N such that n < (m− k)p. Then

W m,p(Ω)⊂Ck,γ(Ω) for all γ ∈
(

0,m− k− n
p

]
∩ (0,1)

with compact embedding if γ < m− k− n
p .

The statements of Theorems 2.4 and 2.6 also hold if we replace W m,p(Ω) with its
proper subspace W m,p

0 (Ω). In this case, no regularity assumption on the boundary
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∂Ω is needed. Let us also mention that there is a simple way to remember the em-
beddings in Theorem 2.6. It is based on the so-called regularity index, see [11, Sec-
tion 8.7]. In n-dimensional bounded domains Ω , the regularity index for W m,p(Ω)
is m− n/p whereas for Ck,γ(Ω) it is k + γ . A Sobolev space is embedded into any
other space with a smaller regularity index. For instance, W m,p(Ω) ⊂ W µ,q(Ω)
provided m− n/p ≥ µ − n/q (and m ≥ µ). Also W m,p(Ω) ⊂ Ck,γ(Ω) whenever
m−n/p≥ k + γ and γ ∈ (0,1), which is precisely the statement in Theorem 2.6. A
similar rule is also available for trace operators, namely if m−n/p≥ µ− (n−1)/q
(and m > µ) then the trace operator on W m,p(Ω) is continuous into W µ,q(∂Ω).

We conclude this section with the multiplicative properties of functions in
Sobolev spaces.

Theorem 2.7. Assume that Ω ⊂ Rn is a Lipschitzian domain. Let m ∈ N+ and p ∈
[1,∞) be such that mp > n. Then W m,p(Ω) is a commutative Banach algebra.

Remark 2.8. Theorem 2.7 can be generalised by considering multiplications of
functions in possibly different Sobolev spaces. For instance, if m1,m2 ∈ N+ and
µ = min{m1,m2,m1 +m2− [ n

2 ]−1}, then Hm1(Ω)Hm2(Ω)⊂ Hµ(Ω).

We postpone further properties of the Hilbertian critical embedding, that is, Hm⊂
L2n/(n−2m) with n > 2m, to Sections 7.3 and 7.8. The reasons are both that we need
further tools and that these properties have a natural application to nonexistence
results for semilinear polyharmonic equations at critical growth.

2.3 Boundary conditions

For the rest of Chapter 2, we assume the domain Ω to be bounded. Under suitable
assumptions on ∂Ω , to equation (2.2) we may associate m boundary conditions.
These conditions will be expressed by linear differential operators B j(x;D), namely

B j(x;D)u = h j for j = 1, ...,m on ∂Ω , (2.14)

where the functions h j belong to suitable functional spaces. Each B j has a maximal
order of derivatives m j ∈ N and the coefficients of the derivatives are sufficiently
smooth functions on ∂Ω . The regularity assumptions on these coefficients and on
∂Ω will be made precise in each statement.

For the problems considered in this monograph, it always appears that

m j ≤ 2m−1 for all j = 1, ...,m. (2.15)

Therefore, we shall always assume that (2.15) holds, although some of our state-
ments remain true under less restrictive assumptions. The meaning of (2.14) will
remain unclear until the precise definition of solution to (2.2) will be given; in most
cases, they should be seen as traces, namely satisfied in a generalised sense given
by the operators (2.4).
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The choice of the B j’s is not completely free, we need to impose a certain al-
gebraic constraint, the so-called complementing condition. For any j, let B′j denote
the highest order part of B j which is precisely of order m j, then for equations (2.2)
which have the polyharmonic operator as principal part, we have the following

Definition 2.9. For every point x ∈ ∂Ω , let ν(x) denote the normal unit vector. We
say that the complementing condition holds for (2.14) if, for any nontrivial tangential
vector τ(x), the polynomials in t B′j(x;τ + tν) are linearly independent modulo the
polynomial (t− i|τ|)m.

As explained in [5, Section 10], the complementing condition is crucial in order
to obtain a priori estimates for solutions to (2.2)-(2.14) and, in turn, existence and
uniqueness results.

Clearly, the solvability of (2.2)-(2.14) depends on the assumptions made on A ,
f , B j and h j. We are here interested in structural assumptions, namely properties of
the problem and not of its data.

Assumptions on the homogeneous problem. If we assume that f = 0 in Ω and that
h j = 0 on ∂Ω for all j = 1, ...,m, then (2.2)-(2.14) admits the trivial solution u = 0,
in whatever sense this is intended. The natural question is then to find out whether
this is the only solution. The answer depends on the structure of the problem. In
fact, for any “reasonable” A and B j’s there exists a discrete set Σ ⊂ R such that, if
σ 6∈ Σ , then the problem{

(−∆)mu+σA (x;D)u = 0 in Ω ,

B j(x;D)u = 0 with j = 1, ...,m on ∂Ω ,
(2.16)

only admits the trivial solution. If σ ∈ Σ , then the solutions of (2.16) form a nontriv-
ial linear space; if A and the B j’s are well-behaved (in the sense specified below)
this space has finite dimension. Therefore, we shall assume that

the associated homogeneous problem only admits the trivial solution u = 0.
(2.17)

Assumption (2.17) is a structural assumption which only depends on A and the B j’s.
Thanks to the Fredholm alternative (see e.g. [69, Theorem VI.6]), we know that if
(2.17) fails, then for any possible choice of the data f and h j problem (2.2)-(2.14)
fails to have either existence or uniqueness of the solution.

Assumptions on A . Assume that A has the following form

A (x;D)u = ∑
|β |≤2m−1

aβ (x)Dβ u , aβ ∈C|β |(Ω). (2.18)

Actually, for some of our results, less regularity is needed on the coefficients aβ but
we will not go deep into this. We just mention that, for instance, if n ≥ 5 then in
order to obtain existence of a weak solution (according to Theorem 2.16 below) it
is enough to assume a0 ∈ Ln/4(Ω).
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Assumptions on the boundary conditions. Assume that, according to Definition
2.9,

the linear boundary operators B j’s satisfy the complementing condition. (2.19)

We now discuss the main boundary conditions considered in this monograph.

Dirichlet boundary conditions. In this case, B j(x,D)u = B′j(x,D)u = ∂ j−1u
∂ν j−1 for

j = 1, . . . ,m so that m j = j−1 and (2.14) become

u = h1, . . . ,
∂ m−1u
∂νm−1 = hm on ∂Ω . (2.20)

Hence, B′j(x;τ + tν) = t j−1 and, as mentioned in [5, p. 627], the complementing
condition is satisfied for (2.20).

Navier boundary conditions. In this case, B j(x,D)u = B′j(x,D)u = ∆ j−1u for
j = 1, ...,m so that m j = 2( j−1) and (2.14) become

u = h1, . . . , ∆
m−1u = hm on ∂Ω . (2.21)

Under these conditions, if A has a suitable form then (2.2) may be written as a sys-
tem of m Poisson equations, each one of the unknown functions satisfying Dirichlet
boundary conditions. Therefore, the complementing condition follows by the theory
of elliptic systems [6].

Mixed Dirichlet-Navier boundary conditions. We make use of these conditions
in Section 5.2. They are a suitable combination of (2.20)-(2.21). For instance, if m
is odd, they read B j(x,D)u = ∂ j−1u

∂ν j−1 for j = 1, ...,m−1 and Bm(x,D)u = ∆ (m−1)/2u.
Again, the complementing condition is satisfied.

Steklov boundary conditions. We consider these conditions only for the bihar-
monic operator. Let a ∈C0(∂Ω) and to the equation ∆ 2u = f in Ω we associate the
boundary operators B1(x,D)u = u and B2(x,D)u = ∆u−a ∂u

∂ν
. Then (2.14) become

u = h1 and ∆u−a
∂u
∂ν

= h2 on ∂Ω . (2.22)

Since B′j (for j = 1,2) is the same as for (2.21), also (2.22) satisfy the complement-
ing condition.

More generally, Hörmander [230] characterises all the sets of boundary operators
B j which satisfy the complementing condition.

We conclude this section by giving an example of boundary conditions which do
not satisfy the complementing condition. Consider the fourth order problem
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∆ 2u = 0 in Ω ,

∆u = 0 on ∂Ω ,

∂ (∆u)
∂ν

= 0 on ∂Ω .

(2.23)

For any unit vector τ tangential to ∂Ω we have B1(τ +tν) = B′1(τ +tν) = t2 +1 and
B2(τ + tν) = B′2(τ + tν) = t3 + t. These polynomials are not linearly independent
modulo (t− i)2 so that the complementing condition is not satisfied. Note also that
any harmonic function solves (2.23) so that the space of solutions does not have
finite dimension. In particular, if we take any point x0 ∈ Rn \Ω , the fundamental
solution u0 of−∆ having pole in x0 (namely, u0(x) = log |x−x0| if n = 2 and u0(x) =
|x−x0|2−n if n≥ 3) solves (2.23). This shows that it is not possible to obtain uniform
a priori bounds in any norm. Indeed, as x0 approaches the boundary ∂Ω it is clear
that (for instance!) the H1-norm of the solution cannot be bounded uniformly in
terms of its L2-norm.

2.4 Hilbert space theory

2.4.1 Normal boundary conditions and Green’s formula

In this section we study the solvability of the polyharmonic equation

(−∆)mu+∑
◦

Dβ

[
aβ ,µ(x)Dµ u

]
= f in Ω (2.24)

complemented with the linear boundary conditions

∑
|α|≤m j

b j,α(x)Dα u = h j on ∂Ω with j = 1, ...,m, (2.25)

where m j ≤ 2m− 1, see (2.15), and ∑
◦

means summation over all multi-indices β

and µ such that

|β | ≤ m, |µ| ≤ m, |β |+ |µ| ≤ 2m−1. (2.26)

With the notations of (2.2) and (2.14), we have

A (x;D)u = ∑
◦

Dβ [aβ ,µ(x)Dµ u], B j(x;D)u = ∑
|α|≤m j

b j,α(x)Dα u.

Assume that

aβ ,µ ∈C|β |(Ω) for all β and µ satisfying (2.26). (2.27)
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To the linear differential operator A defined by

Au := (−∆)mu+∑
◦

Dβ [aβ ,µ(x)Dµ u] (2.28)

we associate the bilinear form

Ψ(u,v) = (u,v)+∑
◦

(−1)|β |
∫

Ω

aβ ,µ(x)Dµ uDβ vdx for all u,v ∈ Hm(Ω), (2.29)

where ( . , .) is defined in (2.13). Formally, Ψ is obtained by integrating by parts∫
Auv and by neglecting the boundary integrals. We point out that, in view of (2.27),

Ψ(u,v) is well-defined for all u,v ∈ Hm(Ω).
Let us recall that m j denotes the highest order derivatives of u appearing in B j.

With no loss of generality, we may assume that the boundary conditions (2.25) are
ordered for increasing m j’s so that

m j ≤ m j+1 for all j = 1, ...,m−1. (2.30)

Moreover, we assume that the coefficients in (2.25) satisfy

b j,α ∈C2m−m j(Ω) for all j = 1, ...,m and |α| ≤ m j; (2.31)

by this, we mean that the functions b j,α are restrictions to the boundary ∂Ω of
functions in C2m−m j(Ω).

We also need to define well-behaved systems of boundary operators.

Definition 2.10. Let k∈N+. We say that the boundary value operators {Fj(x;D)}k
j=1

satisfying (2.30) form a normal system on ∂Ω if mi < m j whenever i < j and if
Fj(x;D) contains the term ∂ m j/∂νm j with a coefficient different from 0 on ∂Ω .
Moreover, we say that {Fj(x;D)}k

j=1 is a Dirichlet system if, in addition to the
above conditions, we have m j = j− 1 for j = 1, ...,k; the number k is then called
the order of the Dirichlet system.

Remark 2.11. The assumption “Fj contains the term ∂ m j/∂νm j with a coefficient
different from 0 on ∂Ω” requires some explanations since it may happen that the
term ∂ m j/∂νm j does not appear explicitly in Fj. One should then rewrite the bound-
ary conditions on ∂Ω in local coordinates; the system of coordinates should contain
the n− 1 tangential directions and the normal direction ν . Then the assumption is
that in this new system of coordinates the term ∂ m j/∂νm j indeed appears with a
coefficient different from 0. For instance, imagine that m j = 2 and that ∆u repre-
sents the terms of order 2 in Fj; it is known that if ∂Ω and u are smooth, then
∆u = ∂ 2u

∂ν2 +(n−1)H ∂u
∂ν

+∆τ u on ∂Ω , where H denotes the mean curvature at the
boundary and ∆τ u denotes the tangential Laplacian of u. Therefore, any boundary
operator which contains ∆ as principal part satisfies this condition.

It is clear that if a normal system of boundary value operators {Fj(x;D)}k
j=1 is

such that mk = k−1, then it is a Dirichlet system.
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Proposition 2.12. Let Ω ⊂ Rn be a bounded smooth domain. Let k ∈ N+ and as-
sume that the boundary value operators {B j(x;D)}k

j=1 form a normal system on
∂Ω . If m ≥ mk, then there exists a (non-unique) system {S j(x;D)}m

j=k+1 such that
{B1, ...,Bk,Sk+1, ...,Sm} forms a Dirichlet system of order m. Here, all the boundary
operators are supposed to have smooth coefficients.

We can now give a suitable version of Green’s formula.

Theorem 2.13. Let
∂Ω ∈C2m,1 (2.32)

and suppose that the differential operator A in (2.28) has coefficients satisfying
(2.27). Assume also that {Fj(x;D)}m

j=1 forms a Dirichlet system of order m (so that
m j = j−1) with coefficients satisfying (2.31). Then there exists a normal system of
boundary operators {Φ j(x;D)}m

j=1 with coefficients satisfying (2.31) (and with Φ j
of order 2m− j) such that

Ψ(u,v) =
∫

Ω

Auvdx+
m

∑
j=1

∫
∂Ω

Φ j(x;D)uFj(x;D)vdω for all u,v ∈ H2m(Ω).

The operators {Φ j(x;D)}m
j=1 given by Theorem 2.13 are called Green adjoint

boundary operators of {Fj(x;D)}m
j=1.

2.4.2 Homogeneous boundary value problems

In this section we study the solvability of (2.24) in the case of vanishing boundary
data h j in conditions (2.25), namely{

(−∆)mw+∑◦Dβ
(
aβ ,µ(x)Dµ w

)
= g in Ω ,

B j(x;D)w = 0 for j = 1, ...,m on ∂Ω .
(2.33)

The solvability of (2.33) is studied in the framework of Hilbertian Sobolev
spaces. To this end, let us explain what is meant by a Hilbert triple.

Definition 2.14. Let V and H be Hilbert spaces such that V ⊂ H with injective,
dense and continuous embedding. Let V ′ denote the dual space of V ; a scheme of
this type (namely V ⊂ H ⊂V ′) is called a Hilbert triple.

For a Hilbert triple V ⊂ H ⊂ V ′ also the embedding H ⊂ V ′ is necessarily in-
jective, dense and continuous, see [416, Theorem 17.1]. Notice also that, although
there exists the Riesz isomorphism between V and V ′ (see [69, Theorem V.5]), we
will represent functionals from V ′ with the scalar product in H and not with the
scalar product in V .

We proceed in several steps in order to simplify problem (2.33) and to give the
correct assumptions for its solvability.
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Introduction of a suitable Hilbert triple. Divide the boundary operators in (2.33)
into two classes. If m j < m we say that the boundary operator B j(x;D) is stable
while if m j ≥ m we say that it is natural. Assume that there are p stable boundary
operators, with p being an integer between 0 and m. If p = 0 all the boundary op-
erators are natural, whereas if p = m all boundary operators are stable. In view of
(2.30) the stable operators correspond to indices j ≤ p. Then we define the space

V := {v ∈ Hm(Ω); B j(x,D)v = 0 on ∂Ω for j = 1, ..., p}. (2.34)

Clearly, if p = 0 we have V = Hm(Ω) while if p = m we have V = Hm
0 (Ω) (provided

the assumption (2.36) below holds). In particular, in the case of Dirichlet boundary
conditions (2.20) we have

V = Hm
0 (Ω),

in the case of Navier boundary conditions (2.21) we have

V = Hm
ϑ (Ω) :=

{
v ∈ Hm(Ω); ∆

jv = 0 on ∂Ω for j <
m
2

}
, (2.35)

in the case of Steklov boundary conditions (2.22) we have

V = H2∩H1
0 (Ω) = H2

ϑ (Ω).

In any case, the space V is well-defined since each B j contains trace operators of
maximal order m j < m. Moreover, V is a closed subspace of Hm(Ω) which satisfies
Hm

0 (Ω)⊂V ⊂Hm(Ω) with continuous embedding. Therefore, V inherits the scalar
product and the Hilbert space structure from Hm(Ω). If we put H = L2(Ω), then
V ⊂ H ⊂V ′ forms a Hilbert triple with compact embeddings.

Assumptions on the boundary operators. Assume that

{B j(x;D)}m
j=1 forms a normal system (2.36)

and that the orders of the B j’s satisfy

mi +m j 6= 2m−1 for all i, j = 1, ...,m . (2.37)

This assumption is needed since we are not free to choose the orders of the B j’s. For
every k = 0, ...,m−1 there must be exactly one m j in the set {k,2m− k−1}.

Let p denote the number of stable boundary operators. In view of (2.30) we know
that these operators are precisely {B j}p

j=1 and, of course, they also form a normal
system of boundary operators. By Proposition 2.12, there exists a family of normal
operators {S j}m

j=p+1 such that {B1, ...,Bp,Sp+1, ...,Sm} forms a Dirichlet system of
order m. We relabel this system and define

{Fj}m
j=1 ≡ {B1, ...,Bp,Sp+1, ...,Sm} (2.38)
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the re-ordered system in such a way that the order of Fj equals j− 1. The indices
j = 1, ...,m are so divided into two subsets J1 and J2 according to the following rule:
j ∈ J1 if Fj ∈ {B j}p

j=1 whereas j ∈ J2 if Fj ∈ {S j}m
j=p+1.

Let {Φ j}m
j=1 denote the Green adjoint boundary operators of {Fj}m

j=1 according
to Theorem 2.13. We finally assume that the S j’s and the Φ j’s may be chosen in a
such a way that

{B j}m
j=p+1 ⊂ {Φ j}m

j=1 . (2.39)

The condition in (2.39) is quite delicate since it requires the construction of the
S j’s and the Φ j’s before being checked. Note that if p = m (Dirichlet boundary
conditions) or p = 0, then (2.37) and (2.39) are automatically fulfilled.

Assumption on g. Assume that

g ∈V ′ . (2.40)

If V = Hm
0 (Ω), then V ′ = H−m(Ω) and V ′ has a fairly simple representation, see

[416, Theorem 17.6]. If V = Hm(Ω), then elements of V ′ have a more difficult
characterisation, see [416, Theorem 17.5]. In all the other cases, V ′ has even more
complicated forms but we always have [Hm(Ω)]′ ⊂V ′ ⊂ H−m(Ω) with continuous
embeddings.

Coercivity of the bilinear form. In order to ensure solvability of (2.42) we need
a crucial assumption on the bilinear form Ψ . By (2.27) we know that there exists
c1 > 0 such that Ψ(u,v)≤ c1‖u‖Hm(Ω)‖v‖Hm(Ω) for all u,v ∈ Hm(Ω). Assume that
there exists c2 ∈ (0,c1) such that

Ψ(u,u)≥ c2‖u‖2
Hm(Ω) for all u ∈V. (2.41)

In fact, (2.41) is nothing else but a strengthened ellipticity assumption for the op-
erator A; it gives a quadratic lower bound behaviour for Ψ (in terms of the Hm

norm) but only on the subspace V . One is then interested in finding sufficient con-
ditions which ensure that (2.41) holds. The most general such condition is due to
Agmon [3] and is quite technical to state; since it is beyond the scope of this book,
we will not discuss it here. We just limit ourselves to verify (2.41) in some simple
cases. If Au = (−∆)mu for some m ≥ 2 then Ψ(u,v) = (u,v)Hm

0
and (2.41) holds

with c1 = c2 = 1 and V = Hm
0 (Ω); hence, Dirichlet boundary conditions (2.20) are

allowed with Au = (−∆)mu. If Au = ∆ 2u then Ψ(u,v) = (u,v)H2
0

and (2.41) holds

again with c1 = c2 = 1 but now for both the cases V = H2
0 (Ω) and V = H2∩H1

0 (Ω)
so that Dirichlet (2.20) and Navier (2.21) boundary conditions are allowed, see also
Theorem 2.31 below. As we shall see in Section 3.3.1 and in Theorem 5.22, if
Au = ∆ 2u and V = H2 ∩H1

0 (Ω), also Steklov boundary conditions (2.22) are al-
lowed but now with the bilinear form Ψ(u,v) = (u,v)H2

0
−
∫

∂Ω
auν vν dω provided a

satisfies suitable assumptions which ensure (2.17).

Finally, we say that w ∈V is a weak solution to (2.33) if

Ψ(w,ϕ) = 〈g,ϕ〉 for all ϕ ∈V. (2.42)
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Thanks to the Lax-Milgram theorem we may now state the existence and uniqueness
result for weak solutions to the homogeneous problem (2.33).

Theorem 2.15. Let Ω ⊂ Rn be a bounded domain satisfying (2.32). Assume that:

• the operator A in (2.28) and the bilinear form Ψ in (2.29) satisfy (2.27) and
(2.41);

• the operators B j satisfy (2.30), (2.31), (2.36), (2.37), (2.39);
• g satisfies (2.40).

Then problem (2.42) admits a unique weak solution w ∈V ; moreover, there exists a
constant C = C(Ω ,m,A ,B j) > 0 independent of g, such that

‖w‖Hm(Ω) ≤C‖g‖V ′ .

To conclude, let us highlight the existing connection between (2.42) and (2.33).
It is clear that any solution w ∈ H2m(Ω) to (2.33) is also a solution to (2.42). On
the other hand, any w ∈V satisfying (2.42) automatically satisfies the stable bound-
ary conditions since these are contained in the definition of V . We show that if g
and w are smooth then w also satisfies the natural boundary conditions and solves
(2.33). To see this, let {Fj} be as in (2.38) and let {Φ j} denote the normal system
of boundary operators associated to {Fj} through Theorem 2.13. Then if we assume
that g ∈ L2(Ω) and w ∈V ∩H2m(Ω), Theorem 2.13 combined with (2.42) gives∫

Ω

Awϕ dx+
m

∑
j=1

∫
∂Ω

Φ j(x;D)wFj(x;D)ϕ dω =
∫

Ω

gϕ dx (2.43)

for all ϕ ∈V . Taking arbitrary ϕ ∈C∞
c (Ω) in (2.43) shows that Aw = g a.e. in Ω so

that the equation in (2.33) is satisfied (recall the definition of A in (2.28)). Once this
is established, (2.43) yields

∑
j∈J2

∫
∂Ω

Φ j(x;D)wFj(x;D)ϕ dω =
m

∑
j=1

∫
∂Ω

Φ j(x;D)wFj(x;D)ϕ dω = 0 (2.44)

for all ϕ ∈V, where the first equality is a consequence of the fact that ϕ ∈V , namely
Fjϕ = 0 on ∂Ω for all j ∈ J1. Again by arbitrariness of ϕ ∈V , (2.44) shows that

Φ j(x;D)w = 0 on ∂Ω for all j ∈ J2.

By assumptions (2.37) and (2.39) we know that Φ j = B2m−m j−1 for all j ∈ J2, there-
fore the latter is equivalent to

B j(x;D)w = 0 on ∂Ω for all j = p+1, ...,m

and w also satisfies the natural boundary conditions in (2.33).
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2.4.3 Inhomogeneous boundary value problems

In this section we study weak solvability of (2.24)-(2.25) without assuming that
the boundary data h j vanish. After requiring suitable regularity on the data h j, we
explain what is meant by weak solution and we reduce the inhomogeneous problem
to an homogeneous one.

Regularity assumptions on the data. Let V be as in (2.34) and assume that

f ∈V ′ . (2.45)

Weak solutions to (2.24)-(2.25) will be sought in a suitable convex subset of
Hm(Ω). According to Theorem 8.3 in Chapter 1 in [275], it is then necessary to
assume that

h j ∈ Hm−m j− 1
2 (∂Ω) for all j = 1, ...,m. (2.46)

We have m−m j− 1
2 > 0 for all m j < m, namely for all j = 1, ..., p where p is the

number of stable boundary operators. If j = p + 1, ...,m, we have m−m j− 1
2 < 0

and we recall the definition in (2.7).
If we assume (2.31), (2.32), (2.36) and (2.46), we may apply [416, Theorem 14.1]

to infer that

there exists v ∈ Hm(Ω) such that B j(x;D)v = h j on ∂Ω (2.47)

for all j = 1, ..., p. Then consider the set

K := {w ∈ Hm(Ω); w− v ∈V} ;

it is straightforward to verify that K is a closed convex nonempty subset of Hm(Ω).
If p = 0, then no v needs to be determined by (2.47) and K becomes the whole space
V = Hm(Ω). Let us define the (ordered) family of boundary operators {Fj}m

j=1 as
in (2.38) and let J1 and J2 denote the subsets defined there. We say that u ∈ K is a
weak solution to (2.24)-(2.25) if

Ψ(u,ϕ) = 〈 f ,ϕ〉+ ∑
j∈J2

〈h2m−m j−1,Fj(x;D)ϕ〉∂Ω , j for all ϕ ∈V, (2.48)

where Ψ is defined in (2.29), 〈 . , .〉 denotes the duality between V ′ and V and
〈 . , .〉∂Ω , j denotes the duality between Hm−m j− 1

2 (∂Ω) and H−m+m j+ 1
2 (∂Ω).

Reduction to an homogeneous boundary value problem. Let v ∈ Hm(Ω) be de-
fined by (2.47) and let u∈K be a weak solution to (2.24)-(2.25), according to (2.48).
Subtract Ψ(v,ϕ) from the equations in (2.48) to obtain

Ψ(u− v,ϕ) = 〈 f ,ϕ〉+ ∑
j∈J2

〈h2m−m j−1,Fj(x;D)ϕ〉∂Ω , j−Ψ(v,ϕ)

for all ϕ ∈V . By (2.45), the linear functional g defined by
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g : ϕ 7→ 〈 f ,ϕ〉+ ∑
j∈J2

〈h2m−m j−1,Fj(x;D)ϕ〉∂Ω , j−Ψ(v,ϕ) for ϕ ∈V

is continuous on V so that (2.40) holds. Now put w := u− v; then w ∈ V satisfies
(2.42). Therefore, we shall proceed as follows. We first determine a function v as in
(2.47), then we solve problem (2.33) (whose variational formulation is (2.42)) and
find w ∈ V . Putting u = v + w we obtain a solution u ∈ K to (2.24)-(2.25) (whose
variational formulation is (2.48)).

With these arguments, Theorem 2.15 immediately gives

Theorem 2.16. Let Ω ⊂ Rn be a bounded domain satisfying (2.32). Assume that:

• the operator A in (2.28) and the bilinear form Ψ in (2.29) satisfy (2.27) and
(2.41);

• the operators B j satisfy (2.30), (2.31), (2.36), (2.37), (2.39);
• f satisfies (2.45) and the h j’s satisfy (2.46).

Then problem (2.48) admits a unique weak solution u ∈ K; moreover, there exists a
constant C = C(Ω ,m,A ,B j) > 0 independent of f and of the h j’s, such that

‖u‖Hm(Ω) ≤C

(
‖ f‖V ′ +

p

∑
j=1
‖h j‖

Hm−m j−
1
2 (∂Ω)

)
.

As for the homogeneous problem, let us explain the link between weak and strong
solutions. Again, any strong solution u∈H2m(Ω) to (2.24)-(2.25) certainly satisfies
(2.48); note that a strong solution may exist only if

h j ∈ H2m−m j− 1
2 (∂Ω) for j = 1, ...,m and f ∈ L2(Ω). (2.49)

Conversely, assume that (2.49) holds and let u∈K∩H2m(Ω) be a solution to (2.48).
Let {Fj} be as in (2.38) and let {Φ j} denote the normal system of boundary opera-
tors associated to {Fj} through Theorem 2.13. Then (2.48) gives∫

Ω

Auϕ dx+
m

∑
j=1

∫
∂Ω

Φ j(x;D)uFj(x;D)ϕ dω

=
∫

Ω

f ϕ dx+ ∑
j∈J2

∫
∂Ω

h2m−m j−1Fj(x;D)ϕ dω for all ϕ ∈V. (2.50)

Taking arbitrary ϕ ∈C∞
c (Ω) in (2.50) shows that Au = f a.e. in Ω so that (2.24) is

satisfied. Once this is established, (2.50) yields

∑
j∈J2

∫
∂Ω

Φ j(x;D)uFj(x;D)ϕ dω = ∑
j∈J2

∫
∂Ω

h2m−m j−1 Fj(x;D)ϕ dω

for all ϕ ∈V . Then the same arguments used after (2.44) show that

B j(x;D)u = h j on ∂Ω for all j = p+1, ...,m,
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which proves that u also satisfies the natural boundary conditions in (2.25).

Remark 2.17. Although (2.17) and the complementing condition (see Definition 2.9)
do not explicitly appear in Theorem 2.16, they are hidden in the assumptions. The
coercivity assumption (2.41) ensures that (2.17) is satisfied, see Theorem 2.15. On
the other hand, assumptions (2.36) and (2.39) ensure that the complementing con-
dition holds, see [275, Section 2.4].

If the boundary ∂Ω and the data f and h j are more regular, elliptic theory applies
and also the solution u given in Theorem 2.16 is more regular, see the next section.

2.5 Regularity results and a priori estimates

2.5.1 Schauder theory

Here we consider classical solutions to (2.2)-(2.14). To do so, we need the Schauder
theory and a good knowledge of Hölder continuity.

First fix an integer ` such that max{m j} ≤ ` ≤ 2m. Then slightly modify the
problem and consider the equation

(−∆)mu+∑
∗

Dβ

[
aβ ,µ(x)Dµ u

]
= ∑
|β |≤2m−`

Dβ fβ in Ω , (2.51)

complemented with the boundary conditions

∑
|α|≤m j

b j,α(x)Dα u = h j on ∂Ω with j = 1, ...,m, (2.52)

where ∑
∗

means summation over all multi-indices β and µ such that

|β | ≤ 2m− ` , |µ| ≤ ` , |β |+ |µ| ≤ 2m−1 . (2.53)

With the notations of (2.2) and (2.14), we have now

A (x;D)u = ∑
∗

Dβ

[
aβ ,µ(x)Dµ u

]
, B j(x;D)u = ∑

|α|≤m j

b j,α(x)Dα u . (2.54)

Fix a second integer k ≥ ` and put ` = max{2m,k}. Then assume that for some
0 < γ < 1 we have
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aβ ,µ ∈Ck−`,γ(Ω) for all β ,µ satisfying (2.53),

fβ ∈Ck−`,γ(Ω) for all |β | ≤ 2m− `,

b j,α ∈Ck−m j ,γ(∂Ω) for all j = 1, ...,m and |α| ≤ m j,

h j ∈Ck−m j ,γ(∂Ω) for all j = 1, ...,m.

(2.55)

Note that under assumptions (2.55), problem (2.51)-(2.52) needs not to make
sense in a classical way. Therefore, we first need to introduce a different kind of
solution.

Definition 2.18. We say that u ∈Ck,γ(Ω) is a mild solution to (2.51)-(2.52) if∫
Ω

u(−∆)m
ϕ dx + ∑

∗
(−1)|β |

∫
Ω

aβ ,µ(x)Dµ uDβ
ϕ dx

= ∑
|β |≤2m−`

(−1)|β |
∫

Ω

fβ (x)Dβ
ϕ dx

for all ϕ ∈C∞
c (Ω) and if u satisfies pointwise the boundary conditions in (2.52).

Hence, for any mild solution the boundary conditions (2.52) are well-defined
since k ≥ `≥ m j for all j.

We are now ready to state

Theorem 2.19. Let k ≥ ` ∈ [max{m j},2m]∩N and ` = max{2m,k}. Assume that
(2.55) holds and that A and the B j’s satisfy (2.54)-(2.19). Assume (2.15) and (2.17).
Assume moreover that ∂Ω ∈C`,γ . Then (2.51)-(2.52) admits a unique mild solution
u ∈Ck,γ(Ω). Moreover, there exists a constant C = C(Ω ,k,m,aβ ,µ ,b j,α) > 0 inde-
pendent of the fβ ’s and of the h j’s, such that the following a priori estimate holds

‖u‖Ck,γ (Ω) ≤C

(
∑

|β |≤2m−`

‖ fβ‖Ck−`,γ (Ω) +
m

∑
j=1
‖h j‖Ck−m j ,γ (∂Ω)

)
.

The constant C depends on Ω only through its measure |Ω | and the C`,γ -norms
of the local maps which define the boundary ∂Ω . If k ≥ 2m then the solution u is
classical.

Finally, if (2.17) is dropped, then for any solution u to (2.51)-(2.52) one has the
following local variant of the estimate

‖u‖Ck,γ (Ω∩BR(x0)) ≤ C

(
∑

|β |≤2m−`

‖ fβ‖Ck−`,γ (Ω∩B2R(x0))

+
m

∑
j=1
‖h j‖Ck−m j ,γ (∂Ω∩B2R(x0))

+‖u‖L1(Ω∩B2R(x0))

)

for any R > 0 and any x0 ∈Ω . Here, C also depends on R.
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Roughly speaking, equation (2.51) says that 2m derivatives of the solution u be-
long to Ck−2m,γ(Ω); if k ≥ 2m this has an obvious meaning while if k < 2m this
should be intended in a generalised sense. In any case, Theorem 2.19 states that the
solution gains 2m derivatives on the datum ∑β Dβ fβ .

2.5.2 Lp-theory

In this section we give an existence result for (2.2)-(2.14) in the framework of Lp

spaces. Under suitable assumptions on the parameters involved in the problem, we
show that the solution has at least 2m derivatives in Lp(Ω). In this case, the equation
(2.2) is satisfied a.e. in Ω and we say that u is a strong solution.

The following statement should also be seen as a regularity complement to The-
orem 2.16.

Theorem 2.20. Let 1 < p < ∞ and take an integer k ≥ 2m. Assume that ∂Ω ∈ Ck

and that {
aβ ∈Ck−2m(Ω) for all |β | ≤ 2m−1,

b j,α ∈Ck−m j(∂Ω) for all j = 1, ...,m, |α| ≤ m j.
(2.56)

Assume also that (2.15), (2.17) hold and that A and the B j’s satisfy (2.18)-(2.19).

Then for all f ∈W k−2m,p(Ω) and all h j ∈W k−m j− 1
p ,p(∂Ω) with j = 1, ...,m, the

problem (2.2)-(2.25) admits a unique strong solution u ∈W k,p(Ω). Moreover, there
exists a constant C = C(Ω ,k,m,A ,B j) > 0 independent of f and of the h j’s, such
that the following a priori estimate holds

‖u‖W k,p(Ω) ≤C

(
‖ f‖W k−2m,p(Ω) +

m

∑
j=1
‖h j‖

W k−m j−
1
p ,p(∂Ω)

)
.

The constant C depends on Ω only through its measure |Ω | and the Ck-norms of
the local maps which define the boundary ∂Ω . If k > 2m + n

p then u is a classical
solution.

Finally, if (2.17) is dropped, then for any solution u to (2.2)-(2.25) one has the
following local variant of the estimate

‖u‖W k,p(Ω∩BR(x0)) ≤ C
(
‖ f‖W k−2m,p(Ω∩B2R(x0))

+
m

∑
j=1
‖h j‖

W k−m j−
1
p ,p(∂Ω∩B2R(x0))

+‖u‖L1(Ω∩B2R(x0))

)
for any R > 0 and any x0 ∈Ω . Here, C also depends on R.

The proof of this general result is quite involved, especially if p 6= 2. It requires
the representation of the solution u in terms of the fundamental solution and the
Calderon-Zygmund theory [83] on singular integrals in Lp.
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In the case of Dirichlet boundary conditions Theorem 2.20 reads

Corollary 2.21. Let 1 < p < ∞ and take an integer k ≥ 2m. Assume that ∂Ω ∈Ck

and that (2.56) holds. Assume moreover that (2.17) holds and that A satisfies
(2.18). Then for all f ∈W k−2m,p(Ω) equation (2.2) admits a unique strong solu-
tion u ∈W k,p∩W m,p

0 (Ω); moreover, there exists a constant C = C(Ω ,k,m,A ) > 0
independent of f , such that

‖u‖W k,p(Ω) ≤C‖ f‖W k−2m,p(Ω).

For equations in variational form such as (2.51), Lp-estimates are available under
weaker regularity assumptions. For our purposes we just consider the following
special situation.

Theorem 2.22. For ∂Ω ∈C2, p ∈ (1,∞), and f ∈ Lp(Ω) there exists a unique so-
lution u ∈W 2,p

0 (Ω) of {
∆ 2u = ∇2 f in Ω ,
u = uν = 0 on ∂Ω ,

where ∇2 means any second derivative. Moreover, the following Lp-estimate holds

‖u‖W 2,p(Ω) ≤C‖ f‖Lp(Ω)

with C = C(p,Ω) > 0.

For Steklov boundary conditions (2.22) associated to the biharmonic operator,
Theorem 2.20 reads as follows.

Corollary 2.23. Let 1 < p < ∞ and take an integer k≥ 4. Assume that ∂Ω ∈Ck and
a ∈Ck−2(∂Ω), then there exists C = C(k, p,α,Ω) > 0 such that

‖u‖W k,p(Ω) ≤

≤C
(
‖u‖Lp(Ω) +

∥∥∆
2u
∥∥

W k−4,p(Ω) +‖u‖W k− 1
p ,p(∂Ω)

+‖∆u−auν‖
W k−2− 1

p ,p(∂Ω)

)
for all u ∈W k,p(Ω). The same statement holds for any k≥ 2, provided the norms in
the right hand side are suitably interpreted, see (2.5), (2.6), and (2.9).

Remark 2.24. In the estimates of Theorems 2.19 and 2.20 and of Corollaries 2.21
and 2.23, the constants depend in an indirect and nonconstructive way on the par-
ticular differential and boundary operators. As soon as one puts (for instance) the
L1-norm of the solution on the right hand side, the constants become explicit and
depend only on bounds for the data (k,m, domain, and coefficients) of the prob-
lem. This kind of uniformity will be needed in the proof of positivity for Green’s
functions in perturbed domains, see Section 6.5. There we have uniformly coercive
problems which yield an explicit estimate for some lower order norms, so that Lp or
Schauder estimates depending on the specific operator would be useless.
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2.5.3 The Miranda-Agmon maximum modulus estimates

We start by recalling that it is in general false that ∆u ∈ C0 implies u ∈ C2 even
if u satisfies homogeneous Dirichlet boundary conditions. Therefore, this lack of
regularity is a local problem, irrespective of how smooth the boundary data are. To
see why the implication fails, consider the function

u(x1,x2) =
{

x1x2 log | log(x2
1 + x2

2)| if (x1,x2) 6= (0,0),
0 if (x1,x2) = (0,0) ,

which is well-defined for |x|< 1. Some computations show that u solves the problem{
−∆u = f in Br(0),
u = 0 on ∂Br(0),

where r = 1/
√

e and

f (x1,x2) =

{
4x1x2(1−2log(x2

1+x2
2))

(x2
1+x2

2) log2(x2
1+x2

2)
if (x1,x2) 6= (0,0),

0 if (x1,x2) = (0,0), .

One can check that f ∈C0(Br(0)). On the other hand, for (x1,x2) 6= (0,0) we have

ux1x2(x1,x2)

= log | log(x2
1 + x2

2)|+
2(x4

1 + x4
2)

(x2
1 + x2

2)2 log(x2
1 + x2

2)
− 4x2

1x2
2

(x2
1 + x2

2)2 log2(x2
1 + x2

2)

which is unbounded for (x1,x2)→ (0,0). Therefore, u 6∈C2(Br(0)).
This example shows that a version of Theorem 2.19 in the framework of spaces

Ck of continuously differentiable functions is not available. On the other hand, the
well-known Poisson integral formula shows that for continuous Dirichlet boundary
data any harmonic function in the ball B is of class C0(B), see [197, Theorem 2.6]. In
other words, the solution inherits continuity properties from its trace. We state below
the corresponding result for polyharmonic equations in a particular situation which
is, however, general enough for our purposes. We consider boundary conditions
(2.14) with constant coefficients and the problem

(−∆)mu+A (x;D)u = f in Ω

B j(D)u = ∑
|α|≤m j

b j,α Dα u = h j on ∂Ω with j = 1, ...,m
(2.57)

for some constants b j,α ∈R\{0}. Then we have the following a priori estimates for
the maximum modulus of solutions and some of their derivatives.

Theorem 2.25. Assume (2.15), (2.17) and that A and the B j’s satisfy (2.18)-(2.19).
Assume also that ∂Ω ∈C2m and let µ = max j m j. Finally, assume that f ∈C0(Ω)
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and that h j ∈Cµ−m j(∂Ω) for any j = 1, ...,m. Then (2.57) admits a unique strong
solution u ∈ Cµ(Ω)∩W 2m,p

loc (Ω) for any p ∈ (1,∞). Moreover, there exists C > 0
independent of f ,h j such that

max
0≤k≤µ

‖Dku‖L∞ ≤C

(
m

∑
j=1
‖h j‖Cµ−m j (∂Ω) +‖ f‖L∞ +‖u‖L1

)
.

Proof. We split problem (2.57) into the two subproblems{
(−∆)mv+A (x;D)v = f in Ω ,
B j(D)v = 0 on ∂Ω , j = 1, ...,m,

(2.58)

{
(−∆)mw+A (x;D)w = 0 in Ω ,
B j(D)w = h j on ∂Ω , j = 1, ...,m.

(2.59)

Since f ∈ C0(Ω) ⊂ Lp(Ω) for any p ≥ 1, by Theorem 2.20 (with k = 2m) we
know that there exists a unique solution v∈W 2m,p(Ω) to (2.58). By Theorem 2.6 we
infer that v∈C2m−1,γ(Ω) for all γ ∈ (0,1). Moreover, there exist constants c1,c2 > 0
such that

‖v‖C2m−1,γ (Ω) ≤ c1‖ f‖L∞ + c2‖v‖L1 ,

see again Theorem 2.20.
On the other hand, by generalising the Miranda-Agmon procedure [4, 304, 305]

one shows that (2.59) admits a unique solution w ∈Cµ(Ω) satisfying

max
0≤k≤µ

‖Dkw‖L∞ ≤ c3

m

∑
j=1
‖h j‖Cm j (∂Ω) + c4‖w‖L1 (2.60)

for some c3,c4 > 0. This procedure consists in constructing a suitable approximate
solution w0 to (2.59). To this end one uses the explicit Poisson kernels which solve
a related boundary value problem in the half space. These Poisson kernels are deter-
mined in [5] and, since (2.19) holds, it makes no difference to consider the Dirichlet
problem as in [4, 304, 305] or the general boundary value problem in (2.59). Once
this approximate solution w0 is constructed, one shows that it satisfies (2.60) with
c4 = 0. Then one uses again Lp elliptic estimates from Theorem 2.20 and embedding
arguments in order to show that the solution w to (2.59) satisfies (2.60).

Once the solutions v and w to (2.58) and (2.59) are obtained, the solution u of
(2.57) is determined by adding, u = v+w, so that also the estimate of the Cµ -norm
follows. �

2.6 Green’s function and Boggio’s formula

The regularity results of the previous sections are somehow directly visible when
writing explicitly the solution of the boundary value problem in terms of the data
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by means of a suitable kernel. Let us focus on the polyharmonic analogue of the
clamped plate boundary value problem{

(−∆)mu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1.
(2.61)

Here Ω ⊂Rn is a bounded smooth domain, f a datum in a suitable functional space
and u denotes the unknown solution.

In order to give an explicit formula for solving (2.61), the first step is to define
the fundamental solution of the polyharmonic operator (−∆)m in Rn. We put

Fm,n (x) =


2Γ (n/2−m)

nen4mΓ (n/2)(m−1)! |x|
2m−n if n > 2m or n is odd,

(−1)m−n/2

nen4m−1Γ (n/2)(m−n/2)!(m−1)! |x|
2m−n (− log |x|) if n≤ 2m is even,

so that, in distributional sense

(−∆)mFm,n = δ0, (2.62)

where δ0 is the Dirac mass at the origin. Of course, one may add any m-polyharmonic
function to Fm,n and still find (2.62). For n > 2m there is a unique fundamental so-
lution when one adds the “boundary condition”

lim
|x|→∞

Fm,n(x) = 0. (2.63)

For n≤ 2m no fundamental solution satisfies (2.63) and there does not seem to be a
natural restriction to fix a unique fundamental solution.

Thanks to the fundamental solution, we may introduce the notion of Green func-
tion.

Definition 2.26. A Green function for (2.61) is a function (x,y) 7→ G(x,y) : Ω ×
Ω → R∪{∞} satisfying:

1. x 7→ G(x,y)−Fm,n(x− y) ∈C2m(Ω)∩Cm−1(Ω) for all y ∈Ω if defined suitably
for x = y;

2. (−∆x)m (G(x,y)−Fm,n(x− y))= 0 for all (x,y)∈Ω 2 if defined suitably for x = y;
3. Dα

x G(x,y) = 0 for all (x,y) ∈ ∂Ω ×Ω and |α| ≤ m−1.

Formally, the Green function enables one to write the unique solution to (2.61)
as

u(x) =
∫

Ω

G(x,y) f (y)dy. (2.64)

Provided f belongs to a suitable functional space, this formula makes sense and
gives the solution u.

Clearly, the exact form of the Green function G is not easily determined. How-
ever, as we already mentioned in Section 1.2, Boggio [63, p. 126] could explicitly
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calculate the Green function Gm,n := G(−∆)m,B for problem (2.61) when Ω is the
unit ball in Rn.

Lemma 2.27. The Green function for the Dirichlet problem (2.61) with Ω = B is
positive and given by

Gm,n(x,y) = km,n |x− y|2m−n

∣∣∣|x|y− x
|x|

∣∣∣/|x−y|∫
1

(v2−1)m−1v1−n dv. (2.65)

The positive constants km,n are defined by

km,n =
1

nen4m−1 ((m−1)!)2 , en =
πn/2

Γ (1+n/2)
.

Remark 2.28. If n > 2m, then by applying the Cayley transform one finds for the
half space Rn

+ = {x ∈ Rn : x1 > 0}

G(−∆)m,Rn
+
(x,y) = km,n |x− y|2m−n

|x∗−y|/|x−y|∫
1

(v2−1)m−1v1−n dv, (2.66)

where x,y ∈ Rn
+, x∗ = (−x1,x2, . . . ,xn). We also emphasise that the assumption

n > 2m is required in this half space Rn
+ in order to have uniqueness of the corre-

sponding Green function. When n≤ 2m one may achieve uniqueness in some cases
by adding restrictions such as upper bounds for its growth at infinity (see Remark
6.28 for the case m = 2 and n = 3,4) . Alternatively, one may just impose that the
Green function in the half space is the Cayley transform of its counterpart in the ball
and hence given by (2.66).

2.7 The space H2∩H1
0 and the Sapondžyan-Babuška paradoxes

In this section, we consider in some detail the space H2∩H1
0 which is in some sense

“intermediate” between H2 and H2
0 . This space is also related to both the homo-

geneous Navier (2.21) and Steklov (2.22) boundary conditions, see the discussion
following (2.34). The norm to be used in this space strongly depends on the smooth-
ness of ∂Ω . It was assumed in Theorem 2.20 that ∂Ω ∈C4. We first show that this
assumption may be relaxed in some cases. On the other hand, if it is “too relaxed”
then uniqueness, regularity or continuous dependence may fail, leading to some ap-
parent paradoxes. We also point out that the regularity of the boundary plays an
important role in the definition of the first Steklov eigenvalue, see Section 3.3.2.

Let us first remark that in the case m = 2, Theorem 2.2 reads
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Corollary 2.29. Let Ω ⊂ Rn be a smooth bounded domain. On the space H2
0 (Ω),

the bilinear form

(u,v) 7→ (u,v)H2
0

:=
∫

Ω

∆u∆vdx for all u,v ∈ H2
0 (Ω)

defines a scalar product over H2
0 (Ω) which induces a norm equal to ‖D2 .‖L2 and

equivalent to (‖D2 .‖2
L2 +‖ .‖2

L2)1/2.

We now show the less obvious result that the very same scalar product may also
be used in the larger space kerγ0 = H2∩H1

0 (Ω) when ∂Ω is not too bad. For later
use, we state this result in general (possibly nonsmooth) domains. The class of do-
mains considered is explained in the following definition taken from [2].

Definition 2.30. We say that a bounded domain Ω ⊂ Rn satisfies an outer ball
condition if for each y ∈ ∂Ω there exists a ball B ⊂ Rn \Ω such that y ∈ ∂B. We
say that it satisfies a uniform outer ball condition if the radius of the ball B can be
taken independently of y ∈ ∂Ω .

In particular, a convex domain is a Lipschitz domain which satisfies a uniform
outer ball condition. We have

Theorem 2.31. Assume that Ω ⊂ Rn is a Lipschitz bounded domain which satisfies
a uniform outer ball condition. Then the space H2∩H1

0 (Ω) becomes a Hilbert space
when endowed with the scalar product

(u,v) 7→
∫

Ω

∆u∆vdx for all u,v ∈ H2∩H1
0 (Ω).

This scalar product induces a norm equivalent to ‖ .‖H2 .

Proof. Under the assumptions of the theorem Adolfsson [2] proved that there exists
a constant C > 0 independent of u, such that

‖u‖H2 ≤C‖∆u‖L2 for all u ∈ H2∩H1
0 (Ω).

For all u ∈ H2∩H1
0 (Ω) we also have

|D2u|2 =
n

∑
i, j=1

(∂i ju)2 ≥
n

∑
i=1

(∂iiu)2 ≥ 1
n
|∆u|2 a.e. in Ω . (2.67)

This shows that the two norms are equivalent. �

Remark 2.32. Let Ω ⊂Rn be a bounded and convex domain with smooth boundary.
Consider the set

V :=
{

u ∈C2(Ω); u≥ 0,
∂u
∂ν
≥ 0, u

∂u
∂ν

= 0 on ∂Ω

}
.

Let W denote the closure of V with respect to the norm ‖ .‖H2 . Then we have
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Ω

|D2u|2 dx≤
∫

Ω

|∆u|2 dx for all u ∈W,

see [198, Theorem 2.1]. This inequality is somehow the converse of (2.67).

The assumptions on ∂Ω under which Theorem 2.31 holds are related to the so-
called Sapondžyan or concave corner paradox. This paradox relies on the fact that,
for some nonsmooth domains Ω , the linear Navier problem may have several dif-
ferent solutions, according to the functional space where they are sought.

One way of getting the existence is through a “system solution” which belongs
to H1

0 (Ω) as well as its Laplacian. A second type of solution is obtained using
Kondratiev’s techniques in the space H2 ∩H1

0 (Ω). Note that, since ‖.‖ defined by
‖u‖ := ‖∆u‖L2 is not a norm on H2 ∩H1

0 (Ω) when the domain has a reentrant
corner, one cannot directly apply the Lax-Milgram theorem. Indeed, Theorem 2.31
may not hold if a uniform outer ball condition fails. The following example appears
suitable to illustrate this dichotomy in some detail.

Example 2.33. For α ∈
( 1

2 π,π
)

fix the domain

Ωα =
{
(r cosϕ,r sinϕ) ∈ R2;0 < r < 1 and |ϕ|< α

}
.

Let f ∈ L2(Ωα) and consider the homogeneous Navier problem∆ 2u = f in Ωα ,
u = 0 on ∂Ωα ,
∆u = 0 on ∂Ωα \{0}.

(2.68)

We say that u is a system solution to (2.68) if u,∆u ∈ H1
0 (Ωα) and{

−∆u = w and −∆w = f in Ωα ,
u = 0 and w = 0 on ∂Ωα .

(2.69)

By applying twice the Lax-Milgram theorem in H1
0 (Ωα), this system solution, as a

solution to an iterated Dirichlet Laplace problem on a bounded domain, exists for
any f ∈ L2(Ωα). Using [251] one finds that there also exists a solution in H2 ∩
H1

0 (Ω) of (2.68), which indeed satisfies ∆u = 0 pointwise on ∂Ω \ {0}. Since its
second derivatives are square summable, let us call this the energy solution.

Next we consider a special function. For ρ = π

2α
the function vα defined by

vα(r,ϕ) =
(
r−ρ − rρ

)
cos(ρϕ)

satisfies {
−∆vα = 0 in Ωα ,

vα = 0 on ∂Ωα\{0}.

Moreover, one directly checks that vα ∈ L2(Ωα) for ρ ∈
( 1

2 ,1
)
. Then there exists a

unique solution bα ∈ H1
0 (Ωα) of
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−∆bα = vα in Ωα ,

bα = 0 on ∂Ωα .

One has ∆bα 6∈ H1
0 (Ωα) and may check that bα 6∈ H2(Ωα). So we have found a

nontrivial solution to (2.68) with f = 0. This bα is neither a system solution nor an
energy solution. Let u be the system solution. Then the following holds:

1. For all c ∈ R we have uc := u+ cbα ∈ H1
0 (Ωα) and ∆uc ∈ L2(Ωα).

2. For all c ∈ R, the function uc satisfies (2.68). Using results in [318] one may
show that in fact uc ∈C0(Ωα) and ∆uc ∈C0

loc(Ωα \{0}) whenever f ∈ L2(Ωα).
3. One finds ∆uc ∈ H1

0 (Ωα) if and only if c = 0.
4. For f ∈ L2(Ωα) let

cα( f ) :=−‖vα‖−2
L2

∫
Ωα

vαG−∆ ,Ωα
f dx.

We have uc ∈ H2∩H1
0 (Ωα) if and only if c = cα( f ).

5. The energy solution to (2.68) is uc with c = cα( f ). Hence the system solution is
different from the energy solution whenever cα( f ) 6= 0.

Now let f be positive. A close inspection shows, see [320], that for the system
solution the H2-regularity fails when cα( f ) 6= 0 while positivity holds true. On the
other hand, the energy solution uc with c = cα( f ) has the appropriate regularity, but
positivity fails when α > 3

4 π and∫
Ωα

(
r−

π
α − r

π
α

)
sin
(

π

α
ϕ
)
G−∆ ,Ωα

f dx 6= 0.

For α ∈ ( 1
2 π, 3

4 π) there is only numerical evidence of sign-changing energy solu-
tions. See Figure 2.1.

We now discuss in detail another famous paradox due to Babuška, also known
as the polygon-circle paradox. The starting point is a planar hinged plate Ω with a
load f ∈ L2(Ω). This gives rise to the Steklov problem{

∆ 2u = f in Ω ,

u = ∆u− (1−σ)κ
∂u
∂ν

= 0 on ∂Ω ,
(2.70)

where κ denotes the curvature of the boundary and σ is the Poisson ratio. Problem
(2.70) is considered both in the unit disk B and in the sequence (see Figure 1.3) of
inscribed regular polygons (Pm)⊂ B (m≥ 3) with corners{(

cos
(

2k
m

π

)
,sin

(
2k
m

π

))
;k = 1, . . . ,m

}
.

Since the sides of Pm are flat, the curvature vanishes there and (2.70) becomes{
∆ 2u = f in Pm,
u = ∆u = 0 on ∂Pm.

(2.71)
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Fig. 2.1 The level lines of u and uc = u + cbα with c = cα ( f ) for f ≥ 0 having a small support
near the left top of the domain. Grey region = {x : uc(x) < 0}; here, a different scale is used for
the level lines.

The so-called Babuška paradox shows that this argument is not correct, that is, (2.71)
is not the right formulation of (2.70) when Ω = Pm. The “infinite curvature” at the
m corners cannot be neglected, one should instead consider Dirac delta-type contri-
butions at each corner. Indeed, the next result states that the sequence of solutions to
(2.71) does not converge (as m→ ∞) to the unique solution of (2.70) when Ω = B.
On the contrary, it converges to the unique solution of the following Navier problem{

∆ 2u = f in B,
u = ∆u = 0 on ∂B.

(2.72)

More precisely, recalling the definition of system solution in (2.69), we have

Proposition 2.34. Let Pm ⊂ B with m ≥ 3 be the interior of the regular polygon
with corners

{(
cos
( 2k

m π
)
,sin

( 2k
m π
))

;k = 1, . . . ,m
}

and let f ∈ L2(B). Then the
following holds.

1. There exists a unique (weak) system solution um of (2.71) so that um,∆um ∈
H1

0 (Pm).
2. There exists a unique minimiser ũm in

{
u ∈ H2∩H1

0 (Pm)
}

of

J(u) =
∫

Pm

(
1
2 (∆u)2− f u

)
dx.

3. The solution um satisfies

um ∈ H2∩C1(Pm) and ∆um ∈ H2∩C0,γ(Pm),

for γ ∈ (0,1) and hence ũm = um.
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4. If we extend um by 0 on B\Pm and let u∞ be the solution of (2.72), then

lim
m→∞
‖um−u∞‖L∞(B) = 0.

Note that even if the identity of um and ũm may not seem very surprising, Exam-
ple 2.33 shows that for domains with nonconvex corners these two solutions can be
different.
Proof. 1. By the Lax-Milgram theorem, for any bounded domain Ω (in particular,
if Ω = Pm) and any f ∈ L2(Ω) the Poisson problem{

−∆w = f in Ω ,
w = 0 on ∂Ω ,

(2.73)

has a unique (weak) solution in H1
0 (Ω). Similarly, one finds a unique solution in

H1
0 (Ω) to −∆u = w in Ω with u = 0 on ∂Ω . We apply this fact to the case where

Ω = Pm.
2. The functional J is convex and coercive on H2∩H1

0 (Pm) in view of Theorem
2.31 since the corner points of Pm all have angles less then π (i.e. Pm satisfies a
uniform outer ball condition). As the functional J is weakly lower semicontinuous
and the closed unit ball in H2∩H1

0 (Pm) is weakly compact there exists a minimiser.
The strict convexity gives uniqueness.

3. Invoking again [2] (or [240] since the Pm are convex), we know that the solution
of (2.73) in Pm with source in L2(Pm) lies in H2(Pm). Hence ∆um ∈ H2(Pm) and,
by Theorem 2.6, ∆um ∈C0,γ(Pm) for all γ ∈ (0,1). In fact, by Kondratiev [251] one
finds that for a convex domain in two dimensions, with all corners having an opening
angle less than or equal to α ∈

(
π

2 ,π
)
, the solution of (2.73) for f ∈ Lp(Ω) with

p < pα = 2α

2α−π
lies in W 2,p(Ω). Hence for each Pm one finds that um ∈W 2,2+ε(Pm)

for 0≤ ε < 4
m−4 . Theorem 2.6 then implies that um ∈C1(Pm).

4. It is sufficient to prove this result for f ≥ 0. For r ∈ (0,1) we compare the
solutions wr of {

−∆w = f in Br,
w = 0 on ∂Br.

Extend wr to B\Br by 0. Assuming f ≥ 0 and f ∈ L2(B) one finds that for 0 < r1 <
r2 < 1 it holds that wr1 ≤ wr2 and moreover, that

lim
s→r
‖ws−wr‖L∞(B) = 0.

Indeed, if f ∈ L2(B), then ws,wr ∈C0,γ(B) and for s < r we find that{
−∆ (wr−ws) = 0 in Bs,
wr−ws = wr on ∂Bs.

Since wr ∈C0,γ(B), this yields

‖wr‖L∞(Br\Bs) ≤C f |r− s|γ .
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By the maximum principle

‖wr−ws‖L∞(B) = ‖wr−ws‖L∞(Bs) ≤ ‖wr‖L∞(∂Bs) ≤C f |r− s|γ .

Again using the maximum principle and writing ur for the solution of (2.72) in Br
(instead of B) we find

ur(x)≤ u1(x)≤ ur(x)+C̃ f |1− r|γ . (2.74)

Two more applications of the maximum principle result in

urm(x)≤ um(x)≤ u1(x) (2.75)

with rm = cos(π/m) since Brm ⊂Pm⊂B. The last claim follows by combining (2.74)
and (2.75). �

In order to emphasise the role played by smooth/nonsmooth boundaries in this
paradox, we prove

Proposition 2.35. Let Ω ⊂ R2 be a bounded domain with C2 boundary and let σ ∈
(−1,1). If f ∈ L2(Ω), then there exists a unique minimiser uσ ∈ H2∩H1

0 (Ω) of

J(u) =
∫

Ω

(
1
2 (∆u)2 +(1−σ)

(
u2

xy−uxxuyy
)
− f u

)
dxdy.

If ∂Ω ∈C4, then uσ ∈ H4(Ω) and uσ satisfies{
∆ 2u = f in Ω ,

u = ∆u− (1−σ)κ
∂u
∂ν

= 0 on ∂Ω .
(2.76)

Proof. Assume first that 0≤ σ < 1. Since the expression

1
2 (∆u)2 +(1−σ)

(
u2

xy−uxxuyy
)

= σ

2 (uxx +uyy)
2 + 1−σ

2

(
u2

xx +2u2
xy +u2

yy
)

is convex in the second derivatives of u, so is J. If −1 < σ < 0, following [331,
Proposition 2.4] we note that

〈dJ(v1)−dJ(v2),v1− v2〉

=
∫

Ω

(
(v1− v2)2

xx +(v1− v2)2
yy +2σ(v1− v2)xx(v1− v2)yy

+ 2(1−σ)(v1− v2)2
xy
)

dxdy

≥ (1+σ)
∫

Ω

(
(v1− v2)2

xx +(v1− v2)2
yy +2(v1− v2)2

xy
)
dxdy

> 0

for all v1,v2 ∈ H2∩H1
0 (Ω) (v1 6= v2), where we used the simple inequality 2σab≥

σ(a2 +b2). Hence, also for −1 < σ < 0, the functional J is convex.
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Then existence and uniqueness of a minimiser for J are obtained as in Proposition
2.34. The minimiser u satisfies the weak Euler-Lagrange equation, that is∫

Ω

(
∆u∆ϕ +(1−σ)(2uxyϕxy−uxxϕyy−uyyϕxx)− f ϕ

)
dxdy = 0

for all ϕ ∈ H2 ∩H1
0 (Ω). Regularity arguments (see Theorem 2.20) show that for

∂Ω ∈C4 and f ∈ L2(Ω) the minimiser lies in H4(Ω). The integration by parts in
(1.7) and (1.8) show that uσ satisfies (2.76). �

By combining Propositions 2.34 and 2.35 we may now better explain the Babuška
paradox. Assume that f ∈ L2(B) and let σ 6= 1. If u∞ is as in Proposition 2.34 and
uσ is as in Proposition 2.35, then

u∞ ≡ uσ in B ⇐⇒ ∂u∞

∂ν
≡ 0 on ∂B.

But if 0 6= f ≥ 0, then the maximum principle implies−∆u∞ > 0 and u∞ > 0 whereas
Hopf’s boundary point Lemma even gives ∂u∞

∂ν
< 0 on ∂B and hence u∞ 6= uσ .

Babuška considered the case where f = 1 in B. This simple source allows us to
compute all the functions involved. The solution to (2.76) with f = 1 on B is the
radially symmetric function

uσ (x) =
(5+σ)− (6+2σ) |x|2 +(1+σ) |x|4

64(1+σ)
.

The limit u∞ in Babuška’s example, defined by u∞(x) = limm→∞ um(x) equals
uσ=1(x), namely

u∞(x) =
3
64
− 1

16
|x|2 +

1
64
|x|4 ,

see also [401, p. 499] and [135].

-1 -0.5 0.5 1

0.02

0.04

0.06

0.08

Fig. 2.2 The example of Babuška: Ω = B and f = 1. The solutions uσ to (1.10) depend on σ ; from
top to bottom the solutions for σ = 0, .3, .5 and 1. The solution for σ = 1 is the limit of um from
the regular m-polygon with m→ ∞.
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2.8 Bibliographical notes

Ellipticity and the complementing condition are well explained in [5], see also Sec-
tion 1 of Chapter 2 in [275]. The polynomial Lm representing the differential op-
erator is taken from [5, Section I.1], see also Section 1.1 of Chapter 2 in [275].
For boundary conditions that do not satisfy assumption (2.15) we refer again to [5].
The complementing condition is sometimes also called Lopatinski-Shapiro condi-
tion and may be defined in an equivalent way, see [416, Section 11]. Concerning
assumption (2.17), we refer to [416, Theorem 13.1] for a general statement relating
ellipticity, the complementing condition, regularity results, Fredholm theory and a
priori estimates.

More results about Sobolev spaces may be found in the monographs by Adams
[1], Maz’ya [291] and Lions-Magenes [275]. All the embedding theorems in Section
2.2.2 may be derived from [1, Theorems 5.4 and 6.2] whereas for the scalar product
in Hm(Ω) see [275, Théorème 1.1]. Theorem 2.31 is taken from [80] and Theorem
2.7 is taken from [1, Theorem 5.23].

The material from Section 2.4 is taken from Section 9 of Chapter 2 in [275] and
from [416]. Theorem 2.13 is a variant of Green’s formula, see [416, Theorem 14.8].
A Hilbert triple as in Definition 2.14 is a particular case of a Gelfand triple, see [416,
Definition 17.1]. The coercivity condition in (2.41) is given in Hm(Ω), the frame-
work of our setting; it is taken from [275, Definition 2.9.1]. Agmon’s condition
which ensures the coercivity of the bilinear form Ψ(u,v) was originally stated in
[3]; we also refer to Theorem 9.3 of Chapter 2 in [275] and to [416, Section 18] for
equivalent formulations. Theorem 2.16 is a direct consequence of the Lax-Milgram
theorem, see [416, Theorem 17.10]. Existence, uniqueness and regularity results for
(2.2)-(2.14) with data in the Hilbert spaces Hs with s ∈R (possibly also non integer
and negative) are studied in full detail in [275]; in particular, we refer to Remark 7.2
of Chapter 2 in [275] for a statement including all possible cases. Theorem 2.19 is
contained in [5, Theorem 9.3] whereas Theorem 2.20 is contained in [5, Theorem
15.2]. Theorem 2.22 and the extension of Corollary 2.23 to all k ≥ 2 are justified
by [5, Theorem 15.3’]. Theorem 2.25 follows as a by-product of Theorems 2.6 and
2.20 on one hand and maximum modulus estimates for solutions of higher order
elliptic equations on the other hand. This second tool was introduced by Miranda
[304, 305] for higher order problems in the plane and subsequently generalised by
Agmon [4] in any space dimension. We also refer to [377] for a simple sketch of
the proof. Finally, let us mention that partial extensions and counterexamples to
Theorem 2.25 in nonsmooth domains may be found in works by Pipher-Verchota
[337, 338], Maz’ya-Rossmann [290], Mayboroda-Maz’ya [284, 285] and references
therein. Lemma 2.27 is a fundamental contribution by Boggio [63] and is one of the
most frequently used results in this monograph. Results on Green’s functions may
also be found in the monograph [21]. As for Lp-theory of higher-order elliptic op-
erators and underlying kernel estimates one may also see the survey article [129]
by Davies. Theorem 2.31 is a straightforward consequence of results by Adolfsson
[2], see also [237, 238] for related results. Concerning the Sapondžyan paradox, we
refer to the original paper [357] and to more recent results on “multiple” solutions
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in [320]. Babuška [28] noticed first that by approximating a curvilinear domain by
polygons the approximating solutions would not converge to the solution on the
curvilinear domain. Engineering approaches to the Babuška or polygon-circle para-
dox can be found in [241, 314, 354]. A mathematical approach can be found in the
work by Maz’ya and Nazarov [292, 293]. These authors dealt with the paradox by a
careful asymptotic analysis of the boundary layer and the contribution of the corners
in this. Part of their results are based on Γ -convergence results from [422]. More re-
cently, Davini [134] again uses Γ -convergence to find a correct approximation. He
focuses on numerical methods that avoid the pitfall of this paradox. Most part of the
material in Section 2.7 is taken from [387].



Chapter 3
Eigenvalue problems

For quite general second order elliptic operators one may use the maximum princi-
ple and the Kreı̆n-Rutman theorem to show that the eigenfunction corresponding to
the first eigenvalue has a fixed sign. It is then a natural question to ask if a similar
result holds for higher order Dirichlet problems where a general maximum principle
is not available. A partial answer is that a Kreı̆n-Rutman type argument can still be
used whenever the boundary value problem is positivity preserving. We will also ex-
plain in detail an alternative dual cone approach. Both these methods have their own
advantages. The Kreı̆n-Rutman approach shows under fairly weak assumptions that
there exists a real eigenvalue and, somehow as a byproduct, one finds that the eigen-
value and the corresponding eigenfunction are positive. It applies in particular to
non-selfadjoint settings. The dual cone decomposition only applies in a selfadjoint
framework in a Hilbert space, where the existence of eigenfunctions is well-known.
But in this setting it provides a very simple proof for positivity and simplicity of the
first eigenfunction. A further quality of this method is that it applies also to some
nonlinear situations as we shall see in Chapter 7.

We conclude this first part of the chapter with some further remarks on the con-
nection between the positivity preserving property of the Dirichlet problem and the
fixed sign property of the first eigenfunction. In particular, we show that the latter
property, as well as the simplicity of the first eigenvalue, may fail.

Then we turn to the minimisation of the first Dirichlet eigenvalue of the bihar-
monic operator among domains of fixed measure and we show that, in dimensions
n = 2 and n = 3, the ball achieves the minimum. We also consider two further eigen-
value problems, the buckling load of a clamped plate and Steklov eigenvalues. Up
to some regularity to be proved, a quite hard open problem, the disk minimises the
buckling load among planar domains of given measure. For the Steklov problem we
first study in detail the whole spectrum and then we show that an optimal shape of
given measure which minimises the first eigenvalue does not exist.

59
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3.1 Dirichlet eigenvalues

Here we consider the eigenvalue problem{
(−∆)mu = λu , u 6≡ 0 in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1
(3.1)

on a given bounded domain Ω ⊂Rn (n≥ 2). The first eigenvalue of (3.1) is defined
as

Λm,1(Ω) = min
u∈Hm

0 (Ω)\{0}

‖u‖2
Hm

0

‖u‖2
L2

. (3.2)

In this section we discuss several problems related to (3.1) and to its first eigenvalue.
We start by showing that the corresponding eigenfunction is of one sign whenever
the problem {

(−∆)mu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1
(3.3)

is positivity preserving, see Definition 3.1 below. This statement can be obtained in
two different ways, either with a somehow standard Kreı̆n-Rutman type argument
or with a decomposition in dual cones which we discuss in detail. Next, we discuss
the positivity of the first eigenfunction and its failure in general and we end up with
the minimisation of the first eigenvalue among domains of given measure.

3.1.1 A generalised Kreı̆n-Rutman result

The Kreı̆n-Rutman theorem, which can be considered to have its roots in Jentzsch’s
theorem, appears in many forms with many different and partially overlapping con-
ditions but none of the classical versions are optimal for the solution operator of an
elliptic boundary value problem. The main restriction is the necessity of having a
positive cone with an open interior, see [257, Theorems 6.2 and 6.3]. As we shall
see, this restriction could be removed after a profound result of de Pagter [136].

Consider the linear problem (3.3) and the following notion of positivity preserv-
ing.

Definition 3.1. We say that (3.3) has a positivity preserving property when the fol-
lowing holds for all u and f satisfying (3.3):

f ≥ 0⇒ u≥ 0.

In case that a Green function exists, the positivity preserving property holds true
if and only if this Green function is nonnegative. We now establish that if (3.3) is
positivity preserving then a Kreı̆n-Rutman result allows one to verify that the first
eigenvalue for (3.1) is simple and corresponds to an eigenfunction of fixed sign.
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Let us shortly introduce some terminology.

Definition 3.2. An ordered Banach space (E,‖ .‖ ,≥) is called a Banach lattice if:

• the least upper bound of two elements in E lies again in E:

f ,g ∈ E implies f ∨g := inf{h ∈ E;h≥ f and h≥ g} ∈ E;

• the ordering of positive elements is preserved by the norm: setting | f |= f ∨(− f )
it holds for all f ,g ∈ E that | f | ≤ |g| implies ‖ f‖ ≤ ‖g‖.

A linear subspace A⊂ E is called a lattice ideal if

| f | ≤ |g| and g ∈ A implies f ∈ A.

We call A invariant under the operator T : E→ E if T (A)⊂ A.

We can now give a statement which improves the classical Kreı̆n-Rutman theo-
rem, see [257].

Theorem 3.3. Let E be a Banach lattice with dim(E) > 1 and let T : E → E be a
linear operator satisfying:

• T is compact;
• T is positive: T (K )⊂K where K is the positive cone in E;
• T is irreducible: {0} and E are the only closed lattice ideals invariant under T .

Then the spectral radius ρ of T is strictly positive and there exists v ∈K \{0} with
T v = ρv. Moreover, the algebraic multiplicity of ρ is one, all other eigenvalues ρ̃

satisfy |ρ̃|< ρ and no other eigenfunction is positive.

By Lemma 2.27 we know that the Green function in the ball B is positive so
that problem (3.3) has a positivity preserving property whenever Ω = B. In fact,
Theorem 3.3 applies to any domain Ω where the corresponding Green function GΩ

is strictly positive. In this case, one takes E = L2(Ω) or E = {v ∈C(Ω); v|∂Ω = 0}
and T as the solution operator for (3.3). Since for each x ∈ Ω the Green function
GΩ (x, .) is strictly positive on Ω except for a set of measure 0 it follows in both
settings that T is irreducible.

3.1.2 Decomposition with respect to dual cones

We state and discuss here an abstract result due to Moreau [311] about the decom-
position of a Hilbert space H into dual cones; we recall that K ⊂ H is a cone if
u ∈ K and a ≥ 0 imply that au ∈ K . In order to exploit the full power of this
decomposition, we also establish a generalised Boggio result. This will be used in
several different points of this monograph. Finally, we give a first simple application
of this decomposition to a capacity problem.
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It was Miersemann [301] who first observed that the dual cone decomposition
could be quite helpful in the context of fourth order elliptic equations. In the next
section we show how this method can be used to prove simplicity and positivity of
the first eigenfunction of (3.1) in a ball. Moreover, this decomposition will turn out
to be quite useful in a number of semilinear problems considered in this monograph.

Theorem 3.4. Let H be a Hilbert space with scalar product (., .)H . Let K ⊂ H be
a closed convex nonempty cone. Let K ∗ be its dual cone, namely

K ∗ = {w ∈ H; (w,v)H ≤ 0 for all v ∈K }.

Then for any u ∈ H there exists a unique (u1,u2) ∈K ×K ∗ such that

u = u1 +u2 , (u1,u2)H = 0. (3.4)

In particular, ‖u‖2
H = ‖u1‖2

H +‖u2‖2
H .

Moreover, if we decompose arbitrary u,v ∈ H according to (3.4), namely u =
u1 +u2 and v = v1 + v2, then we have that

‖u− v‖2
H ≥ ‖u1− v1‖2

H +‖u2− v2‖2
H .

In particular, the projection onto K is Lipschitz continuous with constant 1.

Proof. For a given u ∈ H, we prove separately existence and uniqueness of a de-
composition satisfying (3.4).

Existence. Let u1 be the projection of u onto K defined by

‖u−u1‖= min
v∈K
‖u− v‖

and let u2 := u−u1. Then for all t ≥ 0 and v ∈K one has

‖u−u1‖2
H ≤ ‖u− (u1 + tv)‖2

H = ‖u−u1‖2
H −2t(u−u1,v)H + t2‖v‖2

H

so that
2t(u2,v)H ≤ t2‖v‖2

H . (3.5)

Dividing by t > 0 and letting t ↘ 0, (3.5) yields (u2,v)H ≤ 0 for all v ∈K so that
u2 ∈K ∗. Choosing v = u1 also allows for taking t ∈ [−1,0) in (3.5), so that dividing
by t < 0 and letting t↗ 0 yields (u2,u1)H ≥ 0 which, combined with the just proved
converse inequality, proves that (u2,u1)H = 0.

Lipschitz continuity. From the two inequalities (u1,v2)H ≤ 0 and (v1,u2)H ≤ 0
and by orthogonality, we obtain
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‖u− v‖2
H = (u1 +u2− v1− v2,u1 +u2− v1− v2)H

= ((u1− v1)+(u2− v2),(u1− v1)+(u2− v2))H

= ‖u1− v1‖2
H +‖u2− v2‖2

H +2(u1− v1,u2− v2)H

= ‖u1− v1‖2
H +‖u2− v2‖2

H −2(u1,v2)H −2(v1,u2)H

≥ ‖u1− v1‖2
H +‖u2− v2‖2

H

and Lipschitz continuity follows.
Uniqueness. It follows from the Lipschitz continuity by taking u = v. �

Remark 3.5. In the context of an abstract Hilbert space it is quite easy to gain an
imagination of the projection u1 of a general element u onto K . However, in the
concrete context of function spaces it is difficult to really see how u1 arises from u
and K . Here, a different point of view is helpful: u2 := u−u1 ∈ H is characterised
by minimising ‖ .‖H subject to the constraint that u−u2 ∈K . In the framework of
the function space H2

0 (Ω) equipped with the scalar product (u,v)H2
0 (Ω) =

∫
Ω

∆u∆v

and the cone K ⊂ H2
0 (Ω) of nonnegative functions this means that u2 has minimal

(quadratic) elastic energy
∫

Ω
(∆u2)2 among all H2

0 -functions subject to the constraint
that u−u2≥ 0, i.e. u2≤ u. This means that one seeks u2 as the solution of an obstacle
problem, see [248]. See Figure 3.1 for an example of a dual cone decomposition in

Fig. 3.1 Dual cone decomposition (right) in H2
0 of the function displayed on the left.

H2
0 . We refer to [68] for further explanations and for some explicit examples of the

dual cone decomposition.
Note also that the Lipschitz continuity property stated in Theorem 3.4 strongly

depends on the norm considered. To see this, consider the special case H =
H1

0 (−1,1) with (u,v)H =
∫ 1
−1 u′v′ and let K = {v ∈ H : v ≥ 0 a.e.}. For any

ε ∈ (0,1) let

uε(x) :=


|x|
ε
−1 if |x| ≤ ε,

0 otherwise.

Then

uε
2(x) = |x|−1, uε

1(x) = uε(x)−uε
2(x) =


|x|
ε
−|x| if |x| ≤ ε,

1−|x| otherwise.
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Therefore, uε → 0 in L2(−1,1) as ε ↘ 0, while uε
1→ 1−|x| and uε

2 ≡ |x|−1. This
shows that the decomposition in H1

0 is not continuous with respect to the L2-norm.

Let us now explain how we are planning to use the decomposition in Theorem
3.4. We will take H as a Hilbertian functional space (L2, H2, D2,2 . . .) and

K = {u ∈ H; u≥ 0 a.e.}.

If H = L2(Ω), then K ∗ =−K and Theorem 3.4 simply yields

u = u+−u− for all u ∈ L2(Ω).

If H = H1
0 (Ω), in order to characterise K ∗ we seek v ∈ H1

0 (Ω) such that∫
Ω

∇u∇vdx≤ 0 for all u ∈K .

This means that v is weakly subharmonic (formally,
∫

Ω
u∆v≥ 0) and therefore

K ∗ = {v ∈ H1
0 (Ω); v is weakly subharmonic}(−K .

Note that although
∫

Ω
∇u+∇u− = 0, the decomposition obtained here is different

from u = u+−u−.
In higher order Sobolev spaces the decomposition u = u+−u− is no longer ad-

missible because if u ∈ Hm (m ≥ 2) then, in general, u+,u− 6∈ Hm. In some situa-
tions the decomposition into dual cones may substitute the decomposition into pos-
itive and negative part. In order to facilitate and strengthen the application of Theo-
rem 3.4 to higher order Sobolev spaces, we generalise Boggio’s principle (Lemma
2.27) to weakly subpolyharmonic functions in suitable domains. Let us consider
again K = {v ∈ Hm

0 (Ω); v≥ 0 a.e. in Ω} (or v ∈Dm,2(Ω) if Ω is unbounded and
n > 2m), then

K ∗ =
{

w ∈ Hm
0 (Ω); (w,v)Hm

0
≤ 0 for all v ∈K

}
.

Hence, K ∗ = {v ∈ Hm
0 (Ω); (−∆)mv ≤ 0 weakly}. In some cases, we have that

K ∗ ⊂−K .

Proposition 3.6. Assume that either Ω = BR (a ball of radius R), or Ω = Rn
+, or

Ω = Rn; if Ω is unbounded, we also assume that n > 2m. Assume that w ∈ L2(Ω)
is a weak subsolution of the polyharmonic Dirichlet problem, namely∫

Ω

w(−∆)mudx≤ 0 for all u ∈K ∩H2m∩Hm
0 (Ω) ;

then
either w≡ 0 or w < 0 a.e. in Ω . (3.6)

In particular, (3.6) holds for all w ∈K ∗.
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Proof. We only prove the result in the case where Ω = B (the unit ball), the remain-
ing cases being similar. Assuming n > 2m, for the half space it suffices to use (2.66)
instead of (2.65) whereas for the whole space one takes the fundamental solution of
(−∆)m.

Take any ϕ ∈K ∩C∞
c (B) and let vϕ be the unique (classical) solution of{

(−∆)mvϕ = ϕ in B,
Dα vϕ = 0 on ∂B for |α| ≤ m−1.

Then by the classical Boggio’s principle (Lemma 2.27) we infer that vϕ ∈ K .
Hence, vϕ is a possible test function for all such ϕ and therefore∫

B
wϕ dx =

∫
B

w(−∆)mvϕ dx≤ 0 for all ϕ ∈K ∩C∞
c (B).

This shows that w ≤ 0 a.e. in B. Assume that w 6< 0 a.e. in B and let φ denote the
characteristic function of the set {x ∈ B; w(x) = 0} so that φ ≥ 0, φ 6≡ 0. Let v0 be
the unique (a.e.) solution of the problem{

(−∆)mv0 = φ in B,
Dα v0 = 0 on ∂B for |α| ≤ m−1.

Then by Corollary 2.21 and Theorem 2.6, we know that

v0 ∈

(⋂
q≥1

W 2m,q(B)

)
⊂C2m−1(B)

and again by Boggio’s principle we have v0 > 0 in B. One also reads from Boggio’s
formula (2.65) that (− ∂

∂ν
)mv0 > 0 on ∂B, see Theorem 5.7 below. We infer that for

all v∈C2m(B)∩Hm
0 (B) there exist t1 ≤ 0≤ t0 such that v+ t0v0 ≥ 0 and v+ t1v0 ≤ 0

in B. This, combined with the fact that∫
B

w(−∆)mv0 dx =
∫
{w=0}

wdx = 0,

enables us to show that both

0≤
∫

B
w(−∆)m(v+ t0v0)dx =

∫
B

w(−∆)mvdx,

0≥
∫

B
w(−∆)m(v+ t1v0)dx =

∫
B

w(−∆)mvdx.

Hence, we have for all v ∈C2m(B)∩Hm
0 (B)∫

B
w(−∆)mvdx = 0.
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We need to show that C2m(B)∩Hm
0 (B) is dense in H2m∩Hm

0 (B). For this purpose,
take any function U ∈ H2m ∩Hm

0 (B) and put f := (−∆ m)U . We approximate f in
L2(B) by C∞(B)–functions fk and solve (−∆ m)Uk = fk in B under homogeneous
Dirichlet boundary conditions. We then even have Uk ∈ C∞(B), and by L2–theory
(see Corollary 2.21) it holds that ‖Uk−U‖H2m → 0 as k→ ∞.

By the previous statement we may now conclude that∫
B

w(−∆)mvdx = 0 for all v ∈ H2m∩Hm
0 (B).

Since w ∈ L2(B), we may take as v ∈ H2m ∩Hm
0 (B) the solution of (−∆)mv = w

under homogeneous Dirichlet boundary conditions. This finally yields w≡ 0. �

We conclude this section with a first simple application of Theorem 3.4. We show
the positivity of the potential in the second order capacity problem. Given a bounded
domain Ω ⊂ Rn (n > 4) we define its second order capacity as

cap(Ω) = inf
{∫

Rn
|∆u|2 dx; u ∈D2,2(Rn), u≥ 1 a.e. in Ω

}
.

Using Theorem 3.4 we can show that the potential (the minimiser) u is nonnegative.
Let H = D2,2(Rn) and let K = {u ∈ H : u ≥ 0 a.e. in Rn}. If u is sign-changing,
let u = u1 +u2 with u1 ∈K and u2 ∈K ∗ \{0} be its decomposition according to
Theorem 3.4. Then by Proposition 3.6 we know that u2 ≤ 0. Hence, u1 ≥ 1 in Ω so
that u1 is an admissible function. Moreover,∫

Rn
|∆u|2 dx =

∫
Rn
|∆u1|2 dx+

∫
Rn
|∆u2|2 dx >

∫
Rn
|∆u1|2 dx.

This contradicts the minimality of u among admissible functions.

3.1.3 Positivity of the first eigenfunction

In this section we study positivity of the first eigenfunction of (3.1) by means of
the just explained dual cone decomposition. As already mentioned in Section 3.1.1,
whenever we have a positivity preserving solution operator, a Kreı̆n-Rutman result
yields a positive first eigenfunction with the uniqueness properties stated in Theo-
rem 3.3. In our special self-adjoint situation, the dual cone decomposition yields a
direct and simpler proof. Moreover, this strategy can also be exploited for semilinear
problems, see e.g. Lemma 7.22 and Theorem 7.58.

Theorem 3.7. If Ω = B⊂ Rn, then the first eigenvalue

Λm,1 = inf
Hm

0 (B)\{0}

‖u‖2
Hm

0

‖u‖2
L2

. (3.7)
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of (3.1) is simple and the corresponding first eigenfunction u is of one sign.

Proof. Let H = Hm
0 (B) and let K = {u ∈ H : u ≥ 0 a.e. in B}. For contradiction,

assume that u changes sign. Then according to Theorem 3.4, we decompose u =
u1 +u2, u1 ∈K \{0}, u2 ∈K ∗ \{0}. By Proposition 3.6, we have u2 < 0 a.e. in B.
Replacing u with the positive function u1− u2 would strictly increase the L2-norm
while by orthogonality we have ‖u1 +u2‖2

H = ‖u1−u2‖2
H . The ratio would strictly

decrease, a contradiction.
Since a minimiser u ≥ 0 solves (−∆)mu = Λm,1u ≥ 0 we have u > 0 by Propo-

sition 3.6. By contradiction, assume now that (3.7) admits two linearly independent
positive minimisers u and v. Then w = u + αv (for a suitable α < 0) is a sign-
changing minimiser, contradiction! �

For m = 1 the very same technique used in Theorem 3.7 works in any bounded
domain Ω if we wish to show that the first eigenvalue of −∆ in H1

0 (Ω) is simple
and that the corresponding eigenfunction is of one sign. On the other hand, the L2-
norm remains constant if we replace u+− u− with u+ + u−. So, for this problem,
the decomposition into dual cones works directly, whereas the usual decomposition
into positive and negative parts does not prove simplicity of the first eigenvalue nor
fixed sign of the first eigenfunction without a further regularity argument.

Theorem 3.7 applies to any bounded domain Ω 6= B with a positive Green func-
tion also for m ≥ 2. Note that the positivity preserving property (positivity of the
Green function) implies fixed sign of the first eigenfunction to (3.1) but the con-
verse implication does not hold in general. One can then wonder whether a positive
first eigenfunction can be obtained also for domains which fail to have the positiv-
ity preserving property, see Definition 3.1. The answer is delicate and negative in
general.

Let us quickly outline what is known for sign-changing first eigenfunctions of{
∆ 2u = λu , u 6≡ 0 in Ω ,

u = |Du|= 0 on ∂Ω .
(3.8)

Basically, only this biharmonic eigenvalue problem on bounded domains has been
considered so far. Concerning (3.8) it is proven in [212] that for an appropriately de-
fined family of perturbations starting from the ball the positivity preserving property
fails to hold strictly before the first eigenfunction loses its fixed sign. So, the con-
verse implication on ellipses as mentioned above is not true, see also Remark 6.4.
It does not seem to be rigorously proven yet that the sign of the first eigenfunction
changes on ellipses with a large ratio but there exists numerical evidence.

The first example of a sign-changing first eigenfunction is due to Coffman [107]
and deals with squares.

Theorem 3.8. For Ω = (0,1)2 problem (3.8) has a sign-changing first eigenfunc-
tion.

Independently of previous results in [111], Kozlov-Kondratiev-Maz’ya [252]
proved that domains in any space dimension whose boundaries contain suitable
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cones also have a sign-changing first eigenfunction for (3.8). Their results cover
a class of elliptic operators of order 2m under Dirichlet boundary conditions. Their
proof is based on a result which ensures the absence of zeros of infinite order at the
vertex of a cone, for nontrivial nonnegative local solutions of the inequality Au≤ 0,
where A is an elliptic differential operator with real coefficients. Moreover, they con-
structed a sequence of smooth convex domains that exhaust the cone and since the
corresponding first eigenfunctions are proven to converge to the sign-changing first
eigenfunction in the cone the same holds eventually for the approximating domains.

A main assumption that often appears is the convexity of Ω . From Theorem
3.8 and the numerical evidence on eccentric ellipses it is clear that this assumption
will not be sufficient to ensure positivity of the first eigenfunction. Ellipses suggest
that, possibly, a suitable upper bound for the ratio between the radii of the largest
inscribed ball in Ω and the largest filling balls of Ω might yield a sufficient condition
for a positive eigenfunction. We recall that B is a filling ball for Ω if Ω is the union
of translated B. Clearly, for any bounded domain this ratio is always larger than or
equal to 1. An interesting family of domains in this sense are elongated disks, the
so-called stadiums, where the radius of the largest inscribed ball equals the radius of
the largest filling ball. Numerical approximations of the first eigenfunction on such
a domain always resulted in functions apparently of fixed sign.

Fig. 3.2 Stadium-like domains seem to have a positive first eigenfunction in the Dirichlet bihar-
monic case.

Domains which are far from being convex are domains with holes. The standard
examples are the annuli

Aε = {(x,y) ∈ R2; ε
2 < x2 + y2 < 1} with 0 < ε < 1.

For these domains, Coffman-Duffin-Shaffer [109, 110, 155] proved the following
somehow surprising statement.

Theorem 3.9. Let Ω = Aε for some ε ∈ (0,1) and consider problem (3.8). There
exists ε0 > 0 such that the following holds.

1. If ε < ε0, then the first eigenvalue has multiplicity two. There exist two indepen-
dent eigenfunctions for this first eigenvalue with diametral nodal lines.

2. If ε = ε0, then the first eigenvalue has multiplicity three. There exists a positive
eigenfunction for this eigenvalue and there are two independent eigenfunctions
with diametral nodal lines.
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3. If ε > ε0, then the first eigenvalue has multiplicity one and the corresponding
eigenfunction is of fixed sign.

It is not surprising that a large hole yields a positive eigenfunction since the do-
main becomes somehow close to an infinite strip with periodic boundary conditions
w.r.t. the unbounded direction, where the first eigenfunction in the appropriate func-
tional space depends only on one variable and is positive.

Even more, numerical experiments indicate that there exist starshaped domains,
where the first eigenfunction is anti-symmetric with respect to a nodal line and hence
sign-changing. See [76] and Figure 3.3 which shows the first and second eigenfunc-
tion for such a domain.

Fig. 3.3 On the left the first eigenfunction for the clamped biharmonic eigenvalue problem on an
8-shaped domain which is sign-changing. On the right the second eigenfunction which is (almost)
positive.

3.1.4 Symmetrisation and Talenti’s comparison principle

Let Λ1,1(Ω) denote the first Dirichlet eigenvalue for −∆ in a bounded domain Ω ⊂
Rn, see (3.2) with m = 1. The celebrated Faber-Krahn [162, 253, 254] inequality
states that if one considers the map Ω 7→ Λ1,1(Ω) in dependence of domains Ω

having all the same measure en as the unit ball B, its minimum is achieved precisely
for Ω = B and, moreover, balls of radius 1 are the only minimisers. The crucial tool
to prove this statement is symmetrisation. We recall here some basic facts about this
method.

In 1836, Jacob Steiner noticed that symmetrisation with respect to planes leaves
the measure of bounded sets invariant and decreases the measure of their boundary.
This is the basic idea for a rigorous proof of the isoperimetric problem. In other
words, if Ω ∗ denotes the ball centered at the origin and having the same measure as
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a bounded domain Ω , we have |Ω ∗|= |Ω | and |∂Ω ∗| ≤ |∂Ω | with strict inequality
if Ω is not a ball. The same principle may be applied to functions.

Definition 3.10. Let Ω ⊂ Rn be a bounded domain and let u ∈C∞
c (Ω). The spher-

ical rearrangement of u is the unique nonnegative measurable function u∗ defined
in Ω ∗ such that its level sets {x ∈Ω ∗; u∗(x) > t} are concentric balls with the same
measure as the level sets {x ∈Ω ; |u(x)|> t} of |u|.

By density arguments we may define the spherical rearrangement of any func-
tion in Lp(Ω) for p ∈ [1,∞). We summarise here the basic properties of spherical
rearrangements in a statement which makes clear how the symmetrisation method
can be applied to obtain the Faber-Krahn result.

Theorem 3.11. Let Ω ⊂ Rn be a bounded domain.

1. If u ∈ Lp(Ω) for some p ∈ [1,∞) then u∗ ∈ Lp(Ω ∗) and ‖u∗‖Lp(Ω∗) = ‖u‖Lp(Ω).
2. If u ∈ W 1,p

0 (Ω) for some p ∈ [1,∞) then u∗ ∈ W 1,p
0 (Ω ∗) and ‖∇u∗‖Lp(Ω∗) ≤

‖∇u‖Lp(Ω).
3. If u ∈ Lp(Ω) and v ∈ Lp′(Ω) for some p ∈ (1,∞) with p′ = p

p−1 its conjugate,
then ‖u∗v∗‖L1(Ω∗) ≥ ‖uv‖L1(Ω).

Theorem 3.11 has several important applications, for example in the proof of
first order Sobolev inequalities and of their sharpness. However, it is unsuitable for
higher order derivatives since u∗ may not be twice weakly differentiable even if
u is very smooth. In their monograph, Pólya-Szegö [343, Section F.5] claim that
they can extend the Faber-Krahn result to the Dirichlet biharmonic operator among
domains having a first eigenfunction of fixed sign. Not only this assumption does
not cover all domains, see Section 3.1.3 above, but also their argument is not correct.
They deal with the Laplacian of a symmetrised smooth function and implicitly claim
that it belongs to L2, which is false in general. Incidentally, we point out that this
mistake is responsible for the wrong proof in [373], see Section 1.3.3 for the details.
This shows that standard symmetrisation methods are not available for higher order
problems.

As a possible way out, Cianchi [98] considers larger classes than the Sobolev
space, such as the space of functions whose second order distributional derivatives
are measures with finite total variation. Alternatively, one can prove an inequal-
ity comparing the rearrangement invariant norm of the Hessian matrix of u and a
weighted norm in the representation space of (u∗)′, see [99]. Unfortunately, none of
these tricks works when trying to extend the Faber-Krahn result to the first Dirichlet
eigenvalue of the biharmonic operator.

However, as we shall see, in some significant situations a comparison result by
Talenti [391] turns out to be extremely useful. For our convenience, we state here
an iterated version of this principle which will be used at several different places in
the present book.

Theorem 3.12. Let Ω ⊂ Rn (n ≥ 2) be a Cm-smooth bounded domain such that
|Ω |= |B|= en and let Hm

ϑ
(Ω) be the space defined in (2.35), namely
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Hm
ϑ (Ω) :=

{
v ∈ Hm(Ω); ∆

jv = 0 on ∂Ω for j <
m
2

}
.

Let m = 2k be an even number, let f ∈ L2(Ω) and let u ∈ Hm
ϑ

(Ω) be the unique
strong solution to {

(−∆)ku = f in Ω ,
∆ ju = 0 on ∂Ω ,

j = 0, . . . ,k−1. (3.9)

Let f ∗ ∈ L2(B) and u∗ ∈H1
0 (B) denote respectively the spherical rearrangements of

f and u (see Definition 3.10) and let v ∈ Hm
ϑ

(B) be the unique strong solution to{
(−∆)kv = f ∗ in B,
∆ jv = 0 on ∂B,

j = 0, . . . ,k−1. (3.10)

Then v≥ u∗ a.e. in B.

Proof. When k = 1, Theorem 3.12 is precisely [391, Theorem 1]. For k≥ 2 we pro-
ceed by finite induction. We may rewrite (3.9) and (3.10) as the following systems:{

−∆u1 = f in Ω ,
u1 = 0 on ∂Ω ,

{
−∆ui = ui−1 in Ω ,
ui = 0 on ∂Ω ,

i = 2, . . . ,k; (3.11)

{
−∆v1 = f ∗ in B,
v1 = 0 on ∂B,

{
−∆vi = vi−1 in B,
vi = 0 on ∂B,

i = 2, . . . ,k. (3.12)

Note that uk = u and vk = v. By Talenti’s principle [391, Theorem 1] applied for
i = 1, we know that v1 ≥ u∗1 a.e. in B. Assume that the inequality vi ≥ u∗i a.e. in B
has been proved for some i = 1, . . . ,k−1. By (3.11) and (3.12) we then infer{

−∆ui+1 = ui in Ω

ui+1 = 0 on ∂Ω ,

{
−∆vi+1 = vi ≥ u∗i in B
vi+1 = 0 on ∂B.

By combining the maximum principle for −∆ in B with a further application of
Talenti’s principle, we obtain vi+1 ≥ u∗i+1 a.e. in B. This finite induction shows that
vk ≥ u∗k and proves the statement. �

3.1.5 The Rayleigh conjecture for the clamped plate

We consider here the domain functional given by the first Dirichlet eigenvalue for
the biharmonic operator

Ω 7→Λ2,1(Ω) = min
H2

0 (Ω)\{0}

‖u‖2
H2

0

‖u‖2
L2

. (3.13)
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In 1894, Lord Rayleigh [350, p. 382] conjectured that, among planar domains Ω

of given area, the disk minimises Λ2,1(Ω). If Ω ∗ denotes the symmetrised of Ω ,
namely the ball having the same measure as Ω , Rayleigh’s conjecture reads

Λ2,1(Ω ∗)≤Λ2,1(Ω). (3.14)

After many attempts, see Section 1.3.1, this conjecture was proved one century later
by Nadirashvili [315] and immediately extended by Ashbaugh-Benguria [22] to the
case of 3-dimensional domains. More precisely, we have

Theorem 3.13. In dimensions n = 2 or n = 3 the ball is the unique minimiser of
the first eigenvalue of the clamped plate problem (3.13) among bounded domains of
given measure. Hence, (3.14) holds whenever n = 2 or n = 3 with equality only if Ω

is a ball.

Proof. Thanks to the homogeneity of the map Ω 7→ Λ2,1(Ω), we may restrict our
attention to the case where |Ω | = |B| = en. For such a domain, let u denote a first
nontrivial eigenfunction so that

‖u‖2
H2

0

‖u‖2
L2

= Λ2,1(Ω).

By a bootstrap argument, elliptic regularity theory (see Theorem 2.20) ensures that
u ∈C∞(Ω). Moreover, the unique continuation principle [336, 345] ensures that u
cannot be harmonic (in particular, constant) on a subset of positive measure. In view
of Section 3.1.3, both the positive and the negative part of u may be nontrivial so
that it makes sense to define

Ω+ = {x ∈Ω ; u(x) > 0} , Ω− = {x ∈Ω ; u(x) < 0}.

Let Ba = Ω ∗+ and Bb = Ω ∗− be their spherical symmetrisation, namely the two balls
centered at the origin and such that |Ω ∗±|= |Ω±|. Let a and b denote the radii of the
balls Ba = Ω ∗+ and Bb = Ω ∗−, then

an +bn = 1. (3.15)

Let (∆u)± denote the positive and negative parts of ∆u in Ω ; again we point out
that they may both be nontrivial. For s ∈ [0,en] let σ(s) := (s/en)1/n and define the
two functions f ,g : [0,en]→ R by

g(s) :=
(
(∆u)+

)∗(σ(s))−
(
(∆u)−

)∗(σ(en− s)),
f (s) := −g(en− s).

Note that at most one of
(
(∆u)+

)∗(σ(s)) and
(
(∆u)−

)∗(σ(en− s)) can be different
from 0 for any s and that(

(∆u)+
)∗(σ(s)) ·

(
(∆u)−

)∗(σ(en− s))≡ 0. (3.16)
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The function g sums the contribution of
(
(∆u)+

)∗ starting from the center of B and
the contribution of

(
(∆u)−

)∗ starting from ∂B. The function f switches these two
contributions.

With the change of variable r = σ(s), by Theorem 3.11 and the divergence theo-
rem, we obtain∫ en

0
g(s)ds =

∫ en

0

((
(∆u)+

)∗(σ(s))−
(
(∆u)−

)∗(σ(en− s))
)

ds

=
∫ en

0

((
(∆u)+

)∗(σ(s))−
(
(∆u)−

)∗(σ(s))
)

ds

= nen

∫ 1

0
rn−1

((
(∆u)+

)∗(r)− ((∆u)−
)∗(r))dr

=
∫

B

(
(∆u)+

)∗ dx−
∫

B

(
(∆u)−

)∗ dx =
∫

Ω

(∆u)+ dx−
∫

Ω

(∆u)− dx

=
∫

Ω

∆udx =
∫

∂Ω

uν dω = 0.

A similar computation holds for f so that∫ en

0
g(s)ds =

∫ en

0
f (s)ds = 0. (3.17)

Let now v ∈ H2∩H1
0 (Ba) and w ∈ H2∩H1

0 (Bb) be the solutions of the problems{
−∆v = f (en|x|n) in Ba,
v = 0 on ∂Ba,

{
−∆w = g(en|x|n) in Bb,
w = 0 on ∂Bb.

Therefore, from the definition of f and from (3.15) we infer

∆v(a)+∆w(b) =− f (enan)−g(enbn) = 0.

Moreover, by (3.17) and the definition of f we get

0 =
∫ enan

0
f (s)ds+

∫ en

enan
f (s)ds =

∫ enan

0
f (s)ds−

∫ enbn

0
g(s)ds

= nen

∫ a

0
rn−1 f (enrn)dr−nen

∫ b

0
rn−1g(enrn)dr =−

∫
Ba

∆vdx+
∫

Bb

∆wdx

so that ∫
Ba

∆vdx =
∫

Bb

∆wdx. (3.18)

In turn, employing the divergence theorem, (3.18) yields

an−1v′(a) = bn−1w′(b). (3.19)

In view of (3.16), we remark that



74 3 Eigenvalue problems∫
Bb

|∆w|2 dx =
∫ |Ωb|

0
g2(s)ds

=
∫ |Ωb|

0

(∣∣((∆u)+
)∗(σ(s))

∣∣2 +
∣∣((∆u)−

)∗(σ(en− s))
∣∣2) ds.

Similarly, we have∫
Ba

|∆v|2 dx =
∫ |Ωa|

0

(∣∣((∆u)−
)∗(σ(s))

∣∣2 +
∣∣((∆u)+

)∗(σ(en− s))
∣∣2) ds.

By adding the last two equations and by Theorem 3.11 we obtain∫
Ω

|∆u|2 dx =
∫

Ba

|∆v|2 dx+
∫

Bb

|∆w|2 dx. (3.20)

From Talenti [392, (2.7)] we know that

u∗+ ≤ v in Ba , u∗− ≤ w in Bb,

so that, by Theorem 3.11,∫
Ω

u2 dx≤
∫

Ba

v2 dx+
∫

Bb

w2 dx,

with strict inequality if Ω 6= B. With this inequality and (3.20) we obtain

Λ2,1(Ω) =
∫

Ω
|∆u|2 dx∫
Ω

u2 dx
≥
∫

Ba
|∆v|2 dx+

∫
Bb
|∆w|2 dx∫

Ba
v2 dx+

∫
Bb

w2 dx
(3.21)

with strict inequality if Ω 6= B. As pointed out by Talenti [392], if u > 0 in Ω ,
then Ω ∗+ = Ba = B and Ω ∗− = Bb = /0 so that (3.21) proves Rayleigh conjecture for
domains with first eigenfunction of one sign. Indeed, in this case we have b = 0.
Therefore, vν = 0 on ∂B in view of (3.19).

We define

µ = µa,b = min
v,w

∫
Ba
|∆v|2 dx+

∫
Bb
|∆w|2 dx∫

Ba
v2 dx+

∫
Bb

w2 dx
(3.22)

where the minimum is taken over all radially symmetric functions v ∈ H2∩H1
0 (Ba)

and w ∈H2∩H1
0 (Bb) satisfying (3.19). Using standard tools of the calculus of vari-

ations, it is shown in [22, Appendix 2] that the minimum in (3.22) is attained by a
couple of functions satisfying ∆ 2v = µv in Ba and ∆ 2w = µw in Bb, v(a) = w(b) = 0,
an−1v′(a) = bn−1w′(b), ∆v(a)+∆w(b) = 0; moreover, as shown in formula (3.12)
in [315], the functions v and w may be chosen positive and radially decreasing.

By combining (3.21) and (3.22) we obtain Λ2,1(Ω)≥ µa,b and, since a and b are
unknown,

Λ2,1(Ω)≥min
a,b

µa,b (3.23)
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where the minimum is now taken among all couples (a,b)∈ [0,1]2 satisfying (3.15).
At this point a delicate and technical analysis of fine properties of Bessel functions
is needed. A crucial inequality, which only holds for n = 2,3, allows to show that
mina,b µa,b = µ1,0 = Λ2,1(B). This proves the statement when combined with (3.23),
see [22, Section 4] for the details. Indeed, recall that if Ω 6= B then (3.21) is strict.�

We conclude this section by emphasising that a couple of interesting generali-
sations of Rayleigh’s original conjecture are still missing. First, it remains to prove
(3.14) in any space dimension n ≥ 2 and not only for n = 2,3. Second, one might
wonder whether one could prove that Λm,1(Ω ∗) ≤ Λm,1(Ω) for any m ≥ 2 and not
only for m = 2.

3.2 Buckling load of a clamped plate

Similar questions as for the first eigenvalue of the clamped plate (3.2) arise when
considering the buckling load of a clamped plate which may be characterised as
follows

µ1(Ω) = inf
H2

0 (Ω)\{0}

‖∆u‖2
L2

‖∇u‖2
L2

. (3.24)

Here, Ω ⊂ R2 is a bounded planar domain. Minimisers u to (3.24) solve{
∆ 2u =−µ1∆u in Ω ,
u = uν = 0 on ∂Ω .

(3.25)

This is the Dirichlet version of the Steklov problem (1.22) considered in Section
1.3.2 which describes the linearised von Kármán equations for an elastic plate. For
later use, let us mention that an inequality (which holds true in any space dimension)
due to Payne [333] states that for any bounded domain Ω ⊂ R2

µ1(Ω)≥Λ1,2(Ω) with equality if and only if Ω is a disk, (3.26)

where Λ1,2(Ω) denotes the second Dirichlet eigenvalue for the Laplacian in Ω .
Similarly to (3.14), Pólya-Szegö [343, Note F] conjectured that the disk min-

imises the buckling load among domains of given measure.

Conjecture 3.14 (Pólya-Szegö). For any bounded domain Ω ⊂ R2

µ1(Ω ∗)≤ µ1(Ω),

where Ω ∗ denotes the symmetrised of Ω .

A complete proof of this conjecture is not known at the moment. However, we
show here two interesting results which give some support to its validity. Consider
the following special class of (not necessarily bounded) domains having the same
measure as the unit disk:
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B= {Ω ⊂ R2; Ω open, connected, simply connected, |Ω |= π}.

The first result, due to Ashbaugh-Bucur [23], states that an optimal domain exists
among domains in the class B.

Theorem 3.15. There exists Ωo ∈ B such that µ1(Ωo) ≤ µ1(Ω) for any other do-
main Ω ∈ B.

Proof. Note first that minimising µ1 in the wider class

B0 = {Ω ⊂ R2; Ω open, simply connected, |Ω |= π}

is equivalent to minimising µ1 in B, where we understand that “simply connected”
means that “each connected component is simply connected”. Indeed, if we find a
minimiser in B0, then it is necessarily connected since otherwise, scaling one of
its connected components and noticing that Ω 7→ µ1(Ω) is homogeneous of degree
−2, would contradict minimality.

So, consider a minimising sequence (Ωm)⊂ B0 with (um) being the correspond-
ing sequence of normalised eigenfunctions, that is,

∫
Ωm
|∇um|2 = 1. Extending um

by 0 in R2 \Ωm we may view (um) as a bounded sequence in H2(Rn) such that∫
R2
|∆um|2 dx≤C1 ,

∫
R2
|∇um|2 dx = 1 ,

∫
R2
|um|2 dx≤C2, (3.27)

for suitable C1,C2 > 0, the L2-bound following from Poincaré’s inequality in
H1

0 (Ωm) and the fact that |Ωm|= π for all m. In particular, (3.27) shows that

inf
Ω∈B0

µ1(Ω) > 0. (3.28)

Indeed, we have

1 =
∫
R2
|∇um|2 dx =−

∫
R2

um∆um dx≤C1/2
2

(∫
R2
|∆um|2 dx

)1/2

,

which proves that
∫
R2 |∆um|2 is also bounded away from 0. By (3.27), we may also

apply the concentration-compactness principle [276] and deduce that, up to a sub-
sequence, three cases may occur.

1. Vanishing.

lim
m→∞

sup
y∈R2

∫
BR(y)
|∇um|2 dx = 0 for all R > 0.

2. Dichotomy. There exists α ∈ (0,1) such that for all ε > 0 there exist two bounded
sequences (u(1)

m ), (u(2)
m )⊂ H2(R2) such that

lim
m→∞

dist
(

support(u(1)
m ),support(u(2)

m )
)

= +∞,
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lim
m→∞

∫
R2
|∇u(1)

m |2 dx→ α, lim
m→∞

∫
R2
|∇u(2)

m |2 dx→ 1−α, (3.29)

lim
m→∞

∫
R2

∣∣∣|∇um|2−|∇u(1)
m |2−|∇u(2)

m |2
∣∣∣dx≤ ε, (3.30)

lim
m→∞

∫
R2

(
|∆um|2−|∆u(1)

m |2−|∆u(2)
m |2

)
dx≥ 0. (3.31)

3. Compactness. There exists a sequence (ym) ⊂ R2 such that for all ε > 0 there
exists R > 0 and ∫

BR(ym)
|∇um|2 dx≥ 1− ε for all m.

We first show that vanishing cannot occur. By contradiction, assume that vanish-
ing occurs. Up to a permutation of x1 and x2 and up to a subsequence, by (3.27) we
have ∫

R2

(
∂um

∂x1

)2

dx≥ 1
2
.

Moreover, since two integrations by parts yield

∫
R2

∂ 2um

∂x2
1

∂ 2um

∂x2
2

dx =
∫
R2

(
∂ 2um

∂x1∂x2

)2

dx≥ 0,

we remark that ∫
R2
|∆um|2 dx≥

∫
R2

∣∣∣∣∇∂um

∂x1

∣∣∣∣2 dx.

Therefore, we infer that

‖∆um‖2
L2

‖∇um‖2
L2

≥ 1
2

‖∇ ∂um
∂x1
‖2

L2

‖ ∂um
∂x1
‖2

L2

. (3.32)

By assumption any translation of ∂um
∂x1

converges weakly to 0 in L2(R2). More-

over, ∂um
∂x1
∈ H1

0 (Ωm) and |Ωm| = π . Hence, we may apply [81, Lemma 3.3] to get

that, up to a subsequence, ‖∇ ∂um
∂x1
‖L2 → ∞. Since the left hand side of (3.32) is sup-

posed to converge to infΩ∈B0 µ1(Ω), we get a contradiction.
Next, we show that dichotomy cannot occur. By contradiction, assume that di-

chotomy occurs and fix ε > 0. Then the sequences (u(1)
m ) and (u(2)

m ) can be chosen
as follows, see [276]. Let B2 denote the ball of radius 2 centered at the origin and let
ϕ ∈C∞

c (B2, [0,1]) be such that ϕ ≡ 1 in B (the unit ball). Then for suitable sequences
(Rm),(ρm)→ ∞, we put

u(1)
m (x) := ϕ

(
x

Rm

)
um(x) , u(2)

m (x) :=
(

1−ϕ

(
x

ρmRm

))
um(x).
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Note that support(u(1)
m ) ⊂ (Ωm ∩B2Rm) whereas support(u(2)

m ) ⊂ (Ωm \BρmRm). By
elementary calculus we know that x1+x2

y1+y2
≥ min{ x1

y1
, x2

y2
} for all x1,x2,y1,y2 > 0.

Hence, by (3.30) and (3.31), up to a switch between u(1)
m and u(2)

m , we have

inf
Ω∈B0

µ1(Ω) = lim
m→∞

‖∆um‖2
L2(Ωm)

‖∇um‖2
L2(Ωm)

≥ limsup
m→∞

‖∆u(1)
m ‖2

L2(Ωm∩B2Rm )

ε +‖∇u(1)
m ‖2

L2(Ωm∩B2Rm )

. (3.33)

Up to a further subsequence, the above “limsup” becomes a limit.
We now claim that there exists δ > 0 such that for m large enough

|Ωm \BρmRm | ≥ δ . (3.34)

Indeed, if (3.34) were not true, up to a subsequence we would have limm→∞ |Ωm \
BρmRm |= 0 implying that Λ1,1(Ωm\BρmRm)→∞. In view of (3.26), this would imply
µ1(Ωm\BρmRm)→∞. In turn, since (3.29) states that ‖∇u(2)

m ‖L2(R2) is bounded away

from zero, this implies that ‖∆u(2)
m ‖L2(R2)→ ∞, contradicting (3.27) and (3.31). A

similar argument also shows that δ > 0 in (3.34) may be chosen to be independent
of ε .

By (3.34) we know that there exists γ ∈ (0,1), independent of ε , such that

limsup
m→∞

|Ωm∩B2Rm |= γπ ≤ π−δ .

Up to a further subsequence, also the above “limsup” becomes a limit. Combined
with (3.28), (3.33), and homogeneity of µ1, this yields

inf
Ω∈B0

µ1(Ω) ≥ lim
m→∞

‖∆u(1)
m ‖2

L2(Ωm∩B2Rm )

ε +‖∇u(1)
m ‖2

L2(Ωm∩B2Rm )

≥ lim
m→∞

‖∆u(1)
m ‖2

L2(Ωm∩B2Rm )

‖∇u(1)
m ‖2

L2(Ωm∩B2Rm )

‖∇u(1)
m ‖2

L2(Ωm∩B2Rm )

ε +‖∇u(1)
m ‖2

L2(Ωm∩B2Rm )

=
α

ε +α
lim

m→∞
µ1(Ωm∩B2Rm)

=
α

ε +α
lim

m→∞

(
π

|Ωm∩B2Rm |

)2

µ1

(
π

Ωm∩B2Rm

|Ωm∩B2Rm |

)
=

α

ε +α

1
γ2 lim

m→∞
µ1

(
π

Ωm∩B2Rm

|Ωm∩B2Rm |

)
≥ α

ε +α

1
γ2 inf

Ω∈B0
µ1(Ω)
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since π
Ωm∩B2Rm
|Ωm∩B2Rm |

∈ B0. As γ < 1, by arbitrariness of ε we get a contradiction which
rules out dichotomy.

Since we excluded both vanishing and dichotomy, compactness necessarily oc-
curs. Then by arbitrariness of ε , we infer that there exist (ym)⊂R2 and u ∈H2(R2)
such that

um( .+ ym) ⇀ u in H2(R2) and ‖∇u‖L2(R2) = 1.

By combining um ⇀ u in H1(R2) and the conservation of norms, we deduce that
um → u in the norm topology of H1(R2). In turn, by Poincaré’s inequality applied
in domains of uniformly bounded measure, this yields um→ u in L2(R2). Therefore,
it follows that (Ωm) converges in the Hausdorff topology to some simply connected
domain Ω̂ ⊂ R2 such that Ω̂ ⊃ support(u) and

|Ω̂ | ≤ π. (3.35)

From weak convergence in H2 and strong convergence in H1, we get

µ1(Ω̂)≤
‖∆u‖2

L2(Ω̂)

‖∇u‖2
L2(Ω̂)

≤ liminf
m→∞

‖∆um‖2
L2(Ωm)

‖∇um‖2
L2(Ωm)

= inf
Ω∈B0

µ1(Ω).

By (3.35) and homogeneity of µ1 we infer that all the above inequalities are in fact
equalities. So, the minimiser for µ1 is found. �

As pointed out in Section 1.3.2, the next step would be to show that the min-
imiser Ωo found in Theorem 3.15 has some regularity properties. But already for
second order equations this is a very difficult task, see [228]. However, assuming
smoothness of the boundary, one can show (see [415]) that the optimal domain is
indeed the disk.

Theorem 3.16. If the minimiser Ωo found in Theorem 3.15 has C2,γ boundary, then
it is a disk.

Proof. Let Ωo be the C2,γ minimiser found in Theorem 3.15 and let φ denote the
corresponding first eigenfunction, namely a solution to (3.25) when Ω = Ωo. By
performing the shape derivative [228] of the map Ω 7→ µ1(Ω) and using the opti-
mality of Ωo one finds that

∆φ exists and is constant on ∂Ωo. (3.36)

We point out that this first step is precisely the part of the proof where smoothness
of ∂Ωo is needed. Moreover, the connectedness of the boundary ∂Ωo is here crucial
in order to deduce (3.36).

Since φ = 0 on ∂Ωo, (3.36) also implies that ∆φ + µ1φ is constant on ∂Ωo. In
turn, since φ 7→ ∆φ + µ1φ is harmonic in Ωo in view of (3.25), this implies

∆φ + µ1φ is constant in Ωo. (3.37)



80 3 Eigenvalue problems

The function φ has a critical point in Ωo which we may assume to be the origin so
that ∇φ(0) = 0.

Next, for (x,y) ∈ Ωo define w(x,y) := xφy(x,y)− yφx(x,y). In polar coordinates
(r,θ) this can be written as w = φθ . Therefore, if w≡ 0, then φ does not depend on θ

so that Ωo is a disk and we are done. So, assume by contradiction that w 6≡ 0. Since
φ ∈ H2

0 (Ωo), we have w ∈ H1
0 (Ωo) and from (3.37) we deduce that −∆w = µ1w in

Ωo. Hence, µ1 is a Dirichlet eigenvalue for −∆ in Ωo and it is the first Dirichlet
eigenvalue in each of the nodal zones of w.

Note that wx = φy + xφxy − yφxx so that wx(0) = 0, recalling that ∇φ(0) = 0.
Similarly, wy(0) = 0. Hence, both w and ∇w vanish at the origin. This means that
the origin 0 is a nodal point of w and a point where a nodal line intersects itself
transversally. But then, for topological reasons, this nodal line divides Ωo into at
least three nodal domains and at least one has a measure not exceeding |Ωo|/3. This
would imply the following chain of inequalities

µ1(Ωo) = Λ1,1(subdomain of measure ≤ |Ωo|/3)≥Λ1,1(ball of measure |Ωo|/3)
= 3Λ1,1(Ω ∗o ) > Λ1,2(Ω ∗o ) = µ1(Ω ∗o ),

which contradicts the minimality of Ωo. In this chain of inequalities we have used
one after the other the monotonicity of Λ1,1 with respect to domain inclusions, the
Faber-Krahn inequality [162, 253, 254], a scaling argument, an inequality from
[335] and (3.26). �

3.3 Steklov eigenvalues

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω , let a ∈ R
and consider the boundary eigenvalue problem{

∆ 2u = 0 in Ω ,
u = ∆u−auν = 0 on ∂Ω .

(3.38)

We are interested in studying the eigenvalues of (3.38), namely those values of a for
which the problem admits nontrivial solutions, the corresponding eigenfunctions.
By a solution of (3.38) we mean a function u ∈ H2∩H1

0 (Ω) such that∫
Ω

∆u∆vdx = a
∫

∂Ω

uν vν dω for all v ∈ H2∩H1
0 (Ω). (3.39)

By taking v = u in (3.39), it is clear that all the eigenvalues of (3.38) are strictly
positive.
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3.3.1 The Steklov spectrum

The least positive eigenvalue of (3.38) may be characterised variationally as

δ1 = δ1(Ω) := min

{
‖∆u‖2

L2(Ω)

‖uν‖2
L2(∂Ω)

; u ∈ [H2∩H1
0 (Ω)]\H2

0 (Ω)

}
. (3.40)

We first prove the existence of a function u∈ [H2∩H1
0 (Ω)]\H2

0 (Ω) which achieves
equality in (3.40), provided the domain Ω is smooth (C2) or satisfies a geometric
condition which is fulfilled if Ω has no “reentrant corners” (for instance, if Ω is con-
vex). More precisely, we consider domains satisfying a uniform outer ball condition
according to Definition 2.30. Then the following existence result for a minimiser of
δ1(Ω) holds.

Theorem 3.17. Assume that Ω ⊂ Rn is a bounded domain with Lipschitz bound-
ary and satisfying a uniform outer ball condition. Then the minimum in (3.40) is
achieved and, up to a multiplicative constant, the minimiser u for (3.40) is unique,
superharmonic in Ω (in particular, u > 0 in Ω and uν < 0 on ∂Ω ) and it solves
(3.38) when a = δ1. Furthermore, u∈C∞(Ω) and, up to the boundary, u is as smooth
as the boundary permits.

Proof. By Theorem 2.31 we know that u 7→ ‖∆u‖L2 is a norm in H2(Ω). Let (um)
be a minimising sequence for δ1(Ω) with ‖∆um‖L2 = 1 so that (um) is bounded in
H2(Ω). Up to a subsequence, we may assume that there exists u∈H2∩H1

0 (Ω) such
that um ⇀ u in H2(Ω). Moreover, since Ω is Lipschitzian and satisfies a uniform
outer ball condition, by [321, Chapter 2, Theorem 6.2] we infer that the map

H2∩H1
0 (Ω) 3 u 7→ ∇u|∂Ω ∈

(
L2(∂Ω)

)n

is well-defined and compact. Hence, we deduce that (um)ν → uν in L2(∂Ω) and that
δ1(Ω) > 0.

Furthermore, since (um) is a minimising sequence, ‖∆um‖L2 = 1 holds, and
‖(um)

ν
‖L2(∂Ω) is bounded from below, uν is not identically zero on ∂Ω and

‖uν‖−2
L2(∂Ω) = lim

m→∞
‖(um)

ν
‖−2

L2(∂Ω) = δ1 (Ω) .

Moreover, by weak lower semicontinuity of the norm, we also have

‖∆u‖2
L2 ≤ liminf

m→∞
‖∆um‖2

L2 = 1

and hence u ∈ [H2∩H1
0 (Ω)]\H2

0 (Ω) satisfies

‖∆u‖2
L2(Ω)

‖uν‖2
L2(∂Ω)

≤ δ1 (Ω) .
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This proves that u is a minimiser for δ1 (Ω).
For all u ∈ [H2∩H1

0 (Ω)]\H2
0 (Ω) put

I(u) :=
‖∆u‖2

L2(Ω)

‖uν‖2
L2(∂Ω)

.

To show that, up to their sign, the minimisers for (3.40) are superharmonic, we
observe that for all u ∈ [H2 ∩H1

0 (Ω)] \H2
0 (Ω) there exists w ∈ [H2 ∩H1

0 (Ω)] \
H2

0 (Ω) such that −∆w≥ 0 in Ω and I(w)≤ I(u). Indeed, for a given u, let w be the
unique solution of {

−∆w = |∆u| in Ω ,
w = 0 on ∂Ω ,

so that w is superharmonic. Moreover, both w±u are superharmonic in Ω and vanish
on ∂Ω . This proves that

|u| ≤ w in Ω , |uν | ≤ |wν | on ∂Ω .

In turn, these inequalities (and −∆w = |∆u|) prove that I(w)≤ I(u). We emphasise
that this inequality is strict if ∆u changes sign.

Any minimiser u for (3.40) solves the Euler equation (3.38) and is a smooth
function in view of elliptic theory, see the explanation just after (2.22). In order to
conclude the proof we still have to show that the minimiser u is unique. By con-
tradiction, let v ∈ H2 ∩H1

0 (Ω) be another positive minimiser and for every c ∈ R,
define vc := v + cu. Exploiting the fact that both v and u solve (3.38) when a = δ1,
we see that also vc is a minimiser. But unless v is a multiple of u, there exists some
c such that vc changes sign in Ω . This leads to a contradiction and completes the
proof. �

We are now interested in the description of the spectrum of (3.38). To this end, we
restrict our attention to smooth domains. As in (2.10), the Hilbert space H2∩H1

0 (Ω)
is endowed with the scalar product

(u,v) 7→
∫

Ω

∆u∆vdx. (3.41)

Consider the space

Z =
{

v ∈C∞(Ω) : ∆
2u = 0 in Ω , u = 0 on ∂Ω

}
(3.42)

and let V denote the completion of Z with respect to the scalar product in (3.41).
Then we prove

Theorem 3.18. Assume that Ω ⊂Rn (n≥ 2) is a bounded domain with C2-boundary.
Then problem (3.38) admits infinitely many (countable) eigenvalues. The only eigen-
function of one sign is the one corresponding to the first eigenvalue. The set of
eigenfunctions forms a complete orthonormal system in V .
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Proof. Let Z be as in (3.42), define on Z the scalar product given by

(u,v)W :=
∫

∂Ω

uν vν dω for all u,v ∈ Z

and let W denote the completion of Z with respect to this scalar product. We first
claim that the (Hilbert) space V is compactly embedded into the (Hilbert) space W .
Indeed, by definition of δ1 we have

‖u‖W = ‖uν‖L2(∂Ω) ≤ δ
−1/2
1 ‖∆u‖L2(Ω) = δ

−1/2
1 ‖u‖V for all u ∈ Z. (3.43)

Hence any Cauchy sequence in Z with respect to the norm of V is a Cauchy sequence
with respect to the norm of W . Since V is the completion of Z with respect to (3.41),
it follows that V ⊂W . The continuity of this inclusion can be obtained by density
from (3.43). In order to prove that this embedding is compact, let um ⇀ u in V , so
that also um ⇀ u in H2∩H1

0 (Ω). Then by the compact trace embedding H1/2(∂Ω)⊂
L2(∂Ω) we obtain um→ u in W . This proves the claim.

Let I1 : V →W denote the embedding V ⊂W and I2 : W →V ′ the linear contin-
uous operator defined by

〈I2u,v〉= (u,v)W for all u ∈W and v ∈V.

Moreover, let L : V →V ′ be the linear operator given by

〈Lu,v〉=
∫

Ω

∆u∆vdx for all u,v ∈V.

Then by the Lax-Milgram theorem, L is an isomorphism and in view of the compact
embedding V ⊂W , the linear operator K = L−1I2I1 : V → V is compact. Since for
n ≥ 2, V is an infinite dimensional Hilbert space and K is a compact self-adjoint
operator with strictly positive eigenvalues, V admits an orthonormal basis of eigen-
functions of K and the set of the eigenvalues of K can be ordered in a strictly de-
creasing sequence (µi) which converges to zero. Therefore problem (3.39) admits an
infinite set of eigenvalues given by δi = 1

µi
and the eigenfunctions of (3.39) coincide

with the eigenfunctions of K.
To complete the proof we need to show that if δk is an eigenvalue of (3.38)

corresponding to a positive eigenfunction φk then necessarily δk = δ1. So, take φk >
0 in Ω and φk = 0 on ∂Ω ; then (φk)ν ≤ 0 on ∂Ω and, in turn, ∆φk = δk(φk)ν ≤
0 on ∂Ω . Therefore, by ∆ 2φk = 0 in Ω and the weak comparison principle, we
infer ∆φk ≤ 0 in Ω . Moreover, since φk > 0 in Ω and φk = 0 on ∂Ω , the Hopf
boundary lemma implies that (φk)ν < 0 on ∂Ω . Let φ1 be a positive eigenfunction
corresponding to the first eigenvalue δ1, see Theorem 3.17. Then φ1 satisfies (φ1)ν <
0 on ∂Ω and hence from

δk

∫
∂Ω

(φk)ν(φ1)ν dω =
∫

Ω

∆φk∆φ1 dx = δ1

∫
∂Ω

(φk)ν(φ1)ν dω > 0

we obtain δk = δ1. This completes the proof of Theorem 3.18. �
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The vector space V also has a different interesting characterisation.

Theorem 3.19. Assume that Ω ⊂Rn (n≥ 2) is a bounded domain with C2-boundary.
Then the space H2∩H1

0 (Ω) admits the following orthogonal decomposition with re-
spect to the scalar product (3.41)

H2∩H1
0 (Ω) = V ⊕H2

0 (Ω).

Moreover, if v ∈ H2 ∩H1
0 (Ω) and if v = v1 + v2 is the corresponding orthogonal

decomposition, then v1 ∈V and v2 ∈ H2
0 (Ω) are weak solutions of∆ 2v1 = 0 in Ω ,

v1 = 0 on ∂Ω ,
(v1)ν = vν on ∂Ω ,

and

∆ 2v2 = ∆ 2v in Ω ,
v2 = 0 on ∂Ω ,
(v2)ν = 0 on ∂Ω .

(3.44)

Proof. We start by proving that Z⊥ = H2
0 (Ω). Let v∈ Z and w∈H2∩H1

0 (Ω). After
two integrations by parts we obtain∫

Ω

∆v∆wdx =
∫

Ω

∆
2vwdx+

∫
∂Ω

(wν ∆v−w(∆v)ν) dω =
∫

∂Ω

wν ∆vdω

for all v ∈ Z and w ∈ H2 ∩H1
0 (Ω). This proves that wν = 0 on ∂Ω if and only if

w ∈ Z⊥ and hence V⊥ = Z⊥ = H2
0 (Ω).

Let v ∈ H2∩H1
0 (Ω) and consider the first Dirichlet problem in (3.44), that is∆ 2v1 = 0 in Ω ,

v1 = 0 on ∂Ω ,
(v1)ν = vν on ∂Ω .

(3.45)

Since vν ∈ H1/2(∂Ω), by Lax-Milgram’s theorem and [275, Ch. 1, Théorème 8.3],
we deduce that (3.45) admits a unique solution v1 ∈ H2∩H1

0 (Ω) such that

‖∆v1‖L2(Ω) ≤C‖vν‖H1/2(∂Ω) .

This proves that v1 ∈ V . Let v2 = v− v1, then (v2)ν = 0 on ∂Ω and, in turn, v2 ∈
H2

0 (Ω). Moreover, by (3.45) we infer∫
Ω

∆v2∆wdx =
∫

Ω

∆v∆wdx−
∫

Ω

∆v1∆wdx =
∫

Ω

∆v∆wdx for all w ∈ H2
0 (Ω)

which proves that v2 is a weak solution of the second problem in (3.44). �

When Ω = B (the unit ball in Rn, n ≥ 2) all the eigenvalues of (3.38) can be
determined explicitly. To this end, consider the spaces of harmonic homogeneous
polynomials

Pk :=
{P ∈C∞(Rn); ∆P = 0 in Rn, P is a homogeneous polynomial of degree k−1} .
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Also, let µk be the dimension of Pk. By [17, p. 450] we know that

µk =
(2k +n−4)(k +n−4)!

(k−1)!(n−2)!
.

In particular, we have

P1 = span{1} , µ1 = 1,

P2 = span{xi; i = 1, . . . ,n} , µ2 = n,

P3 = span{xix j; x2
1− x2

h; i, j = 1, . . . ,n, i 6= j, h = 2, . . . ,n} , µ3 =
n2 +n−2

2
.

Then we prove

Theorem 3.20. If n≥ 2 and Ω = B, then for all k = 1,2,3, . . .

1. the eigenvalues of (3.38) are δk = n+2(k−1);
2. the multiplicity of δk equals µk;
3. for all ψk ∈Pk, the function φk(x) := (1−|x|2)ψk(x) is an eigenfunction corre-

sponding to δk.

Proof. Let u ∈C∞(B) be an eigenfunction of (3.38) so that u = 0 on ∂B. Therefore,
we can write

u(x) = (1−|x|2)φ(x) (x ∈ B) (3.46)

for some φ ∈C∞(B). We have uxi =−2xiφ +(1−|x|2)φxi , and on ∂B,

uν = x ·∇u =−2φ . (3.47)

Moreover,
∆u =−2nφ −4x ·∇φ +(1−|x|2)∆φ . (3.48)

Hence,
∆u =−2nφ −4φν on ∂B. (3.49)

From (3.48) we get for i = 1, . . . ,n,

(∆u)xi =−(2n+4)φxi −4
n

∑
j=1

x jφx jxi −2xi∆φ +(1−|x|2)∆φxi ,

and therefore

(∆u)xixi =−2(n+4)φxixi −4x ·∇(φxixi)−2∆φ −4xi(∆φ)xi +(1−|x|2)∆φxixi .

Summing with respect to i and recalling that u is biharmonic in B, we obtain

0 = ∆
2u =−2(n+4)∆φ −4x ·∇∆φ −2n∆φ −4x ·∇∆φ +(1−|x|2)∆ 2

φ

= (1−|x|2)∆ 2
φ −8x ·∇∆φ −4(n+2)∆φ . (3.50)
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Writing (3.50) as an equation in w = ∆φ , we get

(1−|x|2)∆w−8x ·∇w−4(n+2)w = 0 in B,

so that

0 = −(1−|x|2)4∆w+8(1−|x|2)3x ·∇w+4(n+2)(1−|x|2)3w

= −div
(
(1−|x|2)4∇w

)
+4(n+2)(1−|x|2)3w.

(3.51)

Multiplying the right hand side of (3.51) by w and integrating by parts over B, we
obtain∫

B
(1−|x|2)4|∇w|2 dx+4(n+2)

∫
B
(1−|x|2)3w2 dx =

∫
∂B

(1−|x|2)4wwν dω = 0.

Hence ∆φ = w = 0 in B. Now from (3.38), (3.47) and (3.49) we get

φν =
a−n

2
φ on ∂B.

Therefore, the number a is an eigenvalue of (3.38) with corresponding eigenfunction
u if and only if φ defined by (3.46) is an eigenfunction of the boundary eigenvalue
problem {

∆φ = 0 in B,
φν = γφ on ∂B, (3.52)

where
γ =

a−n
2

. (3.53)

We are so led to study the eigenvalues of the second order Steklov problem (3.52).
Let us quickly explain how to obtain them. In radial and angular coordinates (r,θ),
the equation in (3.52) reads

∂ 2φ

∂ r2 +
n−1

r
∂φ

∂ r
+

1
r2 ∆θ φ = 0,

where ∆θ denotes the Laplace-Beltrami operator on ∂B. From [47, p. 160] we know
that −∆θ admits a sequence of eigenvalues (λk) having multiplicity µk equal to
the number of independent harmonic homogeneous polynomials of degree k− 1.
Moreover, λk = (k−1)(n+ k−3).

Let us write e j
k ( j = 1, . . . ,µk) for the independent normalised eigenfunctions

corresponding to λk. Then one seeks functions φ = φ(r,θ) of the kind

φ(r,θ) =
∞

∑
k=1

µk

∑
j=1

φ
j

k (r)e j
k(θ).

Hence, by differentiating the series, we obtain
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∆φ(r,θ) =
∞

∑
k=1

µk

∑
j=1

(
d2

dr2 φ
j

k (r)+
n−1

r
d
dr

φ
j

k (r)− λk

r2 φ
j

k (r)
)

e j
k(θ) = 0.

Therefore, we are led to solve the equations

d2

dr2 φ
j

k (r)+
n−1

r
d
dr

φ
j

k (r)− λk

r2 φ
j

k (r) = 0 k = 1,2 . . . j = 1, . . . ,µk. (3.54)

With the change of variables r = et (t ≤ 0), equation (3.54) becomes a linear constant
coefficients equation. It has two linearly independent solutions, but one is singular.
Hence, up to multiples, the only regular solution of (3.54) is given by φ

j
k (r) = rk−1

because
2−n+

√
(n−2)2 +4λk

2
= k−1.

Since the boundary condition in (3.52) reads d
dr φ

j
k (1) = γφ

j
k (1) we immediately

infer that γ = k̄−1 for some k̄. In turn, (3.53) tells us that

δk̄ = n+2(k̄−1).

The proof of Theorem 3.20 is so complete. �

Remark 3.21. Theorems 3.18 and 3.20 become false if n = 1 since the problem

uiv = 0 in (−1,1) , u(±1) = u′′(−1)+au′(−1) = u′′(1)−au′(1) = 0, (3.55)

admits only two eigenvalues, δ1 = 1 and δ2 = 3, each one of multiplicity 1. The
reason of this striking difference is that the “boundary space” of (3.55) has precisely
dimension 2, one for each endpoint of the interval (−1,1). This result is consistent
with Theorem 3.20 since µ1 = µ2 = 1 and µ3 = 0 whenever n = 1.

By combining Theorems 3.18 and 3.20 we obtain

Corollary 3.22. Assume that n ≥ 2 and that Ω = B. Assume moreover that for all
k ∈ N+ the set {ψ j

k : j = 1, . . . ,µk} is a basis of Pk chosen in such a way that
the corresponding functions φ

j
k are orthonormal with respect to the scalar product

(3.41). Then for any u ∈V there exists a sequence (α j
k )⊂ `2 (k ∈N+; j = 1, . . . ,µk)

such that

u(x) = (1−|x|2)
∞

∑
k=1

µk

∑
j=1

α
j

k ψ
j

k (x) for a.e. x ∈ B.

3.3.2 Minimisation of the first eigenvalue

In this section we take advantage of Theorem 3.17 and we study several aspects of
the first Steklov eigenvalue δ1.
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We first give an alternative characterisation of δ1(Ω). Let

C2
H
(
Ω
)

:=
{

v ∈C2 (
Ω
)

; ∆v = 0 in Ω
}

and consider the norm defined by ‖v‖H := ‖v‖L2(∂Ω) for all v∈C2
H
(
Ω
)
. Then define

H := the completion of C2
H
(
Ω
)

with respect to the norm ‖·‖H .

Since Ω is assumed to have a Lipschitz boundary, we infer by [238] that H ⊂
H1/2 (Ω)⊂ L2 (Ω). Therefore, the quantity

σ1 (Ω) := inf
h∈H\{0}

‖h‖2
L2(∂Ω)

‖h‖2
L2(Ω)

is well-defined. Our purpose is now to relate σ1 with δ1, see (3.40). To this end, we
make use of a suitable version of Fichera’s principle of duality [170]. However, in
its original version, this principle requires smoothness of the boundary ∂Ω . Since
we aim to deal with most general domains, we need to drop this assumption. We
consider Lipschitz domains satisfying a uniform outer ball condition, see Definition
2.30. Then regularity results by Jerison-Kenig [237, 238] enable us to prove the
following result.

Theorem 3.23. If Ω ⊂ Rn is a bounded domain with Lipschitz boundary, then
σ1(Ω) admits a minimiser h ∈ H\{0}. If Ω also satisfies a uniform outer ball
condition then the minimiser is positive, unique up to a constant multiplier and
σ1 (Ω) = δ1 (Ω).

Proof. In the first part of this proof, we just assume that Ω is a domain with Lip-
schitz boundary. Let (hm) ⊂ H\{0} be a minimising sequence for σ1 (Ω) with
‖hm‖H = ‖hm‖L2(∂Ω) = 1. Up to a subsequence, we may assume that there exists
h ∈H such that hm ⇀ h in H. By regularity estimates [237, 238], we infer that there
exists a constant C > 0 such that

‖h‖H1/2(Ω) ≤C‖h‖L2(∂Ω) for all h ∈H

so that σ1(Ω) > 0 and the sequence (hm) is bounded in H1/2 (Ω), hm ⇀ h in
H1/2 (Ω) up to a subsequence and, by compact embedding, we also have hm → h
in L2 (Ω). Therefore, since (hm) is a minimising sequence, ‖hm‖L2(∂Ω) = 1 and
‖hm‖L2(Ω) is bounded it follows that h ∈H\{0} and

‖h‖−2
L2(Ω) = lim

m→∞
‖hm‖−2

L2(Ω) = σ1 (Ω) .

Moreover, by weak lower semicontinuity of ‖.‖H we also have

‖h‖2
L2(∂Ω) = ‖h‖2

H ≤ liminf
m→∞

‖hm‖2
H = 1
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and hence h ∈H\{0} satisfies

‖h‖2
L2(∂Ω)

‖h‖2
L2(Ω)

≤ σ1 (Ω) .

This proves that h is a minimiser for σ1 (Ω).
In the rest of the proof, we assume furthermore that Ω satisfies a uniform outer

ball condition. Under this condition, we have the existence of a minimiser for δ1(Ω)
by Theorem 3.17. We say that σ is a harmonic boundary eigenvalue if there exists
g ∈H such that

σ

∫
Ω

gvdx =
∫

∂Ω

gvdω for all v ∈H.

Clearly, σ1 is the least harmonic boundary eigenvalue. We prove that σ1 = δ1 by
showing two inequalities.
Proof of σ1 ≥ δ1. Let h be a minimiser for σ1, then

σ1

∫
Ω

hvdx =
∫

∂Ω

hvdω for all v ∈H. (3.56)

Let u ∈ [H2∩H1
0 (Ω)]\H2

0 (Ω) be the unique solution to{
∆u = h in Ω ,
u = 0 on ∂Ω .

Integrating by parts we have∫
Ω

hvdx =
∫

Ω

v∆udx =
∫

∂Ω

vuν dω for all v ∈H∩C2(Ω).

By a density argument, the latter follows for all v ∈ H. Inserting this into (3.56)
gives

σ1

∫
∂Ω

vuν dω =
∫

∂Ω

v∆udω for all v ∈H.

This yields ∆u = σ1uν on ∂Ω . Therefore,

σ1 =
‖h‖2

L2(∂Ω)

‖h‖2
L2(Ω)

=
‖∆u‖2

L2(∂Ω)

‖∆u‖2
L2(Ω)

= σ
2
1

‖uν‖2
L2(∂Ω)

‖∆u‖2
L2(Ω)

.

In turn, this implies that

σ1 =
‖∆u‖2

L2(Ω)

‖uν‖2
L2(∂Ω)

≥ min

{
‖∆v‖2

L2(Ω)

‖vν‖2
L2(∂Ω)

; v ∈ [H2∩H1
0 (Ω)]\H2

0 (Ω)

}
= δ1.

Proof of σ1 ≤ δ1. Let u be a minimiser for δ1 in (3.40), then ∆u = δ1uν on ∂Ω so
that ∆u ∈ H1/2(∂Ω)⊂ L2(∂Ω) and
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∂Ω

v∆udω = δ1

∫
∂Ω

vuν dω for all v ∈H. (3.57)

Let h := ∆u so that h∈ L2(Ω)∩L2(∂Ω). Moreover, ∆h = ∆ 2u = 0 in a distributional
sense and hence h ∈H. Two integrations by parts and a density argument yield∫

Ω

hvdx =
∫

∂Ω

vuν dω for all v ∈H.

Replacing this into (3.57) gives∫
∂Ω

hvdω = δ1

∫
Ω

hvdx for all v ∈H.

This proves that h is an eigenfunction with corresponding harmonic boundary eigen-
value δ1. Since σ1 is the least harmonic boundary eigenvalue, we obtain δ1 ≥ σ1.

Then σ1 = δ1 and there is a one-to-one correspondence between minimisers of
σ1(Ω) and δ1(Ω). Hence, uniqueness of a minimiser for σ1(Ω) up to a constant
multiplier follows from Theorem 3.17. �

We now show that an optimal shape for δ1 under volume or perimeter constraint
does not exist in any space dimension n≥ 2.

Theorem 3.24. Let Dε = {x ∈ R2; ε < |x| < 1} and let Ωε ⊂ Rn (n ≥ 2) be such
that

Ωε = Dε × (0,1)n−2 ;

in particular, if n = 2 we have Ωε = Dε . Then

lim
ε↘0

δ1 (Ωε) = 0.

Proof. We assume first that n = 2. For any ε ∈ (0,1) let wε ∈ H2 ∩H1
0 (Dε) be

defined by

wε(x) =
1−|x|2

4
− 1− ε2

4logε
log |x| for all x ∈ Dε . (3.58)

Then we have
∆wε =−1 in Ωε

and

|∇wε (x)|2 =
(
|x|
2

+
1− ε2

4logε

1
|x|

)2

for all x ∈Ω ε

so that ∫
Ωε

|∆wε |2 dx = π
(
1− ε

2)
and
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∫
∂Ωε

(wε)
2
ν

dω = 2π

(
1
2

+
1− ε2

4logε

)2

+2πε

(
ε

2
+

1− ε2

4ε logε

)2

(3.59)

=
π

8
1

ε log2
ε

+o
(

1
ε log2

ε

)
→+∞ as ε ↘ 0.

It follows immediately that

lim
ε↘0

δ1 (Ωε)≤ lim
ε↘0

∫
Ωε

|∆wε |2 dx∫
∂Ωε

(wε)
2
ν

dω

= 0.

This completes the proof of the theorem for n = 2.
We now consider the case n≥ 3. Let

uε (x) =

(
n

∏
i=3

xi (1− xi)

)
wε (x1,x2) for all x ∈Ωε

where wε is as in (3.58); note that uε vanishes on ∂Ωε and uε ∈H2∩H1
0 (Ωε). Then

we have

∆uε =−
n

∏
i=3

xi (1− xi)−2wε (x1,x2)
n

∑
j=3

n

∏
i=3
i 6= j

xi (1− xi)

(with the convention that ∏i∈ /0 βi = 1) and∫
Ωε

|∆uε |2 dx≤ 2
∫

Ωε

n

∏
i=3

x2
i (1− xi)

2 dx+8
∫

Ωε

w2
ε (x1,x2)

n

∑
j=3

n

∏
i=3
i6= j

x2
i (1− xi)

2 dx.

Hence, since |wε(x)|< 1
2 for all x ∈ Dε , there exists C > 0 such that∫

Ωε

|∆uε |2 dx≤C for all ε ∈ (0,1). (3.60)

On the other hand, we have

|∇uε |2 =
n

∏
i=3

x2
i (1− xi)2

((
∂wε

∂x1

)2

+
(

∂wε

∂x2

)2
)

+
n

∑
j=3

(1−2x j)
2 w2

ε (x1,x2)
n

∏
i=3
i6= j

x2
i (1− xi)

2


and since wε vanishes on ∂Dε we obtain
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∂Ωε

(uε)
2
ν

dω =
∫

∂Ωε

|∇uε |2 dω ≥
∫

∂Dε×(0,1)n−2
|∇uε |2 dω

≥
∫

∂Dε

(wε)2
ν dω ·

n

∏
i=3

∫ 1

0
x2

i (1− xi)
2 dxi→+∞

as ε ↘ 0 in view of (3.59). Therefore, by (3.60) we obtain

lim
ε↘0

δ1 (Ωε)≤ lim
ε↘0

∫
Ωε

|∆uε |2 dx∫
∂Ωε

(uε)
2
ν

dω

= 0

which proves the theorem also when n≥ 3. �

Theorem 3.24 has several important consequences. First, it shows that δ1(Ω) has
no optimal shape under the constraint that Ω is contained in a fixed ball.

Corollary 3.25. Let BR = {x ∈ Rn; |x|< R}. Then for any R > 0

inf
Ω⊂BR

δ1 (Ω) = 0

where the infimum is taken over all domains Ω ⊂ BR such that ∂Ω ∈ C∞ if n = 2
and ∂Ω is Lipschitzian if n≥ 3.

A second consequence of Theorem 3.24 is that it disproves the conjecture by
Kuttler [258] which states that the disk has the smallest δ1 among all planar re-
gions having the same perimeter. Let us also mention that, although the ball has no
isoperimetric property, it is a stationary domain for the map Ω 7→ δ1(Ω) in the class
of C4 domains under smooth perturbations which preserve measure, see [80] for the
details.

Theorem 3.24 also shows that the map Ω 7→ δ1 (Ω) is not monotonically de-
creasing with respect to domain inclusion.

Finally, Theorem 3.24 raises several natural questions. Why do we consider an
annulus in the plane and the region between two cylinders in space dimensions
n≥ 3? What happens if we consider an annulus in any space dimension? The quite
surprising answer is given in

Theorem 3.26. Let n≥ 3 and let Ω ε = {x ∈ Rn; ε < |x|< 1}.

1. If n = 3 then
lim
ε↘0

δ1 (Ω ε) = 2.

2. If n≥ 4 then
lim
ε↘0

δ1 (Ω ε) = n.

For the proof of Theorem 3.26 we refer to [80]. Theorems 3.24 and 3.26 highlight
a striking difference between dimension n = 2, dimension n = 3 and dimensions n≥
4. Since the set Ω ε is smooth, by Theorem 3.23 it follows that δ1(Ω ε) = σ1(Ω ε).
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Moreover, since the proof of Theorem 3.26 in [80] uses radial harmonic functions
h = h(r) (r = |x|), we may rewrite the ratio defining σ1(Ω ε) as∫

∂Ω ε

h2dω∫
Ω ε

h2dx
=

h(1)2 + εn−1h(ε)2∫ 1

ε

h(r)2rn−1dr
.

In this setting, we can treat the space dimension n as a real number. Then we have

Theorem 3.27. Let ε ∈ (0,1), let Kε = {h ∈ C2([ε,1]); h′′(r)+ n−1
r h′(r) = 0, r ∈

[ε,1]} and, for all n ∈ [1,∞), let

γε(n) = inf
h∈Kε\{0}

h(1)2 + εn−1h(ε)2∫ 1

ε

h(r)2rn−1dr
.

Then

lim
ε→0

γε(n) =


2 if n = 1,
0 if 1 < n < 3,
2 if n = 3,
n if n > 3.

Theorem 3.27 is proved in [80] and shows that dimensions n = 1 and n = 3 are
“discontinuous” dimensions for the behaviour of γε . The reason of this discontinuity
is not clear to us.

Finally, we point out that Steklov boundary conditions, producing a boundary
integral in the denominator of the Rayleigh quotient, require a strong geometric
convergence (namely a very fine topology) in order to preserve the perimeter. How-
ever, contrary to the Babuška paradox (see Section 1.4.2), we notice that we do have
stability of the first eigenvalue on the sequence of regular polygons converging to
the disk.

Theorem 3.28. Let n = 2 and let (Pk) be a sequence of regular polygons with k
edges circumscribed to the unit disk D centered at the origin. Then

lim
k→∞

δ1(Pk) = δ1(D) = 2.

The proof of Theorem 3.28 is lengthy and delicate. This is why we refer again to
[80].

3.4 Bibliographical notes

An interesting survey on spectral properties of higher-order elliptic operators is also
provided by Davies [129].
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For the original version of the Kreı̆n-Rutman theorem, which generalises Jentzsch’s
[236] theorem, we refer to [257, Theorem 6.2 and 6.3]. Theorem 3.3 is taken from
the appendix of [55] and it follows by combining the variant of the Kreı̆n-Rutman
result in [359, Theorem 6.6, p. 337] with a result by de Pagter [136].

Theorem 3.4 is due to Moreau [311]. A first application of this decomposition is
given in the paper by Miersemann [301] for the positivity in a buckling eigenvalue
problem. Proposition 3.6 is the generalisation of [19, Lemma 16] from m = 2 to the
case m≥ 2.

Theorem 3.7 is a straightforward consequence of Kreı̆n-Rutman’s theorem and
Lemma 2.27 but the elementary proof suggested here is taken from [181]. The rest
of Section 3.1.3 is taken from the survey paper by Sweers [385].

Concerning Theorem 3.8, numerical results in 1972 and 1980 already predicted
that the first eigenfunction on a square changes sign, see [34, 220]. Subsequently,
in 1982 Coffman [107] gave an analytic proof of Theorem 3.8. More recently, in
1996, the numerical results on the square have been revisited by Wieners [412] who
proved that the sign-changing of the numerically approximated first eigenfunction
is rigorous, that is, the sign changing effect is too large to be explained by numerical
errors.

Theorem 3.9 is due to Coffman-Duffin-Shaffer. The eigenvalue problem for do-
mains with holes was first studied by Duffin-Shaffer [155]. Subsequently, with Coff-
man [110] they could show that for the annuli with a small hole, the first eigenfunc-
tion changes sign. They used an explicit formula and explicit values of the Bessel
functions involved and obtained even a critical number for the ratio of the inner and
outer radius. The proof has been simplified in [109].

For further results on sign-changing first eigenfunctions to (3.8), for numerical
experiments, and for conjectures on simple domains (such as ellipses, elongated
disks, dumb-bells, and limaçons) we refer again to [385].

For some first properties of spherical rearrangements, we refer to [343]. A com-
plete proof of Theorem 3.11 can be found in [10] while its essential Item 2 goes back
to Sperner [378] and Talenti [390]. Kawohl [243] discusses the question whether
equality in Item 2 of Theorem 3.11 implies symmetry; he shows that the answer
is affirmative for analytic functions while it is negative in general. A more general
condition ensuring symmetry was subsequently obtained by Brothers-Ziemer [74],
see also [100] and references therein for further results on this topic. Theorem 3.12
is an iteration of Talenti’s principle [391].

For a fairly complete story of Rayleigh’s conjecture [350], we refer to Section
1.3.1. Although it was Nadirashvili [315] who proved first the Rayleigh conjecture
in dimension n = 2, the proof of Theorem 3.13 follows closely the one by Ashbaugh-
Benguria [22] which is more general since it also holds for n = 3. It uses some results
by Talenti [392].

Theorem 3.15 is due to Ashbaugh-Bucur [23]. Minimisation of the buckling load
can be also performed in different classes of domains. For instance, one could argue
in the class of convex domains like in [244, Proposition 4.5]. For further classes
of domains, such as open sets, quasi-open sets or multiply connected sets, we refer
again to [23]. On the occasion of an Oberwolfach meeting in 1995, Willms gave
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a talk with the proof of Theorem 3.16 according to joint work with Weinberger
[415] but the proof was never written by them. With their permission, Kawohl [244,
Proposition 4.4] wrote down the proof of the talk by Willms and this is where we
have taken it, see also [23]. For more results on buckling eigenvalues, mainly under
Dirichlet boundary conditions, we refer to [48, 49, 172, 228, 245, 301, 376] and
references therein.

Elliptic problems with parameters in the boundary conditions are called Steklov
problems from their first appearance in [379]. For the biharmonic operator, these
conditions were first considered by Kuttler-Sigillito [260] and Payne [334] who
studied the isoperimetric properties of the first eigenvalue δ1, see also subsequent
work by Smith [373, 374] and Kuttler [258, 259]. We also refer to the monograph by
Kuttler-Sigillito [261] for some numerical experiments and for a survey of results
known at that time. Finally, we refer to Section 1.3.3 for the complete story about
the minimisation of δ1.

Theorem 3.17 is taken from [80] although it was already known in the smooth
case ∂Ω ∈C2, see [42]. The characterisation of the first Steklov eigenvalue in the
ball and Remark 3.21 are taken from [42]. Subsequently, the whole spectrum of
the biharmonic Steklov problem was studied by Ferrero-Gazzola-Weth [165] from
where Theorems 3.18, 3.19, and 3.20 are taken. Theorem 3.23 is a generalisation
to nonsmooth domains of a particular application of Fichera’s principle of duality
[170]; in this final form it is proved in [80], see also [165, 170] for previous work in
the case ∂Ω ∈C2. All the other statements in Section 3.3.2 are taken from Bucur-
Ferrero-Gazzola [80].





Chapter 4
Kernel estimates

In Chapters 5 and 6 we discuss positivity and almost positivity for higher order
boundary value problems. The goal of the present chapter is to provide the required
estimates, which are also interesting in themselves. In order to avoid a too techni-
cal exposition, in many cases the discussion is restricted to fourth order problems.
However, whenever it does not require too many additional distinctions, the general
case of 2m-th order operators is also covered.

4.1 Consequences of Boggio’s formula

Throughout this chapter we will exploit the following notations.

Notation 4.1 Let f ,g≥ 0 be functions defined on the same set D.

• We write f � g if there exists c > 0 such that f (x)≤ cg(x) for all x ∈ D.
• We write f ' g if both f � g and g� f .

Notation 4.2 For a smooth bounded domain Ω , we define the distance function to
the boundary

d(x) := dist(x,∂Ω) = min
y∈∂Ω

|x− y| , x ∈Ω . (4.1)

Many estimates will be for coordinates inside the unit ball B in Rn and for this
special domain the following expression will be used repeatedly.

Notation 4.3 For x,y ∈ B we write

[XY ] :=
√
|x|2 |y|2−2x · y+1 =

∣∣∣∣|x|y− x
|x|

∣∣∣∣= ∣∣∣∣|y|x− y
|y|

∣∣∣∣ . (4.2)

As (4.2) shows, [XY ] is the distance from |y|x to the projection of y on the unit
sphere, which is larger than |x− y|. Indeed

97
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[XY ]2−|x− y|2 = (1−|x|2)(1−|y|2) > 0 for x,y ∈ B. (4.3)

Since 1−|x|= d(x) for x ∈ B it even shows that

|x− y|2 +d(x)d(y)≤ [XY ]2 ≤ |x− y|2 +4d(x)d(y). (4.4)

We focus on the polyharmonic analogue of the clamped plate boundary value
problem {

(−∆)mu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1.
(4.5)

Here Ω ⊂Rn is a bounded smooth domain, f a datum in a suitable functional space
and u denotes the unknown solution.

In bounded smooth domains, a unique Green function G(−∆)m,Ω for problem
(4.5) exists and the representation formula

u(x) =
∫

Ω

G(−∆)m,Ω (x,y) f (y)dy, x ∈Ω , (4.6)

holds true, see (2.64). Having a positivity preserving property in Ω is equivalent
to G(−∆)m,Ω ≥ 0. Almost positivity will mean that the negative part of G(−∆)m,Ω is
small in a sense to be specified when compared with its positive part. The main goal
of Chapters 5 and 6 is to identify domains and also further differential operators
enjoying almost positivity or even a positivity preserving property. To this end, we
provide in the present chapter fine estimates for the Green function and the other
kernels involved in the solution of higher order boundary value problems.

With [XY ] as in (4.2), the Green function from Lemma 2.27 by Boggio for the
Dirichlet problem (4.5) with Ω = B, the unit ball, is given by

Gm,n(x,y) = km,n |x− y|2m−n

[XY ]
/
|x−y|∫

1

(v2−1)m−1v1−n dv . (4.7)

In Section 4.2 we give the following characterisation of Gm,n, which will be much
more convenient than Boggio’s original formula in discussing positivity issues:

Gm,n(x,y)'



|x− y|2m−n min
{

1,
d(x)md(y)m

|x− y|2m

}
if n > 2m,

log
(

1+
d(x)md(y)m

|x− y|2m

)
if n = 2m,

d(x)m− n
2 d(y)m− n

2 min

{
1,

d(x)
n
2 d(y)

n
2

|x− y|n

}
if n < 2m.

A more detailed discussion of the boundary terms will be given below. We further
deduce related estimates for the derivatives |Dα

x Gm,n(x,y)|. All these are used to
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prove so-called 3-G-type theorems in Section 4.2.2, which will help us to develop a
perturbation theory of positivity.

It is an obvious question whether in general domains Ω ⊂ Rn, where one does
not have positivity preserving, estimates for |G(−∆)m,Ω | as above are available. This
question is addressed in Section 4.5. In order to avoid too many technicalities, we
confine ourselves here to the biharmonic case. The following estimate is proven in
any bounded domain Ω ⊂ Rn with ∂Ω ∈C4,γ .

∣∣G∆ 2,Ω (x,y)
∣∣�


|x− y|4−n min
{

1,
d(x)2d(y)2

|x− y|4

}
if n > 4,

log
(

1+
d(x)2d(y)2

|x− y|4

)
if n = 4,

d(x)2− n
2 d(y)2− n

2 min

{
1,

d(x)
n
2 d(y)

n
2

|x− y|n

}
if n < 4.

(4.8)

These estimates, also being quite interesting in themselves, will prove to be basic
for the positivity and almost positivity results in Chapter 6.

Finally, kernel estimates and 3-G-type results are collected in Section 4.3 to pre-
pare the discussion of positivity in the Steklov problem which will be given in Sec-
tion 5.4.

4.2 Kernel estimates in the ball

4.2.1 Direct Green function estimates

Let Gm,n : B×B→ R∪{∞} denote the Green function for (−∆)m under homoge-
neous Dirichlet boundary conditions, see (4.7), and let

Gm,n : Lp(B)→W 2m,p∩W m,p
0 (B), (Gm,n f )(x) =

∫
B

Gm,n(x,y) f (y)dy, (4.9)

be the corresponding Green operator. In order to base a perturbation theory of pos-
itivity on this formula, we first condense the key information on the behaviour of
Gm,n and its derivatives in more convenient expressions, which also allow for a more
direct interpretation of its behaviour, see Theorems 4.6 and 4.7 below.

The first lemma characterises the crucial distinction between the cases “x and y
are closer to the boundary ∂B than to each other” and vice versa.

Lemma 4.4. Let x,y ∈ B. If |x− y| ≥ 1
2 [XY ], then

d(x)d(y) ≤ 3 |x− y|2 , (4.10)
max{d(x),d(y)} ≤ 3 |x− y| . (4.11)
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If |x− y| ≤ 1
2 [XY ], then

3
4 |x− y|2 ≤ 3

16 [XY ]2 ≤ d(x)d(y), (4.12)
1
4 d(x) ≤ d(y)≤ 4d(x), (4.13)
|x− y| ≤ 3min{d(x),d(y)}, (4.14)
[XY ] ≤ 5min{d(x),d(y)}. (4.15)

Moreover, for all x,y ∈ B we have

d(x)≤ [XY ] , d(y)≤ [XY ] , (4.16)

[XY ]' d(x)+d(y)+ |x− y| . (4.17)

Proof. Let |x− y| ≥ 1
2 [XY ]. Then one has

d(x)d(y)≤
(
1−|x|2

)(
1−|y|2

)
= [XY ]2−|x− y|2 ≤ 3 |x− y|2 ,

hence (4.10). The estimate (4.11) follows from

d(x)2 ≤ d(x) (d(y)+ |x− y|)≤ 3 |x− y|2 + |x− y|d(x)≤ 4 |x− y|2 + 1
4 d(x)2

⇒ d(x)2 ≤ 16
3 |x− y|2 ,

and a corresponding estimate for y.
Now, let |x− y| ≤ 1

2 [XY ]. Then it follows

d(x)d(y)≥ 1
4

(
1−|x|2

)(
1−|y|2

)
= 1

4

(
[XY ]2−|x− y|2

)
≥ 3

16 [XY ]2 ≥ 3
4 |x− y|2 ,

hence (4.12). Inequalities (4.13) can be deduced from

d(y)≤ d(x)+ |x− y| ≤ d(x)+
( 4

3 d(x)d(y)
)1/2 ≤

(
1+ 2

3

)
d(x)+ 1

2 d(y)

⇒ d(y)≤ 10
3 d(x),

and the analogous computation with x and y interchanged; (4.14) and (4.15) are now
obvious.

Finally, for all x,y ∈ B we have

[XY ]2 =
∣∣∣∣|x|y− x

|x|

∣∣∣∣2 ≥ 1−2 |x| |y|+ |x|2 |y|2 = (1−|x| |y|)2 ≥
{

(1−|x|)2 = d(x)2

(1−|y|)2 = d(y)2

thereby proving (4.16). For (4.17), formulae (4.3) and (4.16) show “�”. On the
other hand, [XY ]2−|x− y|2 =

(
1−|x|2

)(
1−|y|2

)
≤ 4d(x)d(y) ≤ 2d(x)2 + 2d(y)2

showing also “�”. �

In the ball, the following lemma is a direct consequence of the preceding one.
However, since the result is needed also in general domains we prove it in this
framework.
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Lemma 4.5. Let Ω ⊂ Rn be a bounded domain and let p,q≥ 0 be fixed.
For (x,y) ∈Ω

2
we have:

min
{

1,
d (y)
|x− y|

}
' min

{
1,

d (y)
d (x)

,
d (y)
|x− y|

}
, (4.18)

min

{
1,

d (x)d (y)
|x− y|2

}
' min

{
d (y)
d (x)

,
d (x)
d (y)

,
d (x)d (y)
|x− y|2

}
, (4.19)

min
{

1,
d (x)p d (y)q

|x− y|p+q

}
' min

{
1,

d (x)p

|x− y|p
,

d (y)q

|x− y|q
,

d (x)p d (y)q

|x− y|p+q

}
, (4.20)

min
{

1,
d (x)p d (y)q

|x− y|p+q

}
' min

{
1,

d (x)
|x− y|

}p

min
{

1,
d (y)
|x− y|

}q

, (4.21)

and assuming moreover that p+q > 0, we also have

log
(

1+
d (x)p d (y)q

|x− y|p+q

)
' log

(
2+

d (y)
|x− y|

)
min

{
1,

d (x)p d (y)q

|x− y|p+q

}
. (4.22)

Proof. Case d(x)≥ 2|x− y| or d(y)≥ 2|x− y|.
If d(x)≥ 2|x− y| we also have

d(y)≥ d(x)−|x− y| ≥ d(x)− 1
2 d(x) = 1

2 d(x)≥ |x− y| ,
d(y)≤ d(x)+ |x− y| ≤ 3

2 d(x).

If, on the other hand, d(y)≥ 2|x− y| one concludes similarly that

|x− y| ≤ 1
2 d(y)≤ d(x)≤ 3

2 d(y).

Hence, in what follows we may use that

|x− y| ≤ d(x) and |x− y| ≤ d(x) and d(x)' d(y). (4.23)

This shows that in (4.18) - (4.21) we have that the left hand sides as well as the right
hand sides all satisfy ' 1. As for (4.22), we have in this case thanks to p+q > 0

log
(

1+
d(x)pd(y)q

|x− y|p+q

)
' log

(
d(x)pd(y)q

|x− y|p+q

)
' (p+q) log

(
d(y)
|x− y|

)
' log

(
2+

d(y)
|x− y|

)
' log

(
2+

d(y)
|x− y|

)
min

{
1,

d(x)pd(y)q

|x− y|p+q

}
.

Case d(x) < 2|x− y| and d(y) < 2|x− y|.
As for (4.18), inequality “�” is obvious, while “�” follows from

min
{

1,
d(y)
|x− y|

}
' d(y)
|x− y|

≤ 2
d(y)
d(x)

.
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For (4.19) one uses min{t, 1
t } ≤ 1 (for all t > 0) to prove “�”. For “�”one may

observe that
1

|x− y|2
≤ 4

d(x)2 and
1

|x− y|2
≤ 4

d(y)2 .

In the case considered claims (4.20) and (4.21) are obvious. Finally, through

log
(

1+
d(x)pd(y)q

|x− y|p+q

)
' d(x)pd(y)q

|x− y|p+q 'min
{

1,
d(x)pd(y)q

|x− y|p+q

}
' log

(
2+

d(y)
|x− y|

)
min

{
1,

d(x)pd(y)q

|x− y|p+q

}
we find (4.22). �

We are now ready to establish the basic Green function estimates. In what follows
the estimates of Gm,n from below will be crucial.

Theorem 4.6. (Two-sided estimates of the Green function) In B×B we have

Gm,n(x,y)'



|x− y|2m−n min
{

1,
d(x)md(y)m

|x− y|2m

}
if n > 2m;

log
(

1+
d(x)md(y)m

|x− y|2m

)
if n = 2m;

d(x)m− n
2 d(y)m− n

2 min

{
1,

d(x)
n
2 d(y)

n
2

|x− y|n

}
if n < 2m.

(4.24)

Proof. According to Lemma 4.4 it is essential to distinguish the two cases “|x−y| ≥
1
2 [XY ]” and “|x− y| ≤ 1

2 [XY ]”.
1st case: |x− y| ≤ 1

2 [XY ]. Here (4.10) applies and we have to show

Gm,n(x,y)'


|x− y|2m−n if n > 2m,

log
(

1+
d(x)md(y)m

|x− y|2m

)
if n = 2m,

d(x)m− n
2 d(y)m− n

2 if n < 2m.

(4.25)

It is not too hard to see that

a ∈ [2,∞) ⇒
∫ a

1
(v2−1)m−1v1−n dv'

∫ a

1
v2m−n−1 dv

holds true. According to our assumption we may conclude in this case from formula
(4.7) for the Green function
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Gm,n(x,y)' |x− y|2m−n
∫ [XY ]/|x−y|

1
(v2−1)m−1v1−n dv

' |x− y|2m−n
∫ [XY ]/|x−y|

1
v2m−n−1 dv

'


|x− y|2m−n if n > 2m,

log
(

[XY ]
|x− y|

)
if n = 2m,

[XY ]2m−n−|x− y|2m−n ' [XY ]2m−n if n < 2m.

(4.26)

If n > 2m, statement (4.25) is already proved. In order to proceed also in small
dimensions n≤ 2m we combine (4.15) and (4.16). We obtain in this case

[XY ]' d(x)' d(y).

Hence, (4.25) is now obvious also for n < 2m. If n = 2m, we observe further that

a ∈ [2,∞) ⇒ loga' log(1+am). (4.27)

The discussion of the case |x− y| ≤ 1
2 [XY ] is now complete.

2nd case: |x− y| ≥ 1
2 [XY ].

In this case we have d(x)
|x−y| ≤ 3, d(y)

|x−y| ≤ 3. Hence, independently of whether n > 2m,
n = 2m or n < 2m, we have to show

Gm,n(x,y)' |x− y|−nd(x)md(y)m. (4.28)

When using formula (4.7) for Gm,n, we note that the upper integration bound
[XY ]/|x− y| is in [1,2]. On this interval one has v−n ' 1 and may conclude

Gm,n(x,y)' |x− y|2m−n
∫ [XY ]/|x−y|

1
(v2−1)m−1 vdv

' |x− y|2m−n
(

[XY ]2

|x− y|2
−1
)m

= |x− y|−n ([XY ]2−|x− y|2
)m

= |x− y|−n ((1−|x|2)(1−|y|2))m ' |x− y|−nd(x)md(y)m.

The proof of (4.28), and hence of Theorem 4.6, is complete. �

In the spirit of Theorem 4.6 we also have estimates for the derivatives.

Theorem 4.7. (Estimates of the derivatives of the Green function)
Let α ∈ Nn be a multiindex. Then in B×B we have

|Dα
x Gm,n(x,y)| � (∗)

with (∗) as follows:

1. if |α| ≥ 2m−n and n odd, or if |α|> 2m−n and n even
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(∗) =


|x− y|2m−n−|α|min

{
1,

d(x)m−|α|d(y)m

|x− y|2m−|α|

}
for |α|< m,

|x− y|2m−n−|α|min
{

1,
d(y)m

|x− y|m

}
for |α| ≥ m;

2. if |α|= 2m−n and n even

(∗) =


log
(

2+
d(y)
|x− y|

)
min

{
1,

d(x)m−|α|d(y)m

|x− y|2m−|α|

}
for |α|< m,

log
(

2+
d(y)
|x− y|

)
min

{
1,

d(y)m

|x− y|m

}
for |α| ≥ m;

3. if |α| ≤ 2m−n and n odd, or if |α|< 2m−n and n even

(∗) =



d(x)m− n
2−|α|d(y)m− n

2 min

{
1,

d(x)
n
2 d(y)

n
2

|x− y|n

}
for |α|< m− n

2 ,

d(y)2m−n−|α|min

{
1,

d(x)m−|α|d(y)n−m+|α|

|x− y|n

}
for m− n

2 ≤ |α|< m,

d(y)2m−n−|α|min

{
1,

d(y)n−m+|α|

|x− y|n−m+|α|

}
for |α| ≥ m.

Proof. 1. We claim that on {(x,y) ∈ B×B : |x− y| ≥ 1
2 [XY ]} it holds true that

|Dα
x Gm,n(x,y)| � |x− y|2m−n−|α|

(
d(x)
|x− y|

)max{m−|α|,0}( d(y)
|x− y|

)m

. (4.29)

To this end we use the transformation s = 1− 1
v2 in formula (4.7) in order to show

the boundary behaviour of the Green function more clearly. We have

Gm,n(x,y) =
km,n

2
|x− y|2m−n fm,n(Ax,y), (4.30)

where

fm,n(t) :=
t∫

0

sm−1(1− s)
n
2−m−1 ds, (4.31)

Ax,y :=
[XY ]2−|x− y|2

[XY ]2
=

(1−|x|2)(1−|y|2)
[XY ]2

' d(x)d(y)
[XY ]2

. (4.32)

According to the assumption we have
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Ax,y ≤
3
4
. (4.33)

Here, i.e for t ∈ [0, 3
4 ], we know∣∣∣ f ( j)

m,n(t)
∣∣∣� tmax{m− j,0}. (4.34)

Since d(x)≤ [XY ], by (4.16), for every multiindex β ∈ Nn one has∣∣∣Dβ
x Ax,y

∣∣∣� d(y)[XY ]−1−|β |. (4.35)

Application of a general product and chain rule yields

|Dα
x Gm,n(x,y)| � ∑

β≤α

∣∣∣Dα−β
x |x− y|2m−n

∣∣∣ · ∣∣∣Dβ
x fm,n(Ax,y)

∣∣∣
� |x− y|2m−n−|α| ·

∣∣ fm,n(Ax,y)
∣∣

+ ∑
β ≤ α

β 6= 0

|x− y|2m−n−|α|+|β | ·
|β |

∑
j=1


∣∣∣ f ( j)

m,n(Ax,y)
∣∣∣ · ∑

∑
j
i=1 β (i) = β

|β (i)| ≥ 1

j

∏
i=1

∣∣∣Dβ (i)

x Ax,y

∣∣∣


� |x− y|2m−n−|α| d(x)md(y)m

[XY ]2m

+ ∑
β ≤ α

β 6= 0

|x− y|2m−n−|α|+|β | ·
|β |

∑
j=1

{(
d(x)d(y)
[XY ]2

)max{m− j,0}
· d(y) j

[XY ] j+|β |

}

by (4.32), (4.34), (4.35)

� ∑
β≤α

|x− y|2m−n−|α|
(

d(x)
[XY ]

)max{m−|β |,0}( d(y)
[XY ]

)m( |x− y|
[XY ]

)|β |
by (4.16)

� |x− y|2m−n−|α|
(

d(x)
[XY ]

)max{m−|α|,0}( d(y)
[XY ]

)m

by (4.3) and (4.16).

Thanks to inequality (4.3) the estimate (4.29) follows.
2. We claim that in

{
(x,y) ∈ B×B : |x− y| ≤ 1

2 [XY ]
}

one has
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|Dα
x Gm,n(x,y)| �



|x− y|2m−n−|α| if |α|> 2m−n,

log
(

[XY ]
|x− y|

)
if |α|= 2m−n and n even,

1 if |α|= 2m−n and n odd,

[XY ]2m−n−|α| if |α|< 2m−n.

(4.36)

In contrast with the proof of (4.29) here we do not have to discuss the behaviour
of the Green function close to the boundary but “close to the singularity x = y”.
For this reason it is suitable to expand formula (4.7) first and then to carry out the
integration explicitly. The integrand contains a term like 1

v if and only if n even and
n≤ 2m. It follows for suitable numbers c j = c j(m,n) ∈ R, j = 0, . . . ,m:

Gm,n(x,y) =



cm|x− y|2m−n +
m−1

∑
j=0

c j[XY ]2m−n−2 j|x− y|2 j

if n > 2m or n odd,

cm|x− y|2m−n log
[XY ]
|x− y|

+
m−1

∑
j=0

c j[XY ]2m−n−2 j|x− y|2 j

if n≤ 2m and n even.

(4.37)

When differentiating we take into account that |x− y|2 j is a polynomial of degree
2 j, whose derivatives of order > 2 j vanish identically. Moreover, taking advantage
of |x− y| ≤ [XY ], |Dα

x [XY ]k| � [XY ]k−|α| and |Dα
x |x− y|k| � |x− y|k−|α|:

|Dα
x Gm,n(x,y)| �



|x− y|2m−n−|α|+[XY ]2m−n−|α|

if n > 2m−|α| or n odd,

|x− y|2m−n−|α|
(

1+ log
[XY ]
|x− y|

)
+[XY ]2m−n−|α|

if n≤ 2m−|α| and n even.

(4.38)

This already proves (4.36) except in the case where n is even and n < 2m−|α|. In
this case, we use a ∈ [1,∞) ⇒ 0≤ loga≤ a and conclude from (4.38):

|Dα
x Gm,n(x,y)| � |x− y|2m−n−|α|−1[XY ]+ [XY ]2m−n−|α| � [XY ]2m−n−|α|.

Therefore, (4.36) holds in any case.
3. We conclude the proof of the theorem by using (4.29) and (4.36). Let x,y ∈ B be
arbitrary. According to Lemma 4.4 two cases have to be distinguished.
1st case: |x− y| ≤ 1

2 [XY ].
Here d(x)' d(y), and using Lemma 4.4 we obtain for p,q≥ 0:

min
{

1,

(
d(x)
|x− y|

)p( d(y)
|x− y|

)q}
' 1.
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We have to show that

|Dα
x Gm,n(x,y)| �



|x− y|2m−n−|α| if |α|> 2m−n,

log
(

2+
d(y)
|x− y|

)
if |α|= 2m−n and n even,

1 if |α|= 2m−n and n odd,

d(y)2m−n−|α| if |α|< 2m−n.

This estimate follows from (4.36), since d(x)' d(y)' [XY ] according to (4.15) and
(4.16). For the logarithmic term one should observe further (4.27). Making use of
[XY ]/|x− y| ≥ 2 and [XY ]≤ 5d(y) we obtain

log
[XY ]
|x− y|

� log
(

1+
1
5

[XY ]
|x− y|

)
≤ log

(
2+

d(y)
|x− y|

)
.

2nd case: |x− y| ≥ 1
2 [XY ].

According to Lemma 4.4 we have for p,q≥ 0:

log
(

2+
d(y)
|x− y|

)
' 1,

min
{

1,

(
d(x)
|x− y|

)p( d(y)
|x− y|

)q}
'
(

d(x)
|x− y|

)p( d(y)
|x− y|

)q

.

The estimates for (∗) as in the statement follow immediately from (4.29). �

The Green function for the Laplacian (m = 1,n > 2) satisfies the estimates above
in arbitrary bounded C2,γ -smooth domains, see e.g. [411]. This result is proved with
the help of general maximum principles and Harnack’s inequality. For higher or-
der equations we proceed just in the opposite way, namely, we deduce the above
estimates from Boggio’s explicit formula and, in turn, use them to prove some com-
parison principles.

In general the following estimate is weaker than Item 3 of Theorem 4.7 but still
appropriate and more convenient for our purposes.

Corollary 4.8. For |α| ≤ 2m−n and n odd, or, |α|< 2m−n and n even we have

|Dα
x Gm,n (x,y)| � d (x)m− n

2−|α| d (y)m− n
2 min

{
1,

d (x)
n
2 d (y)

n
2

|x− y|n

}
.
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4.2.2 A 3-G-type theorem

In Chapter 5 we develop a perturbation theory of positivity for Boggio’s prototype
situation of the polyharmonic operator in the ball. This will be achieved by means
of Neumann series and estimates of iterated Green operators. The latter are conse-
quences of the following 3-G-type result, which provides an estimate for a term of
three Green functions.

Theorem 4.9 (3-G-theorem). Let α ∈ Nn be a multiindex. Then on B×B×B we
have

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)
�

�



|x− z|2m−n−|α|+ |y− z|2m−n−|α| if |α|> 2m−n,

log
(

3
|x− z|

)
+ log

(
3
|y− z|

)
if |α|= 2m−n and n even,

1 if |α|= 2m−n and n odd,

1 if |α|< 2m−n.

(4.39)

The proof is crucially based on the Green function estimates in Theorems 4.6 and
4.7 and a number of technical inequalities and equivalencies which we are going to
prove first.

Lemma 4.10. For s, t > 0 it holds that

log(1+ t)
log(1+ s)

≤ 1+
t
s
. (4.40)

Proof. For s > 0 and α ≥ 1 concavity of the logarithm yields

log(1+ s) = log
(

1
α

(1+αs)+(1− 1
α
·1)
)
≥ 1

α
log(1+αs),

i.e. log(1 + αs)/ log(1 + s) ≤ α . For 0 < α ≤ 1 it is obvious that log(1 + αs) ≤
log(1+ s). Combining these estimates we have for s,α > 0

log(1+αs)
log(1+ s)

≤ 1+α.

The claim (4.40) follows by taking α = t
s . �

Boggio’s formula is the reason that we can prove the 3-G-theorem 4.9 only in balls.
The following lemmas, however, hold true in any bounded domain.

Lemma 4.11. Let Ω ⊂Rn be a bounded domain. Assume that p,q,r≥ 0, r≤ p+q.
Further let s ∈ R be such that r

2 − p≤ s≤ q− r
2 . Then, on Ω ×Ω , we have
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min
{

1,

(
d(x)
|x− y|

)p( d(y)
|x− y|

)q}
�
(

d(y)
d(x)

)s

min
{

1,
d(x)d(y)
|x− y|2

} r
2
. (4.41)

Proof. We make the same distinction as in the proof of Lemma 4.5.
Case d(x)≥ 2|x− y| or d(y)≥ 2|x− y|. According to (4.23) we have that

|x− y| ≤ d(x) and |x− y| ≤ d(x) and d(x)' d(y)

which directly yields (4.41).
Case d(x) < 2|x− y| and d(y) < 2|x− y|. Under this assumption we obtain

min
{

1,

(
d(x)
|x− y|

)p( d(y)
|x− y|

)q}
'
(

d(x)
|x− y|

)p( d(y)
|x− y|

)q

=
(

d(y)
d(x)

)s(d(x)d(y)
|x− y|2

) r
2
(

d(x)
|x− y|

)p+s− r
2
(

d(y)
|x− y|

)q−s− r
2

and, since p+ s− r
2 and q− s− r

2 are nonnegative, the estimate in (4.41). �

Lemma 4.12. Let Ω ⊂ Rn be a bounded domain. On Ω ×Ω ×Ω , it holds true that

Q(x,y,z) :=
min

{
1, d(x)d(z)
|x−z|2

}
min

{
1, d(z)d(y)
|z−y|2

}
min

{
1, d(x)d(y)
|x−y|2

} � 1, (4.42)

R(x,y,z) :=
min

{
1, d(x)d(z)
|x−z|2

}
min

{
1, d(y)
|z−y|

}
min

{
1, d(x)d(y)
|x−y|2

} � 1+
|y− z|
|x− z|

, (4.43)

S(x,y,z) :=
log
(

1+ d(x)d(z)
|x−z|2

)
min

{
1, d(y)
|z−y|

}
log
(

1+ d(x)d(y)
|x−y|2

) � 1+
|y− z|
|x− z|

, (4.44)

T (x,y,z) :=
|x− y|

|x− z| |z− y|
≤ 1
|x− z|

+
1
|z− y|

. (4.45)

Proof. Estimate (4.45) is an immediate consequence of the triangle inequality. To
prove the remaining estimates we distinguish several cases as in Lemmas 4.5 and
4.11.
Case d(x)≥ 2|x− y| or d(y)≥ 2|x− y|. Again, we refer to (4.23):

|x− y| ≤ d(x) and |x− y| ≤ d(x) and d(x)' d(y).

This shows that the denominators of Q and R are bounded from below. Estimating
the numerators by 1 from above proves (4.42) and (4.43). In order to estimate S, we
make also use of (4.22) and Lemma 4.10.
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S(x,y,z) �
log
(

2+ d(x)
|x−z|

)
log
(

2+ d(x)
|x−y|

) ·1� 1+
1+ d(x)

|x−z|

1+ d(x)
|x−y|

≤ 2+
d(x)
|x−z|

1+ d(x)
|x−y|

≤ 2+
|x− y|
|x− z|

≤ 3+
|y− z|
|x− z|

.

Case d(x) < 2|x− y| and d(y) < 2|x− y|. Under this assumption we have

min
{

1,
d(x)d(y)
|x− y|2

}
' log

(
1+

d(x)d(y)
|x− y|2

)
' d(x)d(y)
|x− y|2

.

A further distinction with respect to z seems inevitable.
Assume first that |x− z| ≥ 1

2 |x− y|. Then (4.18), (4.19), and log(1+ x)≤ x yield

Q(x,y,z)
R(x,y,z)
S(x,y,z)

� |x− y|2

d(x)d(y)
· d(x)d(z)
|x− z|2

· d(y)
d(z)

� 1.

Assume now that |x− z|< 1
2 |x−y|. Then |y− z| ≥ |y−x|−|x− z| ≥ 1

2 |x−y|. We
obtain by applying Lemma 4.5

Q(x,y,z) � |x− y|2

d(x)d(y)
· d(x)

d(z)
· d(z)d(y)
|y− z|2

� 1,

R(x,y,z) � |x− y|2

d(x)d(y)
· d(x)
|x− z|

· d(y)
|y− z|

� |x− y|
|x− z|

� 1+
|y− z|
|x− z|

,

S(x,y,z) � |x− y|2

d(x)d(y)
· log

(
2+

d(x)
|x− z|

)
·min

{
1,

d(x)
|x− z|

}
· d(y)
|y− z|

� |x− y|
|x− z|

� 1+
|y− z|
|x− z|

.

�

Proof of the 3-G-theorem 4.9. According to Theorems 4.6 and 4.7 several cases have
to be distinguished.
The case: n > 2m.

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)

�
|x− y|n−2m min

{
1, d(x)md(z)m

|x−z|2m

}
min

{
1,
(

d(z)
|z−y|

)max{m−|α|,0}( d(y)
|z−y|

)m
}

|x− z|n−2m|z− y|n+|α|−2m min
{

1, d(x)md(y)m

|x−y|2m

}
� 1
|y− z||α|

(T (x,y,z))n−2m (Q(x,y,z))max{m−|α|,0} (R(x,y,z))min{|α|,m} =: (?0)



4.2 Kernel estimates in the ball 111

thanks to (4.21). We continue by Lemma 4.12 to find

(?0) �
1

|y− z||α|

(
1
|x− z|

+
1
|y− z|

)n−2m(
1+
|y− z|
|x− z|

)min{|α|,m}

� |x− z|2m−n|y− z|−|α|+ |y− z|2m−n−|α|

+ |x− z|2m−n−min{|α|,m}|y− z|−|α|+min{|α|,m}

+ |x− z|−min{|α|,m}|y− z|2m−n−|α|+min{|α|,m}

� |x− z|2m−n−|α|+ |y− z|2m−n−|α|.

The case: n = 2m and α = 0.

Gm,n(x,z)Gm,n(z,y)
Gm,n(x,y)

�
log
(

2+ d(x)
|x−z|

)
log
(

2+ d(y)
|y−z|

)
min

{
1, d(x)md(z)m

|x−z|2m

}
min

{
1, d(z)md(y)m

|z−y|2m

}
max

{
log
(

2+ d(x)
|x−y|

)
, log

(
2+ d(y)

|x−y|

)}
min

{
1, d(x)md(y)m

|x−y|2m

}
by virtue of (4.22)

�
log
(

2+ d(x)
|x−z|

)
log
(

2+ d(y)
|y−z|

)
max

{
log
(

2+ d(x)
|x−y|

)
, log

(
2+ d(y)

|x−y|

)} (Q(x,y,z))m =: (?1).

If |x− z| ≥ 1
2 |x− y|, then log

(
2+ d(x)

|x−z|

)
� log

(
2+ d(x)

|x−y|

)
. If, on the other hand,

|x− z| < 1
2 |x− y|, then the reverse inequality |y− z| ≥ |x− y| − |x− z| ≥ 1

2 |x− y|
follows and hence log

(
2+ d(y)

|y−z|

)
� log

(
2+ d(y)

|x−y|

)
. Combining this estimate with

Lemma 4.12, (4.42) yields

(?1)� log
(

2+
d(x)
|x− z|

)
+ log

(
2+

d(y)
|y− z|

)
� log

(
3
|x− z|

)
+ log

(
3
|y− z|

)
.

The case: n = 2m and |α|> 0.

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)

�
log
(

1+ d(x)d(z)
|x−z|2

)
min

{
1, d(x)m−1d(z)m−1

|x−z|2m−2

}
min

{
1, d(z)max{m−|α|,0}d(y)m

|z−y|m+max{m−|α|,0}

}
log
(

1+ d(x)d(y)
|x−y|2

)
|y− z||α|min

{
1, d(x)m−1d(y)m−1

|x−y|2m−2

}
� |y− z|−|α| S(x,y,z)(Q(x,y,z))max{m−|α|,0} (R(x,y,z))min{|α|,m}−1

by (4.21)
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� |y− z|−|α|
(

1+
|y− z|
|x− z|

)min{|α|,m}
by Lemma 4.12

� |x− z|−|α|+ |y− z|−|α| .

The case: n < 2m and |α|< 2m−n,
or: n < 2m and |α| ≤ 2m−n and n odd.
Here we use Corollary 4.8. Together with Theorem 4.6 we obtain

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)

�
d(x)m− n

2 d(z)2m−n−|α|d(y)m− n
2 min

{
1, d(x)

n
2 d(z)

n
2

|x−z|n

}
min

{
1, d(z)

n
2 d(y)

n
2

|z−y|n

}
d(x)m− n

2 d(y)m− n
2 min

{
1, d(x)

n
2 d(y)

n
2

|x−y|n

}
� d(z)2m−n−|α| (Q(x,y,z))

n
2 � 1 due to (4.42).

The case: n < 2m and |α|= 2m−n and n even.
We employ Lemma 4.11 with p = max{m− |α|,0}, q = m, s = m− n

2 and r = n.
In the present case, due to |α| = 2m− n, one has: p + q = max{n−m,0}+ m =
max{n,m} ≥ n = r; q− r

2 = m− n
2 = s = n

2 − (n−m)≥ r
2 − p.

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)

�
d(x)m− n

2 d(z)m− n
2 min

{
1, d(x)

n
2 d(z)

n
2

|x−z|n

}
d(x)m− n

2 d(y)m− n
2 min

{
1, d(x)

n
2 d(y)

n
2

|x−y|n

}
× log

(
2+

d(y)
|z− y|

)
min

{
1,

(
d(z)
|z− y|

)max{m−|α|,0}( d(y)
|z− y|

)m
}

�
log
(

2+ d(y)
|z−y|

)
d(z)m− n

2 min
{

1, d(x)
n
2 d(z)

n
2

|x−z|n

}(
d(y)
d(z)

)m− n
2

min
{

1, d(z)
n
2 d(y)

n
2

|z−y|n

}
d(y)m− n

2 min
{

1, d(x)
n
2 d(y)

n
2

|x−y|n

}
� log

(
2+

d(y)
|z− y|

)
(Q(x,y,z))

n
2 � log

(
3
|y− z|

)
by virtue of (4.42).
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The case: n < 2m and |α|> 2m−n.

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)
�

d(x)m− n
2 d(z)m− n

2 min
{

1, d(x)
n
2 d(z)

n
2

|x−z|n

}
d(x)m− n

2 d(y)m− n
2 min

{
1, d(x)

n
2 d(y)

n
2

|x−y|n

}
× |z− y|2m−n−|α|min

{
1,

(
d(z)
|z− y|

)max{m−|α|,0}( d(y)
|z− y|

)m
}

= |y− z|2m−n−|α|
d(z)m− n

2 min
{

1, d(x)
n
2 d(z)

n
2

|x−z|n

}
d(y)m− n

2 min
{

1, d(x)
n
2 d(y)

n
2

|x−y|n

}
× min

{
1,

(
d(z)
|z− y|

)max{m−|α|,0}( d(y)
|z− y|

)m
}

=: (?2).

In order to proceed, we have to distinguish further cases.

In addition, we assume first that |α| ≤ 2m− n
2 .

We apply (4.21) of Lemma 4.5 to the “dangerous” term in (?2). Here one has to
observe that |α|+n−2m > 0 as well as 3m−n−|α| ≥ 3m−n−2m+ n

2 = m− n
2 >

0. In a second step we make use of Lemma 4.11 with p = max{m− |α|,0} ≥ 0,
q = 3m−n−|α| ≥ 0, r = 4m−n−2|α| ≥ 0 and s = m− n

2 . Obviously p+q− r =
max{|α|−m,0} ≥ 0, q− r

2 = s, r
2 − p = m− n

2 −max{|α|−m,0} ≤ s.

min

{
1,

(
d(z)
|z− y|

)max{m−|α|,0}( d(y)
|z− y|

)m
}

' min
{

1,
d(y)
|y− z|

}|α|+n−2m

min

{
1,

(
d(z)
|z− y|

)max{m−|α|,0}( d(y)
|z− y|

)3m−n−|α|
}

� min
{

1,
d(y)
|y− z|

}|α|+n−2m(d(y)
d(z)

)m− n
2

min
{

1,
d(z)d(y)
|z− y|2

}2m− n
2−|α|

.

With the aid of this estimate and of Lemma 4.12 we obtain further

(?2) � |y− z|2m−n−|α| (Q(x,y,z))2m− n
2−|α| (R(x,y,z))|α|+n−2m

� |y− z|2m−n−|α|
(

1+
|y− z|
|x− z|

)|α|+n−2m

� |y− z|2m−n−|α|+ |x− z|2m−n−|α| .

Now we assume that additionally |α|> 2m− n
2 holds true.

Here one has to deal with the “dangerous” term in (?2) in a different manner. Ob-
viously, one has that |α| > m +

(
m− n

2

)
> m. We apply repeatedly Lemma 4.5,

observing that n
2 < m.
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min

{
1,

(
d(z)
|z− y|

)max{m−|α|,0}( d(y)
|z− y|

)m
}
'min

{
1,

(
d(y)
|z− y|

)m}

' min
{

1,
d(y)
|y− z|

} n
2

min
{

1,
d(y)
|z− y|

}m− n
2
�min

{
1,

d(y)
|y− z|

} n
2
(

d(y)
d(z)

)m− n
2
.

By means of this estimate and of Lemma 4.12 we further conclude that

(?2) � |y− z|2m−n−|α| (R(x,y,z))
n
2 � |y− z|2m−n−|α|

(
1+
|y− z|
|x− z|

) n
2

� |y− z|2m−n−|α|+ |y− z|2m− n
2−|α| |x− z|−

n
2

� |y− z|2m−n−|α|+ |x− z|2m−n−|α| .

To apply Young’s inequality in the last step, one has to exploit the assumption
2m− n

2 −|α|< 0 of this case. �

4.3 Estimates for the Steklov problem

In the previous section we considered the higher order operator (−∆)m under
Dirichlet boundary conditions starting from the explicit formula of Boggio and
hence we necessarily had to restrict ourselves to the ball as domain. Under different
boundary conditions the boundary value problem may be rewritten as a second or-
der system. The present section prepares for such a situation so that general bounded
smooth domains are allowed. So we consider the second order Green operator G and
the Poisson operator K on a general domain Ω , that is, w = G f +K g formally
solves {

−∆w = f in Ω ,
w = g on ∂Ω .

For bounded C2-domains the operators G and K can be represented by integral
kernels G and K, namely

(G f )(x) =
∫

Ω

G(x,y) f (y)dy and (K g)(x) =
∫

∂Ω

K(x,y)g(y)dωy. (4.46)

Moreover, it holds that

K(x,y) =
−∂

∂νy
G(x,y) for all (x,y) ∈Ω ×∂Ω . (4.47)

According to (4.6), the Green function G in (4.46) should be written as G−∆ ,Ω .
However, since this function is frequently used in this section, we drop the subscripts
for a simpler notation.
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In this section we prove some estimates for the kernels G and K in general
bounded domains Ω such that ∂Ω ∈ C2. These estimates will be intensively used
in Section 5.4 in order to prove positivity properties for the biharmonic Steklov
problem.

Based on several estimates due to Zhao [420, 421] (see also [118, 384]), Grunau-
Sweers [213] were able to show:

Proposition 4.13. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C2. Then the fol-
lowing uniform estimates hold for (x,y) ∈Ω ×Ω :

for n > 4 :
∫

Ω

G(x,z)G(z,y)dz' |x− y|4−n min

{
1,

d(x)d(y)
|x− y|2

}
, (4.48)

for n = 4 :
∫

Ω

G(x,z)G(z,y)dz' log

(
1+

d(x)d(y)
|x− y|2

)
, (4.49)

for n = 3 :
∫

Ω

G(x,z)G(z,y)dz'
√

d(x)d(y)min

{
1,

√
d(x)d(y)
|x− y|

}
, (4.50)

for n = 2 :
∫

Ω

G(x,z)G(z,y)dz' d(x)d(y) log

(
2+

1

|x− y|2 +d(x)d(y)

)
.(4.51)

We will exploit these estimates combined with the following “geometric” result:

Lemma 4.14. Let Ω ⊂ Rn (n≥ 2) be a bounded domain with ∂Ω ∈C2. For x ∈Ω

let x∗ ∈ ∂Ω be any point such that d(x) = |x− x∗|.

• Then there exists rΩ > 0 such that for x ∈ Ω with d(x) ≤ rΩ there is a unique
x∗ ∈ ∂Ω .

• Then the following uniform estimates hold:

for (x,y) ∈Ω ×Ω : |x− y| � d(x)+d(y)+ |x∗− y∗| , (4.52)

for (x,y) ∈Ω ×Ω :
d(x)

d(x)+d(y)+ |x∗− y∗|
�min

{
1,

d(x)
|x− y|

}
, (4.53)

for (x,z) ∈Ω ×∂Ω : |x− z| ' d(x)+ |x∗− z| . (4.54)

And for (x,y,z) ∈Ω ×Ω ×∂Ω :

if d(y)≤ d(x) and |x∗− y∗| ≤ d(x)+d(y), then |x− z| ' d(x)+ |y∗− z| .
(4.55)

Proof. Since ∂Ω ∈ C2, there exists r1 > 0 such that Ω can be filled with balls of
radius r1. Set rΩ = 1

2 r1. For x ∈Ω with d(x)≤ rΩ there is a unique x∗ ∈ ∂Ω .
Estimate (4.52) is just the triangle inequality. Estimate (4.54) follows from the

three inequalities

|x− z| ≤ |x− x∗|+ |x∗− z|= d(x)+ |x∗− z| ,
d(x)≤ |x− z| and |x∗− z| ≤ |x∗− x|+ |x− z| ≤ 2 |x− z| .
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In order to prove (4.55), we first remark that under the assumptions made we
have d(x)≥ 1

2 |x
∗− y∗|. This yields the two inequalities

d(x)+ |x∗− z| ≤ d(x)+ |x∗− y∗|+ |y∗− z| ≤ 3d(x)+ |y∗− z| ≤ 3(d(x)+ |y∗− z|),
d(x)+ |y∗− z| ≤ d(x)+ |x∗− y∗|+ |x∗− z| ≤ 3d(x)+ |x∗− z| ≤ 3(d(x)+ |x∗− z|).

In turn these inequalities read as d(x)+ |x∗− z| ' d(x)+ |y∗− z|. This, combined
with (4.54), proves (4.55).

To prove (4.53), we distinguish two cases. If |x− y| ≤ 1
2 max(d(x),d(y)), then

1
2 d(x)≤ d(y)≤ 2d(x) and |x− y| � d(x)' d(y). It follows that

d(x)
d(x)+d(y)+ |x∗− y∗|

� 1'min
{

1,
d(x)
|x− y|

}
and a similar estimate with x and y interchanged. If |x− y| ≥ 1

2 max(d(x),d(y)), we
use (4.52) to find that

d(x)
d(x)+d(y)+ |x∗− y∗|

� d(x)
|x− y|

'min
{

1,
d(x)
|x− y|

}
and a similar estimate with x and y interchanged. �

We are now ready to prove the estimates which are needed for the study of the
Steklov problem.

Lemma 4.15. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2. Then the
following uniform estimates hold for (x,z) ∈Ω ×∂Ω :

∫
Ω

G(x,ξ )K(ξ ,z)dξ '

d(x) |x− z|2−n for n≥ 3,

d(x) log
(

2+ 1
|x−z|2

)
for n = 2.

Proof. Let

H(x,z) :=
∫

Ω

G(x,ξ )G(ξ ,z)dξ for all (x,z) ∈Ω ×∂Ω .

In view of (4.47), and since H(x,z) = 0 for z ∈ ∂Ω , we have∫
Ω

G(x,ξ )K(ξ ,z)dξ =
−∂

∂νz
H(x,z) = lim

t→0

H(x,z− tνz)
t

. (4.56)

Note also that if rΩ is as in Lemma 4.14, then d(z− tνz) = t for all z ∈ ∂Ω and
t ≤ rΩ . Hence, by (4.48) we obtain for n > 4

lim
t→0

H(x,z− tνz)
t

' lim
t→0

|x− z+ tνz|4−n min
{

1, td(x)
|x−z+tνz|2

}
t

= d(x) |x− z|2−n .
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For n = 4 we use (4.49) to obtain

lim
t→0

H(x,z− tνz)
t

' lim
t→0

log
(

1+ td(x)
|x−z+tνz|2

)
t

' d(x) |x− z|−2 .

For n = 3 we use (4.50) to obtain

lim
t→0

H(x,z− tνz)
t

' lim
t→0

√
td(x) min

{
1,

√
td(x)

|x−z+tνz|

}
t

= d(x) |x− z|−1 .

And finally for n = 2 we use (4.51) to obtain

lim
t→0

H(x,z− tνz)
t

' lim
t→0

td(x) log
(

2+ 1
|x−z+tνz|2+td(x)

)
t

= d(x) log

(
2+

1

|x− z|2

)
.

By (4.56) the statement is so proved for any n≥ 2. �

Lemma 4.16. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2. Then the
following uniform estimates hold for (x,y) ∈Ω ×Ω :∫

Ω

∫
∂Ω

∫
Ω

G(x,ξ )K(ξ ,z)
−∂

∂νz
G(z,w)G(w,y)dξ dωzdw

�

d(x)d(y) (d(x)+d(y)+ |x∗− y∗|)2−n for n≥ 3,

d(x)d(y) log
(

2+ 1
d(x)+d(y)+|x∗−y∗|)

)
for n = 2,

(4.57)

respectively for (x,y) ∈Ω ×∂Ω :∫
Ω

∫
∂Ω

∫
Ω

G(x,ξ )K(ξ ,z)
−∂

∂νz
G(z,w)K(w,y)dξ dωzdw

�

d(x) |x− y|2−n for n≥ 3,

d(x) log
(

2+ 1
|x−y|)

)
for n = 2.

(4.58)

Proof. Setting

R(x,y) :=
∫

Ω

∫
∂Ω

∫
Ω

G(x,ξ )K(ξ ,z)
−∂

∂νz
G(z,w)G(w,y)dξ dωzdw,

and using (4.47) and the estimates from Lemma 4.15, the following holds:

R(x,y)� d(x)d(y)
∫

∂Ω

|x− z|2−n |z− y|2−n dωz for n≥ 3,

R(x,y)� d(x)d(y)
∫

∂Ω

log

(
2+

1

|x− z|2

)
log

(
2+

1

|y− z|2

)
dωz for n = 2.
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Let rΩ be as in Lemma 4.14. We distinguish three cases, according to the positions
of x,y ∈Ω .

Case 1: max(d(x),d(y))≥ rΩ .
By symmetry we may assume that d(y)≥ rΩ and find for n≥ 3 that∫

∂Ω

|x− z|2−n |z− y|2−n dωz �
∫

∂Ω

|x− z|2−n dωz �
∫ 1

0

rn−2

(d(x)+ r)n−2 dr � 1,

and for n = 2∫
∂Ω

log
(

2+ 1
|x−z|2

)
log
(

2+ 1
|z−y|2

)
dωz �

∫ 1

0
log
(

2+ 1
(d(x)+r)2

)
dr � 1,

which imply (4.57) since d(y)≥ rΩ .

Case 2: max(d(x),d(y)) < rΩ and |x∗− y∗| ≥ d(x)+d(y).
In this case, in view of Lemma 4.14, we have that (4.54) holds for both x and y. So,
for n≥ 3 we have∫

∂Ω

|x− z|2−n |z− y|2−n dωz �
∫

∂Ω

1

(d(x)+ |x∗− z|)n−2
1

(d(y)+ |y∗− z|)n−2 dωz.

We split this integral as Ix + Iy where Ix is over ∂Ωx = {z ∈ ∂Ω ; |x∗− z| ≤ |y∗− z|}
and Iy over ∂Ωy = ∂Ω\∂Ωx. Over ∂Ωx we have

|x∗− z|+ |x∗− y∗| ≤ |x∗− z|+ |x∗− z|+ |y∗− z| ≤ 3|y∗− z|.

Hence we find

Ix �
∫

∂Ωx

1

(d(x)+ |x∗− z|)n−2
1

(d(y)+ |x∗− z|+ |x∗− y∗|)n−2 dωz

� 1

|x∗− y∗|n−2

∫ 1

0

rn−2

(d(x)+ r)n−2 dr � |x∗− y∗|2−n

� (d(x)+d(y)+ |x∗− y∗|)2−n

where we used |x∗− y∗| ≥ d(x)+d(y) in the last estimate.
Similarly, for n = 2 we find

Ix �
∫

∂Ωx

log
(

2+
1

d(x)+ |x∗− z|

)
log
(

2+
1

d(y)+ |x∗− z|+ |x∗− y∗|

)
dωz

� log
(

2+
1

d(y)+ |x∗− y∗|

)∫ 1

0
log
(

2+
1

d(x)+ r

)
dr

� log
(

2+
1

d(y)+ |x∗− y∗|

)
� log

(
2+

1
d(x)+d(y)+ |x∗− y∗|

)
.

Analogous estimates hold for Iy. All together these estimates prove (4.57) in Case 2.
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Case 3: max(d(x),d(y)) < rΩ and |x∗− y∗| ≤ d(x)+d(y).
By symmetry, we may assume that d(y) ≤ d(x). Then we may use both (4.54) and
(4.55). So, for n≥ 3 we find∫

∂Ω

|x− z|2−n |z− y|2−n dωz

�
∫

∂Ω

1

(d(x)+ |y∗− z|)n−2
1

(d(y)+ |y∗− z|)n−2 dωz

�
∫ 1

0

rn−2

(d(x)+ r)n−2
1

(d(y)+ r)n−2 dr

� 1
d(x)n−2 � (d(x)+d(y)+ |x∗− y∗|)2−n ,

and for n = 2∫
∂Ω

log
(

2+
1
|x− z|

)
log
(

2+
1
|y− z|

)
dωz

�
∫

∂Ω

log
(

2+
1

d(x)+ |y∗− z|

)
log
(

2+
1

d(y)+ |y∗− z|

)
dωz

�
∫ 1

0
log
(

2+
1

d(x)+ r

)
log
(

2+
1

d(y)+ r

)
dr

� log
(

2+
1

d(x)

)
� log

(
2+

1
d(x)+d(y)+ |x∗− y∗|

)
.

This proves (4.57) in Case 3.
For the estimates in (4.58) one divides the estimates in (4.57) by d(y), takes

the limit for d(y)→ 0, and uses (4.54), namely that d(x) + |x∗− y| ' |x− y| for
y ∈ ∂Ω . �

4.4 General properties of the Green functions

In this section we collect some smoothness properties of biharmonic functions and
derive some preliminary pointwise estimates. That is, we first give a more precise
statement concerning the smoothness of the Green functions simultaneously with
respect to both variables. Next we will show some pointwise estimates for the Green
function that follow almost directly from its construction through the fundamental
solution.
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4.4.1 Regularity of the biharmonic Green function

For brevity we here write G = G∆ 2,Ω for the Green function in the domain Ω , see
(4.6).

Proposition 4.17. Let Ω be a bounded C4,γ -smooth domain. Let G be the Green
function for the biharmonic Dirichlet problem. Then

G ∈C4,γ
(
Ω ×Ω \

{
(x,x) : x ∈Ω

})
.

Proof. Suppose α ∈Nn with i = |α| ≤ 3 and let p ∈ (n,n+1). In particular it holds
that 4− n

p > i. Let ϕ ∈C∞
c (Ω) and consider ψ ∈C4,γ(Ω) such that ∆ 2ψ = ϕ in Ω

and ψ = ψν = 0 on ∂Ω . It follows from Theorem 2.20 and Sobolev’s embedding
theorem 2.6 that

‖ψ‖Ci,µ (Ω) ≤C‖ψ‖W 4,p(Ω) ≤C‖ϕ‖Lp(Ω)

for all µ ∈ (0,1) with i+ µ ≤ 4− n
p . Since ψ(x) =

∫
Ω

G(x,y)ϕ(y)dy, we get that∣∣∣∣∫
Ω

(
Dα

x G(x,y)−Dα
x G(x′,y)

)
ϕ(y)dy

∣∣∣∣≤C2‖ϕ‖Lp(Ω)
∣∣x− x′

∣∣µ for all x,x′ ∈Ω .

By duality, we then obtain y 7→Dα
x G(x,y) ∈ Lq(Ω) for all q ∈ ( n+1

n , n
n−1 ) and more-

over, for all µ ≤ 4− i−n+ n
q with µ ∈ (0,1), that

‖Dα
x G(x, .)−Dα

x G(x′, .)‖q ≤C(q)
∣∣x− x′

∣∣µ for all x,x′ ∈Ω .

Since the functions y 7→ G(x,y) are biharmonic in Ω \ {x}, so is y 7→ Dα
x G(x,y).

Fix x and consider y 7→ Dα
x G(x,y). Since Dα

x G(x, .) = ∂

∂ν
Dα

x G(x, .) = 0 on ∂Ω ,
regularity theory, as one may find in Theorem 2.19, gives that Dα

x G(x, .)∈C4,γ(Ω \
{x}). Moreover, for all δ > 0 there exists C(δ ) > 0 such that

‖Dα
x G(x, .)−Dα

x G(x′, .)‖C4,γ (Ω\(Bδ (x)∪Bδ (x′))) ≤C(δ )
∣∣x− x′

∣∣µ for all x,x′ ∈Ω .

This is valid for |α| ≤ 3. Using the symmetry of the Green function, we have a
similar result for |α| = 4 with respect to the C3,γ(Ω \ (Bδ (x)∪Bδ (x′)))-norm. So,
all derivatives of order 4 are covered and we find that G ∈C4,γ(Ω ×Ω \{(x,x) : x ∈
Ω}). �

4.4.2 Preliminary estimates for the Green function

We start with a relatively straightforward application of the Schauder theory to the
construction of Green’s functions.
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Lemma 4.18. Let Ω ⊂ Rn be a bounded C4,γ -smooth domain and let d( .) be as in
(4.1). Then for the biharmonic Green function G∆ 2,Ω the following estimates hold
true:

∣∣G∆ 2,Ω (x,y)
∣∣≤C(Ω) ·


|x− y|4−n +max{d(x),d(y)}4−n if n > 4,

log
(

1+ |x− y|−1 +max{d(x),d(y)}−1
)

if n = 4,

1 if n = 2,3.
(4.59)

For n = 2,3,4 also the following gradient estimates hold true:

∣∣∇xG∆ 2,Ω (x,y)
∣∣≤C(Ω) ·

{
|x− y|−1 +max{d(x),d(y)}−1 if n = 4,

1 if n = 2,3.
(4.60)

By symmetry (4.60) also holds for
∣∣∇yG∆ 2,Ω (x,y)

∣∣. The dependence of the constants
C(Ω) on Ω is explicit via the C4,γ -properties of ∂Ω .

Proof. For brevity we write G(x,y) = G∆ 2,Ω (x,y). We recall a fundamental solution
for ∆ 2 on Rn:

Fn(x) =


cn|x|4−n if n 6∈ {2,4},

−2c4 log |x| if n = 4,

2c2|x|2 log |x| if n = 2,

(4.61)

where cn is defined through en = |B| and

cn =


1

2(n−4)(n−2)nen
if n 6∈ {2,4},

1
8nen

if n ∈ {2,4}.

The Green function is given by G(x,y) = Fn(|x− y|) + h(x,y), where h(x, .) is a
solution of the following Dirichlet problem:

∆ 2
y h(x,y) = 0 in Ω ,

h(x,y) =−Fn(|x− y|) for y ∈ ∂Ω ,
∂

∂νy
h(x,y) =− ∂

∂νy
Fn(|x− y|) for y ∈ ∂Ω .

(4.62)

We first discuss extensively the generic case n > 4. At the end we comment on
the changes and additional arguments which have to be made for n ∈ {2,3,4}.

Case n > 4. In (4.62), the C1,γ -norm of the datum for h(x, .)|∂Ω and the C0,γ -norm
of the datum for ∂

∂νy
h(x, .)|∂Ω are bounded by C(∂Ω)d(x)3−n−γ . The dependence of

the constant C(∂Ω) on ∂Ω is constructive and explicit via its curvature properties
and their derivatives. According to C1,γ -estimates for boundary value problems in
variational form like (4.62) we see with the help of Theorem 2.19 that
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‖h(x, .)‖C1,γ (Ω) ≤C(∂Ω)d(x)3−n−γ . (4.63)

One should observe that the differential operators are uniformly coercive, so that no
h(x, .)-term needs to appear on the right-hand-side of (4.63).

As long as d(y)≤ d(x), (4.63) shows h(x,y)≤C(∂Ω)d(x)4−n and hence that

|G(x,y)| ≤C(∂Ω)
(
|x− y|4−n +d(x)4−n) . (4.64)

For d(y) > d(x), we conclude from (4.64) by exploiting the symmetry of the Green
function:

|G(x,y)|= |G(y,x)| ≤C(∂Ω)
(
|x− y|4−n +d(y)4−n) . (4.65)

Combining (4.64) and (4.65) yields (4.59) for n > 4.
Case n = 4. As above we find that

‖h(x, .)‖C1,γ(Ω) ≤C(∂Ω)d(x)−1−γ . (4.66)

As long as d(y)≤ d(x), (4.66) shows that∣∣∇yG(x,y)
∣∣≤C(∂Ω)

(
|x− y|−1 +d(x)−1) . (4.67)

In order to exploit the symmetry of G(x,y) we need a similar estimate also for
|∇xG(x,y)|. To this end one has to differentiate (4.62) with respect to x being con-
sidered here as a parameter and obtains as before that for d(y)≤ d(x)

|∇xG(x,y)| ≤C(∂Ω)
(
|x− y|−1 +d(x)−1) . (4.68)

By symmetry G(x,y) = G(y,x), and (4.68) shows that for d(x)≤ d(y) one has∣∣∇yG(x,y)
∣∣≤C(∂Ω)

(
|x− y|−1 +d(y)−1) (4.69)

while (4.67) yields

|∇xG(x,y)| ≤C(∂Ω)
(
|x− y|−1 +d(y)−1) . (4.70)

Combining (4.67)-(4.70) proves (4.60) and hence (4.59) in the case n = 4.
Case n = 3. As in the previous cases one comes up with

‖h(x, .)‖C1,γ(Ω) ≤C(∂Ω)d(x)−γ .

Proceeding as for n = 4 yields (4.60) and hence (4.59) also in the case n = 3.
Case n = 2. Here, one directly finds that

‖h(x, .)‖C1,γ(Ω) ≤C(∂Ω)

and the claims (4.59), (4.60) immediately follow. �
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4.5 Uniform Green functions estimates in C4,γ -families of
domains

Later on we will need convergence properties of Green functions defined on a con-
verging family of domains. For the sake of simplicity we restrict ourselves also in
this section to biharmonic operators. Moreover, in order to avoid too many techni-
calities, we restrict ourselves to special families of bounded domains that may be
parametrised with the help of global coordinate charts over the closure of a fixed
bounded smooth domain.

To be more precise: we will consider the family of the biharmonic Green func-
tions Gk = G∆ 2,Ωk

and G = G∆ 2,Ω in Ωk and Ω respectively, where (Ωk)k∈N is a
family of domains converging to a bounded domain Ω ⊂Rn in the following sense.

Definition 4.19. We say that the sequence (Ωk)k∈N is a C4,γ -perturbation of the
bounded C4,γ -smooth domain Ω , if there exists a neighbourhood U of Ω and for
each k ∈ N a C4,γ -diffeomorphism Ψk : U →Ψk(U) with Ψk(Ω) = Ωk such that one
has

lim
k→∞
‖Id−Ψk‖C4,γ (U) = 0.

The remaining section is divided in a part without and a part with boundary terms
and we finish with some results on the convergence of these Green functions.

4.5.1 Uniform global estimates without boundary terms

As for the diffeomorphisms Ψk we refer to Definition 4.19.

Theorem 4.20. Assume that (Ωk)k∈N is a C4,γ -perturbation of the bounded C4,γ -
smooth domain Ω ⊂Rn and let Gk = G∆ 2,Ωk

be the biharmonic Green function in Ωk
under Dirichlet boundary conditions. Then there exists a constant C = C((Ωk)k∈N),
which is independent of k, such that for all k ∈N and α,β ∈Nn with |α|+ |β | ≤ 4:

• If |α|+ |β |+n > 4:∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤C |x− y|4−n−|α|−|β | for all x,y ∈Ωk. (4.71)

• If |α|+ |β |+n = 4 and n is even∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤C log

(
1+ |x− y|−1

)
for all x,y ∈Ωk. (4.72)

• If |α|+ |β |+n = 4 and n is odd, or if |α|+ |β |+n < 4∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤C for all x,y ∈Ωk. (4.73)
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This kind of estimates was given by Krasovskiı̆ [255, 256] in a very general
framework. Here we provide an independent proof, which is simpler but never-
theless still quite involved. We shall proceed in several steps, where the proof of
Proposition 4.22 is the most important part.

Lemma 4.21. Assume that n≥ 4. Let (Ωk)k∈N be a C4,γ -perturbation of the bounded
C4,γ -smooth domain Ω . Let Gk denote the Green functions for ∆ 2 in Ωk under
Dirichlet boundary conditions and d( .) the distance function to the boundary ∂Ωk.
For any q ∈

( n
n−3 , n

n−4

)
there exists C(q) > 0 such that for all k and all x ∈ Ωk we

have
‖Gk(x, .)‖Lq(Ωk) ≤C(q) d(x)4−n+ n

q . (4.74)

The constant C(q) can be chosen uniformly for the family (Ωk)k∈N.

Proof. We proceed with the help of a duality argument. Let ψ ∈ C∞
c (Ωk) and let

ϕ ∈C4,γ(Ωk) be a solution of{
∆ 2ϕ = ψ in Ωk,
ϕ = ϕν = 0 on ∂Ωk.

Let q ∈
( n

n−3 , n
n−4

)
and let q′ = q

q−1 be the dual exponent, so that in particular n
4 <

q′ < n
3 . It follows from Theorem 2.20 (in particular, Corollary 2.21) that there exists

C3 > 0 independent of ϕ,ψ and k such that

‖ϕ‖W 4,q′ (Ωk)
≤C3 ‖ψ‖Lq′ (Ωk)

.

The embedding W 4,q′(Ωk)⊂C0,µ(Ωk) (see Theorem 2.6) with µ = 4− n
q′ = 4−n+

n
q being continuous uniformly in k shows that there exists C4 > 0 independent of ϕ

and k such that ‖ϕ‖C0,µ (Ωk)
≤C4 ‖ϕ‖W 4,q′ (Ωk)

. Let x∈Ωk and x′ ∈ ∂Ωk. We then get
that

|ϕ(x)|=
∣∣ϕ(x)−ϕ(x′)

∣∣≤ ‖ϕ‖C0,µ (Ωk)

∣∣x− x′
∣∣µ ≤C3C4 ‖ψ‖Lq′ (Ωk)

∣∣x− x′
∣∣µ .

Moreover, it follows from Green’s representation formula that

ϕ(x) =
∫

Ωk

Gk(x,y)ψ(y)dy for all x ∈Ωk.

Therefore, taking the infimum with respect to x′ ∈ ∂Ωk, we have that∣∣∣∣∫
Ωk

Gk(x,y)ψ(y)dy
∣∣∣∣≤C3C4 ‖ψ‖Lq′ (Ωk)

d(x)µ

for all ψ ∈C∞
c (Ωk). Inequality (4.74) then follows. �
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4.5.1.1 Zero and first derivative estimates

Proposition 4.22. Let (Ωk)k∈N be a C4,γ -perturbation of the bounded C4,γ -smooth
domain Ω . Let Gk be as in Lemma 4.21. Then there exists a constant C1 > 0 such
that for all k and all x,y ∈Ωk with x 6= y one has that

|Gk(x,y)| ≤C1 ·

 |x− y|4−n if n > 4,
log
(
1+ |x− y|−1

)
if n = 4,

1 if n = 2,3.
(4.75)

Moreover, for n = 2,3,4 and for all k ∈ N and x,y ∈Ωk with x 6= y

|∇xGk(x,y)| ≤C1 ·
{
|x− y|−1 if n = 4,
1 if n = 2,3.

(4.76)

By symmetry the last estimate also holds for
∣∣∇yGk(x,y)

∣∣.
Proof. If n = 2,3, the statement of Lemma 4.18 is already strong enough and nothing
remains to be proved.

We start with the case n > 4. We use an argument by contradiction and assume
that there exist two sequences (xk)k∈N, (yk)k∈N with xk,yk ∈ Ω`k for a suitable se-
quence (`k)⊂ N such that xk 6= yk for all k ∈ N and such that

lim
k→+∞

|xk− yk|n−4 ∣∣G`k(xk,yk)
∣∣= +∞. (4.77)

It is enough to consider `k = k; other situations may be reduced to this by relabeling
or are even more special. After possibly passing to a subsequence, it follows from
(4.59) that there exists x∞ ∈ ∂Ω such that

lim
k→+∞

xk = x∞ and lim
k→+∞

d(xk)
|xk− yk|

= 0. (4.78)

We remark that the constant in (4.59) can be chosen uniformly for the family
(Ωk)k∈N.

Next we claim that if (4.77) holds, then

lim
k→+∞

|xk− yk|= 0. (4.79)

Assume by contradiction that |xk− yk| does not converge to 0. After extracting a
subsequence we may then assume that there exists δ > 0 such that for all k we have
xk ∈ Bδ (x∞) and yk ∈ Ωk \B3δ (x∞). We consider q as in Lemma 4.21. In particular
we know that ‖Gk(x, .)‖Lq(Ωk) ≤ C uniformly in k. By applying local elliptic esti-

mates (see Theorem 2.20) combined with Sobolev embeddings in Ωk \B2δ (x∞) we
find that

‖Gk(xk, .)‖L∞(Ωk\B3δ (x∞)) ≤C(q,δ )

uniformly in k. In particular, we would have
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|Gk(xk,yk)| ≤C(q,δ ) and |xk− yk|n−4 |Gk(xk,yk)| ≤C(q,δ )

independent of k. This contradicts the hypothesis (4.77) and proves the claim in
(4.79).

Let Φ : U → Rn, Φ(0) = x∞ be a fixed coordinate chart for Ω around ∞. We put
Φk := Ψk ◦Φ and have that

Φk(U ∩{x1 < 0}) = Φk(U)∩Ωk and Φk(U ∩{x1 = 0}) = Φk(U)∩∂Ωk.

Let xk = Φk(x′k) and yk = Φk(y′k). Therefore, (4.78) rewrites as

lim
k→+∞

x′k = 0 and lim
k→+∞

x′k,1∣∣x′k− y′k
∣∣ = 0. (4.80)

We define for R and k large enough

G̃k(z) =
∣∣x′k− y′k

∣∣n−4 Gk
(
Φk(x′k),Φk

(
x′k +

∣∣x′k− y′k
∣∣(z−ρke1)

))
in BR(0)∩{x1 < 0}, where ρk :=

x′k,1
|x′k−y′k|

and e1 is the first unit vector. The bihar-

monic equation ∆ 2Gk(x, .) = 0, complemented with Dirichlet boundary conditions,
is rewritten as

∆
2
gk

G̃k = 0 in (BR(0)∩{z1 < 0})\{ρke1}, G̃k = ∂1G̃k = 0 on {z1 = 0}.

Here, gk(z) = Φ∗k (E )(x′k + |x′k− y′k|(z−ρke1)), E = (δi j) the Euclidean metric, and
∆gk denotes the Laplace-Beltrami operator with respect to this scaled and translated
pull back of the Euclidean metric under Φk. Then for some q∈

( n
n−3 , n

n−4

)
and τ > 0

being chosen suitably small, it follows from elliptic estimates (see Theorem 2.20)
and Sobolev embeddings that there exists C(R,τ,q) > 0 such that

|G̃k(z)| ≤C(R,q,τ)
∥∥G̃k

∥∥
Lq(BR(0)\Bτ (0)) (4.81)

for all z ∈ BR/2(0) \B2τ(0), z1 ≤ 0. In order to estimate the Lq-norm on the right-
hand side we use (4.74) and obtain that∫

BR(0)∩{ζ1<0}
|G̃k(ζ )|q dζ ≤C

∣∣x′k− y′k
∣∣q(n−4)−n

∫
Ωk

|Gk(xk,y)|q dy

≤C
∣∣x′k− y′k

∣∣q(n−4)−n d(xk)(4−n)q+n ≤C

(
d(xk)∣∣x′k− y′k

∣∣
)n−q(n−4)

.

Therefore, with (4.78), we get that limk→+∞

∥∥G̃k
∥∥

Lq(BR(0)\Bτ (0)) = 0, and (4.81)
yields

lim
k→+∞

G̃k = 0 in C0((BR/2(0)\B2τ(0))∩{z1 ≤ 0}).

In particular, since limk→+∞ ρk = 0, we have that
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lim
k→+∞

G̃k

(
y′k− x′k∣∣x′k− y′k

∣∣ +ρke1

)
= 0.

This limit rewrites as

lim
k→+∞

|xk− yk|n−4 |Gk(xk,yk)|= 0,

contradicting (4.77). This completes the proof of Proposition 4.22 for the case n > 4.
Now let us consider the case n = 4. Here it is enough to prove (4.76) for ∇y,

exploiting the symmetry of the Green function. We argue by contradiction and, as in
the proof for n > 4, we may assume that there exist two sequences (xk)k∈N,(yk)k∈N
with xk,yk ∈Ωk such that xk 6= yk and

lim
k→+∞

|xk− yk|
∣∣∇yGk(xk,yk)

∣∣= +∞. (4.82)

After possibly passing to a subsequence it follows from (4.60) that there exists x∞ ∈
∂Ω such that

lim
k→+∞

xk = x∞ and lim
k→+∞

d(xk)
|xk− yk|

= 0. (4.83)

Lemma 4.21 may be applied with some q > 4. The analogue of (4.79) is proved
in exactly the same way as above. Like above we now put for R and k large enough

G̃k(z) = Gk
(
Φk(x′k),Φk(x′k +

∣∣x′k− y′k
∣∣(z−ρke1))

)
in BR(0)∩{z1 < 0}, where xk = Φk(x′k), yk = Φk(y′k), ρk :=

x′k,1
|x′k−y′k|

. As above we

find for τ > 0 small enough that there exists C(R,τ,q) > 0 such that∣∣∇G̃k(z)
∣∣≤C(R,q,τ)

∥∥G̃k
∥∥

Lq(BR(0)\Bτ (0))

for all z ∈ BR/2(0)\B2τ(0), z1 ≤ 0. Using (4.74) we obtain that∫
BR(0)∩{ζ1<0}

|G̃k(ζ )|q dζ ≤ C
∣∣x′k− y′k

∣∣−4
∫

Ωk

|Gk(xk,y)|q dy

≤ C

(
d(xk)∣∣x′k− y′k

∣∣
)4

.

In the same way as in the generic case n > 4 this yields first that

lim
k→+∞

∇G̃k = 0 in C0((BR/2(0)\B2τ(0))∩{z1 ≤ 0})

and back in the original coordinates

lim
k→∞
|xk− yk|

∣∣∇yGk(xk,yk)
∣∣= 0.
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So, we achieve a contradiction also if n = 4. This proves (4.76). By integrating
(4.76) we get (4.75). The proof of Proposition 4.22 is complete. �

4.5.1.2 First and higher derivatives for n≥ 3

Proposition 4.23. Suppose that n≥ 3 and let (Ωk)k∈N be a C4,γ -perturbation of the
bounded C4,γ -smooth domain Ω . Let Gk be as in Lemma 4.21. Then there exists a
constant C > 0 such that for all k, all α,β ∈ Nn with 1 ≤ |α|+ |β | < 4, and all
x,y ∈Ωk with x 6= y one has that∣∣∣Dα

x Dβ
y Gk(x,y)

∣∣∣≤C · |x− y|4−n−|α|−|β |. (4.84)

Proof. For |α|+ |β |= 1 with n = 3,4 the result is found in (4.76).
To obtain estimates for (higher) derivatives we will use the following local esti-

mate, see (2.19) for biharmonic functions. This local estimate is fundamental. More-
over, it also holds near the boundary part where homogeneous Dirichlet boundary
conditions are satisfied. For any two concentric balls BR ⊂ B2R and |α| ≤ 4 we have

‖Dα v‖L∞(BR∩Ωk) ≤
C

R|α|
‖v‖L∞(B2R∩Ωk). (4.85)

The constant is uniform in k and R. The behaviour with respect to (small) R is
obtained by means of scaling.

Case n > 4. Keeping x ∈Ωk fixed, for any y ∈Ωk \{x} we choose R = |x− y|/4
and apply (4.85) and (4.75) of Proposition 4.22 in BR(y)⊂ B2R(y) to Gk(x, .). This
proves (4.84) for |α| = 0. By symmetry the same estimate holds for |α| > 0 and
|β |= 0. Since also Dα

x Gk(x, .) is biharmonic with homogeneous Dirichlet boundary
conditions we may repeat the argument to find estimates for mixed derivatives.

Case n = 3,4. The result follows from a similar argument as above but now
starting with the first order estimate in (4.76). �

4.5.1.3 Second and higher derivatives for n = 2

Lemma 4.24. Let n = 2 and δ > 0. Then there exists a constant C = C(δ ,(Ωk)k∈N)
such that for α,β ∈ N2 with |a|+ |β |= 2

x,y ∈Ωk, max{d(x),d(y)} ≥ δ ⇒
∣∣∣Dα

x Dβ
y Gk(x,y)

∣∣∣≤C log
(
1+ |x− y|−1) .

Proof. The Green function can be written as G(x,y) = Fn,2(|x− y|)+ h(x,y) with
h(x, .) the solution of (4.62). For d(x) > δ one finds as a direct consequence of
Schauder estimates that ‖h(x, .)‖Cm(Ω) < C(δ ,m) for any m ∈ N and uniformly for
all x with d(x) > δ . Hence, for |β |= 2 one obtains
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y G(x,y)

∣∣∣≤C1

∣∣∣Dβ
y Fn,2(x,y)

∣∣∣+C(δ ),

which shows the estimate in Lemma 4.24 for α = 0. For |β |< 2 and hence |α|> 0
one considers the function Dα

x h(x, .) and proceeds similar as before. So one has
found the estimates in Lemma 4.24 for d(x) > δ . Since the Green function is sym-
metric one may interchange the role of x and y and a similar result holds when
d(y) > δ . �

Proposition 4.25. Let n = 2. There exists a constant C = C((Ωk)k∈N) such that for
α,β ∈ N2 with |a|+ |β | ≥ 3∣∣∣Dα

x Dβ
y Gk(x,y)

∣∣∣≤C |x− y|2−|α|−|β | .

The proposition requires a somehow technical proof which will be performed in
several steps. However, combining the lemma and the proposition obviously gives
a proof of the remaining cases of (4.72)-(4.73) and the proof of Theorem 4.20 will
then be complete for n = 2.

As a starting point we prove an Lq-estimate for second derivatives of the Green
functions.

Lemma 4.26. Let n = 2. For any q > 2, there exists a constant C = C(q,(Ωk)k∈N)
such that ∥∥∇

2
yGk(x, .)

∥∥
Lq(Ωk)

≤ C d(x)2/q; (4.86)∥∥∇x∇yGk(x, .)
∥∥

Lq(Ωk)
≤ C d(x)2/q. (4.87)

Proof. We argue along the lines of the proof of Lemma 4.21 to which we refer for
more detailed arguments. We prove first (4.86). For ψ ∈ Lq′(Ωk), q′ = q

q−1 ∈ (1,2)

let ϕ ∈W 2,q′(Ωk) be the solution of{
∆ 2ϕ = ∇2ψ in Ωk,
ϕ = ϕν = 0 on ∂Ωk.

For biharmonic equations in integral form Lq′ -estimates (see Theorem 2.22) yield

‖ϕ‖W 2,q′ ≤C‖ψ‖Lq′ .

Since q′ ∈ (1,2) we have that 2− 2/q′ ∈ (0,1) and employing also Sobolev’s em-
bedding theorem gives

|ϕ(x)| ≤C‖ψ‖Lq′ d(x)2−2/q′ . (4.88)

We observe the following representation formula, homogeneous Dirichlet boundary
data of the Green functions and integrate by parts:
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ϕ(x) =
∫

Ωk

Gk(x,y)∇2
yψ(y)dy =

∫
Ωk

∇
2
yGk(x,y)ψ(y)dy.

Together with (4.88) and 2−2/q′ = 2/q this shows (4.86).
In order to prove (4.87) we solve{

∆ 2ϕ = ∇ψ in Ωk,
ϕ = ϕν = 0 on ∂Ωk.

and get
‖ϕ‖W 3,q′ ≤C‖ψ‖Lq′ .

We proceed similarly as above and find

|∇ϕ(x)| ≤C‖ψ‖Lq′ d(x)2−2/q′

as well as
∇ϕ(x) =−

∫
Ωk

∇x∇yGk(x,y)ψ(y)dy

and so, finally, (4.87). �

Proof of Proposition 4.25. We first prove the statement for Dβ
y Gk(x,y) with |β |= 3.

We assume by contradiction that, after suitably relabeling, there exist sequences
(xk), (yk) with xk,yk ∈Ωk and xk 6= yk, such that

lim
k→∞

|xk− yk| Dβ
y Gk(xk,yk) = ∞. (4.89)

As in Proposition 4.22, local elliptic estimates show that

lim
k→∞

|xk− yk|= 0.

Hence, we may assume that there exists x∞ ∈ Ω with x∞ = limk→∞ xk = limk→∞ yk.
This shows that local elliptic estimates around xk and yk may be rescaled and hold
with uniform constants.

First case: d(xk) < 2|xk − yk|. Here we work in B4|xk−yk|(xk) \ B|xk−yk|/2(xk),
which certainly hit the boundaries ∂Ωk where we have homogeneous Dirichlet
boundary data for Gk(xk, .). These allow to apply local rescaled elliptic estimates
and a localised Poincaré inequality to show that

|Dβ
y Gk(xk,yk)| ≤ C|xk− yk|−3−2/q‖Gk(xk, .)‖Lq(Ω∩(B4|xk−yk |(xk)\B|xk−yk |/2(xk)))

≤ C|xk− yk|−1−2/q‖∇2
yGk(xk, .)‖Lq(Ω∩(B4|xk−yk |(xk)\B|xk−yk |/2(xk)))

≤ C|xk− yk|−1−2/qd(xk)2/q ≤C|xk− yk|−1,

where q > 2 is some arbitrarily chosen number. This inequality contradicts the as-
sumption (4.89).
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Second case: d(xk)≥ 2|xk− yk|. We change our point of view and consider now
yk as parameter and the boundary value problem for the regular part of ∇3

yGk( . ,yk).
Arguing as in Lemma 4.18 and integrating local Schauder estimates yields

|Dβ
y Gk(xk,yk)| ≤C

(
1

|xk− yk|
+

d(xk)1+γ

d(yk)2+γ

)
. (4.90)

By assumption we have d(xk)≥ 2|xk− yk|, which implies that

d(xk)≤ |xk− yk|+d(yk)≤
1
2

d(xk)+d(yk),

⇒ d(xk)≤ 2d(yk).

Inserting this into (4.90) gives

|Dβ
y Gk(xk,yk)| ≤C

(
1

|xk− yk|
+

1
d(xk)

)
≤C

1
|xk− yk|

,

again a contradiction to the assumption (4.89).
We comment now on how to prove the statement for ∇x∇2

yGk(x, .). The remain-
ing cases then follow by exploiting the symmetry of the Green functions. We assume
by contradiction that – after a suitable relabeling – there exist sequences (xk), (yk),
with xk,yk ∈Ωk and xk 6= yk, such that

lim
k→∞
|xk− yk| · ∇x∇

2
yGk(xk,yk) = ∞. (4.91)

As for (4.79), local elliptic estimates show that

lim
k→∞
|xk− yk|= 0.

Hence, we may assume that there exists x∞ ∈ Ω with x∞ = limk→∞ xk = limk→∞ yk.
This shows that local elliptic estimates around xk and yk may be rescaled and hold
with uniform constants.

First case: d(xk) < 2|xk− yk|. As above we work in B4|xk−yk|(xk)\B|xk−yk|/2(xk)
and find that

|∇x∇
2
yGk(xk,yk)| ≤C|xk− yk|−2−2/q‖∇xGk(xk, .)‖Lq(Ω∩(B4|xk−yk |(xk)\B|xk−yk |/2(xk)))

≤ C|xk− yk|−1−2/q‖∇x∇yGk(xk, .)‖Lq(Ω∩(B4|xk−yk |(xk)\B|xk−yk |/2(xk)))

≤ C|xk− yk|−1−2/qd(xk)2/q ≤C|xk− yk|−1,

where q > 2 is some arbitrarily chosen number. This inequality contradicts the as-
sumption (4.91).

Second case: d(xk) ≥ 2|xk − yk|. Again we change our point of view and con-
sider now yk as parameter and the boundary value problem for the regular part of
∇2

yGk( . ,yk). Arguing as in Lemma 4.18, integrating local Schauder estimates yield
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|∇x∇
2
yGk(xk,yk)| ≤C

(
1

|xk− yk|
+

d(xk)γ

d(yk)1+γ

)
. (4.92)

As above we may insert d(xk)≤ 2d(yk) into (4.92) and obtain

|∇x∇
2
yGk(xk,yk)| ≤C

(
1

|xk− yk|
+

1
d(xk)

)
≤C

1
|xk− yk|

,

again a contradiction to the assumption (4.91).
Once the estimates for |α|+ |β | = 3 have been derived, we may proceed as in

the proof of Proposition 4.23 to obtain the estimates for |α|+ |β |= 4. �

Proposition 4.27. Let n = 2. There exists a constant C = C((Ωk)k∈N) such that for
α,β ∈ N2 with |a|+ |β |= 2∣∣∣Dα

x Dβ
y Gk(x,y)

∣∣∣≤C log
(

1+ |x− y|−1
)

.

Proof. For x or y away from the boundary the result is found in Lemma 4.24. For
δ > 0 small enough take y0 ∈ Ωk with d(y0) > 2δ and assume both d(x) < δ and
d(y) < δ . Let r0 > 0 be small enough such that Ωk \B2r0(z) is still connected for
each z ∈Ωk. Using the estimate from Proposition 4.23 and integrating along a path
γ from y0 to y that avoids Br(x) with r = min{r0, |x− y|}, one finds∣∣∣Dα

x Dβ
y Gk(x,y)

∣∣∣≤ ∣∣∣Dα
x Dβ

y Gk(x,y0)
∣∣∣+∫

γ

∣∣∣Dα
x ∇yDβ

y Gk(x,γ(s))
∣∣∣dγ(s)

≤C
(

1+
∫ M

|x−y|
r−1dr

)
≤C′ log

(
1+ |x− y|−1) ,

which shows the claim. �

4.5.1.4 The proof of the uniform estimates

Proof of Theorem 4.20. For n ≥ 3 and |α|+ |β |+ n > 4 the estimate in (4.71) fol-
lows from Propositions 4.22 and 4.23. For n = 2 the estimate (4.71) follows from
Proposition 4.25. The estimate in (4.72) is stated in Proposition 4.22 for n = 4 and in
Proposition 4.27 for n = 2. The estimate in (4.73) is contained in Proposition 4.22.�

4.5.2 Uniform global estimates including boundary terms

Theorem 4.28. We assume that (Ωk)k∈N is a C4,γ -perturbation of the bounded C4,γ -
smooth domain Ω ⊂ Rn. Let Gk = G∆ 2,Ωk

denote the biharmonic Green func-
tion in Ωk under Dirichlet boundary conditions. Then there exists a constant
C = C((Ωk)k∈N), independent of k, such that for all k ∈ N it holds that
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x Dβ

y Gk (x,y)
∣∣∣≤C (∗), (4.93)

where (∗) is as in Table 4.1. In this table the following abbreviations are used:

d(x) = d(x,∂Ωk) and d(y) = d(y,∂Ωk),

Wx = min
{

1,
d (x)
|x− y|

}
and Wy = min

{
1,

d (y)
|x− y|

}
.

Table 4.1 Expressions to be inserted into (∗) of (4.93).

|α|= |β |= 2 :

|x− y|−n

|α|= 1 and |β |= 2 :

|x− y|1−n Wx

|α|= 2 and |β |= 1 :

|x− y|1−n Wy

|α|= 0 and |β |= 2 :

|x− y|2−n W 2
x for n≥ 3

log
(

1+ d(x)2

|x−y|2

)
for n = 2

|α|= |β |= 1 :

|x− y|2−n WxWy for n≥ 3

log
(

1+ d(x)d(y)
|x−y|2

)
for n = 2

|α|= 2 and |β |= 0 :

|x− y|2−n W 2
y for n≥ 3

log
(

1+ d(y)2

|x−y|2

)
for n = 2

|α|= 0 and |β |= 1 :

|x− y|3−n W 2
x Wy for n≥ 4

W 2
x Wy for n = 3

d (x)WxWy for n = 2

|α|= 1 and |β |= 0 :

|x− y|3−n WxW 2
y for n≥ 4

WxW 2
y for n = 3

d (y)WxWy for n = 2

|α|= |β |= 0 :

|x− y|4−n W 2
x W 2

y for n≥ 5

log
(

1+ d(x)2d(y)2

|x−y|4

)
for n = 4

d (x)1/2 d (y)1/2 W 3/2
x W 3/2

y for n = 3

d (x)d (y)WxWy for n = 2

Proof. The ingredients of this proof are the estimates in Theorem 4.20, the construc-
tion of appropriate curves connecting x with a boundary point x∗ that avoid singular
points, and integral estimates along these curves. The C4,γ -smoothness only comes
in through the constant that appear in Theorem 4.20. So we may suppress the de-
pendence on k in the present proof.

Claim 1: Let x,y∈Ω . There exists a piecewise smooth curve Γx connecting x with the
boundary ∂Ω such that d (Γx,y) ≥ 1

2 |x− y| and if we parametrise Γx by arclength,
it holds that:
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2
3 s≤ |Γx(s)− x| ≤ s, (4.94)

|Γx(s)− y| ≥ 1
8 |x− y|+ 1

8 |Γx(s)− x| . (4.95)

Let x∗ be such that d (x) = |x− x∗|. If the interval [x,x∗] does not intersect
B 1

2 |x−y| (y), then we take Γx = [x,x∗]. If the set [x,x∗]∩B 1
2 |x−y| (y) is nonempty while

B 1
2 |x−y| (y)∩ ∂Ω is empty, one modifies Γx by replacing [x,x∗]∩ B 1

2 |x−y| (y) by a
shortest path on ∂B 1

2 |x−y| (y) that connects the two points of [x,x∗]∩ ∂B 1
2 |x−y| (y).

If both [x,x∗]∩B 1
2 |x−y| (y) and B 1

2 |x−y| (y)∩ ∂Ω are nonempty, the part of [x,x∗]∩
B 1

2 |x−y| (y) is replaced by the shortest path on ∂B 1
2 |x−y| (y) that connects with the

boundary, see Figure 4.1.

x

y

x

y

x

y

Fig. 4.1 Curves connecting x with the boundary by a path of length less than 3
2 d(x) that avoid the

singularity in y by staying outside of B 1
2 |x−y|(y).

Geometric arguments show that s ≤ 1
3 (π +1) |Γx(s)− x|. Using 1

3 (π +1) < 3
2 ,

(4.94) follows. Moreover, writing z = Γx(s), we have |z− y| ≥ 1
2 |x− y|. So, if

|z− x| ≤ 2 |x− y|, then |z− x| ≤ 4 |z− y|. If |z− x| ≥ 2 |x− y|, then |z− y| ≥ |z− x|−
|x− y| ≥ 1

2 |z− x|. Combining we obtain (4.95).

Claim 2: Let k ≥ 2 and ν1,ν2 ≥ 0. If H (x,y) = 0 for all x ∈ ∂Ω and y ∈ Ω and if
for some C ∈ R+

|∇xH (x,y)| ≤C |x− y|−k min
{

1,
d(x)
|x− y|

}ν1

min
{

1,
d(y)
|x− y|

}ν2

for x,y ∈Ω ,

then there is C̃ ∈ R+ such that

|H (x,y)| ≤ C̃ |x− y|1−k min
{

1,
d(x)
|x− y|

}ν1+1

min
{

1,
d(y)
|x− y|

}ν2

for x,y ∈Ω .

Let s 7→ x(s) parametrise Γx as above by arclength connecting x∗ ∈ ∂Ω with x.
Then

H (x,y) = H (x∗,y)+
∫

Γx

∇xH (x(s) ,y) · τ (s)ds (4.96)

and using Lemma 4.5



4.5 Uniform Green functions estimates in C4,γ -families of domains 135

|H (x,y)| ≤
∫

Γx

|∇xH (x(s) ,y)|ds

≤
∫

Γx

C |x(s)− y|−k min
{

1,
d(x(s))ν1d(y)ν2

|x(s)− y|ν1+ν2

}
ds.

It follows from (4.95) that

|H (x,y)| ≤ c1

∫ 3
2 d(x)

0
(|x− y|+ s)−k min

{
1,

d(x)ν1d(y)ν2

(|x− y|+ s)ν1+ν2

}
ds

= c1 |x− y|1−k
∫ 3

2
d(x)
|x−y|

0
(1+ t)−k min

{
1,

d(x)ν1d(y)ν2

(1+ t)ν1+ν2 |x− y|ν1+ν2

}
dt.

We distinguish two cases. If d(x)≤ |x− y|, then

|H (x,y)| ≤ c1 |x− y|1−k
∫ 3

2
d(x)
|x−y|

0
min

{
1,

d(x)ν1d(y)ν2

|x− y|ν1+ν2

}
dt

≤ c2 |x− y|1−k min
{

1,
d(x)ν1d(y)ν2

|x− y|ν1+ν2

}
d(x)
|x− y|

≤ c3 |x− y|1−k min

{
1,

d(x)ν1+1d(y)ν2

|x− y|ν1+ν2+1

}
. (4.97)

If d(x)≥ |x− y|, then

|H (x,y)| ≤ c1 |x− y|1−k
∫ 3

2
d(x)
|x−y|

0
(1+ t)−k dt · min

{
1,

d(y)ν2

|x− y|ν2

}
≤ c2 |x− y|1−k min

{
1,

d(y)ν2

|x− y|ν2

}
≤ c3 |x− y|1−k min

{
1,

d(x)ν1+1d(y)ν2

|x− y|ν1+ν2+1

}
.

Claim 3: Let ν1,ν2 ≥ 0. If H (x,y) = 0 for x ∈ ∂Ω and for some C ∈ R+

|∇xH (x,y)| ≤C |x− y|−1 min
{

1,
d(x)
|x− y|

}ν1

min
{

1,
d(y)
|x− y|

}ν2

for x,y ∈Ω ,

then there is C̃ ∈ R+ such that for all x,y ∈Ω

|H (x,y)| ≤ C̃ log
(

2+
d(x)
|x− y|

)
min

{
1,

d(x)
|x− y|

}ν1+1

min
{

1,
d(y)
|x− y|

}ν2

.

The steps of Claim 2 remain valid until



136 4 Kernel estimates

|H (x,y)| ≤ c1

∫ 3
2

d(x)
|x−y|

0
(1+ t)−1 min

{
1,

d(x)ν1d(y)ν2

(1+ t)ν1+ν2 |x− y|ν1+ν2

}
dt,

and inclusive (4.97). For d(x)≤ |x− y| the claim follows. If d(x)≥ |x− y|, then

∫ 3
2

d(x)
|x−y|

0
(1+ t)−1 min

{
1,

d(x)ν1d(y)ν2

(1+ t)ν1+ν2 |x− y|ν1+ν2

}
dt

≤ log
(

2+
d(x)
|x− y|

)
min

{
1,

d(x)ν1d(y)ν2

|x− y|ν1+ν2

}
≤ log

(
2+

d(x)
|x− y|

)
min

{
1,

d(x)ν1+1d(y)ν2

|x− y|ν1+ν2+1

}
.

Claim 4: Let k ≥ 2 and ν1,ν2,α1,α2 ≥ 0. If H (x,y) = 0 for x ∈ ∂Ω and for some
C ∈ R+

|∇xH (x,y)| ≤C d(x)α1d(y)α2 min
{

1,
d(x)
|x− y|

}ν1

min
{

1,
d(y)
|x− y|

}ν2

for x,y ∈Ω ,

then there is C̃ ∈ R+ such that

|H (x,y)| ≤ C̃ d(x)α1+1d(y)α2 min
{

1,
d(x)
|x− y|

}ν1

min
{

1,
d(y)
|x− y|

}ν2

for x,y ∈Ω .

This is a direct consequence of (4.96), (4.94) and (4.95).

Claim 5: Let k ≥ 2 and ν1,ν2,α1,α2 ≥ 0. If H (x,y) = 0 for x ∈ ∂Ω and if there
exists C ∈ R+ such that

|∇xH (x,y)| ≤C log

(
2+

d(x)d(y)
|x− y|2

)
min

{
1,

d(x)
|x− y|

}ν1

min
{

1,
d(y)
|x− y|

}ν2

for x,y ∈Ω , then there is C̃ ∈ R+ such that

|H (x,y)| ≤ C̃ d(x)min
{

1,
d(x)
|x− y|

}ν1

min
{

1,
d(y)
|x− y|

}ν2

for x,y ∈Ω .

We first observe that

log

(
2+

d(x)d(y)
|x− y|2

)
min

{
1,

d(x)
|x− y|

}ν1

min
{

1,
d(y)
|x− y|

}ν2

' log
(

2+
d(x)
|x− y|

)
min

{
1,

d(x)
|x− y|

}ν1

min
{

1,
d(y)
|x− y|

}ν2
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If d(x)
|x−y| ≤ 1, then log

(
2+ d(x)

|x−y|

)
is bounded and the result is again a direct conse-

quence of (4.96), (4.94) and (4.95). If d(x)
|x−y| ≥ 1, then for z ∈ Γx

d(z)
|x− z|

≤ 8d(z)
|x− y|+ s

and one finds

|∇xH (x(s),y)| ≤ c1 log
(

2+
d(x)

|x− y|+ s

)
· min

{
1,

d(y)ν2

|x− y|ν2

}
.

Hence

|H (x,y)| ≤ c1

∫ 3
2 d(x)

0
log
(

2+
d(x)

|x− y|+ s

)
ds · min

{
1,

d(y)ν2

|x− y|ν2

}
≤ c2d(x)min

{
1,

d(y)ν2

|x− y|ν2

}
.

In order to complete the proof of Theorem 4.28 one starts from the estimates of
Theorem 4.20. We find, using the Claims 2 to 5 and working our way down, the
estimates as in Table 4.1 except for n = 3 with |α|+ |β | ≤ 1. Suppose α = 0 and
|β |= 1. Then∣∣∣∇xDβ

y G(x,y)
∣∣∣≤C |x− y|−1 min

{
1,

d(x)
|x− y|

}
min

{
1,

d(y)
|x− y|

}
implies ∣∣∣Dβ

y G(x,y)
∣∣∣≤C log

(
1+

d(x)2d(y)
|x− y|3

)
.

Together with (4.76) we obtain∣∣∣Dβ
y G(x,y)

∣∣∣≤C min
{

1,
d(x)
|x− y|

}2

min
{

1,
d(y)
|x− y|

}
.

For the zeroth order in case n = 3 one finds through

∣∣∇yG(x,y)
∣∣≤C min

{
1,

d(x)
|x− y|

}2

min
{

1,
d(y)
|x− y|

}
that

|G(x,y)| ≤C d(y)min
{

1,
d(x)
|x− y|

}2

min
{

1,
d(y)
|x− y|

}
and through the similar estimate for |∇xG(x,y)| that
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|G(x,y)| ≤C M (x,y)min

{
1,

d(x)d(y)
|x− y|2

}

with

M (x,y) = min
{

d(y)min
{

1,
d(x)
|x− y|

}
,d(x)min

{
1,

d(y)
|x− y|

}}
.

Since M (x,y)≤
√

d(x)d(y)min
{

1, d(x)d(y)
|x−y|2

}3/2
the proof is complete. �

In a similar way one may derive estimates for the Poisson kernels. Consider{
∆ 2u = f in Ω ,

u|∂Ω = ψ, − ∂u
∂ν
|∂Ω = ϕ.

(4.98)

If G = G∆ 2,Ω is the Green function for this boundary value problem, then the solu-
tion of (4.98) is written as

u(x) =
∫

Ω

G(x,y) f (y) dy+
∫

∂Ω

K (x,y)ψ(y) dωy +
∫

∂Ω

L(x,y)ϕ(y) dωy,

with K,L : Ω ×∂Ω → R defined by

K (x,y) =
∂

∂νy
∆yG(x,y),

L(x,y) = ∆yG(x,y).

Theorem 4.29. Let (Ωk)k∈N be as in Theorem 4.28 and let KΩk and LΩk be the
corresponding Poisson kernels. Then there exists C = C

(
(Ωk)k∈N

)
such that for all

(x,y) ∈Ω ×∂Ω :

∣∣KΩk (x,y)
∣∣≤C

d (x)2

|x− y|n+1 and
∣∣LΩk (x,y)

∣∣≤C
d (x)2

|x− y|n
.

For n = 2 one obtains
∣∣LΩk (x,y)

∣∣≤C.

4.5.3 Convergence of the Green function in domain
approximations

Proposition 4.30. Let xk ∈Ωk and assume that limk→∞ xk = x∞ ∈Ω . Then we have

Gk(xk, .)→ G(x∞, .) in C4
loc(Ω \{x∞}),

Gk(xk, .)→ G(x∞, .) in L1(Rn),
Gk(xk, .)◦Ψk → G(x∞, .) in C4

loc(Ω \{x∞}).
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If n = 3 we have in addition that

Gk( . , .)→ G( . , .) in C0
loc(Ω ×Ω).

Proof. According to Theorem 4.20 we know that

|Gk(x,y)| ≤C

 |x− y|4−n if n > 4,
log
(
1+ |x− y|−1

)
if n = 4,

1 if n = 3;
(4.99)

uniformly in k. This shows that in particular

‖Gk(x, .)‖L1(Ωk) ≤C uniformly in x and k.

Moreover, since xk → x∞, we may assume that all xk are in a small neighbour-
hood around x∞. Let Ω0 ⊂⊂ Ω be arbitrary; local Schauder estimates (see Theo-
rem 2.19) show that (Gk(xk, .))k∈N is locally bounded in C4

loc

(
Ω0 \{x∞}

)
. Hence,

after selecting a suitable subsequence we see that for each such Ω0 ⊂⊂ Ω one has
Gk(xk, .)→ ϕ in C4

loc

(
Ω0 \{x∞}

)
and Gk(xk, .)◦Ψk→ ϕ in C4

loc(Ω \{x∞}) with a
suitable ϕ ∈ C4,γ(Ω \ {x∞}). Thanks to this compactness and the fact that in any
case the limit is the uniquely determined Green function, we have convergence on
the whole sequence towards G(x∞, .).

Finally, since we have pointwise convergence, (4.99) allows for applying Vitali’s
convergence theorem to show that

Gk(xk, .)→ G(x∞, .) in L1(Rn).

The statement concerning C0
loc(Ω ×Ω)-convergence in n = 3 is a consequence of

|∇Gk( . , .)| ≤C, see (4.60). �

In order to have enough smoothness to conclude also for the last case in Theo-
rem 6.30 we also need a convergence result simultaneous in both variables.

Proposition 4.31. We have that

Gk( . , .)◦ (Ψk×Ψk)→ G( . , .) in C4
loc
(
Ω ×Ω \{(x,x) ;x ∈Ω}

)
.

Proof. We combine the ideas of the proofs of Propositions 4.30 and 4.17. One
should observe that Theorem 4.20 guarantees uniform L1-bounds for Gk as in the
proof of Proposition 4.30. �

4.6 Weighted estimates for the Dirichlet problem

As a side result the estimates in the previous section for the homogeneous bihar-
monic Dirichlet problem allow weighted Lp-Lq estimates for elliptic boundary value
problems under homogeneous boundary conditions with d ( .)θ as weight function.
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Here we will restrict ourselves to the biharmonic case. A more general version of
this theorem is found in [118].

If u and f are such that {
∆ 2u = f in Ω ,
u = uν = 0 on ∂Ω ,

(4.100)

then we have

Theorem 4.32. Let Ω be a bounded C4,γ -smooth domain and let u ∈ C4
(
Ω
)
, f ∈

C
(
Ω
)

be as in (4.100). Then the following hold:

1. For n < 4 there exists C = C (Ω) such that for all θ ∈ [0,1]:∥∥∥d ( .)θn−2 u
∥∥∥

L∞(Ω)
≤C

∥∥∥d( .)2−(1−θ)n f
∥∥∥

L1(Ω)
. (4.101)

2. For all n≥ 2 if p,q∈ [1,∞] are such that 0≤ 1
p −

1
q < α ≤min

{
1, 4

n

}
, then there

exists C = C (Ω ,α) such that for all θ ∈ [0,1]:∥∥∥d ( .)θnα−2 u
∥∥∥

Lq(Ω)
≤C

∥∥∥d( .)2−(1−θ)nα f
∥∥∥

Lp(Ω)
. (4.102)

Remark 4.33. Notice that the shift in the exponent of d ( .) in (4.102) is 4−nα with
α > 0. If p = q this shift can be arbitrarily close to 4 but will not reach 4.

Before proving this theorem we recall an estimate involving the Riesz potential(
Kγ ∗ f

)
(x) :=

∫
Ω

|x− y|−γ f (y)dy.

We prove a classical convolution estimate which can e.g. be found in [231, Corol-
lary 4.5.2].

Lemma 4.34. Let Ω ⊂ Rn be bounded, γ ∈ (0,n) and 1 ≤ p,q ≤ ∞. If γ

n < 1
r :=

min
{

1,1+ 1
q −

1
p

}
, then there exists C = C (diam(Ω),n− γr) ∈ R+ such that for

all f ∈ Lp(Ω): ∥∥Kγ ∗ f
∥∥

Lq(Ω) ≤C ‖ f‖Lp(Ω) . (4.103)

Proof. We let p′ ∈ [1,∞] denote the conjugate of p ∈ [1,∞]: 1
p + 1

p′ = 1 etc. Set

CΩ ,s = max
x∈Ω

∥∥|x− . |−s∥∥
L1(Ω)

and notice that CΩ ,s is bounded for s < n.
If q = 1, then r = 1 and a change in the order of integration gives

∥∥Kγ ∗ f
∥∥

L1(Ω) ≤
∫

Ω

(∫
Ω

|x− y|−γ dx
)
| f (y)|dy

≤CΩ ,γr ‖ f‖L1(Ω) ≤C ‖ f‖Lp(Ω) . (4.104)
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If p≥ q, then r = 1 and

∥∥Kγ ∗ f
∥∥q

Lq(Ω) =
∫

Ω

∣∣∣∣∫
Ω

|x− y|−γ f (y)dy
∣∣∣∣q dx

≤
∫

Ω

(∫
Ω

|x− y|−γ dy
) q

q′
(∫

Ω

|x− y|−γ | f (y)|q dx
)

dy

≤ Cq/q′

Ω ,γr

∥∥Kγ ∗ | f |q
∥∥

L1(Ω)

and one continues with (4.104).
One finds for 1 < p < q < ∞, since 1

r′ +
1
p′ +

1
q = 1, that∣∣(Kγ ∗ f

)
(x)
∣∣ ≤

≤
(∫

Ω

| f (y)|p dy
) 1

r′
(∫

Ω

|x− y|−rγ dy
) 1

p′
(∫

Ω

|x− y|−rγ | f (y)|p dy
) 1

q

(4.105)

and, by changing the order of integration and using pq/r′+ p = q, also

∥∥Kγ ∗ f
∥∥q

Lq(Ω) ≤ ‖ f‖pq/r′

Lp(Ω)Cq/p′

Ω ,γr

∫
Ω

(∫
Ω

|x− y|−rγ dx
)
| f (y)|p dy

≤ C1+q/p′

Ω ,γr ‖ f‖q
Lp(Ω) . (4.106)

For q = ∞ and has r = p′ and the proof reduces to∣∣(Kγ ∗ f
)
(x)
∣∣≤ ∥∥|x− . |−γ

∥∥
Lp′ (Ω) ‖ f‖Lp(Ω) ≤C1/r

Ω ,γr ‖ f‖Lp(Ω) .

For p = 1 one replaces (4.105) by

∣∣(Kγ ∗ f
)
(x)
∣∣≤ (∫

Ω

| f (y)|dy
) 1

q′
(∫

Ω

|x− y|−qγ | f (y)|dy
) 1

q

and continues similar as in (4.106) by changing the order of integration. �

Proof of Theorem 4.32. Again we use the notation (4.1). The estimate that we will
use repeatedly is a consequence of Lemma 4.5:

min

{
1,

d (x)d (y)
|x− y|2

}
≤C

(
d (x)d (y)
|x− y|2

)1−s(
d (y)
d (x)

)s(2θ−1)

for all s,θ ∈ [0,1] .

(4.107)
To prove Item 1 in Theorem 4.32 we apply this estimate for s = 1 to find for n < 4

|G(x,y)| ≤Cd(x)2− 1
2 nd(y)2− 1

2 n
(

d (y)
d (x)

) 1
2 n(2θ−1)

= Cd(x)2−nθ d(y)2−n(1−θ)
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and a straightforward integration shows (4.101).
For Item 2, we need Lemma 4.34. If n > 4 we use from Theorem 4.28 the estimate

for the Green function itself, and (4.107) for s = 1
4 nα , which is allowed since 0 ≤

1
4 nα ≤ 1,

|G(x,y)| ≤C |x− y|4−n min

{
1,

d (x)d (y)
|x− y|2

}2

≤C |x− y|4−n

(
d (x)d (y)
|x− y|2

)2(1− 1
4 nα)(

d (y)
d (x)

) 1
2 nα(2θ−1)

= C |x− y|n(α−1) d (x)2−θnα d (y)2−(1−θ)nα .

For n = 4 it holds that

|G(x,y)| ≤C log

(
1+

d (x)2 d (y)2

|x− y|2

)
≤C |x− y|−ε min

{
1,

d (x)d (y)
|x− y|2

}2

and we may continue as before if we choose ε small enough such that α − 1
4 ε >

1
p −

1
q .

If n = 3, one has for α,θ ∈ [0,1]

|G(x,y)| ≤Cd (x)
1
2 d (y)

1
2 min

{
1,

d (x)d (y)
|x− y|2

} 3
2

≤Cd (x)
1
2 d (y)

1
2

(
d (x)d (y)
|x− y|2

) 3
2 (1−α)(

d(y)
d(x)

) 3
2 α(2θ−1)

= C |x− y|−3(1−α) d (x)2−3αθ d (y)2−3α(1−θ) .

Similarly, if n = 2 one finds for α,θ ∈ [0,1]

|G(x,y)| ≤C |x− y|−2(1−α) d (x)2−2αθ d (y)2−2α(1−θ) .

We have found for all n 6= 4 (and with a minor change for n = 4) that∣∣∣d (x)θnα−2 u(x)
∣∣∣≤C

∣∣∣∣∫
Ω

|x− y|−n(1−α) d (y)2−(1−θ)nα f (y)dy
∣∣∣∣ .

By Lemma 4.34 we have∥∥∥d ( .)θnα−2 u
∥∥∥

Lq(Ω)
≤C

∥∥∥d( .)2−(1−θ)nα f
∥∥∥

Lp(Ω)

whenever α > 1
p −

1
q and with α ≤ 1

4 n for n≥ 4 and α ≤ 1 for n < 4. �
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4.7 Bibliographical notes

Characterisations of Green’s functions like in Section 4.2.1 are well-known by now
in the context of second order problems on arbitrary smooth domains. Estimates
from above go back to works of Grüter-Widman [215, 411]. The two-sided sharp
estimates for the Green function of the Dirichlet-Laplacian are due to Zhao in
[419, 420, 421]. Hueber-Sieveking [233] and Cranston-Fabes-Zhao [114] proved
bounds for the Green function for general second order operators based on Harnack
inequalities. For the importance of so-called 3-G-theorems in the potential theory
of Schrödinger operators and the link with stochastic processes we refer to [97]. A
first place where the optimal two-sided estimates are listed is [384].

For the higher order problems considered here the situation is quite different,
namely, no general maximum principles and in particular no general Harnack in-
equalities are available. In the polyharmonic situation the starting point is Boggio’s
explicit formula for the Green’s function in balls [63] from 1905, see (2.65). His
formula led to optimal two-sided estimates for the polyharmonic Green function in
case of a ball and inspired the estimates for the absolute value of the Green function
in general domains. The subsequent estimates and 3-G-theorems were developed by
Grunau-Sweers [210]. For further classical material on polyharmonic operators we
refer to the book of Nicolesco [323].

As for the biharmonic Steklov boundary value problem in Section 4.3, we follow
Gazzola-Sweers [191]. Proposition 4.13 is taken from [213, Lemmas 3.1 and 3.2]
and is based on previous estimates by Zhao [420, 421], see also [118, 384]. Some
of the results in Section 4.3 can be obtained under the assumption that ∂Ω ∈C1,1,
see [191].

Estimates of Green’s functions for general higher order elliptic operators are
due to Krasovskiı̆ [255, 256]. However, due the general situation considered there,
high regularity was imposed on the boundary. Since we restrict ourselves to bi-
harmonic Green’s functions and for the reader’s convenience, we give a more ele-
mentary derivation of such estimates which only need to refer to Agmon-Douglis-
Nirenberg [5], i.e. to Section 2.5 of the present book. The actual estimates are based
on Dall’Acqua-Sweers and Grunau-Robert [118, 207]. For generalisations of Green
function estimates to nonsmooth domains see also Mayboroda-Maz’ya [286].





Chapter 5
Positivity and lower order perturbations

As already mentioned in Section 1.2, in general one does not have positivity pre-
serving for higher order Dirichlet problems. Nevertheless, in Chapter 6 we shall
identify some families of domains where the biharmonic — or more generally the
polyharmonic — Dirichlet problem enjoys a positivity preserving property. More-
over, there we shall prove “almost positivity” for the biharmonic Dirichlet problem
in any bounded smooth domain Ω ⊂ Rn.

As an intermediate step, taking advantage of the kernel estimates proved in Chap-
ter 4, we study lower order perturbations of the prototype ((−∆)m, B⊂ Rn) where
B is again the unit ball. In Theorem 5.1 we prove positivity for Dirichlet problemsLu := (−∆)m u+ ∑

|β |≤2m−1
aβ (x)Dβ u = f in B,

Dα u|∂B = 0 for |α| ≤ m−1,
(5.1)

with “small” coefficients aβ . Its proof is based on Green’s function estimates, esti-
mates for iterated Green’s functions via the 3-G-theorem 4.9, and Neumann series.
With the help of Riemann’s theorem on conformal mappings and a reduction to nor-
mal form, this result will be used to prove the more general Theorem 6.3 where this
approach permits to consider also highest-order perturbations in two dimensions.

If we remove in (5.1) the smallness assumptions on the coefficients aβ , we are
still able to prove a local maximum principle for differential inequalities, which is
true also in arbitrary domains Ω , see Theorem 5.19.

In the same spirit we study in Section 5.4 positivity preserving for the Steklov
boundary value problem {

∆ 2u = f in Ω ,
u = ∆u−auν = 0 on ∂Ω ,

with data a∈C0(∂Ω) and suitable f ≥ 0. It turns out that when a is below the corre-
sponding positive first Steklov eigenvalue (see (3.40)) and above a negative critical
parameter, one has positivity preserving, i.e. f ≥ 0⇒ u≥ 0. This critical parameter
may also be −∞. This issue is somehow related to positivity in the corresponding

145



146 5 Positivity and lower order perturbations

Dirichlet problem. As an application we will see that in a convex planar domain the
hinged plate described by (1.10) satisfies the positivity preserving property, namely
upwards pushing yields upwards bending.

It is another interesting question to ask which is the role of nontrivial Dirich-
let boundary data with regard to the positivity of the solution. We look first at the
inhomogeneous problem for the clamped plate equation:

∆
2u = 0 in Ω ,

u|∂Ω = ψ, − ∂u
∂ν
|∂Ω = ϕ.

(5.2)

One could think that, at least in the unit ball B, nonnegative data ψ ≥ 0, ϕ ≥ 0 yield
a nonnegative solution u ≥ 0. Actually, for B this is true with respect to ϕ in any
dimension and with respect to ψ if n≤ 4. But for n≥ 5, the corresponding integral
kernel changes sign! This issue will be discussed in detail in Section 5.2. A per-
turbation theory of positivity, allowing also for highest order perturbations, can be
developed also with respect to ϕ in the special case ψ = 0. This can be generalised to
equations of arbitrary order, see Theorems 5.6 and 5.7 and Remark 6.8. With respect
to ψ we can prove only a rather restricted perturbation result, see Theorem 5.15.

5.1 A positivity result for Dirichlet problems in the ball

In order to avoid unnecessarily strong assumptions on the coefficients, a reasonable
framework for the positivity results is Lp-theory. For existence and regularity we
refer to Chapter 2. The next statement should be compared with Corollary 5.5 below
for the necessity of the smallness assumptions on the coefficients.

Theorem 5.1. There exists ε0 = ε0(m,n) > 0 such that if the aβ ∈ C0(B) satisfy
the smallness condition ‖aβ‖C0(B) ≤ ε0, |β | ≤ 2m− 1, then for every f ∈ Lp(B),
1 < p < ∞, there exists a solution u ∈W 2m,p ∩W m,p

0 (B) of the Dirichlet problem
(5.1). Moreover, if f 	 0 then the solution is strictly positive,

u > 0 in B.

To explain the strategy of the proof, we rewrite the boundary value problem (5.1)
as {

((−∆)m +A )u = f in B,

Dα u|∂B = 0 for |α| ≤ m−1,
(5.3)

where we put

A u := ∑
|β |≤2m−1

aβ ( .)Dβ u( .), aβ ∈C0(B).
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We recall from Section 4.2.1 the definition of the Green operator Gm,n for the bound-
ary value problem (5.3) with A = 0. In order to prove Theorem 5.1, we write the
solution of (5.3) in the form

u = (I +Gm,nA )−1 Gm,n f ,

where I is the identity operator, and we shall estimate

(I +Gm,nA )−1 Gm,n ≥
1
C

Gm,n.

For this purpose we introduce the following notation.

Definition 5.2. For two operators S ,T : Lp(B)→ Lp(B) we write

S ≥T ,

if for all f ∈ Lp(B) satisfying f ≥ 0, one has that S f ≥T f .

Lemma 5.3. Let 1 < p < ∞. Then Gm,nA : W 2m,p ∩W m,p
0 (B)→W 2m,p ∩W m,p

0 (B)
is a bounded linear operator. Furthermore, there exists ε1 = ε1(m,n) > 0 such that
the following holds true.

Assume that ‖aβ‖C0(B) ≤ ε1 for all |β | ≤ 2m− 1. Then I + Gm,nA : W 2m,p ∩
W m,p

0 (B) → W 2m,p ∩W m,p
0 (B) is boundedly invertible. For each f ∈ Lp(B) the

boundary value problem (5.3) has precisely one solution. This solution is given by

u = (I +Gm,nA )−1 Gm,n f . (5.4)

The Green operator for the boundary value problem (5.3)

(I +Gm,nA )−1 Gm,n : Lp(B)→W 2m,p∩W m,p
0 (B)⊂ Lp(B)

is compact.

Proof. This is an immediate consequence of Corollary 2.21: Gm,n : Lp(B)→W 2m,p∩
W m,p

0 (B) is a bounded linear operator. �

The Green operator for (5.3) is studied with the help of a Neumann series. The-
orem 5.1 then follows from the next result.

Theorem 5.4. Assume that 1 < p < ∞. There exists ε0 = ε0(m,n) > 0 such that if
‖aβ‖C0(B) ≤ ε0 for all |β | ≤ 2m−1, then the Green operator

Gm,n,A := (I +Gm,nA )−1 Gm,n : Lp(B)→W 2m,p∩W m,p
0 (B)

for the boundary value problem (5.3) exists. The corresponding Green function
Gm,n,A : B×B→ R∪{∞} is defined according to:(

Gm,n,A f
)
(x) =

∫
B

Gm,n,A (x,y) f (y)dy
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and satisfies the following estimate with a constant C = C(m,n) > 0:

1
C

Gm,n ≤ Gm,n,A ≤CGm,n. (5.5)

On B×B, this reads:

1
C

Gm,n(x,y)≤ Gm,n,A (x,y)≤C Gm,n(x,y). (5.6)

Proof. Let ε := max|β |≤2m−1 ‖aβ‖C0(B). If ε ≤ ε1, then according to Lemma 5.3,
Gm,n,A exists and enjoys the properties listed there. If we choose moreover ε small
enough such that ‖Gm,nA ‖< 1 in the sense of bounded linear operators in W 2m,p∩
W m,p

0 (B), we may use a Neumann series to see that for all f ∈ Lp(B)

Gm,n,A f = (I +Gm,nA )−1 Gm,n f =
∞

∑
i=0

(−1)i (Gm,nA )i Gm,n f .

Here, with the aid of the Fubini-Tonelli theorem and analogously to [197, Lemma
4.1], we conclude:

G (i) f := (−1)i (Gm,nA )i Gm,n f

= (−1)i
∫

B
Gm,n( . ,z1)Az1

∫
B

Gm,n(z1,z2)Az2 . . .

. . .Azi

∫
B

Gm,n(zi,y) f (y)dydzi . . .dz1

=
∫

B

{
(−1)i

∫
B
· · ·
∫

B
Gm,n( . ,z1)(Az1Gm,n(z1,z2)) . . .

. . .(AziGm,n(zi,y)) d(z1, . . . ,zi)
}

f (y)dy

=:
∫

B
G(i)( . ,y) f (y)dy.

We use the following version of the 3-G-theorem 4.9:∫
B

Gm,n(x,z) |AzGm,n(z,y)|
Gm,n(x,y)

dz≤ εM < ∞

where M = M(m,n) > 0 is independent of ε and obtain:∣∣∣G(i)(x,y)
∣∣∣ =

=
∣∣∣∣∫B
· · ·
∫

B

Gm,n(x,z1)(Az1Gm,n(z1,z2))
Gm,n(x,z2)

Gm,n(x,z2)(Az2Gm,n(z2,z3))
Gm,n(x,z3)

· · ·

· · ·
Gm,n(x,zi)(AziGm,n(zi,y))

Gm,n(x,y)
Gm,n(x,y)d(z1, . . . ,zi)

∣∣∣∣ ≤
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≤ Gm,n(x,y)
i

∏
j=1

sup
ξ ,η∈B

∫
B

Gm,n(ξ ,z j)
∣∣Az j Gm,n(z j,η)

∣∣
Gm,n(ξ ,η)

dz j

≤ (εM)i Gm,n(x,y). (5.7)

For εM < 1, thanks to ∑
∞
i=0(εM)i = (1− εM)−1 < ∞, we have absolute local uni-

form convergence in x 6= y of

Gm,n,A (x,y) :=
∞

∑
i=0

G(i)(x,y). (5.8)

It follows that ∣∣Gm,n,A (x,y)
∣∣≤ 1

1− εM
Gm,n(x,y). (5.9)

On the other hand, Lebesgue’s theorem yields

(
Gm,n,A f

)
(x) =

∞

∑
i=0

(
G (i) f

)
(x) =

∞

∑
i=0

∫
B

G(i)(x,y) f (y)dy

=
∫

B

(
∞

∑
i=0

G(i)(x,y) f (y)

)
dy =

∫
B

Gm,n,A (x,y) f (y)dy.

Finally, thanks to (5.7) we have

Gm,n,A (x,y) = Gm,n(x,y)+
∞

∑
i=1

G(i)(x,y)

≥ Gm,n(x,y)−

(
∞

∑
i=1

(εM)i

)
Gm,n(x,y) =

1−2εM
1− εM

Gm,n(x,y).

Choosing ε0 ≤ 1/(4M) yields the crucial part of the estimate (5.6) from below for
the Green function of the perturbed boundary value problem (5.3), provided ε ∈
[0,ε0]. �

If we confine ourselves to perturbations of order zero, we may show the necessity
of the smallness conditions in Theorem 5.1. Consider the problem{

(−∆)mu+a(x)u = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,
(5.10)

where Ω ⊂ Rn is a bounded C2m,γ -smooth domain. For coefficients a ∈ C0(Ω),
where we have uniqueness and hence existence in (5.10), let Gm,Ω ,a be the corre-
sponding Green operator. In case of a constant coefficient a, Gm,Ω ,a is the resolvent
operator. Recalling the meaning of the symbols

φ > 0 , φ � 0 , φ 	 0 ,
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in the Notations-Section, the positivity properties of Dirichlet problem (5.10) may
be summarised as follows.

Corollary 5.5. Let m > 1 and let Ω ⊂ Rn be a bounded smooth domain such that
the (Dirichlet-) Green function for (−∆)m is positive in Ω ×Ω . Let Λm,1 denote the
first Dirichlet eigenvalue of (−∆)m in Ω .

Then there exists a critical number ac ∈ [0,∞) such that for a ∈C0(Ω) we have:

1. If a > ac on Ω , then Gm,Ω ,a does not preserve positivity:

there exists f 	 0 : Gm,Ω ,a f 6≥ 0. (5.11)

On the other hand we have:

for all f 	 0 : Gm,Ω ,a f 6≤ 0, (5.12)
there exists f 	 0 : Gm,Ω ,a f ≥ 0. (5.13)

2. If −Λm,1 < a ≤ ac (or −Λm,1 < a < ac, respectively), then Gm,Ω ,a is positivity
preserving (or strongly positivity preserving, respectively), that is,

for all f 	 0 : Gm,Ω ,a f ≥ 0 (or Gm,Ω ,a f > 0 in Ω , respectively). (5.14)

3. If a =−Λm,1 and f 	 0, then (5.10) has no solution.
4. If a < −Λm,1, then (5.10) kills positivity, that is, if f 	 0 and u is a solution to

(5.10), then u 6≥ 0 in Ω .

For a proof, the strategy of which is related to – but simpler than – the arguments in
Section 5.4, we refer to [210, Section 6] and [212, Lemma 1].

Case 1 does not occur in second order equations. This different behaviour may be
responsible for the difficulties in classical solvability of semilinear boundary value
problems of higher order, see e.g. [209, 395, 404, 405]. If m > 1, we have that for a
large enough the resolvent is always sign changing, see e.g. Coffman-Grover [111].
As was noted e.g. by Bernis [51], this is equivalent to instantaneous change of sign
for the corresponding parabolic heat kernel, see also related contributions to local
eventual positivity by Ferrero-Gazzola-Grunau [164, 183, 184].

5.2 The role of positive boundary data

This section is devoted to the role of nonhomogeneous boundary data with regard
to the sign of the solution. As already mentioned in the introduction this problem is
rather subtle. In general we cannot expect that fixed sign of any particular Dirich-
let datum leads to fixed sign of the solution. It seems that a perturbation theory
of positivity (analogous to that above with regard to the right-hand side) exists in
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general only for the Dirichlet datum of highest order. As a dual result we obtain
also a Hopf-type boundary lemma in the ball for perturbed polyharmonic Dirichlet
problems.

With respect to lower order data, only much more restricted results can be
achieved, see Theorem 5.15 below.

5.2.1 The highest order Dirichlet datum

Here, we consider the following boundary value problem:
((−∆)m +A )u = f in B,

Dα u|∂B = 0 for |α| ≤ m−2,−
∂

∂ν
∆

(m/2)−1u|∂B = ϕ

∆
(m−1)/2u|∂B = ϕ

if m is even,

if m is odd.

(5.15)

Here f ∈C0(B), ϕ ∈C0(∂B) and

A = ∑
|β |≤2m−1

aβ ( .)Dβ , aβ ∈C|β |(B), (5.16)

is a sufficiently small lower order perturbation. For existence of solutions u ∈
W 2m,p

loc (B)∩Cm−1(B), p > 1, we refer to the local Lp-theory in Theorem 2.20 and the
lines following it and to the Agmon-Miranda maximum estimates of Theorem 2.25.
The latter already require the strong regularity assumptions on the coefficients aβ .
These have to be imposed whenever the adjoint operator (−∆)m +A ∗ is involved.

Theorem 5.6. There exists ε0 = ε0(m,n) > 0 such that the following holds true.
If for all |β | ≤ 2m−1 the smallness condition ‖aβ‖C|β |(B)≤ ε0 is fulfilled, then for

every f ∈C0(B) and ϕ ∈C0(∂B) there exists a solution u ∈W 2m,p
loc (B)∩Cm−1(B),

1 < p < ∞, to the Dirichlet problem (5.15). Moreover, f ≥ 0 and ϕ ≥ 0, with f 6≡ 0
or ϕ 6≡ 0, implies that u > 0.

If m = 1, we recover a special form of the strong maximum principle for second
order elliptic equations. The next result, in some sense dual to the previous one, may
be viewed as a higher order analogue to the Hopf boundary lemma.

Theorem 5.7. Assume aβ ∈ C0(B), |β | ≤ 2m− 1. There exists ε0 = ε0(m,n) > 0
such that the following holds:

If ‖aβ‖C0(B) ≤ ε0, |β | ≤ 2m−1, then for every f ∈C0(B) the Dirichlet problem
(5.1) has a solution u ∈W 2m,p(B)∩C2m−1(B), p > 1 arbitrary. Moreover 0 6≡ f ≥ 0
implies u > 0 in B and for every x ∈ ∂B
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∆

(m/2)u(x) > 0 if m even,

− ∂

∂ν
∆

(m−1)/2u(x) > 0 if m odd.
(5.17)

The common key point in the proof of both theorems is the observation that the
corresponding Green function Gm,n,A vanishes (in both variables) on ∂B precisely
of order m, see Theorem 4.7 and estimate (5.6). In the proof of Theorem 5.6 we
observe further that, for x ∈ B, y ∈ ∂B, the Poisson kernel for ϕ is given by

∆
m/2
y Gm,n,A (x,y) if m even,(
− ∂

∂νy
∆

(m−1)/2
y

)
Gm,n,A (x,y) if m odd.

In order to prove the theorems we need a precise characterisation of the growth prop-
erties near ∂B of the Green function Gm,n,A for the boundary value problem (5.15).
These estimates were proved in a more general setting but under more restrictive
assumptions on the coefficients by Krasovskiı̆ [255, 256], see also Theorem 4.20.
In the present special situation we provide an elementary proof which combines
Theorems 4.6 and 5.4. Moreover, we need to verify suitable smoothness.

Lemma 5.8. We assume that aβ ∈C0(B). Then there exists ε1 = ε1(m,n) > 0 such
that the following holds true.

If ‖aβ‖C0(B) ≤ ε1 for all |β | ≤ 2m−1, then the Green function Gm,n,A ( . , .) for
the boundary value problem (5.15) exists. For each y ∈ B, Gm,n,A ( . ,y) ∈C2m−1(B\
{y}). Furthermore, there exist constants C = C(m,n) such that for |β | ≤ 2m− 1,
x,y ∈ B

Gm,n,A ( . ,y) ∈C|β |(B) if 0≤ |β |< 2m−n,∣∣∣Dβ
x Gm,n,A (x,y)

∣∣∣≤C if 0≤ |β |< 2m−n,∣∣∣Dβ
x Gm,n,A (x,y)

∣∣∣≤C log
(

3
|x− y|

)
if |β |= 2m−n and n even,∣∣∣Dβ

x Gm,n,A (x,y)
∣∣∣≤C if |β |= 2m−n and n odd,∣∣∣Dβ

x Gm,n,A (x,y)
∣∣∣≤C |x− y|2m−n−|β | if 2m−n < |β |< 2m.

(5.18)

Moreover, one has Dβ
x Gm,n,A ∈C0

(
B×B\{(x,y) : x = y}

)
.

Proof. We come back to Theorem 5.4, making use of the notations and formulae in
its proof. The following holds true, provided ε1 is chosen sufficiently small.

The Green function Gm,n,A exists, and one has

Gm,n,A (x,y) =
∞

∑
i=0

G(i)(x,y),
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where

G(0)(x,y) = Gm,n(x,y),

G(i)(x,y) = (−1)i
∫

B
· · ·
∫

B
Gm,n(x,z1)(Az1Gm,n(z1,z2))

× . . . (AziGm,n(zi,y)) d(z1, . . . ,zi).

In particular, we have G(i)( . ,y)∈C2m−1(B\{y}), G(i)( . ,y)∈C|β |(B) for 0≤ |β |<
2m−n. If |β | ≤ 2m−1 and i ≥ 1, one has with constants C j = C j(m,n) which are
independent of i∣∣∣Dβ

x G(i)(x,y)
∣∣∣

≤
∫

B
· · ·
∫

B

∣∣∣Dβ
x Gm,n(x,z1)

∣∣∣ |Az1Gm,n(z1,z2)| . . . |AziGm,n(zi,y)| d(z1, . . . ,zi)

≤ ε
i
1 Ci+1

1

∫
B
· · ·
∫

B
Γ (|x− z1|) |z1− z2|1−n . . . |zi− y|1−nd(z1, . . . ,zi).

Here, in view of Theorem 4.7, we define

Γ (ρ) :=



1 if 0≤ |β |< 2m−n,

log
(

3
ρ

)
if |β |= 2m−n and n even,

1 if |β |= 2m−n and n odd,

ρ
2m−n−|β | if |β |> 2m−n.

Applying repeatedly
∫

B |ξ − z|1−n |z−η |1−n dz≤C2|ξ −η |1−n, we conclude:∣∣∣Dβ
x G(i)(x,y)

∣∣∣ ≤ ε
i
1 Ci+1

1 Ci−1
2

∫
B

Γ (|x− z1|) |z1− y|1−n dz1

≤ ε
i
1 Ci+1

1 Ci−1
2

{
C2 if |β | ≤ 2m−n,

C2|x− y|2m−n−|β | if 2m−n < |β |< 2m.

For sufficiently small ε1 > 0 we achieve absolute uniform convergence of the series
∑

∞
i=0 Dβ

x G(i)( . ,y) in B if |β | ≤ 2m− n, and in B \Bδ (y) otherwise, where δ > 0 is
arbitrary. Taking the properties of G(0) = Gm,n into account we obtain the estimates
for Dβ

x Gm,n,A as well as the stated smoothness. �

Lemma 5.9. We assume that aβ ∈C|β |(B). Then there exists ε2 = ε2(m,n) > 0 such
that the following holds true.

If ‖aβ‖C|β |(B) ≤ ε2 for all |β | ≤ 2m− 1, the Green function Gm,n,A ( . , .) for
the boundary value problem (5.15) exists. Moreover, for each x ∈ B we have
Gm,n,A (x, .) ∈ C2m−1(B \ {x}). Furthermore, for |β | ≤ 2m− 1 one has with con-
stants C = C(m,n) being independent of x,y:
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Gm,n,A (x, .) ∈C|β |(B) if 0≤ |β |< 2m−n,∣∣∣Dβ
y Gm,n,A (x,y)

∣∣∣≤C if 0≤ |β |< 2m−n,∣∣∣Dβ
y Gm,n,A (x,y)

∣∣∣≤C log
(

3
|x− y|

)
if |β |= 2m−n and n even,∣∣∣Dβ

y Gm,n,A (x,y)
∣∣∣≤C if |β |= 2m−n and n odd,∣∣∣Dβ

y Gm,n,A (x,y)
∣∣∣≤C |x− y|2m−n−|β | if 2m−n < |β |< 2m.

(5.19)

Moreover, Dβ
y Gm,n,A is continuous outside the diagonal of B×B.

Proof. Thanks to the strong differentiability assumptions on the coefficients aβ we
may consider the adjoint boundary value problem{

(−∆)mu+A ∗u = f in B,

Dα u|∂B = 0 for |α| ≤ m−1,

where (A ∗u)(x) = ∑|β |≤2m−1(−1)|β |Dβ
(
aβ (x)u(x)

)
. If ε2 is small enough, the cor-

responding Green function Gm,n,A ∗ exists and satisfies Gm,n,A (x,y) = Gm,n,A ∗(y,x).
This observation allows us to apply Lemma 5.8 and the claim follows. �

Proof of Theorem 5.6. Let ε0 > 0 be sufficiently small so that Theorem 5.4 and
Lemma 5.9 are applicable.

The required smoothness of the Green function Gm,n,A has just been proved in
Lemma 5.9. For solutions of the boundary value problem (5.15) we have the follow-
ing representation formula:

u(x) =



∫
B

Gm,n,A (x,y) f (y)dy+
∫

∂B
∆

m/2
y Gm,n,A (x,y)ϕ(y)dω(y)

if m even,∫
B

Gm,n,A (x,y) f (y)dy+
∫

∂B

(
− ∂

∂νy
∆

(m−1)/2
y

)
Gm,n,A (x,y)ϕ(y)dω(y)

if m odd.

We keep arbitrary x ∈ B fixed and consider y “close” to ∂B. Then an application of
Theorems 5.4 and 4.6 yields

Gm,n,A (x,y)� Gm,n(x,y)� |x− y|−nd(x)md(y)m � d(y)m.

It follows for each x ∈ B that
∆

m/2
y Gm,n,A (x, .)|∂B > 0 for even m,

− ∂

∂νy
∆

(m−1)/2
y Gm,n,A (x, .)|∂B > 0 for odd m.
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Together with the positivity of Gm,n,A , the claim of Theorem 5.6 is now obvious. �

Proof of Theorem 5.7. This proof is “dual” to the previous one. Let ε0 > 0 be suffi-
ciently small. Differentiating the representation formula

u(x) =
∫

B
Gm,n,A (x,y) f (y)dy

gives for x ∈ ∂B:
∆

m/2u(x) =
∫

B

(
∆

m/2
x Gm,n,A (x,y)

)
f (y)dy m even,

− ∂

∂ν
∆

(m−1)/2u(x) =
∫

B

(
− ∂

∂νx
∆

(m−1)/2
x Gm,n,A (x,y)

)
f (y)dy m odd.

Keeping an arbitrary y ∈ B fixed, we see that for x̃ “close” to ∂B

Gm,n,A (x̃,y)� Gm,n(x̃,y)� |x̃− y|−nd(x̃)md(y)m � d(x̃)m

and consequently for x ∈ ∂B, y ∈ B
∆

m/2
x Gm,n,A (x,y) > 0 for even m,

− ∂

∂νx
∆

(m−1)/2
x Gm,n,A (x,y) > 0 for odd m.

Now it is immediate that ∆ m/2u(x) > 0 or − ∂

∂ν
∆ (m−1)/2u(x) > 0, according to

whether m is even or odd. �

5.2.2 Also nonzero lower order boundary terms

Now we turn to investigating further conditions on ϕ ≥ 0 and ψ ≥ 0 such that the
solution u of the Dirichlet problem

∆
2u = 0 in B,

u|∂B = ψ,

(
− ∂u

∂ν

)
|∂B = ϕ,

(5.20)

is positive, i.e. u ≥ 0. We recall that we have the following explicit formula for the
solution u of (5.20), see [323, p.34]:

u(x) =
∫

∂B
K2,n(x,y)ψ(y)dω(y)+

∫
∂B

L2,n(x,y)ϕ(y)dω(y), x ∈ B, (5.21)

where
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K2,n(x,y) =
1

2nen

(1−|x|2)2

|x− y|n+2

(
2+(n−4)x · y− (n−2)|x|2

)
, (5.22)

L2,n(x,y) =
1

2nen

(1−|x|2)2

|x− y|n
, (5.23)

with x ∈ B, y ∈ ∂B, and nen = |∂B|. Evidently L2,n > 0 for any n, while K2,n > 0
only for n≤ 4 and K2,n changes sign for n≥ 5.

We will show that the Dirichlet problem (5.20) may be reformulated in such
a way that we have a positivity result with respect to both boundary data in any
dimension. Moreover for n ≤ 3 and in particular for n = 2 the above mentioned
result may be sharpened so that if ψ(x0) > 0 for some x0 ∈ ∂B. Also negative values
for ϕ near x0 are admissible.

Finally, we switch to polyharmonic Dirichlet problems of arbitrary order 2m. We
will admit some “small” lower order perturbations of the differential operator. Posi-
tivity with respect to the Dirichlet data of order (m−1) and (m−2) will be shown in
any dimension n, provided the other boundary data are prescribed homogeneously
and the positivity assumption is posed in a suitable way.

5.2.2.1 The appropriate positivity assumption for the clamped plate equation

In order to find the adequate positivity assumption on the boundary data in the
Dirichlet problem (5.20), one may observe that adding a suitable multiple of L2,n
to K2,n yields a positive kernel.

Lemma 5.10. Let s ∈ R, s≥ 1
2 (n−4). Then for

K̂2,n,s(x,y) := K2,n(x,y)+ sL2,n(x,y), x ∈ B, y ∈ ∂B, (5.24)

we have
K̂2,n,s(x,y) > 0.

Proof. We observe that for x ∈ B, y ∈ ∂B (i.e. |y|= 1) we have

K2,n(x,y) =
1

2nen

(1−|x|2)2

|x− y|n+2

(
n
2
(1−|x|2)− 1

2
(n−4)|x− y|2

)

=
1

4en

(1−|x|2)3

|x− y|n+2 −
1
2
(n−4)L2,n(x,y), nen = |∂B|. �

Proposition 5.11. Let ϕ ∈C0(∂B), ψ ∈C1(∂B) and s≥ 1
2 (n−4). If we assume that

ψ(x)≥ 0 and ϕ(x)≥ sψ(x) for x ∈ ∂B,

then the uniquely determined solution u ∈ C4(B)∩C1(B) of the Dirichlet problem
(5.20) is positive:

u≥ 0 in B.
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Proof. From (5.21) and (5.24) we obtain:

u(x) =
∫

∂B
K2,n(x,y)ψ(y)dω(y)+

∫
∂B

L2,n(x,y)ϕ(y)dω(y)

=
∫

∂B
K̂2,n,s(x,y)ψ(y)dω(y)+

∫
∂B

L2,n(x,y)
(

ϕ(y)− sψ(y)
)

dω(y). �

One may observe that for n = 1,2,3 also negative values for s are admissible. On
BR(0) the condition on s is s≥ 1

2R (n−4).
We are interested in whether this positivity result remains under perturbations of

the prototype problem (5.20). Since in higher order Dirichlet problems quite similar
phenomena can be observed, we develop the perturbation theory for the biharmonic
Dirichlet problem (5.20) as a special case of the perturbation theory for the polyhar-
monic Dirichlet problem (5.25) below.

5.2.2.2 Higher order equations. Perturbations

In this section we assume m≥ 2.
First we consider the polyharmonic prototype Dirichlet problem:

(−∆)mu = 0 in B,(
− ∂

∂ν

) j

u = 0 on ∂B for j = 0, . . . ,m−3,(
− ∂

∂ν

)m−2

u = ψ on ∂B,(
− ∂

∂ν

)m−1

u = ϕ on ∂B.

(5.25)

No uniform positivity result can be expected with respect to the boundary data of
order 0, . . . ,m− 3, as we will explain below in Example 5.14. So, these data are
prescribed homogeneously. Such behaviour is in contrast with the radially symmet-
ric case u = u(|x|), where (−∆)mu ≥ 0 in B, (−1) ju( j)(1) ≥ 0 ( j = 0, . . . ,m− 1)
implies that u≥ 0 in B, see Soranzo [375, Proposition 1, Remark 9].

After some elementary calculations we find from Boggio’s formula (2.65) (see
also [158]) that for ϕ ∈C0(∂B), ψ ∈C1(∂B) the solution u ∈C2m(B)∩Cm−1(B) to
the Dirichlet problem (5.25) is given by

u(x) =
∫

∂B
Km,n(x,y)ψ(y)dω(y)+

∫
∂B

Lm,n(x,y)ϕ(y)dω(y), x ∈ B. (5.26)

Here, the Poisson kernels are defined by
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Km,n(x,y) =
1

2m(m−2)!nen

(1−|x|2)m

|x− y|n+2

(
n(1−|x|2)− (n−2−m)|x− y|2

)
, (5.27)

Lm,n(x,y) =
1

2m−1(m−1)!nen

(1−|x|2)m

|x− y|n
, (5.28)

with x ∈ B, y ∈ ∂B. The following result generalises Lemma 5.10.

Lemma 5.12. Let s ∈ R satisfy s≥ 1
2 (n−2−m)(m−1). Then for

K̂m,n,s(x,y) := Km,n(x,y)+ sLm,n(x,y), x ∈ B, y ∈ ∂B, (5.29)

we have
K̂m,n,s(x,y) > 0.

Proof.

K̂m,n,s(x,y) =
1

2m (m−2)!nen

(1−|x|2)m

|x− y|n+2

×
(

n(1−|x|2)+
(

2s
m−1

− (n−2−m)
)
|x− y|2

)
.

(5.30)

�

Proposition 5.13. Let ϕ ∈C0(∂B), ψ ∈C1(∂B) and s≥ 1
2 (n−2−m)(m−1). If

ψ(x)≥ 0 and ϕ(x)≥ sψ(x) for x ∈ ∂B,

then the uniquely determined solution u ∈C2m(B)∩Cm−1(B) of the Dirichlet prob-
lem (5.25) is positive:

u≥ 0 in B.

Example 5.14. In the triharmonic Dirichlet problem

(−∆)3u = 0 in B,

u = χ on ∂B,(
− ∂

∂ν

)
u = ψ on ∂B,(

∂

∂ν

)2

u = ϕ on ∂B,

the solution is given by

u(x) =
∫

∂B
H3,n(x,y)χ(y)dω(y)+

∫
∂B

K3,n(x,y)ψ(y)dω(y)

+
∫

∂B
L3,n(x,y)ϕ(y)dω(y), x ∈ B.



5.2 The role of positive boundary data 159

The kernels K3,n and L3,n are defined above and

H3,n(x,y) =
1

16nen

(1−|x|2)3

|x− y|n+4

(
n(n+2)(1−|x|2)2 +(n−4)(n−8)|x− y|4

−2n(n−7)(1−|x|2)|x− y|2−4n|x− y|2
)

with x ∈ B, y ∈ ∂B. For any n, x→ y, x “very close” to the boundary, H3,n takes on
also negative values. By adding multiples of L3,n and K3,n, only the terms |x− y|4
and (1−|x|2)|x− y|2 in the curved brackets could be effected. In any case the most
dangerous term −4n|x− y|2 remains.

Theorem 5.15. Let s > 1
2 (n−2−m)(m−1). Then there exists ε0 = ε0(m,n,s) > 0

such that the following holds.
If ‖aβ‖C|β |(B) ≤ ε0 for |β | ≤ 2m−2, then for every ϕ ∈C0(∂B) and ψ ∈C1(∂B)

with
ψ ≥ 0

ϕ ≥ sψ

}
on ∂B, ψ 6≡ 0 or ϕ 6≡ 0,

the Dirichlet problem

(−∆)mu+ ∑
|β |≤2m−2

aβ (x)Dβ u = 0 in B,(
− ∂

∂ν

) j

u = 0 on ∂B for j = 0, . . . ,m−3,(
− ∂

∂ν

)m−2

u = ψ on ∂B,(
− ∂

∂ν

)m−1

u = ϕ on ∂B,

(5.31)

has a solution u ∈W 2m,p
loc (B)∩Cm−1(B) (p > 1 arbitrary) which is strictly positive:

u > 0 in B.

In order to prove this result we first need to describe the essential properties of
the integral kernels K̂m,n,s and Lm,n.

Lemma 5.16. 1. Let s ≥ 1
2 (n− 2−m)(m− 1). On B× ∂B (i.e. for x ∈ B, y ∈ ∂B)

we have

K̂m,n,s(x,y)

{
� |x− y|−n−1d(x)m,

� |x− y|−n−2d(x)m+1,
(5.32)

Lm,n(x,y)' |x− y|−nd(x)m. (5.33)

2. If we assume additionally that s > 1
2 (n−2−m)(m−1), then we have on B×∂B:
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K̂m,n,s(x,y)

{
� |x− y|−n−1d(x)m,

� |x− y|−nd(x)m.
(5.34)

Proof. The claim follows from 1−|x|2 ' d(x), d(x)≤ |x− y| and the expression in
(5.30). �

Remark 5.17. 1. The estimation constants in (5.34) depend strongly on s.
2. If s = 1

2 (n− 2−m)(m− 1) then we have K̂m,n,s(x,y) ' |x− y|−n−2d(x)m+1, i.e.
for x→ ∂B\{y} we have a zero of order (m+1). We would have expected, and
actually need in order to prove perturbation results, a zero of order m. Conse-
quently in what follows we have to assume s > 1

2 (n−2−m)(m−1). The estimate
(5.34) is more appropriate. But as K̂m,n,s(x,y) 6' |x− y|−n−1d(x)m our perturba-
tion result Theorem 5.15 below is less general than the corresponding results in
Theorems 5.1, 6.3 and 6.29. In particular, domain perturbations are not consid-
ered.

For our purposes the following “3-G-type” estimates are essential. We recall that
Gm,n = G(−∆)m,B denotes the Dirichlet Green function for (−∆)m in the unit ball
B⊂ Rn.

Lemma 5.18. Let s > 1
2 (n− 2−m)(m− 1), β ∈ Nn. Then on B× ∂B×B (i.e. for

x ∈ B, y ∈ ∂B, z ∈ B) we have the following:∣∣∣Dβ
z Gm,n(x,z)

∣∣∣ K̂m,n,s(z,y)

K̂m,n,s(x,y)

�

{
1 if |β |< 2m−n,

|x− z|2m−1−n−|β |+ |y− z|2m−1−n−|β | if |β | ≥ 2m−n;
(5.35)

∣∣∣Dβ
z Gm,n(x,z)

∣∣∣Lm,n(z,y)

Lm,n(x,y)

�



1 if |β |< 2m−n,

1 if |β |= 2m−n and n odd,

log
(

3
|x− z|

)
if |β |= 2m−n and n even,

|x− z|2m−n−|β |+ |y− z|2m−n−|β | if |β |> 2m−n.

(5.36)

The proof is quite similar to that of Theorem 4.9 and is based on the Green’s
functions estimates of Theorems 4.6 and 4.7, Corollary 4.8 and the boundary kernel
estimates of Lemma 5.16. For this reason we skip the proof here and refer to [211,
Lemma 3.4].

Proof of Theorem 5.15. For existence and regularity we refer to Theorem 2.25. First,
we assume additionally that ψ ∈Cm+2,γ(∂B), ϕ ∈Cm+1,γ(∂B). We write ϕ̂s = ϕ−
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sψ and let p > 1 be arbitrary. The operator

Lm,nϕ̂s(x) :=
∫

∂B
Lm,n(x,y)ϕ̂s(y)dω(y)

satisfies Lm,n : Cm+1,γ(∂B)→C2m,γ(B)⊂W 2m,p(B), the operator

ˆKm,n,sψ(x) :=
∫

∂B
K̂m,n,s(x,y)ψ(y)dω(y)

satisfies ˆKm,n,s : Cm+2,γ(∂B)→C2m,γ(B)⊂W 2m,p(B), while the Green operator

Gm,n f (x) :=
∫

B
Gm,n(x,y) f (y)dy

satisfies Gm,n : Lp(B)→W 2m,p ∩W m,p
0 (B), see Theorem 2.19 and Corollary 2.21.

We write A := ∑|β |≤2m−2 aβ ( .)Dβ . The solution of (5.31) is given by

u =−Gm,nA u+ ˆKm,n,sψ +Lm,nϕ̂s or (I +Gm,nA )u = ˆKm,n,sψ +Lm,nϕ̂s.

Here, I +Gm,nA is a bounded linear operator in W 2m,p(B) which for sufficiently
small ε0 is invertible. Hence

u = (I +Gm,nA )−1 ˆKm,n,sψ +(I +Gm,nA )−1 Lm,nϕ̂s

= ˆKm,n,sψ +
∞

∑
i=1

(−Gm,nA )i ˆKm,n,sψ +Lm,nϕ̂s +
∞

∑
i=1

(−Gm,nA )i Lm,nϕ̂s.

We only show how to deal with the first Neumann series containing ˆKm,n,s, the
second series containing Lm,n can be treated in the same way with some obvious
simplifications. For i ≥ 1 we integrate by parts. As A is of order ≤ 2m− 2 and

ˆKm,n,sψ vanishes on ∂B of order m− 2 no additional boundary integrals arise. By
means of the Fubini-Tonelli theorem we obtain for x ∈ B

(−Gm,nA )i ˆKm,n,sψ(x) = (−1)i
∫

z1∈B
Gm,n(x,z1) Az1

∫
z2∈B

Gm,n(z1,z2)

× . . . Azi−1

∫
zi∈B

Gm,n(zi−1,zi) Azi

∫
y∈∂B

K̂m,n,s(zi,y)ψ(y)dω(y)dzi . . .dz1

= (−1)i
∫

z1∈B

(
A ∗

z1
Gm,n(x,z1)

)∫
z2∈B

(
A ∗

z2
Gm,n(z1,z2)

)
× . . .

∫
zi∈B

(
A ∗

zi
Gm,n(zi−1,zi)

)∫
y∈∂B

K̂m,n,s(zi,y)ψ(y)dω(y)dzi . . .dz1

= (−1)i
∫

B
· · ·
∫

B

∫
∂B

(
A ∗

z1
Gm,n(x,z1)

)(
A ∗

z2
Gm,n(z1,z2)

)
× . . .

(
A ∗

zi
Gm,n(zi−1,zi)

)
K̂m,n,s(zi,y)ψ(y)dω(y)d(z1, . . . ,zi).
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Here A ∗
. = ∑|β |≤2m−2(−1)|β |Dβ (aβ . ) is the (formally) adjoint operator of the

perturbation A . The estimates (5.35) and (5.36) in Lemma 5.18 are integrable with
respect to z ∈ B uniformly in x ∈ B, y ∈ ∂B if |β | ≤ 2m−2. They yield∣∣∣(−Gm,nA )i ˆKm,n,sψ(x)

∣∣∣
≤
∫

∂B

∫
B
· · ·
∫

B
K̂m,n,s(x,y)

∣∣A ∗
z1

Gm,n(x,z1)
∣∣ K̂m,n,s(z1,y)

K̂m,n,s(x,y)

×
∣∣A ∗

z2
Gm,n(z1,z2)

∣∣ K̂m,n,s(z2,y)

K̂m,n,s(z1,y)

× . . .

∣∣A ∗
zi

Gm,n(zi−1,zi)
∣∣ K̂m,n,s(zi,y)

K̂m,n,s(zi−1,y)
ψ(y)d(z1, . . . ,zi)dω(y)

≤ (C0ε0)
i
∫

∂B
K̂m,n,s(x,y)ψ(y)dω(y) = (C0ε0)

i ( ˆKm,n,sψ
)
(x).

Analogously we have:∣∣∣(−Gm,nA )i Lm,nϕ̂s(x)
∣∣∣≤ (Ĉ0ε0

)i (Lm,nϕ̂s)(x).

The constants C0 = C0(m,n,s), Ĉ0 = Ĉ0(m,n) do not depend on i.
If ε0 = ε0(m,n,s) > 0 is chosen sufficiently small, we come up with

u≥ 1
C

ˆKm,n,sψ +
1
C

Lm,nϕ̂s. (5.37)

The general case ϕ ∈ C0(∂B), ψ ∈ C1(∂B) follows from (5.37) with the help of
an approximation, the maximum modulus estimates of Theorem 2.25 and local Lp-
estimates, see Theorem 2.20. �

5.3 Local maximum principles for higher order differential
inequalities

The comparison results of Section 5.1 together with the observations of Section 5.2
on the Poisson boundary kernels will yield local maximum principles for differen-
tial inequalities, which are valid for a large class of operators. Here lower order
perturbations are no longer subject to smallness restrictions.

We consider C2m,γ -smooth domains Ω ⊂ Rn and differential operators L like

Lu :=

(
−

n

∑
i, j=1

ãi j
∂ 2

∂xi∂x j

)m

u+ ∑
|β |≤2m−1

aβ ( .)Dβ u, (5.38)

with constant highest order coefficients ãi j = ã ji obeying the ellipticity condition
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λ |ξ |2 ≤
n

∑
i, j=1

ãi jξiξ j ≤Λ |ξ |2 for all ξ ∈ Rn.

The ellipticity constants are subject to the condition 0 < λ ≤ Λ . The lower order
coefficients are merely assumed to be smooth,

aβ ∈C|β |,γ(Ω).

Under these assumptions, we have:

Theorem 5.19. Assume that q ≥ 1, q > n
2m and that K ⊂ Ω is a compact subset.

Then there exists a constant

C = C
(

n,m,λ ,Λ ,q, max
|β |≤2m−1

‖aβ‖C|β |(Ω),dist(K,∂Ω)
)

such that, for every f ∈C0(Ω) and every subsolution u ∈C2m(Ω) of the differential
inequality

Lu≤ f ,

the following local maximum estimate holds true:

sup
K

u≤C
(
‖ f +‖Lq +‖u‖W m−1,1

)
. (5.39)

Proof. With the help of a linear transformation we may achieve ãi j = δi j. So, in
what follows we consider the principal part (−∆)m.

We want to apply Theorem 5.4 and Lemma 5.9. Let ε0 = ε0(m,n) > 0 be
such that both results hold true in the unit ball B for all differential operators
L̃ = (−∆)m + ∑|β |≤2m−1 ãβ Dβ with max|β |≤2m−1 ‖ãβ‖C|β |(B) ≤ ε0. For the differ-

ential operator L = (−∆)m + ∑|β |≤2m−1 aβ Dβ defined in Ω we want to achieve the
required smallness by means of scaling.

Let x0 ∈ K be arbitrary, after translation we may assume x0 = 0. We put

M := max
|β |≤2m−1

‖aβ‖C|β |(Ω),

ρ0 := min
{

1,
1
2

dist(K,∂Ω),
ε0

M

}
. (5.40)

For ρ ∈ (0,ρ0] we introduce the following scaled functions B→ R:

uρ(x) := u(ρx), fρ(x) := ρ
2m f (ρx), aβ ,ρ(x) := ρ

2m−|β |aβ (ρx).

For these functions we have on B the following differential inequality

Lρ uρ(x) := (−∆)muρ(x)+ ∑
|β |≤2m−1

aβ ,ρ(x)Dβ uρ(x)≤ fρ(x). (5.41)
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Here, thanks to our choice (5.40) of ρ0, on B the coefficients aβ ,ρ , |β | ≤ 2m−1, are
subject of the following smallness condition

‖aβ ,ρ‖C|β |(B) = ∑
|µ|≤|β |

max
x∈B

∣∣Dµ aβ ,ρ(x)
∣∣= ∑

|µ|≤|β |
max
x∈B

(
ρ

2m−|β |+|µ| ∣∣(Dµ aβ

)
(ρx)

∣∣)
≤ ρ0‖aβ‖C|β |(Ω) ≤ ρ0M ≤ ε0.

Let GLρ ,B be the Green function for Lρ in B. Theorem 5.4 and Lemma 5.9 show that
there exist constants C = C (m,n,ε0(m,n)) = C(m,n), independent of ρ ∈ (0,ρ0],
such that we have:

GLρ ,B(x,y) > 0 in B×B,

GLρ ,B(x,y)≤C|x− y|2m−n in B×B if n > 2m,

GLρ ,B(x,y)≤C log
(

3
|x− y|

)
in B×B if n = 2m,

GLρ ,B(x,y)≤C in B×B if n < 2m,∣∣∣Dβ
y GLρ ,B(0,y)

∣∣∣≤C for |β | ≤ 2m−1, y ∈ ∂B.

(5.42)

To estimate u(0) = uρ(0) we use the representation formula for uρ . Beside the
Dirichlet data Dβ uρ , |β | ≤ m− 1 and terms of the kind Dβ

y GLρ ,B(0,y), m ≤ |β | ≤
2m− 1, the boundary integrals contain factors aβ ,ρ and their derivatives up to
order ≤ max{0, |β | −m− 1}. Making use of (5.42), we obtain independently of
ρ ∈ (0,ρ0]:

u(0) = uρ(0)≤
∫

B
GLρ ,B(0,y) f +

ρ (y)dy

+ C(m,n,M) ∑
|β |≤m−1

∫
∂B

∣∣∣Dβ uρ(y)
∣∣∣ dω(y)

≤ C(m,n,q)‖ f +
ρ ‖Lq(B) +C(m,n,M) ∑

|β |≤m−1
ρ
|β |
∫

∂B

∣∣∣(Dβ u
)

(ρy)
∣∣∣ dω(y)

≤ C(m,n,q)ρ2m−(n/q)‖ f +‖Lq(Bρ )

+ C(m,n,M) ∑
|β |≤m−1

ρ
|β |−n+1

∫
|y|=ρ

∣∣∣Dβ u(y)
∣∣∣ dω(y).

Integration with respect to ρ ∈ [ 1
2 ρ0,ρ0] yields

u(0)≤C
(
‖ f +‖Lq(Ω) +‖u‖W m−1,1(Ω)

)
with a constant C = C(m,n,q,M,ρ0). Here C = O(ρ−n

0 ) for ρ0↘ 0. �

Remark 5.20. This local maximum principle may also be applied to nonlinear
problems which are not subject to the standard (controllable) growth conditions
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as in [404, 405], see [209]. For instance, one finds “almost” classical solutions
u ∈C2m,γ(Ω)∩Hm

0 (Ω) to the Dirichlet problem for Lu = eu where L is as in (5.38).

5.4 Steklov boundary conditions

Let Ω be a bounded domain of Rn (n≥ 2) with ∂Ω ∈C2 and consider the boundary
value problem {

∆ 2u = f in Ω ,

u = ∆u−a ∂u
∂ν

= 0 on ∂Ω ,
(5.43)

where a ∈C0(∂Ω), f ∈ L2(Ω) and ν is the outside normal (we will also use uν =
∂u
∂ν

). In this section we study the positivity preserving property for (5.43), namely
under which conditions on Ω and on the boundary coefficient a the assumption
f ≥ 0 implies that the solution u exists and is positive. Let us first make precise
what is meant by a solution of (5.43).

Definition 5.21. For f ∈ L2(Ω) we say that u is a weak solution of (5.43) if u ∈
H2∩H1

0 (Ω) and∫
Ω

∆u∆v dx−
∫

∂Ω

a uν vν dω =
∫

Ω

f v dx for all v ∈ H2∩H1
0 (Ω). (5.44)

Note that weak solutions are well-defined for a ∈C0(∂Ω). For u ∈ H4(Ω) one
may integrate by parts to find indeed that a weak solution of (5.44) satisfies the
boundary value problem in (5.43). This means that the second boundary condition
in (5.43) is hidden in the choice of the space H2 ∩H1

0 (Ω) of admissible testing
functions. For regularity results related to problem (5.43) we refer to Corollary 2.23.

In the next section we state the positivity preserving properties for (5.43) and
we give the first part of their proof. The second part of their proof is more delicate
and requires a Schauder setting and a different notion of solution. This is the reason
why it is postponed to Section 5.4.3. In turn, the Schauder setting takes advantage
of the positivity properties of the operators involved in the solution of (5.43). These
properties are proven in Section 5.4.2 with a strong use of the kernel estimates of
Section 4.3.

5.4.1 Positivity preserving

The first statement describes existence, uniqueness and positivity of a weak solution
to (5.43). A crucial role is played by a “weighted first eigenvalue”. Fix a nontrivial
positive weight function b ∈C0(∂Ω) and set

Jb(u) =
∫

Ω
|∆u|2 dx∫

∂Ω
b u2

ν dω
for

∫
∂Ω

b u2
ν dω 6= 0 (5.45)
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and Jb(u) = ∞ otherwise. For every u ∈ H2 ∩H1
0 (Ω) the functional in (5.45) is

strictly positive, possibly ∞. Since the linear map H2(Ω)→ L2(∂Ω) defined by
u 7→ uν |∂Ω is compact, there exists a minimiser for the problem

δ1,b = δ1,b(Ω) := inf
u∈H2∩H1

0 (Ω)
Jb(u). (5.46)

Hence δ1,b > 0 and it may be viewed as a kind of first Steklov eigenvalue with re-
spect to the weight function b and any minimiser as a corresponding eigenfunction.
This definition should be compared with (3.40) in Section 3.3.1.

The next statement summarises the positivity preserving results for (5.43), see
the Notations-Section for the interpretation of the symbols.

Theorem 5.22. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2 and let
0 � b ∈C0(∂Ω). Let the eigenvalue δ1,b be as defined in (5.46). Then there exists
a number δc,b := δc,b(Ω) ∈ [−∞,0) such that the following holds for any function
a ∈C0(∂Ω).

1. If a ≥ δ1,bb and if 0 � f ∈ L2(Ω), then (5.43) has no nontrivial positive weak
solution.

2. If a = δ1,bb, then there exists a positive eigenfunction, that is, problem (5.43) with
f = 0 admits a weak solution u1,b that satisfies u1,b > 0 and −∆u1,b > 0 in Ω ,
∂

∂ν
u1,b < 0 on ∂Ω . This eigenfunction u1,b is unique, up to a constant multiplier.

3. If a� δ1,bb, then for any f ∈ L2(Ω) problem (5.43) admits a unique weak solu-
tion u.

a. If δc,bb≤ a� δ1,bb and if 0� f ∈ L2(Ω), then u	 0.
b. If δc,bb < a � δ1,bb and if 0 � f ∈ L2(Ω), then for some c f > 0 it holds that

u≥ c f d with d as in (4.1). Furthermore, if a(x0) < 0 for some x0 ∈ ∂Ω , then
−∆u� 0 in Ω , whereas if a≥ 0, then 0� f implies −∆u≥ 0 in Ω .

c. If a < δc,bb, then there are 0� f ∈ L2(Ω) such that the corresponding solution
u of (5.43)is not positive: 0� u.

Proof. We first prove Item 2, then Item 1 and we end with Item 3.
Proof of Item 2. Let u1 := u1,b ∈ H2 ∩H1

0 (Ω) be a minimiser for (5.46) and let
ũ1 be the unique solution in H2∩H1

0 (Ω) of −∆ ũ1 = |∆u1|. Then by the maximum

principle we infer that |u1| ≤ ũ1 in Ω and
∣∣∣ ∂

∂ν
u1

∣∣∣≤ ∣∣∣ ∂

∂ν
ũ1

∣∣∣ on ∂Ω . If ∆u1 changes
sign, then these inequalities are strict and imply Jb(u1) > Jb(ũ1). Hence, ∆u1 is of
fixed sign, say −∆u1 ≥ 0, so that the maximum principle implies ∂

∂ν
u1 < 0 on ∂Ω

and u1 ≥ cd in Ω , where d is as in (4.1). Similarly, if u1 and u2 are two minimisers
which are not multiples of each other, then there is a linear combination which is
a sign changing minimiser and one proceeds as above to find a contradiction. This
proves Item 2.

Proof of Item 1. Let us suppose by contradiction that a ≥ δ1,b, that f 	 0 and
that u is a nontrivial positive solution to (5.43). Hence uν ≤ 0 on ∂Ω . Let u1,b be a
minimiser for (5.46) as obtained above. By taking v = u1,b in (5.44) one finds
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0 <
∫

Ω

f u1,b dx =
∫

Ω

∆u∆u1,b dx−
∫

∂Ω

a uν

(
u1,b
)

ν
dω

≤
∫

Ω

∆u∆u1,b dx−
∫

∂Ω

δ1,b b uν

(
u1,b
)

ν
dω = 0,

a contradiction. The last equality follows by the fact that u1,b minimises (5.46). This
proves Item 1.

Proof of Item 3. On the space H2∩H1
0 (Ω) we define the energy functional

I(u) := 1
2

∫
Ω

|∆u|2 dx− 1
2

∫
∂Ω

au2
ν dω−

∫
Ω

f u dx u ∈ H2∩H1
0 (Ω).

Critical points of I are weak solutions of (5.43) in the sense of Definition 5.21. We
will show that for a� δ1,bb the functional I has a unique critical point.

If a < δ1,bb, one sets

ε :=
min

{
δ1,bb(x)−a(x); x ∈ ∂Ω

}
max

{
δ1,bb(x); x ∈ ∂Ω

} > 0, (5.47)

and finds that a ≤ (1− ε)δ1,bb. By the definition of δ1,b we have for all u ∈ H2 ∩
H1

0 (Ω) ∫
Ω

|∆u|2 dx−
∫

∂Ω

a u2
ν dω

≥ ε

∫
Ω

|∆u|2 dx+(1− ε)
(∫

Ω

|∆u|2 dx−
∫

∂Ω

δ1,bb u2
ν dω

)
(5.48)

≥ ε

∫
Ω

|∆u|2 dx,

so that the functional I is coercive. Since it is also strictly convex the functional I
admits a unique critical point which is its global minimum over H2∩H1

0 (Ω).
In order to deal with the case that a+ � δ1,bb, but a+(x) = δ1,bb(x) for some

x ∈ ∂Ω , we set

b̃ :=
1
2

(
b+δ

−1
1,b a+

)
.

Let u1 be a minimiser of Jb̃ and u2 of Jb. For the definition see (5.45). Then, since

0� b̃� b and
(

∂

∂ν
u1

)2
> 0 on ∂Ω , we find δ1,b̃ = Jb̃(u1) > Jb(u1)≥ Jb(u2) = δ1,b.

Instead of (5.47) we set
ε := 1−δ1,b/δ1,b̃ > 0,

find for x ∈ ∂Ω that a ≤ a+ = δ1,b(2b̃− b) ≤ δ1,bb̃ = (1− ε)δ1,b̃b̃ and proceed by
replacing all b in (5.48) with b̃.

If a+ = δ1,bb and a− 	 0, then one may not proceed directly as before. However,
instead of the functional in (5.45), one may use
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Ja−
b (u) =

(∫
Ω

|∆u|2 dx+
∫

∂Ω

a− u2
ν dω

) (∫
∂Ω

b u2
ν dω

)−1

.

Then, defining δ a−
1,b for Ja−

b as in (5.46), this minimum is assumed, say by ua−
1,b. Since

δ
a−
1,b = Ja−

b (ua−
1,b)≥ Jb(ua−

1,b)≥ Jb(u1,b) = δ1,b,

with the last inequality strict if ua−
1,b 6= c u1,b and with the first inequality strict if

ua−
1,b = c u1,b since (u1,b)2

ν > 0, we find δ a−
1,b > δ1,b. So,∫

Ω

|∆u|2 dx+
∫

∂Ω

a− u2
ν dω ≥ δ

a−
1,b

∫
∂Ω

b u2
ν dω for all u ∈ H2∩H1

0 (Ω)

and by setting
ε := 1−δ1,b/δ

a−
1,b > 0

we find the result that replaces (5.48). Indeed∫
Ω

|∆u|2 dx−
∫

∂Ω

a u2
ν dω =

∫
Ω

|∆u|2 dx+
∫

∂Ω

a− u2
ν dω−

∫
∂Ω

δ1,bb u2
ν dω

≥ ε

∫
Ω

|∆u|2 dx+(1− ε)
(∫

Ω

|∆u|2 dx+
∫

∂Ω

a− u2
ν dω−

∫
∂Ω

δ
a−
1,b b u2

ν dω

)
≥ ε

∫
Ω

|∆u|2 dx.

Hence, I is coercive and strictly convex and we conclude as for (5.48). The existence
and uniqueness is so proved.

Assume now that there exists x0 ∈ ∂Ω such that a(x0) < 0. If the weak solution
u were superharmonic, then by Hopf’s boundary lemma we would have uν(x0) < 0.
Using the second boundary condition in (5.43), we would then obtain ∆u(x0) > 0,
a contradiction.

If a≥ 0 and f 	 0, let ũ be the unique solution in H2∩H1
0 (Ω) of −∆ ũ = |∆u| in

Ω . Since ũ > u or ũ = u in Ω , and |ũν | ≥ |uν | on ∂Ω , one finds for f 	 0 that

I(ũ)− I(u) =−1
2

∫
∂Ω

a
(
ũ2

ν −u2
ν

)
dω−

∫
Ω

f (ũ−u) dx≤ 0.

Equality occurs only when ũ = u. Since I is strictly convex there is at most one
critical point which is a minimum. So u = ũ > 0 and −∆u =−∆ ũ = |∆u| ≥ 0. This
completes the proof of existence and uniqueness whenever a � δ1,bb. The proof of
the remaining statements (a), (b), (c) in Item 3 is more lengthy and delicate and we
give it in Section 5.4.3, see Theorem 5.37. �

Note that in Theorem 5.22 it may happen that b(x) = 0 on some part Γ1 ⊂ ∂Ω

and b(x) > 0 on the remaining part Γ0 = ∂Ω \Γ1. If moreover δc,b = −∞, then the
limit problem for which the positivity preserving property holds (that is, a = δc,bb)
becomes a mixed Dirichlet-Navier problem with boundary conditions
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u = 0 on ∂Ω , uν = 0 on Γ0, ∆u = 0 on Γ1.

As a first consequence of Theorem 5.22 we have the positivity preserving prop-
erty for the hinged plate model in planar convex domains. As we have seen in Sec-
tion 1.1.2, the physical bounds for the Poisson ratio are given by

−1 < σ < 1 . (5.49)

Under this constraint, the following result holds.

Corollary 5.23. Let Ω ⊂ R2 be a bounded convex domain with C2-boundary and
assume (5.49). For any f ∈ L2(Ω) there exists a unique minimiser u ∈ H2∩H1

0 (Ω)
of the elastic energy functional (1.11) that is, of

J(u) =
∫

Ω

(
|∆u|2

2
− f u

)
dx− 1−σ

2

∫
∂Ω

κ u2
ν dω,

where κ denotes the curvature of ∂Ω . The minimiser u is the unique weak solution
to {

∆ 2u = f in Ω ,
u = ∆u− (1−σ)κuν = 0 on ∂Ω .

Moreover, f 	 0 implies that there exists c f > 0 such that u(x) ≥ c f d(x) and u is
superharmonic in Ω .

Proof. We first show that the energy functional J coincides with the form given in
(1.5). This can be done on a dense subset of smooth functions. Since u|∂Ω = 0, one
has ux = uν ν1 and uy = uν ν2 and may conclude that

2
∫

Ω

(
u2

xy−uxxuyy
)

dxdy

=
∫

∂Ω

(uxyuyν1 +uxyuxν2−uxxuyν2−uyyuxν1) dω

=
∫

∂Ω

uν

(
2uxyν1ν2−uxxν

2
2 −uyyν

2
1
)

dω =−
∫

∂Ω

κu2
ν dω,

where in the last step we used (1.8). Hence, existence and uniqueness of a minimiser
u follow from Proposition 2.35.

Since ∂Ω ∈C2 and Ω is convex we have 0� κ ∈C0(∂Ω). In Proposition 2.35,
it is also shown that J is strictly convex so that (1−σ)κ � δ1,κ κ . Hence, if f 	 0
it follows first from statement 3.(a) in Theorem 5.22 that u 	 0 in Ω and so that
uν |∂Ω ≤ 0. In view of the boundary value problem solved by u we obtain −∆u	 0
in Ω . This superharmonicity finally yields the other properties stated for u. �

More generally, if we take b = 1 in Theorem 5.22, we obtain the following

Corollary 5.24. Let Ω ⊂ Rn (n≥ 2) be a bounded domain with ∂Ω ∈C2 and let

δ1 := δ1(Ω) := inf
{∫

Ω
|∆u|2 dx∫

∂Ω
u2

ν dω
; u ∈ H2∩H1

0 (Ω)\H2
0 (Ω)

}
∈ (0,∞) (5.50)
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be the first Steklov eigenvalue. Then there exists a number δc := δc(Ω) ∈ [−∞,0)
such that the following holds for any function a ∈C0(∂Ω).

1. If a ≥ δ1 and if 0 � f ∈ L2(Ω), then (5.43) has no nontrivial positive weak
solution.

2. If a = δ1, then there exists a positive eigenfunction, that is, problem (5.43) admits
a nontrivial weak solution u1 with u1 > 0 in Ω for f = 0. Moreover, the function
u1 is, up to multiples, the unique solution of (5.43) with f = 0 and a = δ1.

3. If a� δ1, then for any f ∈ L2(Ω) problem (5.43) admits a unique weak solution
u.

a. If δc ≤ a� δ1, then 0� f ∈ L2(Ω) implies u	 0 in Ω .
b. If δc < a� δ1, then 0� f ∈ L2(Ω) implies u≥ c f d > 0 in Ω for some c f > 0.
c. If a < δc, then there are 0� f ∈ L2(Ω) with 0� u.

The result described in Corollary 5.24 quite closely resembles the structure for
the resolvent of the biharmonic operator under Navier boundary conditions – see
McKenna-Walter [297] and Kawohl-Sweers [246] – or for the biharmonic operator
under Dirichlet boundary conditions in case the domain is a ball – see Corollary 5.5
where (−a) plays the same role as a here. For all these problems the scheme is as
follows.

∃ f > 0 with u� 0 ∀ f > 0 : ∃u and u≥ 0 ∀ f > 0 if ∃u then u� 0

0δc δ1 a−→

Under Dirichlet boundary conditions such that the corresponding Green function
is positive, Corollary 5.5 tells us that the set of constant coefficients a∈R for which
∆ 2u ≥ au implies u ≥ 0 is an interval (ac,Λ2,1) with ac ∈ (−∞,0]. By combining
Theorem 5.22 with Lemma 5.35 below, we immediately see that a similar result
holds for (5.43).

Theorem 5.25. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2 and let
ai ∈C0(∂Ω) with i = 1,2. Suppose that a1 ≤ 0 ≤ a2 are such that both for a = a1
and a = a2 we have the following: for all f ∈ L2(Ω) there exists a weak solution
u = ui (i = 1,2) for (5.43), and moreover

f 	 0 implies u	 0. (5.51)

Then for any a ∈C0(∂Ω) satisfying a1 ≤ a≤ a2 and for each f ∈ L2(Ω), a unique
weak solution of (5.43) exists and (5.51) holds true.

However, a crucial difference with the Dirichlet boundary value problem for
∆ 2u ≥ au is that ac ∈ (−∞,0] while for problem (5.43) it might happen that
δc(Ω) = −∞ although for general domains one cannot expect to have the posi-
tivity preserving property for any negative a. This is stated in the next results which
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show that the limit situation where δc(Ω) = −∞ is closely related to the positivity
preserving property for the biharmonic Dirichlet problem{

∆ 2u = f in Ω ,
u = uν = 0 on ∂Ω .

(5.52)

To this end, let us recall once more that the positivity preserving property does
not hold in general domains Ω ⊂ Rn for (5.52), see Section 1.2. It is clear that
(5.43) with |a|= +∞ corresponds to (5.52). However, if a→+∞ then a crosses the
spectrum of −∆ under Steklov boundary conditions, see Theorem 3.18, whereas
the next statement justifies the feeling that (5.52) only corresponds to the limit case
a =−∞.

Theorem 5.26. Let Ω ⊂Rn (n≥ 2) be a bounded domain with ∂Ω ∈C2. If for every
m ∈ N+ and 0 � f ∈ L2(Ω) the weak solution of (5.43) with a = −m is nontrivial
and positive, then for every 0� f ∈ L2(Ω) the solution u∈H2

0 (Ω) of (5.52) satisfies
u	 0.

Proof. Let us first recall the two boundary value problems addressed in the state-
ment, namely{

∆ 2u = f in Ω ,

u =
(

∆ +m ∂

∂ν

)
u = 0 on ∂Ω ,

and
{

∆ 2u = f in Ω ,
u = uν = 0 on ∂Ω ,

(5.53)

For all m > 0 let um ∈ H2∩H1
0 (Ω) be the unique weak solution of the problem on

the left in (5.53). Then according to (5.44) we have∫
Ω

∆um∆φ dx+m
∫

∂Ω

∂um

∂ν

∂φ

∂ν
dω =

∫
Ω

f φ dx for all φ ∈ H2∩H1
0 (Ω) . (5.54)

Taking φ = um in (5.54) and using Hölder and Poincaré inequalities, gives for all
m > 0

‖∆um‖2
L2 ≤‖∆um‖2

L2 +m
∫

∂Ω

∣∣∣∣∂um

∂ν

∣∣∣∣2 dω =
∫

Ω

f um dx≤ c‖ f‖L2‖∆um‖L2 . (5.55)

Inequality (5.55) shows that the sequence (um) is bounded in H2(Ω) so that, up to
a subsequence, we have

um ⇀ u in H2(Ω) as m→ ∞ (5.56)

for some u ∈ H2∩H1
0 (Ω). Once boundedness is established, if we let m→ ∞ then

(5.55) also tells us that

∂um

∂ν
→ 0 in L2(∂Ω) as m→ ∞ .
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Therefore, u ∈H2
0 (Ω). Now take any function φ ∈H2

0 (Ω) in (5.54) and let m→ ∞.
By (5.56) we obtain∫

Ω

∆u∆φ dx =
∫

Ω

f φ dx for all φ ∈ H2
0 (Ω) .

Hence, u is the unique solution of the corresponding Dirichlet problem (5.52). Since
(5.56) also implies that, up to a subsequence, um(x)→ u(x) for a.e. x ∈Ω , one finds
that u	 0. �

Theorem 5.26 states that there exists some link between the Steklov and the
Dirichlet problems. This link is confirmed by the special case when Ω is the unit
ball. In this case, from Theorem 3.20 we know that the first Steklov eigenvalue as
defined in (5.50) satisfies δ1 = n and the following holds.

Theorem 5.27. Let Ω = B, the unit ball in Rn (n≥ 2). Then, for all 0� f ∈ L2(B)
and all a ∈C0(∂B) such that a� n, there exists c > 0 such that the weak solution u
of (5.43) satisfies u(x)≥ cd(x) in B.

The constant c depends both on f and a, c = c f ,a. For a fixed 0� f ∈ L2(B) we
expect that c = c f ,a→ 0 as a→−∞.

Also the proof of Theorem 5.27 requires a Schauder setting and an approximation
procedure. For this reason it is postponed to the end of Section 5.4.3.

5.4.2 Positivity of the operators involved in the Steklov problem

We consider the second order Green operator G and the Poisson operator K , that
is, w = G f +K g formally solves{

−∆w = f in Ω ,
w = g on ∂Ω .

For C2-domains, the operators G and K can be represented by integral kernels G
and K, see (4.46) in Section 4.3. Let (Pw)(x) :=−ν ·∇w(x) =−wν(x) for x∈ ∂Ω .
In this section we use the kernel estimates obtained in Section 4.3 in order to prove
some positivity properties of these operators. First, we fix the appropriate setting so
that G , K and P are well-defined operators.

Notation 5.28 Let d denote the distance to ∂Ω as defined in (4.1). Set

Cd(Ω) =
{

u ∈C0(Ω); there exists w ∈C0(Ω) such that u = dw
}

with norm

‖u‖Cd(Ω) = sup
{
|u(x)|
d(x)

;x ∈Ω

}
.

Set also C0(Ω) =
{

u ∈C0(Ω); u = 0 on ∂Ω
}

so that Cd(Ω)(C0(Ω).
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We consider the three above operators in the following setting.

G : C0(Ω)→Cd(Ω), K : C0(∂Ω)→C0(Ω), P : Cd(Ω)→C0(∂Ω).

We also define the embedding

Id : Cd(Ω)→C0(Ω). (5.57)

The space Cd(Ω) is a Banach lattice, that is, a Banach space with the ordering
such that |u| ≤ |v| implies ‖u‖Cd(Ω) ≤ ‖v‖Cd(Ω), see Definition 3.2 or [13, 309, 359].
The positive cone

Cd(Ω)+ =
{

u ∈Cd(Ω); u(x)≥ 0 in Ω
}

is solid (namely, it has nonempty interior) and reproducing (that is, every w∈Cd(Ω)
can be written as w = u−v for some u,v∈Cd(Ω)+). Similarly, we define C0(∂Ω)+

and C0(Ω)+.
Note that the interiors of the cones in these spaces are as follows:

C0(∂Ω)+,◦ =
{

v ∈C0(∂Ω); v(x)≥ c for some c > 0
}

,

C0(Ω)+,◦ =
{

u ∈C0(Ω); u(x)≥ c for some c > 0
}

,

Cd(Ω)+,◦ =
{

u ∈Cd(Ω); u(x)≥ cd(x) for some c > 0
}

.

Definition 5.29. The operator F : C1→ C2 is called

• nonnegative, F ≥ 0, when g ∈ C +
1 ⇒Fg ∈ C +

2 ;
• strictly positive, F  0, when g ∈ C +

1 \{0}⇒Fg ∈ C +
2 \{0};

• strongly positive, F > 0, when g ∈ C +
1 \{0}⇒Fg ∈ C +,◦

2 .

If F ≥ 0 and F 6= 0, that is, for some g ∈ C +
1 we find Fg	 0, we call F posi-

tive. Similarly, two operators are ordered through≥ (respectively or >) whenever
their difference is nonnegative (respectively strictly or strongly positive).

We now prove a positivity result.

Proposition 5.30. Suppose that ∂Ω ∈ C2 and a ∈ C0(∂Ω). Let G , K and P be
defined as above. Then G K aP : Cd(Ω)→Cd(Ω) is a well-defined compact linear
operator. If in addition a	 0, then G K aP is positive and even such that

u ∈Cd(Ω)+ implies either G K aPu = 0 or G K aPu ∈Cd(Ω)+,◦.
(5.58)

Proof. Take γ ∈ (0,1), p > n(1−γ)−1 and fix the embeddings I1 : C0(Ω)→ Lp(Ω),
I2 : W 2,p(Ω)→C1,γ(Ω) and I3 : C1,γ ∩C0(Ω)→Cd(Ω). Since ∂Ω ∈C2, for every
p ∈ (1,∞) there exists a bounded linear operator Gp : Lp(Ω)→W 2,p ∩W 1,p

0 (Ω)
such that −∆Gp f = f for all f ∈ Lp(Ω), see Theorem 2.20. If Id is as in (5.57),
then the Green operator from Cd(Ω) to Cd(Ω) should formally be denoted G Id ,
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where G = I3I2GpI1. Note that the embedding I1 : C0(Ω) → Lp(Ω) is bounded
and the embedding I2 : W 2,p(Ω)→ C1,γ(Ω) is compact, see Theorem 2.6. Since
W 2,p ∩W 1,p

0 (Ω) ⊂ C1,γ ∩C0(Ω) and I3 : C1,γ ∩C0(Ω)→ Cd(Ω) is bounded, G is
not only well-defined but even compact. The strong maximum principle and Hopf’s
boundary point lemma allow then to conclude that G : C0(Ω)→Cd(Ω) is a compact
linear operator and it is strongly positive.

Since ∂Ω ∈ C2 and Ω is bounded all boundary points are regular. According
to Perron’s method [197, Theorem 2.14] the Dirichlet boundary value problem is
solvable for arbitrary continuous boundary values by

(K φ)(x) = sup{v(x);v≤ φ on ∂Ω and v subharmonic in Ω} .

For φ ∈C0(∂Ω) one obtains K φ ∈C0(Ω)∩C2(Ω) and by the maximum principle

sup
x∈Ω

(K φ)(x) = max
x∈∂Ω

φ(x) and inf
x∈Ω

(K φ)(x) = min
x∈∂Ω

φ(x)

implying not only that ‖K φ‖L∞(Ω) = ‖φ‖L∞(∂Ω), but also that K : C0(∂Ω)→
C0(Ω) is a strictly positive bounded linear operator.

Finally, from the fact that every function u ∈ Cd(Ω) can be written as u = d w
for some w ∈C0(Ω) and Pd w = w|∂Ω , we infer that P : Cd(Ω)→C0(∂Ω) is a
positive bounded linear operator.

From the just proved properties of G , K and P we infer compactness and
positivity of G K aP when a ≥ 0 and that K aPu 	 0 implies that G K aPu ∈
Cd(Ω)+,◦. �

Proposition 5.30 enables us to compare (using the notations of Definition 5.29)
some of the operators involved in the Steklov problem.

Proposition 5.31. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈C2 and let Id be
as in (5.57). Then there exists a constant MΩ > 0 such that

G K PG I d G ≤MΩ G I d G and G K PG K ≤MΩ G K .

Proof. We know that the integral kernel which corresponds to G K PG I d G sat-
isfies the estimates in Lemma 4.16. By Proposition 4.13 we know estimates from
below for G I d G . We have to compare these estimates. To this end, we use the
following trivial fact

min(1,α)min(1,β )≤min(1,αβ ) for all α,β ≥ 0,

combined with (4.53) and (4.52). Considering the different dimensions separately
we then have the following. For n≥ 5, if x∗ ∈ ∂Ω is such that |x− x∗|= d(x),

(d(x)+d(y)+ |x∗− y∗|)2−n d(x)d(y)� |x− y|4−n min

(
1,

d(x)d(y)
|x− y|2

)
.
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This, combined with Lemma 4.16 and (4.48), proves the statement for n≥ 5.
For n = 4 we argue as for n = 5 to find

(d(x)+d(y)+ |x∗− y∗|)−2 d(x)d(y)�min

(
1,

d(x)d(y)
|x− y|2

)
� log

(
1+

d(x)d(y)
|x− y|2

)
.

This, combined with Lemma 4.16 and (4.49), proves the statement for n = 4.
For n = 3 we have

(d(x)+d(y)+ |x∗− y∗|)−1 d(x)d(y)�

�

√√√√d(x)d(y)min

(
1,

d(x)d(y)
|x− y|2

)
=
√

d(x)d(y)min

(
1,

√
d(x)d(y)
|x− y|

)
.

This, combined with Lemma 4.16 and (4.50), proves the statement for n = 3.
For n = 2, by using (4.52) we find as a variation of (4.53) that

log
(

2+
1

d(x)+d(y)+ |x∗− y∗|

)
� log

(
2+

1

|x− y|2 +d(x)d(y)

)
.

This, combined with Lemma 4.16 and (4.51), proves the statement for n = 2. �

5.4.3 Relation between Hilbert and Schauder setting

In this section we complete the proof of Theorem 5.22 and we give the proof of The-
orem 5.27. For Theorem 5.22, it remains to prove statements (a), (b) and (c) in Item
3, see Theorem 5.37 below. In these situations it is more convenient to set the prob-
lem in spaces of continuous functions. This forces us to argue in a Schauder setting
and we rewrite (5.43) as an integral equation. Then we proceed by approximation.

As in (5.57), let Id : Cd(Ω) → C0(Ω) denote the embedding operator, then
(5.43) is equivalent to

u = G K aPu+G I d G f . (5.59)

Definition 5.32. For f ∈C0(Ω) we say that u is a C -solution of (5.43) if u∈Cd(Ω)
satisfies (5.59).

Proposition 5.33. Suppose that Ω is a bounded domain in Rn (n ≥ 2) with ∂Ω ∈
C2 and let a ∈ C0(∂Ω). If f ∈ C0(Ω), then a C -solution of (5.43) is also a weak
solution in the sense of Definition 5.21.

Proof. If f ∈C0(Ω) and u ∈Cd(Ω) then by (5.59) it follows that w = K aPu +
Id G f ∈C0(Ω)⊂ L2(Ω) and hence u = G w ∈ H2∩H1

0 (Ω). Moreover, for such u
and for any v ∈ H2∩H1

0 (Ω) we have
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Ω

∆u ∆v dx =
∫

Ω

(K aPu+G f ) ∆v dx =
∫

∂Ω

auν vν dωx +
∫

Ω

f v dx,

which is precisely (5.44). �

Next, we note that (possibly by changing its sign) the minimiser u1,b for (5.46)
lies in Cd(Ω)+,◦.

Lemma 5.34. Let ∂Ω ∈ C2 and suppose that a ∈ C0(∂Ω) is such that a � δ1,bb.
Then

E a
G := (I −G K aP)−1 G I d G : C0(Ω)→Cd(Ω),

E a
K := (I −G K aP)−1 G K : C0(∂Ω)→Cd(Ω),

are well-defined operators. Moreover, the following holds.

• For f ∈C0(Ω) the unique C -solution of problem (5.43) is u = E a
G f .

• The function u1,b defined in Theorem 5.22 (Item 2) is a positive eigenfunction of
E a

K

(
δ1,bb−a

)
P : Cd(Ω)→ Cd(Ω) with eigenvalue 1. Any other nonnegative

eigenfunction ũ of E a
K

(
δ1,bb−a

)
P satisfies

(
δ1,bb−a

)
P ũ = 0 on ∂Ω .

Proof. By Theorem 5.22 (Item 3) one finds for a� δ1,bb that µ = 1 is not an eigen-
value of the (compact) operator G K aP . Therefore, the operator (I −G K aP)
is invertible in L2(Ω) and hence in Cd(Ω).

• Equation (5.59) reads as u = (I −G K aP)−1 G I d G f .
• One directly checks that u1,b is an eigenfunction of E a

K

(
δ1,bb−a

)
P with

λ = 1 for all a � δ1,bb. By Theorem 5.22 (Item 2), up to its multiples, it is the
unique eigenfunction with λ = 1. Let ũ be another nonnegative eigenfunction of
E a

K

(
δ1,bb−a

)
P corresponding to some eigenvalue λ 6= 1. One finds that λ = 0 if

and only if (δ1,bb−a)P ũ = 0. For λ 6= 0 it holds that

ũ−G K δ1,bbP ũ =
(
λ
−1−1

)
G K (δ1,bb−a)P ũ. (5.60)

We have u1,b, ũ ∈ H2 ∩H1
0 (Ω). This fact allows us to use (5.60) and to find a con-

tradiction in the case that (δ1,bb−a)P ũ	 0. Indeed,

0 =
∫

Ω

∆u1,b ∆ ũ dx−
∫

∂Ω

δ1,bb (u1,b)ν ũν dω

=
∫

Ω

∆u1,b ∆
(
ũ−G K δ1,bbP ũ

)
dx

=
(
λ
−1−1

)∫
Ω

∆u1,b G K (δ1,bb−a)P ũdx

=
(
1−λ

−1)∫
Ω

u1,b K (δ1,bb−a)P ũ dx,

and this last expression has a sign if λ 6= 1. �
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Lemma 5.35. Let ∂Ω ∈C2 and suppose that a∈C0(∂Ω) is such that a� δ1,bb. Let
E a

G and E a
K be as in Lemma 5.34 and suppose that E a

G is a positive operator.

1. Then E a
G , E a

K , PE a
G and PE a

K are strictly positive operators.
2. If ã ∈ C0(∂Ω) is such that a ≤ ã � δ1,bb, then E ã

G ≥ E a
G , E ã

K ≥ E a
K , PE ã

G ≥
PE a

G and PE ã
K ≥PE a

K .
3. If ã ∈ C0(∂Ω) is such that a < ã � δ1,bb, then E ã

G > E a
G , E ã

K > E a
K , PE ã

G >
PE a

G and PE ã
K > PE a

K .

Proof. Assume that 0 � f ∈C0(Ω) and 0 � ϕ ∈C0(∂Ω). Writing ua = E a
G f and

va = E a
K ϕ one gets

(I −G K aP)ua = G I dG f and (I −G K aP)va = G K ϕ.

1. If ua = E a
G f = 0 for f 	 0, then

ua = G K aPua +G I dG f = G I dG f > 0

by the maximum principle, a contradiction. So E a
G positive implies that E a

G is strictly
positive. Since K(x,y∗) = limt↘0 G(x,y∗− tν)/t for x ∈Ω , y∗ ∈ ∂Ω and ν the exte-
rior normal at y∗, we find that positivity of E a

G implies that E a
K is positive. We even

have strict boundary positivity. Indeed, if Pua = 0 then ua = G I dG f and Hopf’s
boundary point lemma gives Pua > 0, a contradiction. A similar argument holds
for va. This proves the first set of claims.
2. Let a≤ ã� δ1,bb. We have

(I −G K aP)uã = G K (ã−a)Puã +G I dG f

and, in turn, since (I −G K aP) is invertible in view of Lemma 5.34,

(I −E a
K (ã−a)P)uã = ua. (5.61)

For ‖ã−a‖L∞(∂Ω) small enough (say ‖ã−a‖L∞(∂Ω) < ε) one may invert the operator
in (5.61) and find an identity with a convergent series, that is

E ã
G = E a

G +
∞

∑
k=1

(E a
K (ã−a)P)k E a

G . (5.62)

Since E a
K (ã−a)P ≥ 0 holds, one finds that uã = E ã

G f ≥ E a
G f = ua. The series

formula (5.62) holds for ‖ã−a‖L∞(∂Ω) < ε . However, if ‖ã−a‖L∞(∂Ω) ≥ ε then the
above argument can be repeated by considering some intermediate a := a0 � a1 �
...� ak := ã such that ‖ai+1−ai‖L∞(∂Ω) < ε for all i. A similar reasoning applies to
vã, va. This proves the second set of claims.
3. Let us consider the sequence (ϕm)⊂Cd(Ω), defined by

ϕ0 = E a
G f ,

ϕm+1 = E a
K

(
δ1,bb−a

)
Pϕm for m≥ 0.



178 5 Positivity and lower order perturbations

Since E a
G f 	 0 we find that ϕm ≥ 0 for all m≥ 0. Moreover, since E a

K

(
δ1,bb−a

)
P

is compact, two cases may occur;
(i) there exists m0 > 0 such that ϕm 	 0 for m < m0 and ϕm = 0 for all m≥ m0;
(ii) ϕm/‖ϕm‖Cd(Ω)→ ϕ∞ where ϕ∞ is a nonnegative eigenfunction (with λ = 1)

of the operator
E a

K

(
δ1,bb−a

)
Pϕ∞ = λϕ∞.

If (i) occurs, then E a
K (δ1,bb− a)Pϕm0 = 0 so that by Item 1 we infer (δ1,bb−

a)Pϕm0 = 0 and hence Pϕm0 = 0. We find a contradiction since as in the proof of
Item 1 it follows that ϕm0 = G I dG ϕm0−1 and Pϕm0 > 0 holds by Hopf’s boundary
point lemma.

Therefore, case (ii) occurs. Then ϕ∞ is a multiple of the unique positive eigen-
function u1,b, see Lemma 5.34. So for m1 large enough we find that there exists
c2 > c1 > 0 such that

c1u1,b ≤
ϕm

‖ϕm‖Cd(Ω)
≤ c2u1,b for all m≥ m1.

Now set
ψ0 = E a

G f , ψm+1 = E a
K (ã−a)Pψm for m≥ 0. (5.63)

Since for some ε > 0 it holds that

ε
(
δ1,bb−a

)
≤ ã−a≤ δ1,bb−a,

we obtain ψm ≥ εmϕm for all m and by (5.63)

ψm ≥ ε
m

ϕm ≥ c1ε
m‖ϕm‖Cd(Ω) u1,b for all m≥ m1.

Then from (5.62) it follows that there exists c3 > 0 such that

E ã
G f ≥ E a

G f + c3u1,b.

In a similar way we proceed with EK , PE G and PE K . �

With the result in Lemma 5.34 it will be sufficient to have positivity preserving
for a negative a ∈ C0(∂Ω) in order to ensure that this property will hold for any
sign-changing ã with a ≤ ã � δ1,bb. So we may restrict ourselves to a ≤ 0. We
now prove a crucial “comparison” statement in the case where G K aP has a small
spectral radius.

Lemma 5.36. Let ∂Ω ∈C2 and assume that 0≥ a ∈C0(∂Ω) is such that

rσ (G K aP) < 1.

If there exists M > 0 such that

G K PG I dG ≤M G I dG , (5.64)
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and if ‖a‖L∞(∂Ω) < M−1, then E a
G > 0.

Proof. Clearly, a = −a−. Since rσ (G K a−P) < 1 the equation (5.59) can be
rewritten as a Neumann series

u =
(
I +G K a−P

)−1
G I dG f =

∞

∑
k=0

(
−G K a−P

)k
G I d G f ,

which reads

u =

(
∞

∑
k=0

(
G K a−P

)2k

)(
I −G K a−P

)
G I d G f (5.65)

after joining the odd and even powers. Next, notice that in view of (5.65) it suffices
to show that the operator (I −G K a−P)G I d G is strongly positive. This fact is
a direct consequence of (5.64) and ‖a−‖L∞(∂Ω) ≤M−1. �

By combining the previous statements, we obtain the following result, which
completes the proof of Item 3 of Theorem 5.22. The proof uses estimates for the
kernels involved and for this reason it seems more suitable to employ a Schauder
setting and to approximate.

Theorem 5.37. There exists δc,b := δc,b(Ω) ∈ [−∞,0) such that the following holds
for a weak solution u of (5.43):

1. for δc,bb≤ a� δ1,bb it follows that if 0� f ∈ L2(Ω), then u	 0;
2. for δc,bb < a � δ1,bb it follows that if 0 � f ∈ L2(Ω), then u ≥ c f d for some

c f > 0 (depending on f ), d being the distance function from (4.1);
3. for a < δc,bb there are 0� f ∈ L2(Ω) with u somewhere negative.

Proof. Let MΩ be as in Proposition 5.31 and put δ :=−(MΩ maxx∈∂B b(x))−1 < 0.
Then by Lemmas 5.34 and 5.36 we infer that

if δb≤ a� δ1,bb and 0� f ∈C0(Ω) then u	 0 in Ω , (5.66)

where u is the unique C -solution of (5.43). Let δc,b be the (negative) infimum of all
such δ which satisfy (5.66). We have so proved that there exists δc,b := δc,b(Ω) ∈
[−∞,0) such that, if δc,bb ≤ a � δ1,bb and 0 � f ∈C0(Ω), then u 	 0, where u is
the C -solution of (5.43). Moreover, if δc,bb < a and 0 � f ∈C0(Ω), then Lemma
5.35 yields the existence of c f such that u≥ c f d. Finally, the above definition of δc,b
shows that, if a < δc,bb, then there are 0 � f ∈C0(Ω) with u somewhere negative.
In view of Proposition 5.33, this proves Item 3.

For Item 1 we use a density argument. Assume that δc,bb ≤ a � δ1,bb and 0 �
f ∈ L2(Ω). Let u∈H2∩H1

0 (Ω) be the unique weak solution of (5.43), according to
Item 3 in Theorem 5.22. Consider a sequence of functions ( fk) ⊂C0(Ω) such that
fk 	 0 for all k ∈ N and fk→ f in L2(Ω) as k→ ∞. Let uk be the C -solution to

∆
2uk = fk in Ω , uk = ∆uk−a

∂uk

∂ν
= 0 on ∂Ω .
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Then, by (5.66), uk 	 0 in Ω for all k. Moreover, by Corollary 2.23, the sequence
(uk) is bounded in H2(Ω) so that, up to a subsequence, it converges weakly and
pointwise to some u ∈ H2∩H1

0 (Ω). By Definition 5.21, we know that∫
Ω

∆uk∆vdx−
∫

∂Ω

a(uk)ν vν dω =
∫

Ω

fkvdx for all v ∈ H2∩H1
0 (Ω).

Therefore, letting k→∞, we deduce that u is a weak solution to the original problem
and

u	 0 in Ω . (5.67)

The proof of Item 2 is more delicate. Assume that δc,bb < a� δ1,bb and 0� f ∈
L2(Ω). Let u ∈ H2∩H1

0 (Ω) be the unique weak solution to (5.43). Let

g(x) := min{1, f (x)}, x ∈Ω ,

and let v ∈ H2∩H1
0 (Ω) be the unique weak solution to{

∆ 2v = g in Ω ,
v = ∆v−avν = 0 on ∂Ω .

Since g≤ f , we deduce by Lemma 5.35 and a density argument that

u≥ v in Ω . (5.68)

Moreover, since g ∈ L∞(Ω), by Corollary 2.23 and Theorem 2.6 we infer that v ∈
C1(Ω).

Let δc,b be as at the beginning of this proof, take a function a0 ∈C0(∂Ω) such
that δc,bb < a0 < a (if δc,b >−∞ one can also take a0 = δc,bb) and consider also the
unique weak solution w to{

∆ 2w = g in Ω ,
w = ∆w−a0wν = 0 on ∂Ω .

Again, we have w ∈ C1(Ω). Since w ≥ 0 in Ω in view of Item 1, we know that
wν ≤ 0 on ∂Ω . Moreover, it cannot be that wν ≡ 0 since otherwise the boundary
condition would imply−∆w = 0 on ∂Ω with−∆w superharmonic in Ω . This would
imply first that −∆w > 0 in Ω and next, by Hopf’s lemma, that wν < 0 on ∂Ω , a
contradiction. Therefore,

ψ := (a0−a)wν 	 0, ψ ∈C0(∂Ω).

Finally, let z := v−w. Then z ∈C1(Ω) and z is the unique weak solution to∆ 2z = 0 in Ω ,
z = 0 on ∂Ω ,
∆z−azν =−ψ on ∂Ω .
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In fact, by Corollary 2.23 and Theorem 2.6, we have that z∈Cd(Ω)+ and z = E a
K ψ .

By Lemma 5.35 we know that E a
K > E a0

K  0 so that there exists c > 0 with

z(x)≥ cd(x). (5.69)

Note that c depends on ψ and therefore also on w. Hence, it depends on f so that
c = c f . By combining (5.68) with (5.69) we obtain

u(x)≥ v(x) = z(x)+w(x)≥ z(x)≥ c f d(x)

and Item 2 follows. �

Proof of Theorem 5.27. We first assume that f ∈C∞
c (B). In this case, by Corollary

2.23 we know that the weak solution u satisfies u∈W 2,p(B) for all p > 1. In turn, by
Theorem 2.6, this proves that u ∈C1(B) and hence ∆u = auν ∈C0(∂B). Therefore,
Theorems 2.19 and 2.25 yield u ∈C∞(B)∩C2(B). In particular, by Lemma 5.34, u
is a C -solution.

Consider the auxiliary function φ ∈C∞(B)∩C0(B) defined by

φ(x) = (|x|2−1)∆u(x)−4x ·∇u(x)−2(n−4)u(x) for x ∈ B.

Since x = ν and u = 0 on ∂B, we have

φ =−4uν on ∂B. (5.70)

Moreover, for x ∈ B we have

∇φ = (2∆u)x+(|x|2−1)∇∆u+2(2−n)∇u−4D2u · x , (5.71)

−∆φ = (1−|x|2) f (x)≥ 0, (5.72)

where D2u denotes the Hessian matrix of u. By (5.71) we find

φν = 2∆u+2(2−n)uν −4〈ν ,D2u ·ν〉 on ∂B.

Since 〈ν ,D2u ·ν〉= uνν , by recalling that u = 0 on ∂B and using the expression of
∆u on the boundary, the previous equation reads φν =−2∆u+2nuν . Finally, taking
into account the second boundary condition in (5.43), we obtain

φν = 2(n−a)uν on ∂B. (5.73)

So, combining (5.70), (5.72) and (5.73) we find that φ satisfies the second order
Steklov boundary value problem{

−∆φ = (1−|x|2) f ≥ 0 in B,
φν + 1

2 (n−a)φ = 0 on ∂B.



182 5 Positivity and lower order perturbations

As a� n, by the maximum principle (for this second order problem!) we infer that
φ > 0 in B and hence by (5.70) that uν ≤ 0 on ∂B. By (2.65) and Proposition 5.11,
we deduce that u > 0 in B whenever 0� f ∈C∞

c (B).
Assume now that 0 � f ∈ L2(B) and let u ∈ H2 ∩H1

0 (B) be the unique weak
solution to (5.43), according to Definition 5.21. Then the same density argument
leading to (5.67) shows that u	 0 in B. Hence, by Corollary 5.24 3.(c), we infer that
δc = −∞. In turn the lower bound u(x) ≥ cd(x) in B follows from Corollary 5.24,
part 3.(b). �

5.5 Bibliographical notes

The lower order perturbation theory of positivity was developed in [210], see also
[204]. These results are based on Green function estimates, 3-G-theorems and
Neumann series. This strategy was used e.g. by Chung, Cranston, Fabes, Hueber,
Sieveking, Zhao [97, 114, 233, 420, 421] in the context of Schrödinger operators
and conditioned Brownian motion and e.g. by Mitidieri-Sweers [309, 383, 384] to
study positivity in noncooperatively coupled second order systems.

The discussion of the local maximum principle and of the role of boundary data
follows [209, 211]. The underlying formulae for the Poisson kernels for the bihar-
monic Dirichlet problem go back to Lauricella-Volterra [268, 402] and were col-
lected in the book [323] by Nicolesco. For the polyharmonic Poisson kernels we
refer to Edenhofer [158, 159]. Estimates as in Lemmas 5.8 and 5.9 were proved in
a more general setting but under more restrictive assumptions on the coefficients by
Krasovskiı̆ [255, 256]. A local maximum principle for fourth order operators was
first deduced by Tomi [395].

For the positivity preserving property of the biharmonic Steklov boundary value
problem (5.43), we follow Gazzola-Sweers [191], where one can also find a dis-
cussion on existence and positivity of the solution to (5.43) when a− δ1 changes
sign on ∂Ω . Moreover, in [191] one can also find a different proof of Theorem 5.27
which is strongly based on the behaviour of the biharmonic Green function for the
Dirichlet problem, see (2.65). Corollary 5.23 is due to Parini-Stylianou [331]. We
also refer to [42, 44] for some related nonlinear problems and for a first attempt to
describe the positivity preserving property for (5.43).



Chapter 6
Dominance of positivity in linear equations

In Section 1.2 we mentioned that although the Green function G∆ 2,Ω for the clamped
plate boundary value problem{

∆ 2u = f in Ω ,
u = |∇u|= 0 on ∂Ω ,

(6.1)

is in general sign changing, it is very hard to display its negative part in numerical
simulations or in real world experiments. Moreover, numerical work in nonlinear
elliptic fourth order equations suggests that maximum or comparison principles are
violated only to a “small extent”. Nevertheless, we do not yet have tools at hand to
give this feeling a precise form and, in particular, a quantitative form which might
prove to be useful also for nonlinear higher order equations.

This chapter may be considered as a first preliminary step in this direction. We
study the negative part of the biharmonic Green function G−

∆ 2,Ω
and show that it

is small when compared with its positive part G+
∆ 2,Ω

. For a precise formulation see
Theorems 6.15 and 6.24 and the subsequent interpretations. We emphasise that these
are not just continuous dependence on data results. Green’s functions are families of
functions with the position of the pole as a parameter and the main problem consists
in gaining uniformity with respect to the position of the pole when it approaches the
boundary. In proving these results, one has to distinguish between the dimensions
n = 2 and n ≥ 3. The second case seems to be much simpler and is carried out in
detail. We are confident that the arguments can be extended to fourth order operators
where the principal part is a square of a second order operator and which may con-
tain also lower order perturbations. Uniformity with respect to unbounded families
of such perturbations can, however, in general not be expected. The proof (n ≥ 3)
heavily relies on uniform Krasovskiı̆-type estimates for biharmonic Green’s func-
tions G∆ 2,Ω in general domains, which are deduced in Section 4.5. Local positivity
results from Section 6.3 are used as an essential first step which, in the particular
case n = 3, were observed first by Nehari [322]. Although in the two-dimensional
case one has holomorphic maps at hand, the result there requires a much more in-
volved proof, which we sketch in Section 6.2.2 and where for details we refer to

183
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the literature [117]. This proof is based on the explicit biharmonic Green functions
in the “limaçons de Pascal”, on carefully putting together parts of boundaries of
several prototype domains and delicate asymptotic estimates.

A second main objective of this chapter is to show that positivity of the bihar-
monic Green function G∆ 2,B in the unit ball B ⊂ Rn is not just a singular event but
remains true under small C4,γ -smooth perturbations Ω of B. For n ≥ 3 see Theo-
rem 6.29; its proof is quite similar to that of the small negative part result mentioned
before. For n = 2, see Theorem 6.3. Here we build on the lower order perturbation
theory developed in Theorem 5.1 and benefit from holomorphic maps and reduction
to normal form. These tools are special for n = 2 and allow for considering also
any m-th power of a regular second order elliptic operator being close enough to the
polyharmonic prototype (−∆)m in domains Ω close enough to the unit disk. Having
such a perturbation theory of positivity is remarkable since, again, this is not just a
continuous dependence on data result.

6.1 Highest order perturbations in two dimensions

In two dimensions also perturbations of highest order of the polyharmonic prototype
may be taken into account. Here we consider{

Lu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,
(6.2)

with

Lu :=

(
−

2

∑
i, j=1

ãi j(x)
∂ 2

∂xi∂x j

)m

u+ ∑
|β |≤2m−1

aβ (x)Dβ u, (6.3)

where ãi j = ã ji ∈C2m−1,γ(Ω), aβ ∈C0,γ(Ω). In view of the maximum principle for
second order operators we assume throughout the whole chapter that

m≥ 2.

First we define an appropriate notion of closeness for domains and operators.

Definition 6.1. We assume that Ω \ and Ω are bounded Ck,γ -smooth domains. Let
ε ≥ 0. We call Ω ε-close to Ω \ in Ck,γ -sense, if there exists a Ck,γ -mapping g : Ω \→
Ω such that g(Ω \) = Ω and

‖g− Id‖Ck,γ (Ω \) ≤ ε.

We remark that if k≥ 1, Ω \ is convex and ε is sufficiently small, then g−1 ∈Ck,γ(Ω)
exists and ‖g−1− Id‖Ck,γ (Ω) = O(ε) as ε → 0.
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Definition 6.2. Let ε ≥ 0 and assume that L is as in (6.3). We call the operator L
ε-close to (−∆)m in Ck,γ -sense, if (in the case k ≥ 2m) additionally ãi j ∈ Ck,γ(Ω)
and

‖ãi j−δi j‖Ck,γ (Ω) ≤ ε,

‖aβ‖C0(Ω) ≤ ε for |β | ≤ 2m−1.

If ε ≥ 0 is small, then L is uniformly elliptic.

The following is the main perturbation result if n = 2.

Theorem 6.3. There exists ε0 = ε0(m) > 0 such that we have for 0≤ ε ≤ ε0:
If the bounded C2m,γ -smooth domain Ω ⊂R2 is ε-close to the unit disk B in C2m,γ -

sense and if the differential operator L is ε-close to (−∆)m in C2m−1,γ -sense, then
for every f ∈ C0,γ(Ω) satisfying f 	 0 the solution u ∈ C2m,γ(Ω) to the Dirichlet
problem (6.2) is strictly positive, namely

u > 0 in Ω .

Remark 6.4. 1. Let Ea,b be an ellipse with half axes a,b > 0. In case of small eccen-
tricity, i.e. a

b ≈ 1, Green’s function for ∆ 2 in Ea,b is positive. For larger eccentric-
ity, e.g. a

b ≈ 1.2, it changes sign according to the example of Garabedian [176]
and the refined version by Hedenmalm, Jakobsson, and Shimorin in [226].

2. The proof of Theorem 6.3 suggests that ε0(m)↘ 0 for increasing m↗ ∞.
3. As long as one restricts to the polyharmonic operator (−∆)m in perturbed do-

mains, it was shown by Sassone [358] that Cm,γ -closeness to the disk is suffi-
cient. In case of the clamped plate equation this means that positivity is governed
by closeness of the boundary curvature to a constant with respect to a Hölder
norm. We think that also in the case of perturbed principal parts, the required
closeness to the polyharmonic operator may be relaxed. But we expect that such
a relaxation will require a big technical effort. In particular, all problems should
be written in divergence form and one should refer to Cm,γ -Schauder-theory for
operators in divergence form.

4. We recall that Theorem 6.3 cannot be proved by just referring to continuous
dependence on data.

5. According to Jentzsch’s [236] or Kreı̆n-Rutman’s [257] theorem, see Theo-
rem 3.3, positivity of the Green function implies existence of a positive first
eigenfunction. A somehow stronger result was proved in [212], which was al-
ready briefly mentioned in Section 3.1.3. Assume that (Ωt)t≥0 is a C2m+1-smooth
family of domains with Ω0 = B. Assume further that transition from positivity of
G(−∆)m,Ωt to sign change may be observed and let tg be the largest parameter such
that G(−∆)m,Ωt > 0 for t ∈ [0, tg). Then for some ε > 0 and for all t ∈ [0, tg +ε), the
first polyharmonic eigenvalue in Ωt is still simple and the corresponding eigen-
function may be chosen strictly positive.
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In order to prove Theorem 6.3 we proceed in three steps.

1. First, we consider ãi j = δi j and domains Ω which are close to the disk in a confor-
mal sense. In this case the claim can be proved by using conformal maps which
leave the principal part (−∆)m invariant. The pulled back differential equation
is a lower order perturbation of the polyharmonic equation and Theorem 5.4 is
applicable. See Lemma 6.5 below.

2. Next we employ a quantitative version of the Riemannian mapping theorem.
Conformal maps B→ Ω enjoy a representation based on the harmonic Green
function in Ω . This representation allows to apply elliptic theory in order to con-
clude “conformal closeness” from “differentiable closeness”. See Lemma 6.6.

3. The theory of normal forms for second order elliptic operators allows to trans-
form the leading coefficients ãi j into δi j thereby giving rise to a further “small”
perturbation of the domain Ω . See Lemma 6.7.

Only in two dimensions, the theory of normal forms is available and, moreover,
sufficiently many conformal maps exist to deform suitable domains into the unit
disk. In higher dimensions, the only conformal maps are Möbius transforms, which
map balls onto balls or half spheres.

6.1.1 Domain perturbations

Lemma 6.5. There exists ε1 = ε1(m) > 0 such that the following statement holds
true. Let Ω be a simply connected bounded C2m,γ -smooth domain. For the differ-
ential operator L in (6.3), we assume that ãi j = δi j. Moreover, let h : B→ Ω be a
biholomorphic map with h ∈C2m,γ(B), h−1 ∈C2m,γ(Ω).

If ‖h− Id‖C2m−1(B) ≤ ε1 and ‖aβ‖C0(B) ≤ ε1 for all |β | ≤ 2m−1, then the Green
function GL,Ω for the boundary value problem (6.2) in Ω exists and is positive.

Proof. In the disk B, the corresponding result is given in Theorem 5.4. In order to
apply this theorem also to the boundary value problem (6.2) in Ω , it has to be “pulled
back” to the disk. The crucial point is that conformal maps leave the principal part
(−∆)m invariant and yield only additional terms of lower order.

Let ε := max
{

max|β |≤2m−1 ‖aβ‖C0(Ω),‖h− Id‖C2m−1(B)

}
be sufficiently small.

For the pulled back solution v : B→ R, v(x) := u(h(x)), using

∆v(x) =
1
2
|∇h(x)|2

(
(∆u)◦h

)
(x),

the boundary value problem
(
− 2

|∇h|2
∆

)m

v+ ∑
|β |≤2m−1

âβ Dβ v = f ◦h in B,

Dα v|∂B = 0 for |α| ≤ m−1,
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has to be considered with suitable coefficients âβ ∈ C0,γ(B), ‖âβ‖C0(B) = O(ε).

Computing
(
− 2
|∇h|2

∆

)m
yields additional coefficients Dµ

(
1
|∇h|2

)
with 0 < |µ| ≤

2m−2 for the lower order terms. The leading term becomes ( 2
|∇h|2 )m (−∆)mv. Here,

‖ 2
|∇h|2 −1‖C2m−2(B) = O(ε). So, we obtain the boundary value problem (−∆)m v+ ∑

|β |≤2m−1
ãβ Dβ v = f̃ in B,

Dα v|∂B = 0 for |α| ≤ m−1,

with f̃ :=
(
|∇h|2

2

)m
f ◦h and suitable coefficients ãβ ∈C0,γ(B), which obey the es-

timate ‖ãβ‖C0(B) = O(ε). Obviously, f 	 0 in Ω is equivalent to f̃ 	 0 in B. Hence,
for sufficiently small ε all statements of Theorem 5.4 carry over to the boundary
value problem (6.2). �

The Riemannian mapping theorem, combined with the Kellogg-Warschawski
theorem, see e.g. [344], shows existence of conformal maps which satisfy the qual-
itative assumptions of Lemma 6.5. Observe that here the assumptions on the domain
in Lemma 6.5 are to be used. However, even in very simple domains it may be ex-
tremely difficult to give an explicit expression for the conformal map h : B→ Ω

and even more difficult to check explicitly the smallness condition imposed on
‖h− Id‖C2m−1(B). For ellipses such maps were constructed in [366] by means of
elliptic functions.

So, Lemma 6.5 is not very useful yet. However, the next lemma gives a general
abstract result that “differentiable closeness” always implies “conformal closeness”.

Lemma 6.6. For any ε1 > 0 there exists ε2 = ε2(m,ε1) > 0 such that for 0≤ ε ≤ ε2
we have:

If the C2m,γ -smooth domain Ω is ε-close to B in C2m-sense, then there exists a
biholomorphic map h : B→Ω , h ∈C2m,γ(B), h−1 ∈C2m,γ(Ω) with

‖h− Id‖C2m−1(B) ≤ ε1.

Proof. Let g : B→Ω be a map according to Definition 6.1 with ε := ‖g− Id‖C2m(B).
In what follows we always assume ε ≥ 0 to be sufficiently small. In particular, Ω is
then simply connected and bounded, and 0 ∈Ω .

According to [112], see also [383, Sect. 4.2], a biholomorphic map h : B→ Ω

such that h ∈C2m,γ(B), h−1 ∈C2m,γ(Ω) may be constructed as follows.
Let G−∆ ,Ω be the Green function of −∆ in Ω under Dirichlet boundary condi-

tions. For x ∈Ω , we set
w(x) := 2πG−∆ ,Ω (x,0)

and introduce the conjugate harmonic function
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w∗(x) :=
∫ x

1/2

(
− ∂

∂ξ2
w(ξ )dξ1 +

∂

∂ξ1
w(ξ )dξ2

)
.

Here, the integral is taken along any curve from the complex number 1
2 to x =

x1 + ix2 in Ω \ {0}. The function w∗ is well-defined up to integer multiples of 2π .
Identifying R2 and C, by means of

h−1(x) := exp(−w(x)− iw∗(x)) , x ∈Ω ,

we obtain a well-defined holomorphic map Ω → B enjoying the required qualitative
properties. Moreover, h−1(0) = 0 and 1

2 is mapped onto the positive real half axis.
The Green function G−∆ ,Ω is given by

G−∆ ,Ω (x,0) =− 1
2π

(log |x|− r(x)) , x ∈Ω ,

where r : Ω → R solves the boundary value problem{
∆r = 0 in Ω ,

r(x) = ϕ(x) on ∂Ω , ϕ(x) := log |x|.

It is sufficient to show that

‖r‖C2m−1(Ω) = O(ε), (6.4)

because by virtue of

h−1(x) = x · exp(−r(x)− ir∗(x)) , x ∈Ω ,

one obtains ‖h−1− Id‖C2m−1(Ω) = O(ε) and finally ‖h− Id‖C2m−1(B) = O(ε). Here,
the estimate ‖r‖C0(Ω) = O(ε) is an obvious consequence of the maximum principle.

We assume first that ϕ|∂Ω may be extended by ϕ̂ ∈C2m(Ω) in such a way that

‖ϕ̂‖C2m(Ω) = O(ε) (6.5)

holds true. The Schauder estimates of Theorem 2.19 then give ‖r‖C2m−1,γ (Ω) = O(ε)
and (6.4) is proved. Here, one should observe that thanks to the ε–closeness of Ω to
B in C2m-sense and m ≥ 2, for all small enough ε > 0 the estimation constants can
be chosen independently of ε .

Hence it remains to show that extensions ϕ̂ of ϕ|∂Ω satisfying (6.5) indeed exist.
For this purpose, only the “tangential derivatives” of ϕ|∂Ω have to be estimated.
This means that it is enough to consider the boundary data being parametrised with
the help of the maps g|∂B : ∂B→ ∂Ω and R 3 t 7→ (cos t,sin t) ∈ ∂B:

ψ(t) := ϕ (g(cos t,sin t)) .

For this map, we show that



6.1 Highest order perturbations in two dimensions 189

max
j=0,...,2m

max
t∈R

∣∣∣∣∣
(

d
dt

) j

ψ

∣∣∣∣∣= O(ε). (6.6)

Indeed, for j = 0 this is due to ‖g− Id‖C0(B) = O(ε) and | log(1 + ε)| = O(ε). We
set g̃(t) = g(cos t,sin t), g̃ : R→ ∂Ω . For j ≥ 1 a general chain rule shows that(

d
dt

) j

ψ =
(

d
dt

) j

(ϕ ◦ g̃)

=
j

∑
|β |=1

((
Dβ

ϕ

)
◦ g̃
) ∑

p1+...+p|β |= j
p1,...,p|β |≥1

d j,β ,p

|β |

∏
`=1

(
d
dt

)p`

g̃(µ`)


with suitable coefficients d j,β ,p, p = (p1, . . . , p|β |). The coefficient µ` refers to the
component of g̃ and is chosen as µ` = 1 for ` = 1, . . . ,β1 and µ` = 2 for ` = β1 +
1, . . . , |β | = β1 + β2. To show that this huge sum is indeed O(ε), we observe that
it is equal to 0, provided Ω = B and g = Id. So we put g̃0(t) = Id ◦ (cos t,sin t) =
(cos t,sin t) and compare corresponding terms. We obtain(

d
dt

) j

ψ =
j

∑
|β |=1

((
(Dβ

ϕ)◦ g̃− (Dβ
ϕ)◦ g̃0

)
+(Dβ

ϕ)◦ g̃0

)

×

 ∑
p1+...+p|β |= j
p1,...,p|β |≥1

d j,β ,p

|β |

∏
`=1

(((
d
dt

)p`

g̃(µ`)−
(

d
dt

)p`

g̃(µ`)
0

)
+
(

d
dt

)p`

g̃(µ`)
0

) .

As already mentioned, thanks to ϕ (g̃0(t)) = log |(cos t,sin t)| ≡ 0 the sum taken over
all the terms which contain only g̃0 and no differences, equals 0. In the remaining
sum, each term contains at least one factor of the type

(Dβ
ϕ)◦ g̃− (Dβ

ϕ)◦ g̃0 or
(

d
dt

)p` (
g̃(µ`)− g̃(µ`)

0

)
.

For ε → 0 each of these factors is O(ε), and the remaining factors are uniformly
bounded independently of ε . This proves (6.6) and the claim of the lemma. �

6.1.2 Perturbations of the principal part

We define

L0u :=−
2

∑
i, j=1

ãi j(x)
∂ 2u

∂xi∂x j
, ãi j = ã ji ∈C2m−1,γ(Ω), (6.7)



190 6 Dominance of positivity in linear equations

the second order elliptic operator whose m-th power forms the principal part of the
operator L in (6.3) under investigation. By means of a suitable coordinate transfor-
mation (x1,x2) 7→ (ξ1,ξ2), Ω →Ω \, (6.7) can be reduced to normal form

L̃0v =−A(ξ )∆v−B1(ξ )
∂v
∂ξ1
−B2(ξ )

∂v
∂ξ2

,

see e.g. [177, pp.66-68]. In this way, the operator L is transformed into an opera-
tor L̃ where Lemma 6.5 becomes applicable. We check that L̃ remains “close” to
(−∆)m and Ω \ “close” to B, if the same holds for L and Ω , respectively. The new
coordinates ξ1 = ϕ(x1,x2), ξ2 = ψ(x1,x2) satisfy the Beltrami system in Ω , namely

∂ϕ

∂x1
=

ã21ψx1 + ã22ψx2√
ã11ã22− ã2

12

,
∂ϕ

∂x2
=−

ã11ψx1 + ã12ψx2√
ã11ã22− ã2

12

. (6.8)

Assume that we have already found a bijective, at least twice differentiable trans-
formation

Φ = (ϕ,ψ) : Ω →Ω
\. (6.9)

Then as in [177] one finds that

L0u =
(
L̃0v
)
◦Φ , (6.10)

where we put

v(ξ1,ξ2) = u◦Φ
−1(ξ1,ξ2),

A(Φ(x)) = ã11(x)ϕ2
x1

+2ã12(x)ϕx1ϕx2 + ã22(x)ϕ2
x2

= ã11(x)ψ2
x1

+2ã12(x)ψx1ψx2 + ã22(x)ψ2
x2

> 0,

B1 (Φ(x)) = ã11(x)ϕx1x1 +2ã12(x)ϕx1x2 + ã22(x)ϕx2x2 ,

B2 (Φ(x)) = ã11(x)ψx1x1 +2ã12(x)ψx1x2 + ã22(x)ψx2x2 .

(6.11)

We determine ψ as solution of the boundary value problem
∂

∂x1

 ã11ψx1 + ã12ψx2√
ã11ã22− ã2

12

+
∂

∂x2

 ã21ψx1 + ã22ψx2√
ã11ã22− ã2

12

= 0 in Ω ,

ψ(x) = x2 on ∂Ω ,

(6.12)

and then construct ϕ with the help of the Beltrami equations (6.8) and the normali-
sation ϕ(0) = 0.

In this special situation, the required results for the transformation Φ can be
easily proved directly.

Lemma 6.7. Let ε2 > 0. Then there exists ε3 = ε3(m,ε2) such that for 0 ≤ ε ≤ ε3
the following holds true.
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Assume that the domain Ω is C2m,γ -smooth and ε-close to B in C2m-sense. Let
the operator L of (6.3) be ε-close to (−∆)m in C2m−1,γ -sense. Then we have for the
transformation Φ : Ω →Ω \ = Φ(Ω) defined in (6.8), (6.9) and (6.12), that

• Φ is bijective, Φ ∈C2m,γ(Ω), Φ−1 ∈C2m,γ(Ω \),
• Ω \ is ε2-close to B in C2m-sense.

Putting v := u◦Φ−1, see (6.11), the boundary value problem{
Lu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,

is transformed into {
L̂v = A−m ( f ◦Φ

−1) in Ω \,

Dα v|
∂Ω \ = 0 for |α| ≤ m−1.

Here L̂v = (−∆)mv+∑|β |≤2m−1 âβ ( .)Dβ v with suitable coefficients âβ ∈C0,γ(Ω \)
such that for all |β | ≤ 2m−1 the smallness condition

‖âβ‖C0(Ω \) ≤ ε2

is satisfied.

Proof. We may assume ε to be sufficiently small and in particular Ω to be bounded
and uniformly convex. First we consider the boundary value problem (6.12), which
is uniformly elliptic thanks to ‖ãi j−δi j‖C2m−1,γ (Ω) ≤ ε with coefficients in the space
C2m−1,γ(Ω). Since Ω is C2m,γ -smooth, elliptic theory (see Theorem 2.19) shows the
existence of a solution ψ ∈ C2m,γ(Ω) to (6.12). At the same time, this differential
equation is the integrability condition for (6.8) in the convex domain Ω . This shows
that a solution ϕ ∈C2m,γ(Ω) of the Beltrami system (6.8) with ϕ(0) = 0 exists.

Next we investigate Φ = (ϕ,ψ) quantitatively. For this purpose we consider the
auxiliary function Ψ(x) := ψ(x)− x2 that solves the boundary value problem

∂

∂x1

 ã11Ψx1 + ã12Ψx2√
ã11ã22− ã2

12

+
∂

∂x2

 ã21Ψx1 + ã22Ψx2√
ã11ã22− ã2

12


=− ∂

∂x1

 ã12√
ã11ã22− ã2

12

− ∂

∂x2

 ã22√
ã11ã22− ã2

12

=: F(x1,x2) in Ω ,

Ψ |∂Ω = 0,
(6.13)

where
F = O(ε) in C2m−2,γ(Ω).

Schauder estimates for higher order norms as in Theorem 2.19 yield
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‖ψ− x2‖C2m,γ (Ω) = ‖Ψ‖C2m,γ (Ω) ≤C‖F‖C2m−2,γ (Ω),

‖ψ− x2‖C2m(Ω) ≤ C‖F‖C2m−2,γ (Ω). (6.14)

Here one should observe that the C2m−1,γ(Ω)-norms of the coefficients in (6.13)
are bounded independently of ε; the ellipticity constants are uniformly close to 1.
Finally, by means of the uniform C2m-closeness of the domains to the disk B we
may choose an estimation constant in (6.14) being independent of Ω . Taking also
(6.8) into account we conclude that

‖Φ− Id‖C2m(Ω) = O(ε), (6.15)

thereby proving the bijectivity of Φ , the qualitative statements on Φ−1 and Ω \ =
Φ(Ω), as well as

‖Φ−1− Id‖C2m(Ω \) = O(ε). (6.16)

We still have to study the properties of the transformed differential operator L̂.
From (6.10) it follows that

Lu = Lm
0 u+ ∑

|β |≤2m−1
aβ Dβ u

=

{
L̃m

0 v+ ∑
|β |≤2m−1

(
aβ ◦Φ

−1) (Dβ (v◦Φ)
)
◦Φ

−1

}
◦Φ

=

{
L̃m

0 v+ ∑
|β |≤2m−1

ãβ Dβ v

}
◦Φ =:

(
Am L̂v

)
◦Φ .

Here the new coefficients ãβ contain additional derivatives of Φ of order at most
(2m−1) and hence ‖ãβ‖C0(Ω \) = O(ε). Finally, L̃0v =−A∆v−B1

∂v
∂ξ1
−B2

∂v
∂ξ2

, so
we still need to show that

‖A−1‖C2m−2(Ω \) = O(ε), ‖B j‖C2m−2(Ω \) = O(ε).

Observing the definition (6.11) of A,B1,B2, this follows from the properties (6.15)
and (6.16) of Φ and the assumptions on the coefficients ãi j. �

Proof of Theorem 6.3. It follows by combining Lemmas 6.5-6.7. �

Remark 6.8. Similarly as in Section 5.2, also here one has results on the qualita-
tive boundary behaviour of solutions. Using the theory of maps described above
and referring to Theorem 5.7 instead of Theorem 5.4, the claim of Theorem 5.7 on
the m-th order boundary derivatives of the solution remains true also under the as-
sumptions of Theorem 6.3, while the Dirichlet boundary data have to be prescribed
homogeneously.

On the other hand, if one wants to study the influence of the sign of Dm−1u|∂Ω on
the sign of the solution in Ω , while the first (m−2) derivatives on ∂Ω are prescribed
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homogeneously, one has to ensure that the assumptions of Theorem 6.3 are satisfied
by the (formally) adjoint operator L∗. This means that if we assume that Ω is close
to B in C2m-sense, L close to (−∆)m in C2m-sense, aβ ∈ C|β |(Ω) and ‖aβ‖C|β |(Ω)
small, then the conclusions of Theorem 5.6 remain true.

Our methods are not suitable to carry over further statements of Section 5.2 on
the influence of u|∂B on the sign of u in B to the situation of Theorem 6.3. This is
because in the relevant result Theorem 5.15, only perturbations of order (m−2) can
be treated, while terms of order (m− 1) may indeed arise. However, in the special
case of the polyharmonic operator, using Sassone’s paper [358], we expect that a
positivity result with respect to the two highest order boundary data may also be
shown in domains Ω being a sufficiently small perturbation of the disk.

6.2 Small negative part of biharmonic Green’s functions in two
dimensions

We come back to the question raised in Section 1.2 whether the negative part of
the biharmonic Green function is small in a suitable sense when compared with its
positive part. In two dimensions, we have a family of domains – among which are
even nonconvex ones – with positive Green’s functions. These limaçons de Pascal
are discussed first and serve as a basis to give a first answer to the question just
mentioned.

6.2.1 The biharmonic Green function on the limaçons de Pascal

Lemma 6.5 does not supply us with a reasonable bound for the perturbation in or-
der to have a positive Green function. Hadamard found an explicit formula for the
biharmonic Green function on any limaçon. As already mentioned in Section 1.2 he
claimed in [222] that these Green functions were all positive. Although this claim
is wrong, his formula allowed Dall’Acqua and Sweers [120] to show that the Green
functions for a sufficiently large class of limaçons are indeed positive. We define the
filled limaçon by

Ωa = (−a,0)+
{
(ρ cosϕ,ρ sinϕ) ∈ R2; 0≤ ρ < 1+2acosϕ

}
. (6.17)

For a ∈
[
0, 1

2

]
the boundary is defined by ρ = 1 + 2acosϕ; for a = 0 it is the unit

circle and for a = 1
2 one finds the cardioid. In Figure 1.2 in Section 1.2, images are

shown of these limaçons which are rotated by 1
2 π .

Proposition 6.9. The biharmonic Green function for Ωa with a ∈
[
0, 1

2

]
is positive

if and only if a ∈
[
0, 1

6

√
6
]
.



194 6 Dominance of positivity in linear equations

Before proving this result we fix some preliminaries that will give us additional
information on what happens when positivity breaks down. To do so, we fix the
conformal map ha : B = Ω0→Ωa that maps the unit disk on the perturbed domains
and that keeps the horizontal axis on the horizontal axis. In complex coordinates it
is defined as follows

ha (η) = η +aη
2.

The Green function on Ωa is defined through the coordinates on B; see Figure 6.1
for these curvilinear coordinates. We remark that according to Loewner [278] the
only conformal maps which leave the biharmonic equation invariant are the Möbius
transforms.

Fig. 6.1 Transformed polar coordinates corresponding to ha.

Let us write
ha (η) = x1 + ix2 and ha (ξ ) = y1 + iy2

and

r = |η−ξ | , R =
∣∣1−ηξ̄

∣∣ and s =
∣∣∣∣η +ξ +

1
a

∣∣∣∣ .
The formula Hadamard presents in [222] using these coordinates is

GΩa (x,y) = 1
16π

a2s2r2

(
R2

r2 −1− log
(

R2

r2

)
− a2

1−2a2
R2

s2
r2

R2

(
R2

r2 −1
)2
)

.

To verify that this is indeed the biharmonic Green function for Ωa requires some
tedious calculations which can be found in [120]. By setting

F (β ,q) = q−1− logq−β
(q−1)2

q
(6.18)

one obtains that
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GΩa (x,y) = 1
16π

a2s2r2F (β ,q) ,

and that the Green function GΩa (x,y) is positive if and only if F (β ,q) is positive
for all the appropriate values of

β =
a2

1−2a2
R2

s2 and q =
R2

r2 .

One has q∈ [1,∞] and moreover, for x→ y∈Ωa one finds that q→∞ and for x→ x∗

or y→ y∗ with x∗,y∗ ∈ ∂Ωa and x∗ 6= y∗ it follows that q→ 1.

Lemma 6.10. The function q 7→ F (β ,q) : [1,∞)→ R has the following properties.
It has a double zero for q = 1 and

• if 0 < β ≤ 1
2 , then it is positive on (1,∞) and convex;

• if 1
2 < β < 1, then there is qβ > 1 such that the function is negative on

(
1,qβ

)
and positive on

(
qβ ,∞

)
;

• if β ≥ 1, then the function is negative on (1,∞).

Proof. Let us first give the derivatives

∂

∂q
F (β ,q) =

q−1
q

(
1−β

q+1
q

)
and

∂ 2

∂q2 F (β ,q) =
q−2β

q3 .

One finds stationary points q = 1 and q = qβ := β/(1−β ) with qβ > 1 only if

β ∈
( 1

2 ,1
)
. From ∂ 2

∂q2 F (β ,q) < 0 for q < 2β and ∂ 2

∂q2 F (β ,q) > 0 for q > 2β the
claim follows. �

0 < Β < 1�2

q

FH Β,qL Β = 0

Β = 1�2

Fig. 6.2 Only the functions q 7→ F(β ,q) in the shaded area produce positive Green functions

Remark 6.11. For η = ξ̄ =−2a+ i
√

1−4a2 one finds

β =
4a4

(1−2a2)(1−4a2)
and q = 1. (6.19)
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Since β and q are continuous functions of η and ξ for ξ 6= η ∈ B, a necessary
condition for positivity is

4a4

(1−2a2)(1−4a2)
≤ 1

2
.

For a ∈
[
0, 1

2

]
this last inequality is equivalent to a ∈

[
0, 1

6

√
6
]
.

For a ∈ ( 1
6

√
6,1/2] this disproves a claim by Hadamard [222], according to

which the clamped plate problem is positivity preserving for all limaçons.

In order to find a positive Green function it is hence sufficient to show that β ≤ 1
2 ,

which is in its turn guaranteed when, for a ∈
[
0, 1

6

√
6
]
, the following holds for all

η ,ξ ∈ B:
2a4 ∣∣1−ηξ̄

∣∣2 ≤ (1−2a2) |1+a(η +ξ )|2 .

Setting η1 = Reη , η2 = Imη and ξ1 = Reξ , η2 = Imη and 〈η ,ξ 〉 = η1ξ1 + η2ξ2,
this condition can be rewritten as

β̃ (η ,ξ )≤ 0, (6.20)

where β (η ,ξ ) is defined by

β̃ (η ,ξ )

:= 2a4
(

1+ |η |2
)(

1+ |ξ |2
)
−
((

1−2a2)(1+2a(η1 +ξ1))+a2 |η +ξ |2
)
.

In order to show β ≤ 1
2 on B2 we may restrict ourselves to check (6.20) only for

certain pairs (η ,ξ ) ∈ B2. For the limaçons the next lemma confirms the conjecture
that sign change under smooth perturbations of the domain starts from the boundary.

Lemma 6.12. Let η ,ξ ∈ B. It holds that β̃ (η ,ξ )≤ β̃ (χ, χ̄) for χ ∈ B satisfying

|χ| ≥max(|η | , |ξ |) and Reχ =
1
2

Re(η +ξ ) .

Proof. The left term of (6.20) increases when η and ξ are replaced by χ and χ̄ . At
the same time the right term decreases since

|η +ξ |2 = (η1 +ξ1)
2 +(η2 +ξ2)

2 ≥ (η1 +ξ1)
2 = |χ + χ̄|2 .

�

Lemma 6.13. β
(
eiϕ ,e−iϕ

)
≤ 1

2 for all ϕ ∈ [0,π] if and only if a ∈
[
0, 1

6

√
6
]
.

Proof. The inequality (6.20) with η = eiϕ and ξ = e−iϕ is equivalent to(
1−2a2)(1+4acosϕ)+4a2 (cosϕ)2−8a4 ≥ 0.
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The minimum of fa(t) =
(
1−2a2

)
(1+4a t)+4a2t2−8a4 is assumed for

ta =
1−2a2

−2a
.

Only when a ∈
[ 1

2

(√
3−1

)
, 1

2

]
one finds ta ≥ −1. Hence for a ∈

[
0, 1

2

(√
3−1

)]
the function fa on [−1,1] has its minimum in −1 and(

1−2a2)(1+4acosϕ)+4a2 (cosϕ)2−8a4 ≥ (2a−1)2 (1−2a2)> 0.

For a ∈
[ 1

2

(√
3−1

)
, 1

2

]
one finds that fa on [−1,1] has its minimum in ta:

min
0≤ϕ≤π

(
1−2a2)(1+4acosϕ)+4a2 (cosϕ)2−8a4 = fa (ta) = 2a2 (1−6a2) .

This last expression is positive if and only if a ∈
[
0, 1

6

√
6
]
. �

Proof of Proposition 6.9. By Lemma 6.10 a necessary and sufficient condition for
GΩa ( . , .) to be positive is β ≤ 1

2 , which is guaranteed by β̃ ≤ 0. By Lemma 6.12
one finds that it suffices to prove

sup
χ∈∂B

β (χ, χ̄)≤ 1
2
.

The last step follows from Lemma 6.13. �

6.2.2 Filling smooth domains with perturbed limaçons

As mentioned before, the Green function for the biharmonic Dirichlet problem is in
general not positive. The few exceptions that we know can be classified as follows:

• Domains for which an explicit biharmonic Green function can be constructed
and for which this Green function is positive. Typical examples are the limaçons
of the previous section.

• Domains which are small perturbations, in the sense of Theorem 6.3, of a domain
that is known to have a positive biharmonic Green function with G satisfying
similar estimates as the Green function on the disk.

We have formulated this second class of domains more widely than just perturba-
tions of the disk. Indeed, the proof of Theorem 6.3 can be copied starting with any
limaçon Ωa as in (6.17) with a < 1

6

√
6. One could even start with domains which

are images of those limaçons under a Möbius mapping. Although here we only need
Möbius transforms in R2, we briefly discuss them in Rn. This shows that it is not a
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lack of Möbius transforms which prevents us from extending the present reasoning
to any space dimension.

Let us recall that every Möbius transformation φ of Rn can be written as

φ = φ1 ◦ j ◦φ2

with j an inversion:
j(x) = |x|−2 x

and φi a similarity:
φi (x) = a+ c M x, (6.21)

where M is an orthogonal matrix, c a nonzero multiplication and a a shift. They
possess the following property.

Lemma 6.14. Let φ be a Möbius transformation in Rn. Then

∆
k
(

J
1
2−

k
n

φ
u◦φ

)
= J

1
2 + k

n
φ

(
∆

ku
)
◦φ

with Jφ =
∣∣∣det

(
∂φi
∂x j

)∣∣∣, the modulus of the Jacobian determinant.

For a proof see for example [119]. Only due to the inversion the shape of a
domain will change. This lemma allows one to pull back the Dirichlet biharmonic
problem from φ (Ωa) to Ωa and to use the Green function on Ωa for the problem
on φ (Ωa). Of course, a Möbius transformed ball is still a ball. Examples of Möbius
transformed limaçons can be seen in [119].

Having seen the relatively limited possibilities to have a positive Green function,
one is curious to see how big the negative contribution of the Dirichlet biharmonic
Green function might be.

We will give a first and still preliminary answer to the following question which
was raised already in Section 1.2 and which may be considered as an adequate
reformulation of the Boggio-Hadamard conjecture:

Is positivity preserving in any bounded smooth domain Ω possibly “almost true” in the
sense that the negative part G−

Ω
(x,y) := max{−GΩ (x,y),0} of the biharmonic Green func-

tion under Dirichlet boundary conditions is “small relatively” to the singular positive part
G+

Ω
(x,y) := max{GΩ (x,y),0}?

In this section we will give an outline for the two-dimensional case, while for gen-
eral dimensions, we refer to Section 6.4.

The main result is as follows.

Theorem 6.15. Let Ω ⊂ R2 be a bounded C4,γ -smooth domain and let GΩ denote
the biharmonic Green function in Ω under Dirichlet boundary conditions.

Then there exists a positive minimal distance δ = δ (Ω) > 0 such that for any
two points x,y ∈Ω , x 6= y,
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|x− y|< δ implies that GΩ (x,y) > 0. (6.22)

In particular, there exists a constant C = C(Ω) > 0 such that for all x,y ∈Ω , x 6= y,
we have the following estimate from below:

GΩ (x,y)≥−C d(x)2 d(y)2. (6.23)

Remark 6.16. Together with the estimate from Theorem 4.28 (case |α| = |β | = 0)
we obtain that with a constant C = C(Ω)

−C d(x)2 d(y)2 ≤ GΩ (x,y)≤C d(x)d(y)min
{

1,
d(x)d(y)
|x− y|2

}
.

Both estimates are sharp in general. For the lower bound we refer to Garabedian’s
example [176], while for the upper bound one may see Theorem 4.6. For x or y
closer to the boundary than to each other, the estimate from below is by a factor
|x− y|2 smaller than the estimate from above.

The key step in proving Theorem 6.15 consists in decomposing the Green func-
tion into a singular positive part modeled along sums of Green functions in suitably
perturbed limaçons and a subordinate smooth possibly negative regular part.

Lemma 6.17. Assume that Ω ⊂ R2 is a bounded domain with ∂Ω ∈C4,γ . Then the
biharmonic Green function GΩ for (6.1) can be written as

GΩ (x,y) = Gsing
Ω

(x,y)+Greg
Ω

(x,y)

such that for some c2,c1 > 0:

0≤ Gsing
Ω

(x,y)≤ c1d(x)d(y)min

{
1,

d(x)d(y)
|x− y|2

}
, (6.24)

and ∣∣Greg
Ω

(x,y)
∣∣≤ c2d (x)2 d(y)2

for all (x,y) ∈Ω 2. Moreover:

1. Gsing
Ω
∈C1,γ̃

(
Ω̄ 2
)
∩C1

0
(
Ω̄ 2
)
∩C4,γ

(
Ω̄ 2\{(x,x) ;x ∈Ω}

)
for all γ̃ ∈ (0,1);

2. Greg
Ω
∈C4,γ

(
Ω̄ 2
)
∩C1

0
(
Ω̄ 2
)
.

For a compact set K, the space C1
0(K) is defined to consist of all functions g∈C1(K)

satisfying g = |∇g|= 0 on ∂K.

The proof of this lemma is rather technical and lengthy. A detailed proof can be
found in [117]. The main ingredients are first the positivity of the Green functions
for the limaçon and its ε-close C2,γ -perturbations, and secondly filling the domain
from the interior with finitely many of those limaçons. See Figure 6.3.
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Fig. 6.3 On the left a domain Ω with one of the finitely many subdomains Ωi close to limaçons
for which the union is exactly this domain. On the right this subdomain with the supports of ∇χi
and ∇ψi.

Sketch of proof of Lemma 6.17. In the first step one proves that for the domain
Ω in Lemma 6.17 there exist finitely many, say k, domains Ωi, which are, after a
similarity transformation, sufficiently ε-close in C3,γ -sense to a limaçon Ωai with
ai < 1

6

√
6, that is

Ω =
⋃

1≤i≤k

Ωi.

Here, sufficiently close is such that the individual biharmonic Green functions on
Ωi satisfy for some c1,c2 ∈ R+

c1di(x)di(y)min

{
1,

di(x)di(y)
|x− y|2

}
≤ GΩi(x,y)≤ c2di(x)di(y)min

{
1,

di(x)di(y)
|x− y|2

}
,

for all x,y ∈Ωi where

di(x) = inf{|x− x∗| ;x∗ ∈ ∂Ωi} .

The boundary ∂Ω is then covered by finitely many arcs Γi ⊂ ∂Ωi, say i = 1, . . . ,k′ ≤
k:

∂Ω =
⋃

1≤i≤k′
Γi.

For the second step one constructs a partition of unity
{

χi ∈C∞
(
Ω̄ ; [0,1]

)}k
i=1

such that ∑
k
i=1 χi = 1 on Ω̄ and

support(χi)⊂Ωi∪Γi.

One defines cut-off functions
{

ψi ∈C∞
(
Ω̄ ; [0,1]

)}k
i=1, related to this partition of

unity, with
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support(ψi)⊂Ωi∪Γi

ψi(x) = 1 for x ∈ support(χi),
support(∇ψi)∩ support(χi) = /0.

See Figure 6.3. Next, one defines

Gsing
Ω

(x,y) =
k

∑
i=1

ψi(x)GΩi(x,y)χi(y),

Greg
Ω

(x,y) = GΩ (x,y)−Gsing
Ω

(x,y),

with ψi(x)GΩi(x,y)χi(y) extended by 0 if x /∈Ωi or y /∈Ωi.
Take some y ∈ Ω , keep it fixed in what follows and define Iy := {i : y ∈

support(χi)}. Then

Gsing
Ω

(x,y) = ∑
i∈Iy

ψi(x)GΩi(x,y)χi(y)

and one finds in distributional sense that

∆
2Gsing

Ω
(x,y) =


0 if x /∈

⋃
i∈Iy support(ψi) =: AIy ,

δx(y) if x ∈
⋃

i∈Iy support(χi) =: BIy ,
∑i∈Iy ∆ 2

x
(
ψi(x)GΩi(x,y)

)
χi(y) if x ∈ AIy\BIy .

(6.25)

Note that ∆ 2
x
(
ψi(x)GΩi(x,y)

)
χi(y) = 0 on

(
AIy\BIy

)
∩
(
AIy\support(∇ψi)

)
. In other

words, Gsing
Ω

takes care of the appropriate singularity at y and is positive through
the construction that uses the GΩi . The support of Gsing

Ω
lies in a band around the

diagonal {(x,x) ; x ∈Ω}. See Figure 6.4.
For the biharmonic operator applied to the difference Greg

Ω
(x,y) = GΩ (x,y)−

Gsing
Ω

(x,y) only the third term in (6.25) remains. Since ∆ 2Greg
Ω

(x,y) is zero near
the diagonal {(x,x) ;x ∈Ω} it can be shown that Greg

Ω
is a smooth as the boundary

allows:
x 7→ ∑

i∈Iy

ψi(x)GΩi(x,y)χi(y) ∈C4,γ
(

AIy\BIy

)
. (6.26)

The support of Greg
Ω

will in general be the full Ω̄ × Ω̄ .
The estimates for Gsing

Ω
(x,y) are inherited from those for GΩi(x,y); those for

Greg
Ω

(x,y) from the boundary conditions and (6.26). �

Sketch of the proof of Theorem 6.15. By carefully checking the proof of Lemma 6.17
one finds a rΩ > 0 and a positive constant c > 0 such that there is the following
estimate:

Gsing
Ω

(x,y)≥ cd(x)d(y)min

{
1,

d(x)d(y)
|x− y|2

}
for |x− y|< rΩ .
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x
∈

Ω

x
∈

Ω

x
∈

Ω

y ∈Ω y ∈Ω y ∈Ω

Fig. 6.4 Scheme for the support of Gsing
Ω

, ∆ 2Gsing
Ω

and ∆ 2Greg
Ω

, highlighting support(χi) ×
support(ψi) and twice support(χi)× support(∇ψi) for one specific i.

As a consequence one concludes that near the boundary the regular term Greg
Ω

is
dominated by the singular term Gsing

Ω
. Hence, there exists ε > 0 such that if d(x) < ε ,

then GΩ (x,y) > 0 for y ∈ Bε (x). In other words, we have local positivity near the
boundary.

In order to prove local positivity also in the interior we observe first that for x∈Ω

GΩ (x,x) =
∫

Ω

(∆yGΩ (x,y))2 dy > 0.

Moreover, in two dimension, GΩ ( . , .) is continuous on Ω ×Ω . Hence, there exists
0 < δ ≤ ε such that x∈Ω , d(x)≥ ε , |x−y|< δ implies that GΩ (x,y) > 0. Together
with the local positivity near the boundary we may conclude that for any x ∈ Ω ,
y ∈ Bδ (x)∩Ω one has GΩ (x,y) > 0.

The estimate GΩ (x,y) >−Cd(x)2d(y)2 on Ω×Ω follows directly from the local
positivity just proven and the estimate from Theorem 4.28. �

Lemma 6.17 allows for proving one-sided pointwise a priori estimates of solu-
tions in terms of the data and a very weak negative Sobolev norm of the solution
itself.

Theorem 6.18. Assume that Ω ⊂ R2 is a bounded domain with ∂Ω ∈ C4,γ . Then
for any q > 2 and ε > 0 there exists a constant cq,Ω ,ε > 0 such that for f ∈ Lp (Ω)
with p ∈ (1,∞) the solution u ∈W 4,p∩W 2,p

0 (Ω) of (6.1) satisfies for all x ∈Ω :

u(x)≤ cq,Ω ,ε

(∥∥ f +∥∥
L1(Bε (x)∩Ω) +‖u‖W−1,q(Ω)

)
.

Here f + = max{ f ,0}. A similar estimate holds from below with f + replaced by
f− = max{− f ,0}.

Sketch of the proof. It uses the construction of Gsing
Ω

and Greg
Ω

in the proof of
Lemma 6.17. By increasing the number of domains Ωi one may find a correspond-
ing partition of unity {χi; i = 1, . . . ,k} with support(ψi)⊂ Bε/2(xi) for some xi ∈Ω .
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Setting

ui(x) =
∫

Ωi

ψi(x)GΩi(x,y)χi(y) f (y)dy

and using the positivity of GΩi one finds ui(x) = 0 for x /∈ Bε/2(xi) and

ui(x) ≤
∫

Bε/2(xi)∩Ωi

ψi(x)GΩi(x,y)χi(y) f +(y)dy

≤ c
∥∥ f +∥∥

L1(Bε/2(xi)∩Ωi) ≤ c
∥∥ f +∥∥

L1(Bε (x)∩Ωi)

when x ∈ Bε/2(xi). Since x ∈ support(ψi) for at most finitely many i’s, one obtains

using (x) :=
k

∑
i=1

ui(x) =
∫

Ω

Gsing
Ω

(x,y) f (y)dy≤ c̃
∥∥ f +∥∥

L1(Bε (x)∩Ω) .

The function u−using satisfies∣∣∣∆ 2
(

u−using
)

(x)
∣∣∣= ∣∣∣∣ f (x)−∑

k
i=1 ∆

2
(

ψi(x)
∫

Ωi

GΩi(x,y)χi(y) f (y)dy
)∣∣∣∣

=
∣∣∣∑k

i=1 ∑
|α +β |= 4
|α| ≥ 1

cα Dα
ψi(x)Dβ

∫
Ωi

GΩi(x,y)χi(y) f (y)dy
∣∣∣∣

≤∑
k
i=1 ∑

|α +β |= 4
|α| ≥ 1

cα

∥∥∥∥Dα
ψi( .)Dβ

∫
Ωi

GΩi( . ,y)χi(y) f (y)dy
∥∥∥∥

L∞(support(∇ψi))
.

By the Sobolev embedding W 1,q ⊂ L∞ for q > 2 and the properties of ψi it follows
that ∥∥∥∥Dα

ψi( .)Dβ

∫
Ωi

GΩi( . ,y)χi(y) f (y)dy
∥∥∥∥

L∞(support(∇ψi))

≤
∥∥∥∥Dα

ψi( .)Dβ

∫
Ωi

GΩi( . ,y)χi(y) f (y)dy
∥∥∥∥

W 1,q
0 (support(∇ψi))

=
∥∥∥∥Dα

ψi( .)Dβ

∫
Ωi

GΩi( . ,y)χi(y)
(
∆

2u
)
(y)dy

∥∥∥∥
W 1,q

0 (support(∇ψi))

=
∥∥∥∥Dα

ψi( .)Dβ

∫
Ωi

∆
2
y
(
GΩi( . ,y)χi(y)

)
u(y)dy

∥∥∥∥
W 1,q

0 (support(∇ψi))
. (6.27)

This last expression does not involve points (x,y) near the diagonal: support(χi)×
support(∇ψi) is as in Figure 6.4 on the right. So (x,y) 7→Dα ψi(x)Dβ GΩi( . ,y)χi(y)
is a C∞-function with compact support. It allows us to estimate (6.27) by a weak
norm of u like e.g. ‖u‖W−1,q(Ω). Elliptic Lp-estimates, see Section 2.5.2, and Sobolev
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embeddings translate in several steps the L∞-bound for ∆ 2
(
u−using

)
into an L∞-

bound for u−using. �

6.3 Regions of positivity in arbitrary domains in higher
dimensions

The remaining part of this chapter is mainly devoted to the biharmonic Green func-
tion in dimensions

n≥ 3,

which corresponds to the Dirichlet problem{
∆

2u = f in Ω ,

u = |∇u|= 0 on ∂Ω .
(6.28)

For brevity let GΩ := G∆ 2,Ω denote these Green functions in what follows.
One goal will be to verify perturbation results like Theorem 6.3, another to prove

“smallness” of the negative part G−
Ω

in general bounded smooth domains Ω ⊂ Rn

also if n ≥ 3, i.e. to extend Theorem 6.15 to higher dimensions. Our strategy to
achieve the second goal is to identify subsets

P ⊂Ω ×Ω \{(x,x)}

where one can directly and explicitly verify that

GΩ (x,y) > 0 for all (x,y) ∈P.

Further steps to be done in Sections 6.4 and 6.5 will be a blow-up analysis and a dis-
cussion of several limiting situations, which all together will imply also perturbation
results to achieve the first goal.

A first step to identify positivity sets P was done by Nehari [322] in dimensions
n = 2 and n = 3. Developing Nehari’s idea, in Section 6.3.1 we prove the following
result.

Theorem 6.19. Let n ≥ 3. Then there exists a constant δn > 0, which depends only
on the dimension n, such that the following holds true.

Assume Ω ⊂ Rn to be a C4,γ -smooth bounded domain and let GΩ := G∆ 2,Ω

denote the Green function for the biharmonic operator under Dirichlet boundary
conditions. If

|x− y|< δn max{d(x),d(y)},

then we have
GΩ (x,y) > 0.

For the constant δn, one may achieve that
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δ3 ≥ 4−2
√

3≈ 0.53,

δ4 ≥ 0.59,

δn ≥ 0.6 for n≥ 5,

and

lim
n→∞

δn =
√

5−1
2

≈ 0.618.

We recall that d(x) = dist(x,∂Ω). For two-dimensional domains, only a much more
restricted statement seems to be available, where also the maximal distance of x,y
to boundary points of ∂Ω is involved, see [322].

By making use of d(x) ≤ d(y) + |x− y| one may observe that the condition
|x− y|< δn max{d(x),d(y)} implies that |x− y|< δn

1−δn
min{d(x),d(y)}.

The preceding theorem shows that the negative part of the Green function is
uniformly bounded and hence relatively small compared with the singular positive
part, as long as x and y stay uniformly away from the boundary ∂Ω . It is remarkable
that the constant δn can be found independently of the domains Ω . In this form, the
result cannot be deduced from Schauder-type estimates.

With slightly more complicated but similar techniques as in the proof of Theo-
rem 6.19, one may also cover the Green function for the Dirichlet problem G(−∆)m,Ω

for the polyharmonic operator. By means of the formula

u(x) =
∫

Ω

G(−∆)m,Ω (x,y) f (y)dy

we find solutions of the polyharmonic Dirichlet problem{
(−∆)mu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,
(6.29)

provided f and Ω are smooth enough.
In order to avoid distinctions and too many technicalities we prove in Sec-

tion 6.3.2 the following result only for large dimensions.

Theorem 6.20. Let m ∈ N+, n > 2m. Then there exists a constant δm,n > 0, which
depends only on the dimension n and the order 2m of the polyharmonic operator,
such that the following holds true.

Assume Ω ⊂ Rn to be a C2m,γ -smooth bounded domain and let G(−∆)m,Ω denote
the polyharmonic Green function under Dirichlet boundary conditions. If

|x− y|< δm,n max{d(x),d(y)},

then
G(−∆)m,Ω (x,y) > 0.

For the constant δm,n, one may achieve that
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δm,2m+1 ≥ 1+
Γ (m)Γ

( 3
2

)
Γ
(
m+ 1

2

) −
√√√√1+

Γ (m)2Γ
( 3

2

)2

Γ
(
m+ 1

2

)2

and, for fixed m, that

lim
n→∞

δm,n =
√

5−1
2

≈ 0.618.

Remark 6.21. 1. A similar result was obtained for n = 2m by Köckritz in a seminar
thesis [250]. Checking carefully the proof below indicates that it can be extended
to n≥ 2m−1 but will presumably fail for n≤ 2m−2.

2. Numerical evidence indicates the following for the constants δm,n.

• For each m the sequence (δm,n)∞
n=2m+1 is increasing to

√
5−1
2 .

• The sequence (δm,2m+1)∞
m=2 is decreasing to 0.

• We provide lower bounds for δm,n, the limit of which for n→ ∞ is
√

5−1
2 ,

independently of m. The speed of convergence, however, seems to depend
strongly on m.

6.3.1 The biharmonic operator

In this section we prove Theorem 6.19. We consider the situation where, for some
R > 1, we have

B := B1(0)⊂Ω ⊂ BR := BR(0)

and write, for suitable f : Rn→ R,

GΩ f (x) :=
∫

Ω

GΩ (x,y) f (y)dy

which yields the solution u(x) := GΩ f (x) to the Dirichlet problem (6.28).
Let us recall that a fundamental solution for ∆ 2 on Rn is given by

Fn(x) =


cn|x|4−n if n 6∈ {2,4},

−2c4 log |x| if n = 4,

2c2|x|2 log |x| if n = 2,

where

cn =


1

2(n−4)(n−2)nen
if n 6∈ {2,4},

1
8nen

if n ∈ {2,4}.
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The Green function may be decomposed into the fundamental solution plus a regular
part

GΩ (x,y) = Fn(|x− y|)+HΩ (x,y),

where HΩ ∈C4,γ
(

Ω
2
)

. We will also use

HΩ f (x) :=
∫

Ω

HΩ (x,y) f (y)dy.

Lemma 6.22. Let f ,g be smooth and supported in B. Then

4
∫

Ω

(∆GΩ f )(∆GΩ g) dx≥
∫

B
( f (HB f −HBR f )+g(HBg−HBR g)) dx

+
∫

B
( f (GBg+GBR g)+g(GB f +GBR f )) dx.

Proof. We consider the quadratic form

R2 3 (β ,γ) 7→
∫

Ω

(β∆GΩ f + γ∆GΩ g)2 dx

and show that this is non-decreasing with respect to domain inclusion. For this pur-
pose one considers ω ⊂Ω and one gets∫

Ω

(β∆GΩ f + γ∆GΩ g)2 dx−
∫

ω

(β∆Gω f + γ∆Gω g)2 dx

=
∫

Ω

(β∆GΩ f + γ∆GΩ g)2 dx+
∫

ω

(β∆Gω f + γ∆Gω g)2 dx

−2
∫

ω

(βGω f + γGω g)
(
β∆

2Gω f + γ∆
2Gω g

)
dx

=
∫

Ω

(β∆GΩ f + γ∆GΩ g)2 dx+
∫

ω

(β∆Gω f + γ∆Gω g)2 dx

−2
∫

ω

(βGω f + γGω g)(β f + γg) dx

=
∫

Ω

(β∆GΩ f + γ∆GΩ g)2 dx+
∫

ω

(β∆Gω f + γ∆Gω g)2 dx

−2
∫

ω

(βGω f + γGω g)
(
β∆

2GΩ f + γ∆
2GΩ g

)
dx

=
∫

Ω

(β∆GΩ f + γ∆GΩ g)2 dx+
∫

ω

(β∆Gω f + γ∆Gω g)2 dx

−2
∫

ω

(β∆Gω f + γ∆Gω g)(β∆GΩ f + γ∆GΩ g) dx

=
∫

Ω\ω
(β∆GΩ f + γ∆GΩ g)2 dx

+
∫

ω

(β (∆GΩ f −∆Gω f )+ γ(∆GΩ g−∆Gω g))2 dx

≥ 0.
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In a first step we exploit this monotonicity in B⊂Ω with β = γ = 1, that is∫
Ω

(∆GΩ f +∆GΩ g)2 dx≥
∫

B
(∆GB f +∆GBg)2 dx =

∫
B
( f +g)GB ( f +g) dx.

(6.30)
In a second step it is used in Ω ⊂ BR with β =−γ = 1, that is∫

Ω

(∆GΩ f −∆GΩ g)2 dx≤
∫

BR

(∆GBR f −∆GBRg)2 dx =
∫

B
( f −g)GBR ( f −g) dx.

(6.31)
Subtracting (6.31) from (6.30) yields

4
∫

Ω

(∆GΩ f )(∆GΩ g) dx ≥
∫

B
f (GB f −GBR f ) dx+

∫
B

g(GBg−GBR g) dx

+
∫

B
f (GBg+GBRg) dx+

∫
B

g(GB f +GBR f ) dx.

Since GB−GBR = HB−HBR , the claim follows. �

Lemma 6.23. For x,y ∈ B, x 6= y, we have the following estimate from below for the
biharmonic Green function of Ω ,

GΩ (x,y)≥ 1
4

(HB(x,x)−HBR(x,x)+HB(y,y)−HBR(y,y))

+
1
2

(GB(x,y)+GBR(x,y)) .

Proof. The statement follows directly from Lemma 6.22 by taking smooth approxi-
mations of the Dirac delta distribution concentrated in x and y respectively as f and
g. One also uses the symmetry of the Green function GΩ (x,y) = GΩ (y,x). �

Proof of Theorem 6.19. We recall from Lemma 2.27 that for n > 4 and n = 3,
observing that c3 < 0,

GB(x,y) = cn

{
|x− y|4−n− n−2

2

∣∣∣∣|x|y− x
|x|

∣∣∣∣4−n

+
n−4

2

∣∣∣∣|x|y− x
|x|

∣∣∣∣2−n

|x− y|2
}

,

(6.32)

GBR(x,y) = R4−nGB

(
1
R

x,
1
R

y
)

,

HBR(x,x) =−cn
n−2

2

(
R− |x|

2

R

)4−n

, (6.33)

while for n = 4

GB(x,y) = c4

{
−2log |x− y|+2log

∣∣∣∣|x|y− x
|x|

∣∣∣∣−1+
∣∣∣∣|x|y− x

|x|

∣∣∣∣−2

|x− y|2
}

,

(6.34)
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GBR(x,y) = GB

(
1
R

x,
1
R

y
)

,

HBR(x,x) = 2c4 log
(

1− |x|
2

R2

)
− c4 +2c4 logR. (6.35)

In order to prove Theorem 6.19, by rescaling and translation, it is enough to consider
x = 0, y ∈ Bδn(0), where δn ∈ (0,1) has to be suitably specified below.

We consider first the case n > 4, where Lemma 6.23 and formulae (6.32)–(6.33)
yield

4
cn

GΩ (0,y) ≥ −n−2
2

+
n−2

2
R4−n− n−2

2
(
1−|y|2

)4−n
+

n−2
2

(
R− |y|

2

R

)4−n

+ 4|y|4−n− (n−2)+(n−4)|y|2− (n−2)R4−n +(n−4)R2−n|y|2.

Letting R→ ∞, we obtain

4
cn

GΩ (0,y)≥ 4|y|4−n +(n−4)|y|2− n−2
2
(
1−|y|2

)4−n− 3
2
(n−2). (6.36)

If n = 5 one has to check whether

0 < 4−6|y|−4|y|2 +
11
2
|y|3−|y|5.

The right hand side is strictly decreasing in |y| ∈ [0,0.6] and takes on a positive
value for |y|= 0.6. According to mapleTM the above inequality is satisfied for |y| ∈
(0,0.612865 . . .).

If n ≥ 6, we drop the term (n− 4)|y|2 in (6.36) and have to determine δn such
that

4δ
4−n
n − n−2

2
(
1−δ

2
n
)4−n− 3

2
(n−2)≥ 0. (6.37)

Asymptotically, δn should be chosen close to the positive root δ∞ of

δ = 1−δ
2,

i.e. to δ∞ = (
√

5−1)/2. We show that (6.37) is satisfied with δn = 0.6, i.e. that

4
(

3
5

)4−n

− n−2
2

(
16
25

)4−n

− 3
2
(n−2)≥ 0

⇔ 8− (n−2)
(

15
16

)n−4

−3(n−2)
(

3
5

)n−4

≥ 0.

The left hand side of the last expression is increasing for n≥ 18 and attains positive
values for n = 6, . . . ,18, thereby showing that (6.37) holds true for δn = 0.6.

We discuss now the case n = 4 and choose R ≥ 1, where Lemma 6.23 and for-
mulae (6.34)–(6.35) yield
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2
c4

GΩ (0,y) ≥ − log
(

1− |y|
2

R2

)
+ log

(
1−|y|2

)
−2logR−4log |y|

+ 2logR−2+ |y|2 +
|y|2

R2

≥ − log
(

1− |y|
2

R2

)
+ log

(
1−|y|2

)
−4log |y|−2+ |y|2 +

|y|2

R2 .

Letting R→ ∞, we conclude that

2
c4

GΩ (0,y)≥−4log |y|+ log
(
1−|y|2

)
−2+ |y|2.

The right hand side is certainly decreasing in |y| ∈ [0,0.6] and takes a positive value
for |y| = δ4 = 0.59. With the help of mapleTM we see that it is positive for |y| ∈
(0,0.594160 . . .).

Finally, we discuss the case n = 3, where c3 = − 1
8π

< 0. Proceeding as before
we find

− 2
c3

GΩ (0,y) ≥ 1
4

(
1−R+1−|y|2−R+

|y|2

R

)
+
(
−2|y|+ 1

2
+

R
2

+(
1
2

+
1

2R
)|y|2

)
= 1−2|y|+ 1

4
|y|2 +

3
4R
|y|2.

Letting R→ ∞ yields

− 2
c3

GΩ (0,y)≥ 1−2|y|+ 1
4
|y|2,

where the right hand side is positive for |y|< 4−2
√

3. �

6.3.2 Extensions to polyharmonic operators

Here, we prove Theorem 6.20. The arguments are very similar to Section 6.3.1 and
we may be very brief and focus mainly on what is different. Throughout this section,
according to Theorem 6.20, we confine ourselves to the case

n > 2m.

We consider
B = B1(0)⊂Ω ⊂ BR = BR(0)

and the Green function G(−∆)m,Ω corresponding to (6.29) in Ω . Again, this Green
function may be decomposed into a singular and a regular part
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G(−∆)m,Ω (x,y) = cm,n|x− y|2m−n +H(−∆)m,Ω (x,y),

where H(−∆)m,Ω ∈ C2m,γ(Ω
2) denotes the regular part and cm,n > 0 is a suitable

positive constant. Lemma 6.23 directly generalises to the polyharmonic situation
and we may perform the

Proof of Theorem 6.20. According to Lemma 2.27 we have with a suitable positive
constant km,n,

G(−∆)m,B(x,y) = km,n|x− y|2m−n
∫ ∣∣∣|x|y− x

|x|

∣∣∣/|x−y|

1

(
v2−1

)m−1
v1−n dv, (6.38)

G(−∆)m,BR(x,y) = R2m−nG(−∆)m,B

(
1
R

x,
1
R

y
)

, (6.39)

H(−∆)m,BR(x,x) = −
km,n

n−2m

(
R− |x|

2

R

)2m−n

. (6.40)

The constants cm,n and km,n are related by

cm,n = km,n

∫
∞

1

(
v2−1

)m−1
v1−n dv = km,n(−1)m

m−1

∑
j=0

(−1) j
(m−1

j

)
2 j +2−n

= km,n
2m−1(m−1)!

m

∏
j=1

(n−2 j)
.

The latter identity is verified by induction.
By the generalisation of Lemma 6.23, formulae (6.38)–(6.40) and letting R→∞,

we obtain

G(−∆)m,Ω (0,y) ≥ cm,n|y|2m−n−
km,n

2
|y|2m−n

∫
∞

1/|y|

(
v2−1

)m−1
v1−n dv

−
km,n

4(n−2m)

(
1+
(
1−|y|2

)2m−n
)

≥
cm,n

2
|y|2m−n−

km,n

4(n−2m)

(
1+
(
1−|y|2

)2m−n
)

(6.41)

so that

4(n−2m)
km,n

G(−∆)m,Ω (0,y)≥ 2(m−1)!
m−1

∏
j=1

(n
2
− j
) |y|2m−n−1−

(
1−|y|2

)2m−n
. (6.42)

Certainly, one finds δm,n > 0 such that the right hand side is positive for |y|< δm,n.
For m fixed and n→ ∞, the powers 2m− n dominate all the other terms and δm,n
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may be chosen such that they approach, as in the biharmonic case, the positive zero
δ∞ of

δ = 1−δ
2,

which is precisely
√

5−1
2 . In the case n = 2m+1, (6.42) reads

4
km,2m+1

G(−∆)m,Ω (0,y) ≥ 2
Γ (m)Γ

( 3
2

)
Γ
(
m+ 1

2

) 1
|y|
−1− 1

1−|y|2
(6.43)

≥ 2
Γ (m)Γ

( 3
2

)
Γ
(
m+ 1

2

) 1
|y|
−1− 1

1−|y|
. (6.44)

The right hand side (6.44) is positive if and only if

|y|< 1+
Γ (m)Γ

( 3
2

)
Γ
(
m+ 1

2

) −
√√√√1+

Γ (m)2Γ
( 3

2

)2

Γ
(
m+ 1

2

)2 . (6.45)

One might wonder whether dropping a positive term in (6.41) gives rise to a very
rough estimate. The previous estimate (6.45) would still allow for choosing δ2,5 =
0.46, while the right hand side of (6.43) is positive for |y|< δ2,5 = 0.54. On the other
hand, according to Theorem 6.19, δ2,5 = 0.59 is admissible. This shows that one has
not lost much in (6.41). In any case, our proof shows that we cannot do better than
a constant δm,n with limm→∞ δm,2m+1 = 0, even if one had kept the second term in
(6.41). �

6.4 Small negative part of biharmonic Green’s functions in
higher dimensions

The goal of this section is to extend Theorem 6.15 to any dimension n≥ 2.

6.4.1 Bounds for the negative part

Theorem 6.24. Let Ω ⊂ Rn (n ≥ 2) be a bounded C4,γ -smooth domain. Let GΩ

denote the biharmonic Green function in Ω under Dirichlet boundary conditions.
Then there exists a positive minimal distance δ = δ (Ω) > 0 such that for any

two points x,y ∈Ω , x 6= y,

|x− y|< δ implies that GΩ (x,y) > 0. (6.46)

In particular, there exists a constant C = C(Ω) > 0 such that for all x,y ∈Ω , x 6= y,
we have the following estimate from below
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GΩ (x,y)≥−C d(x)2 d(y)2. (6.47)

For n = 2, the statement just recalls Theorem 6.15. The proof for the case n≥ 3
will be given in Section 6.4.2.

Remark 6.25. So for any bounded C4,γ -smooth domain Ω ⊂ Rn there exists a con-
stant C = C(Ω) > 0 such the biharmonic Green function GΩ satisfies the following
estimate:

−Cd(x)2d(y)2 ≤ GΩ (x,y)≤



C|x− y|4−n min
{

1,
d(x)2d(y)2

|x− y|4

}
if n > 4,

C log
(

1+
d(x)2d(y)2

|x− y|4

)
if n = 4,

Cd(x)2−n/2d(y)2−n/2 min

{
1,

d(x)n/2d(y)n/2

|x− y|n

}
if n = 2,3. (6.48)

The estimates from above follow from the two-sided estimates in Theorem 4.28.
See also (4.8). Even for n = 2,3, where the Green function is bounded, the bound
from below in 6.48 is a strong statement because in the case where x or y is closer to
the boundary than they are to each other, we gain a factor of order |x−y|n compared
with the estimate in Theorem 4.28.

Remark 6.26. A functional analytic approach by Malyshev [283] shows for n = 2,3
this estimate from below:

G∆ 2,Ω (x,y)≥−C(Ω)
√

G∆ 2,Ω (x,x)G∆ 2,Ω (y,y) (6.49)

with a constant C(Ω) ∈ [0,1). Starting from (4.8) and using C(Ω) < 1 it follows
that the optimal constant for G∆ 2,Ω from below in (4.8) for x near y is smaller than
the one from above. From (6.49) and (4.8) alone one does not get a qualitative better
estimate from below as in (6.48).

Since Theorem 6.24 in the case n = 2 is already proved by Theorem 6.15, we
restrict ourselves in what follows to

n≥ 3.

And as we already mentioned, completely different techniques than for n = 2 have
to be used.

6.4.2 A blow-up procedure

The proof of Theorem 6.24 as well as the perturbation result Theorem 6.29 below
are deduced from the following statement that for smooth perturbations of a fixed
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domain, pairs of interior zeros of the biharmonic Green functions cannot get arbi-
trarily close to each other. Theorem 6.29 will extend Theorem 6.3 for the biharmonic
operator to dimensions n≥ 3 and will be proved below in Section 6.5.

Theorem 6.27. We assume that n ≥ 3 and that (Ωk) is a C4,γ -perturbation of the
bounded C4,γ -smooth domain Ω according to Definition 4.19. Let Gk = G∆ 2,Ωk

de-
note the biharmonic Green functions in Ωk under Dirichlet boundary conditions.
Then there exists a positive number δ > 0, which is uniform for the whole family of
domains, such that for all k ∈ N it holds that

x,y ∈Ωk, x 6= y, Gk(x,y) = 0 implies that |x− y| ≥ δ .

Proof. 1. The proof will be performed by contradiction making use of a rescaling
or blow-up analysis which was developed by Grunau and Robert in [207].

After possibly passing to a subsequence, possibly replacing Ω with some fixed
Ωk0 and possibly relabeling the sequence we may assume by contradiction that

there exist xk,yk ∈Ωk, xk 6= yk, such that |xk− yk| → 0 and Gk(xk,yk) = 0. (6.50)

In view of local positivity – see Theorem 6.19 – there exists ρ > 0 such that

|xk− yk| ≥ ρ max{d(xk,∂Ωk),d(yk,∂Ωk)}. (6.51)

In particular, xk and yk are approaching the boundary ∂Ω . After possibly passing to
a further subsequence we may assume that

there exists x∞ ∈ ∂Ω : xk,yk→ x∞.

By means of a translation and rotation we may achieve that

x∞ = 0 and the first unit vector e1 is the exterior unit normal in x∞ = 0 of ∂Ω .

According to Definition 4.19 there exist C4,γ -diffeomorphisms Ψk : Ω → Ωk such
that ‖Id−Ψk‖C4,γ (Ω)→ 0. We introduce

x′k := Ψ
−1

k (xk) ∈Ω , y′k := Ψ
−1

k (yk) ∈Ω ,

where obviously x′k→ 0, y′k→ 0, |x′k−y′k| → 0 as k→∞. We introduce furthermore
x̃k ∈ ∂Ω as the closest boundary point to x′k:

|x′k− x̃k|= d(x′k).

By virtue of x′k → 0 ∈ ∂Ω and the smoothness of ∂Ω , this is uniquely determined
for k large enough and also satisfies x̃k→ 0 for k→ ∞.

2. For ξ ,η ∈ 1
|x′k−y′k|

(
−x̃k +Ω

)
we introduce the following rescalings of the Green

functions Gk
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G̃k(ξ ,η) := |x′k− y′k|n−4Gk(Ψk(x̃k + |x′k− y′k|ξ ),Ψk(x̃k + |x′k− y′k|η)).

The rescaled domains 1
|x′k−y′k|

(−x̃k +Ω) approach the half space

H := {x ∈ Rn : x1 < 0}.

The goal is to prove that in a suitable sense (G̃k) approaches the biharmonic Green
function G∆ 2,H , while from our assumption (6.50) we deduce some degenerate be-
haviour of G∆ 2,H . In view of Boggio’s formula, the latter cannot occur and we
obtain a contradiction.

First we see that the bounds from Theorem 4.20 yield uniformly in k, ξ and η∣∣G̃k(ξ ,η)
∣∣≤C|ξ −η |4−n, provided that n > 4. (6.52)

If n = 3,4 we conclude first that

∣∣∇G̃k(ξ ,η)
∣∣≤C

{
1 if n = 3,

|ξ −η |−1 if n = 4.

Upon integration we obtain that

∣∣G̃k(ξ ,η)
∣∣≤C

{
1+ |ξ |+ |η | if n = 3,

1+ | log |ξ −η ||+ log(1+ |ξ |+ |η |) if n = 4.
(6.53)

We observe, defining

gk(ξ ) = Ψ
∗

k (E )(x̃k + |x′k− y′k|ξ )

with the pulled back euclidean metric E in rescaled variables, that for any ξ ∈
1

|x′k−y′k|
(
−x̃k +Ω

)
, we have in the sense of distributions

∆
2
gk,η

G̃k(ξ , .) = δξ . (6.54)

This family of differential equations, the coefficients of which obey uniform bounds,
together with the uniform bounds (6.52) and (6.53) allows to apply local interior
and boundary Schauder estimates (see Theorem 2.19). For each ξ ∈H we find a
function G(ξ , .) ∈ C4(H \ {ξ}) such that G̃k(ξ , .)→ G(ξ , .) in C4

loc(H \ {ξ}).
Since Ψk → Id in C4 implies that gk(ξ )→ (δi j) locally uniformly in C3, this and
(6.54) give in turn that for any ξ ∈H

∆
2
η G(ξ , .) = δξ

in the sense of distributions. Finally, in order to explain carefully the boundary con-
ditions to be attained by G(ξ , .), we consider a suitable local C4,γ -smooth coordi-
nate chart Φ for Ω near 0 with Φ(ξ ) = ξ + O(|ξ |2), which maps in particular a
neighbourhood of 0 in ∂H onto a neighbourhood of 0 in ∂Ω . Defining
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Φk(ξ ) :=
1

|x′k− y′k|

(
Φ

(
Φ
−1(x̃k)+ |x′k− y′k|ξ

)
− x̃k

)
, (6.55)

we obtain local coordinate charts for 1
|x′k−y′k|

(−x̃k +Ω) with the coordinates ξ in

bounded neighbourhoods of 0 in H . Since x̃k → 0 and Φ−1(x̃k) → 0, we have
uniformly for ξ in such sets and for k→ ∞ that:

Φ

(
Φ
−1(x̃k)+ |x′k− y′k|ξ

)
= Φ

(
Φ
−1(x̃k)

)
+ |x′k− y′k|DΦ

(
Φ
−1(x̃k)

)
ξ + O(|x′k− y′k|2 |ξ |2)

= x̃k + |x′k− y′k|ξ +o(1)|x′k− y′k| |ξ |+O(|x′k− y′k|2 |ξ |2)

with o(1)→ 0 for k→ ∞. This shows that Φk → Id locally uniformly. The chain
rule directly yields also convergence of the derivatives so that we may conclude that
Φk→ Id in C4

loc. This allows us to infer that

G(ξ ,η) = ∂η1G(ξ ,η) = 0mbox f orall ξ ∈H and all η ∈ ∂H .

Finally, (6.52) and (6.53) yield the following bounds for G (where ξ ,η ∈H , ξ 6=
η)

|G(ξ ,η)| ≤C


1+ |ξ |+ |η | if n = 3,

1+ | log |ξ −η ||+ log(1+ |ξ |+ |η |) if n = 4,

|ξ −η |4−n if n≥ 5.

(6.56)

3. We prove that

G(ξ ,η) = G∆ 2,H (ξ ,η) for all ξ ,η ∈H such that ξ 6= η . (6.57)

To this end we keep ξ ∈H fixed in what follows. As for the biharmonic Green
function in the half space we recall Boggio’s formula

G∆ 2,H (ξ ,η) =
1

4nen
|ξ −η |4−n

|ξ ∗−η |/|ξ−η |∫
1

(v2−1)v1−n dv; (6.58)

where ξ ,η ∈H , ξ ∗ = (−ξ1,ξ2, . . . ,ξn), see Lemma 2.27. We comment on the
uniqueness issue of G∆ 2,H in dimensions n = 3,4 at the end of the present proof.

Both G(ξ , .) and G∆ 2,H (ξ , .) satisfy the biharmonic equation with the δ -distri-
bution δξ as right hand side and zero Dirichlet boundary conditions on {η1 = 0}.
We let ψ := ψξ := G(ξ , .)−G∆ 2,H (ξ , .). Hence, ψ ∈C∞

(
H
)

solves{
∆ 2ψ = 0 in H ,

ψ = ∂

∂η1
ψ = 0 on {η1 = 0}. (6.59)
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Moreover, according to (6.56) and (6.58), for all η ∈H we have that

|ψ(η)| ≤C


1+ |η | if n = 3,

1+ | log |η | | if n = 4,

|η |4−n if n≥ 5;

(6.60)

|∇ψ(η)| ≤C

{
1 if n = 3,

|η |−1 if n = 4;
(6.61)

where C = C(ξ ). According to [151, 232], writing η̄ = (η2, . . . ,ηn),

ψ
∗(η) :=

{
ψ(η) if η1 ≤ 0,

−ψ(−η1, η̄)−2η1
∂

∂y1
ψ(−η1, η̄)−η2

1 ∆ψ(−η1, η̄) if η1 > 0,

ψ∗ ∈C4 (Rn) is an entire biharmonic function. We consider now first the case n > 4.
Below we will prove that (6.59) and (6.60) imply that also

|∇ j
ψ(η)| ≤C|η |4−n− j for all η ∈H and for j = 1,2, (6.62)

where C = C(ξ ). This immediately gives that |ψ∗(η)| ≤C|η |4−n and in particular
that ψ∗ is a bounded entire biharmonic function. Liouville’s theorem for biharmonic
functions [323, p.19] yields that ψ∗(η)≡ 0 so that the claim of the lemma follows,
provided n > 4.

If n = 3,4 we shall prove below that for j = 0,1,2 and for all η ∈H

|D2+ j
ψ(η)| ≤C|η |2−n− j, where C = C(ξ ). (6.63)

As above ψ∗ is an entire biharmonic function and so are Dψ∗ and D2ψ∗. We have
|D2ψ∗(η)| ≤ C(1 + |η |)2−n and so, it follows that D2ψ∗(η) ≡ 0. In view of the
boundary conditions in (6.59) we come up with ψ∗(η)≡ 0 also in the case n = 3,4.

It remains to prove (6.62) and (6.63). We consider first n > 4. Assume by contra-
diction that there exists a sequence (η`) ⊂H such that |∇ jψ(η`)| |η`|n+ j−4 → ∞

for `→ ∞. Then, taking η`,1 as the first component of η`,

ψ̃`(η) := |η`|n−4
ψ
(
η`−η`,1e1 + |η`|η

)
would solve {

∆ 2ψ̃` = 0 in H ,

ψ̃` = ∂

∂η1
ψ̃` = 0 on {η1 = 0}.

From the assumption we conclude that∣∣∣∣∇ j
ψ̃`

(
η`,1

|η`|
e1

)∣∣∣∣= |η`|n+ j−4|∇ j
ψ(η`)| → ∞. (6.64)
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On the other hand,

|ψ̃`(η)| ≤C|η`|n−4 ∣∣η`−η`,1e1 + |η`|η
∣∣4−n ≤C

∣∣∣∣ η`

|η`|
+η−

η`,1

|η`|
e1

∣∣∣∣4−n

, (6.65)

so that ψ̃` remains bounded in a neighbourhood of η`,1
|η`|

e1 in H . Local Schauder
estimates (see Theorem 2.19) yield∣∣∣∣∇ j

ψ̃`

(
η`,1

|η`|
e1

)∣∣∣∣≤C,

thereby contradicting (6.64). This proves (6.62).
As for (6.63), i.e. in particular n = 3,4, the proof is quite similar since we can al-

ready make use of the gradient estimates (6.61). Instead of (6.65) one has to employ

|∇ψ̃`(η)| ≤C|η`|n−3 ∣∣η`−η`,1e1 + |η`|η
∣∣3−n ≤C

∣∣∣∣ η`

|η`|
+η−

η`,1

|η`|
e1

∣∣∣∣3−n

,

so that ∇ψ̃` remains bounded uniformly outside η`
|η`|
− η`,1
|η`|

e1. Therefore, since ψ̃`

vanishes on ∂H , we get that ψ̃` is bounded in a neighbourhood of η`,1
|η`|

e1 in H .
The proof of (6.57) is complete.
4. From assumption (6.50) we obtain

G̃k

(
x′k− x̃k

|x′k− y′k|
,

y′k− x̃k

|x′k− y′k|

)
= 0. (6.66)

Since x′k−x̃k
|x′k−y′k|

,
y′k−x̃k
|x′k−y′k|

are bounded by virtue of |x′k − x̃k| = d(x′k) and boundedness

of d(x′k)/|x′k− y′k| according to (6.51), we may assume after possibly passing to a
further subsequence that

there exist ξ0,η0 ∈H :
x′k− x̃k

|x′k− y′k|
→ ξ0,

y′k− x̃k

|x′k− y′k|
→ η0.

Observe that |ξ0−η0| = 1. We recall from (6.55) the construction of local C4,γ -
smooth coordinate charts ξ 7→ Φk(ξ ) for 1

|x′k−y′k|
(−x̃k +Ω) with coordinates ξ in

bounded neighbourhoods of 0 in H . These converge in C4
loc to the identity. Instead

of G̃k we consider Ĝk := G̃k ◦ (Φk,Φk) in H ×H \ {ξ = η}. As in Step 2 of
this proof, elliptic theory (see Theorem 2.19) yields that Ĝk→ G∆ 2,H in C4((H ∩
B1/2(ξ0))×(H ∩B1/2(η0))). Exploiting this convergence, the boundary data of the
Green functions and using Taylor’s expansion we conclude from (6.66) that one of
the following three possibilities occurs

1. ξ0 ∈H , η0 ∈H , G∆ 2,H (ξ0,η0) = 0;
2. ξ0 ∈H , η0 ∈ ∂H , ∆η G∆ 2,H (ξ0,η0) = 0, or vice versa;
3. ξ0 ∈ ∂H , η0 ∈ ∂H , ∆ξ ∆η G∆ 2,H (ξ0,η0) = 0.
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From Boggio’s formula (6.58) for the biharmonic Green function G∆ 2,H in the half
space H , it follows by direct calculation that

for all ξ ,η ∈H such that x 6= y : G∆ 2,H (ξ ,η) > 0;
for all ξ ∈H ,η ∈ ∂H : ∆η G∆ 2,H (ξ ,η) > 0;
for all x,y ∈ ∂H , x 6= y : ∆ξ ∆η G∆ 2,H (ξ ,η) > 0.

This shows that none of the possibilities mentioned above may occur. Hence we
have achieved a contradiction and the theorem is proved. �

Remark 6.28. The arguments in Step 3 of the previous proof show that if n = 3,4, the
“boundary conditions” at infinity |G∆ 2,H (x,y)| ≤C (1 + |x|+ |y|) yield a uniquely
determined biharmonic Green function in H .

Finally, basing upon Theorem 6.27 it is straightforward to prove Theorem 6.24.

Proof of Theorem 6.24. In order to prove (6.46) we assume by contradiction
that there exist sequences (xk),(yk) ⊂ Ω , xk 6= yk such that GΩ (xk,yk) ≤ 0 and
limk→∞ |xk− yk| = 0. In view of the smoothness assumptions made on Ω one may
construct sequences (ξk),(ηk) ⊂ Ω , ξk 6= ηk such that GΩ (ξk,ηk) = 0 as well as
limk→∞ |ξk−ηk|= 0. Application of Theorem 6.27 with all Ωk ≡Ω directly yields
a contradiction.

Formula (6.47) now follows from (6.46) and Theorem 4.28. �

6.5 Domain perturbations in higher dimensions

In Section 6.1 we studied the question whether the positivity of the biharmonic
Green function in the two-dimensional (unit) disk remains under sufficiently small
smooth domain perturbations. Here, we prove the same result in dimensions n≥ 3.
For domain closeness we refer to Definition 6.1.

Theorem 6.29. Let B be the unit ball of Rn, n≥ 2. Then there exists ε0 = ε0(n) > 0
such that for ε ∈ [0,ε0] the following holds true.

Assume that Ω ⊂Rn is a C4,γ -smooth domain which is ε-close to the ball B in the
C4,γ -sense. Then the Green function G∆ 2,Ω for ∆ 2 in Ω under Dirichlet boundary
conditions is strictly positive, that is

G∆ 2,Ω (x,y) > 0 for all x,y ∈Ω , x 6= y.

The proof given in Section 6.1 for the case n = 2 is direct and explicit, based
on perturbation series, Green’s function estimates and conformal maps. This means
that in principle ε0 there may be calculated explicitly. Moreover, in the case n = 2,
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according to the observation by Sassone [358], closeness has to be assumed only in
a weaker norm.

In what follows, again, we restrict ourselves to considering

n≥ 3.

In this case, the proof is somehow more indirect since a number of proofs by con-
tradiction are involved so that it will be impossible to calculate ε0 for n≥ 3 from the
proofs.

Recalling Remark 6.4 we emphasise once more that Theorem 6.29 is by no means
just a continuous dependence on data result.

Under suitable assumptions on the dimension n, the same techniques will allow
for proving a result like Theorem 6.29 also for polyharmonic operators (−∆)m.
Presumably one will have to require the condition n≥ 2m−1 on the dimension, see
Remark 6.21.

The proof of Theorem 6.29 for n ≥ 3 will basically follow from the next result
which describes in which way the transition from positivity to sign change may
occur within a smooth family of domains, see Definition 4.19.

Theorem 6.30. We assume that n ≥ 3 and that (Ωk) is a C4,γ -perturbation of the
bounded C4,γ -smooth domain Ω . Let Gk = G∆ 2,Ωk

and G = G∆ 2,Ω denote the bihar-
monic Green functions in Ωk and Ω respectively under Dirichlet boundary condi-
tions.

We suppose that there exist two sequences (xk),(yk) such that xk,yk ∈Ωk and

xk 6= yk, Gk(xk,yk) = 0 for all k ∈ N.

Up to a subsequence, let x∞ := limk→+∞ xk and y∞ := limk→+∞ yk. Then x∞,y∞ ∈Ω ,
x∞ 6= y∞ and we are in one of the following situations

• if x∞,y∞ ∈Ω , then G(x∞,y∞) = 0;
• if x∞ ∈Ω and y∞ ∈ ∂Ω , then ∆yG(x∞,y∞) = 0;
• if x∞ ∈ ∂Ω and y∞ ∈Ω , then ∆xG(x∞,y∞) = 0;
• if x∞,y∞ ∈ ∂Ω , then ∆x∆yG(x∞,y∞) = 0.

Proof. The crucial statement is that x∞ 6= y∞, which already follows from Theo-
rem 6.27. In view of the smoothness and convergence properties of the Green func-
tions Gk,G, which are proved in Section 4.4, the claim follows directly from the
assumption Gk(xk,yk) = 0 by means of Taylor’s expansion. �

Theorem 6.29 now follows with a simple proof by contradiction since in the
unit ball B ⊂ Rn Boggio’s formula (2.65) shows that none of the above mentioned
degeneracies may indeed occur.

Lemma 6.31. The biharmonic Green function in B = B1(0)⊂Rn, which is given by
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G∆ 2,B(x,y) =
1

4nen
|x− y|4−n

∣∣∣|x|y− x
|x|

∣∣∣/|x−y|∫
1

(v2−1)v1−n dv (x,y ∈ B, x 6= y)

enjoys the following properties

for all x,y ∈ B, x 6= y : G∆ 2,B(x,y) > 0;
for all x ∈ B,y ∈ ∂B : ∆yG∆ 2,B(x,y) > 0;
for all x,y ∈ ∂B, x 6= y : ∆x∆yG∆ 2,B(x,y) > 0.

Proof. These properties are verified by explicit calculations. �

6.6 Bibliographical notes

The presentation of the perturbation theory of positivity and smallness of the nega-
tive parts is based on [117, 120, 204, 206, 207, 208, 214]. The results in Section 6.1
were first proved in [208], while the exposition is adapted from [204]. Section 6.2
outlines and develops results by Dall’Acqua, Meister, and Sweers which originally
appeared in [117, 120]. The presentation of Section 6.3 follows [214]. The material
in Sections 6.4 and 6.5 is based on [206, 207], which are joint works of Grunau and
Robert.

In two dimensions, the required notion of domain closeness to have positivity
as in Theorem 6.3 was relaxed by Sassone [358]. Local positivity was considered
first by Nehari [322] for the clamped plate equation in dimensions n = 2,3, where
Theorem 6.19 was proved for n = 3 and a restrictive version of it for n = 2. A first
mathematical indication that the negative part of biharmonic Green’s functions is
smaller than their positive part was obtained by Malyshev [283] by means of a func-
tional analytic approach. There, the estimate from below uses the same expressions
as from above but with a smaller constant while we use smaller expressions and
do not discuss the magnitude of the constants. Hedenmalm, Jakobsson, and Shi-
morin [225, 226] exhibit further examples of fourth order operators with a positive
Green function and outline a strategy how to reduce the positivity discussion of
Green’s functions to that of suitable Poisson kernels. This approach supports the
feeling that when transition from positivity to sign change occurs, this will happen
most likely via the last variant in Theorem 6.30. Corresponding results for bound-
ary value problems for fourth order ordinary differential equations were achieved
by Schröder [363, 364, 365].

Further contributions to the Boggio-Hadamard conjecture are discussed in detail
in Section 1.2. One may also see [225, 226, 283, 294].





Chapter 7
Semilinear problems

We study the elliptic polyharmonic reaction-diffusion-type model equation

(−∆)mu = f (u) (7.1)

in bounded domains Ω ⊂ Rn and in most cases together with Dirichlet boundary
conditions

Dα u|∂Ω = 0 for |α| ≤ m−1. (7.2)

These boundary conditions prevent (7.1) from being written as a system of sec-
ond order boundary value problems. However, in some cases, also (homogeneous)
Navier boundary conditions (2.21) or Steklov boundary conditions (2.22) may be
particularly interesting. We assume that the nonlinearity f : R→ R is continuous
and, in most cases, non-decreasing. The latter condition will be crucial in proving
existence and further properties of positive solutions. A large part of this chapter
will be devoted to special superlinear nonlinearities of polynomial growth such as

f (u) = λu+ |u|p−1u, p > 1, (7.3)

where λ ∈ R is a parameter.
As was pointed out in Section 1.5, problem (7.1)-(7.3) with m = 2 and p = n+4

n−4
may be considered as prototype for the Paneitz equation from fourth order confor-
mal geometry. We come back to this geometrical issue in Section 7.10. However, the
main focus of the present chapter is different. In higher order equations no general
maximum principle is available (see Section 1.2), and truncation methods are not
admissible. Therefore, many well established techniques from second order equa-
tions fail. One goal is to study the model problem (7.1)-(7.2) in order to establish
some new and general techniques which may be useful also in other situations and
which may outline future developments. A second goal is to find out, in how far it
is still possible to show qualitative properties of solutions in spite of the lack of a
maximum principle.

If m = 1 and Ω = B is the unit ball, a celebrated result by Gidas-Ni-Nirenberg
[195] states radial symmetry of positive solutions to (7.1)-(7.2) under mild smooth-
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ness assumptions on the nonlinearity f . The proof is strongly based on the use
of maximum principles and reflection methods. In Section 7.1 we explain how to
substitute these by kernel estimates and monotonicity properties of the biharmonic
Green function. Only an additional sign and a monotonicity condition have to be
imposed on f in order to enable us to extend the result to all m≥ 1.

Concerning existence and nonexistence of nontrivial solutions of the Dirichlet
problem (7.1)-(7.2)-(7.3) the results strongly depend – as in the case m = 1 of sec-
ond order equations – on the value of the exponent p. In order to avoid technical
distinctions we assume that n > 2m in what follows. To explain the meaning of
“critical growth” we start with the observation that (7.1)-(7.2)-(7.3) may be consid-
ered – at least formally – as Euler-Lagrange equations of the functional

Eλ (v) :=


1
2
∫

Ω

(
∆ kv
)2 dx− λ

2
∫

Ω
v2 dx− 1

p+1
∫

Ω
|v|p+1 dx if m = 2k is even,

1
2
∫

Ω

∣∣∇∆ kv
∣∣2 dx− λ

2
∫

Ω
v2 dx− 1

p+1
∫

Ω
|v|p+1 dx if m = 2k +1 is odd.

(7.4)
The highest order term forces us to work in the space Hm

0 (Ω). Thanks to the em-
bedding

Hm
0 (Ω)⊂ Ls+1(Ω), s =

n+2m
n−2m

, n > 2m,

the functional (7.4) is well-defined for p ≤ s and enjoys compactness properties if
p < s. The latter so-called subcritical case is relatively simple and in Section 7.2 we
show for any λ ∈ R the existence of infinitely many solutions.

The situation is completely different and much more difficult in the critical case
where p = s, which is the case of geometrical relevance. This issue reflects the
conformal covariance property of the Paneitz operator. The polyharmonic model
problem at critical growth reads as follows,{

(−∆)mu = λu+ |u|s−1u, u 6≡ 0 in Ω ,
Dα u|∂Ω = 0 for |α| ≤ m−1

and is studied in detail in Sections 7.4 to 7.9 also under different boundary con-
ditions. A first systematical investigation of the partial loss of compactness and –
more generally – the compactness properties of variational functionals with critical
growth is due to Struwe [380] when m = 1. In Section 7.9.5 we prove an extension
of his result to the present case, namely m = 2.

In the supercritical regime p > s (n > 2m), the variational formulation (7.4)
breaks down completely. Instead, in Section 7.11 different techniques like a super-
subsolution method or – in the case of radial solutions – dynamical systems tech-
niques have to be developed and are applied to study the slightly different model
problem {

∆
2u = λ (1+u)p, u > 0 in B,

u = |∇u|= 0 on ∂B,
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where p > (n+4)/(n−4) and n > 4. Although similar results may be expected also
for the analogous polyharmonic problem, technical difficulties prevent us here from
developing this issue further.

7.1 A Gidas-Ni-Nirenberg type symmetry result

In this section we extend the symmetry result by Gidas-Ni-Nirenberg [195], which
holds for m = 1, to higher order elliptic problems with m ≥ 2. We consider both
Dirichlet and Navier boundary conditions. Let us start with the first case.

Theorem 7.1. Assume that f : [0,∞)→ R is a continuous, non-decreasing function
with f (0)≥ 0 and that u ∈Hm

0 ∩L∞(B) is a nonnegative nontrivial weak solution to
the Dirichlet problem {

(−∆)mu = f (u) in B,

Dα u|∂B = 0 for |α| ≤ m−1.
(7.5)

Then u is radially symmetric and strictly decreasing in the radial variable.

By elliptic regularity (see Theorem 2.20) we readily infer that a bounded weak
solution u to (7.5) satisfies u ∈C2m−1,γ(B), see also Lemma 7.5 below. Moreover, if
f is smooth, Theorem 2.19 shows that u ∈C2m(B) is a classical solution of (7.5). In
fact, u is even more regular. From Boggio’s formula it is immediate that u > 0 in B.

The proof of Theorem 7.1 is given as follows. In Section 7.1.1 we establish some
inequalities for the polyharmonic Green function relative to Dirichlet boundary con-
ditions and its derivatives. In Section 7.1.2 we carry out the moving plane procedure
on the corresponding integral equation and complete the proof of Theorem 7.1.

Remark 7.2. 1. The monotonicity assumption on f crucially enters the proof. If
we assume instead that f is differentiable and satisfies for every s ≥ 0 that
f ′(s) < Λm,1 := first Dirichlet eigenvalue of (−∆)m, then (7.5) admits at most
one weak solution which is then necessarily radially symmetric. Indeed, assum-
ing by contradiction that u,v ∈Hm

0 ∩L∞(B) are different weak solutions of (7.5),
we find

(u− v,u− v)Hm
0

=
∫

B
( f (u)− f (v))(u− v)dx < Λm,1

∫
B
(u− v)2 dx

contrary to the variational characterisation of Λm,1. Here, we used the scalar
product defined in (2.10). In fact, symmetry is also ensured if { f ′(s) : s ∈ R}
does not contain any nonradial Dirichlet eigenvalue of (−∆)m (see [269]) or if
f ′(s) < Λm,2 (see [124]). Uniqueness is guaranteed for sublinear f (see [127]).

2. An inspection of the proof shows that Theorem 7.1 is also valid for (7.5) with
f (u) replaced by the nonautonomous radial nonlinearity f (|x|,u) provided that
f : [0,1]× [0,∞)→ [0,∞) is continuous, non-increasing in the first variable and
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non-decreasing in the second one. If f is increasing in the first variable, the state-
ment may become false, see [45, Theorem 3].

On the other hand, as long as Navier boundary conditions are involved, the scalar
equation (7.1) may be rewritten as a system of m equations and the classical moving
plane procedure applies. In this respect, the following statement is a direct conse-
quence of a result by Troy [396].

Theorem 7.3. Assume that f : [0,∞) → R is a continuously differentiable, non-
decreasing function with f (0) ≥ 0 and that u ∈ Hm ∩L∞(B) is a nonnegative non-
trivial weak solution to the Navier problem{

(−∆)mu = f (u) in B,

∆ ju|∂B = 0 for j = 0, . . . ,m−1.

Then the maps r 7→ (−∆)ku(r) are radially symmetric and strictly decreasing for
all k = 0, . . . ,m−1.

We point out that under the assumptions of Theorem 7.3, the solution u satisfies
u ∈C2m(B), see Theorem 2.19.

The following example shows that the sign assumption on f , in both Theorems
7.1 and 7.3, is necessary in order to have the monotonicity of positive radial solu-
tions.

Example 7.4. Let J0 and I0 denote respectively the Bessel function and the so-called
modified Bessel function of the first kind. Some computations show that the function

v(r):= i
(

J0

(
e

1
4 πir
)
− I0

(
e

1
4 πir
))

= i
∞

∑
k=0


(
− 1

4 e
1
2 πir2

)k

(k!)2 −

(
1
4 e

1
2 πir2

)k

(k!)2

=
∞

∑
k=0

2(−1)k

((2k +1)!)2

( r
2

)4k+2

solves ∆ 2v =−v in R2 and oscillates with increasing amplitude.
Let r0 > 0 denote the first nonzero minimum of v and let m0 = −v(r0) > 0.

Numerically one finds that r0 = 8.28 . . . and m0 = 72.33 . . . . Putting u0(r) = v(r)+
m0 and f (u) = m0−u, one finds that u0 > 0 satisfies{

∆ 2u0 = f (u0) in Br0 ,
u0 = |∇u0|= 0 on ∂Br0 ,

(7.6)

but the radially symmetric solution u0 is not decreasing, see Figure 7.1.

Now let r1 > 0 denote the first zero of ∆v(r) = v′′(r)+v′(r)/r. Define the number
m1 =−v(r1) > 0. Numerically one finds r1 = 7.23 . . . and m1 = 50.15 . . . . By setting
u1 (r) = v(r)+m1 and f (u) = m1−u one finds that u1 > 0 satisfies
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Fig. 7.1 The graphs of u0 (left picture) and of u1 and ∆u1 (right picture).

{
∆ 2u1 = f (u1) in Br1 ,
u1 = ∆u1 = 0 on ∂Br1 ,

(7.7)

u1 is radial but not decreasing, see Figure 7.1.
The above two-dimensional construction may be extended to higher dimensions.

In dimensions n≥ 3 one replaces v by

vn(x) = 2
∞

∑
k=0

(−1)k

(2k +1)! Γ
(
2k +1+ 1

2 n
) ( r

2

)4k+2

and proceeds in a similar way. This formula even applies in one dimension and
v1(x) = 2√

π
sin(

√
2

2 x)sinh(
√

2
2 x) may be used for the construction of a counterex-

ample.

7.1.1 Green function inequalities

In this section we derive some pointwise inequalities for the Green function of
(−∆)m on B ⊂ Rn relative to Dirichlet boundary conditions. It is convenient to in-
troduce the quantity

θ(x,y) =

{
(1−|x|2)(1−|y|2) if x,y ∈ B,

0 if x 6∈ B or y 6∈ B.

Then for x,y ∈ B, x 6= y we use the following representation of the Green function
due to Boggio, see Lemma 2.27:

G(x,y) = Gm,n(x,y) = km,n|x− y|2m−n
∫ (

1+ θ(x,y)
|x−y|2

)1/2

1

(z2−1)m−1

zn−1 dz

=
km,n

2
|x− y|2m−n

∫ θ(x,y)
|x−y|2

0

zm−1

(z+1)n/2 dz =
km,n

2
H(|x− y|2,θ(x,y)). (7.8)
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Here km,n is the positive constant from Lemma 2.27 and

H : (0,∞)× [0,∞)→ R, H(s, t) = sm− n
2

∫ t
s

0

zm−1

(z+1)n/2 dz. (7.9)

The following lemma is a direct consequence of formula (7.8), elliptic regularity
(see Section 2.5.2) and the estimates in Chapter 4.

Lemma 7.5. Let h ∈ L∞(B), and let u ∈ Hm
0 (B) satisfy

(u,v)Hm
0

=
∫

B
hvdx for all v ∈ Hm

0 (B),

i.e., u is a weak solution of (−∆)mu = h in B under Dirichlet boundary conditions.
Then u ∈C2m−1,γ(B), and u satisfies

Dα u(x) =
∫

B
Dα

x G(x,y)h(y)dy for every x ∈ B,

where Dα stands for any partial derivative of order |α|< 2m. In particular, Dα u≡ 0
on ∂B for |α| ≤ m−1.

We need the following inequalities for the derivatives of the function H defined
in (7.9).

Lemma 7.6. For all s, t > 0 we have

Hs(s, t) < 0, Ht(s, t) > 0, Hst(s, t) < 0.

Proof. We have

Ht(s, t) =
tm−1

(t + s)n/2 , Hst(s, t) =− ntm−1

2(t + s)n/2+1

and

Hs(s, t) = (m− n
2
)sm− n

2−1
∫ t

s

0

zm−1

(z+1)n/2 dz− tm

s(t + s)n/2 .

Hence the last two inequalities follow. Also the first inequality follows in case n ≥
2m while in the remaining case n < 2m, we rewrite Hs(s, t) as

Hs(s, t) = (m− n
2
)
∫ t

0

xm−1

s(x+ s)n/2 dx− tm

s(t + s)n/2

= (m− n
2
)
∫ t

0

xm− n
2−1

s

(
x

x+ s

)n/2

dx− tm

s(t + s)n/2

< (m− n
2
)
(

t
t + s

)n/2 ∫ t

0

xm− n
2−1

s
dx− tm

s(t + s)n/2 = 0.
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This completes the proof. �

In the following, we assume that G is trivially extended to Rn×Rn \{(x,x); x ∈
Rn}, i.e., G(x,y) = 0 if |x| ≥ 1 or |y| ≥ 1. Then formula (7.8) is valid for all x,y∈Rn,
x 6= y. We introduce some more notation. For all λ ∈ [0,1] we put

Tλ := {x = (x1, . . . ,xn) ∈ Rn; x1 = λ} and Σλ := {x = (x1, . . . ,xn) ∈ B; x1 < λ}.
(7.10)

Moreover, for any x ∈ Rn let x denote its reflection about Tλ .

Lemma 7.7. Let λ ∈ [0,1). Then for every x ∈ B∩Tλ and y ∈ Σλ we have

Gx1(x,y) < 0 and (7.11)
Gx1(x,y)+Gx1(x,y)≤ 0. (7.12)

Moreover, the second inequality is strict if λ > 0.

Proof. For abbreviation, we put d := |x− y|2 = |x− y|2 > 0, θ = θ(x,y) > 0, and
θ = θ(x,y)≥ 0. Then

Gx1(x,y) = km,n

(
Hs(d,θ)(x1− y1)−Ht(d,θ)(1−|y|2)x1

)
< 0,

by Lemma 7.6, since x1 ≥ 0 and x1 > y1. Moreover

Gx1(x,y)+Gx1(x,y) = km,n

(
Hs(d,θ)(x1− y1)+Hs(d,θ)(x1− (y)1)

)
−km,n

(
[Ht(d,θ)(1−|y|2)+Ht(d,θ)(1−|y|2)]x1

)
≤ km,n[Hs(d,θ)−Hs(d,θ)](x1− y1), (7.13)

where we used Lemma 7.6 and the fact that x1−y1 = y1−x1. Since moreover θ ≤ θ

and Hst < 0 in (0,∞)2 by Lemma 7.6, we conclude that Hs(d,θ)−Hs(d,θ) ≤ 0.
Hence, (7.12) follows from (7.13). Finally, if λ > 0, then we have the strict inequal-
ity θ < θ , so that we obtain a strict inequality in (7.13). �

Lemma 7.8. Let λ ∈ (0,1). For all x,y ∈ Σλ , x 6= y, we have

G(x,y) > max{G(x,y),G(x,y)}, (7.14)
G(x,y)−G(x,y) > |G(x,y)−G(x,y)|. (7.15)

Proof. Concerning (7.14), it suffices to prove G(x,y) > G(x,y) due to symmetry
and to consider the case y ∈ B. We first observe that

|x− y|= |x− y|< |x− y|= |x− y|. (7.16)

Moreover, since |x|> |x|, |y|> |y|, we have that

θ(x,y) > max{θ(x,y),θ(x,y)} ≥min{θ(x,y),θ(x,y)}> θ(x,y) (7.17)
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and may conclude that

G(x,y) =
km,n

2
H
(
|x− y|2,θ(x,y)

)
>

km,n

2
H
(
|x− y|2,θ(x,y)

)
>

km,n

2
H
(
|x− y|2,θ(x,y)

)
= G(x,y).

Here we used that H is strictly decreasing in the first argument and increasing in the
second one, see Lemma 7.6.

In view of (7.14), in order to prove (7.15) we may restrict ourselves to x,y ∈ B
and observe first that (7.15) is equivalent to

H
(
|x− y|2,θ(x,y)

)
−H

(
|x− y|2,θ(x,y)

)
>
∣∣H (|x− y|2,θ(x,y)

)
−H

(
|x− y|2,θ(x,y)

)∣∣ .
This means that, in view of (7.16) and (7.17), we have to show that

0 < s1 < s2, 0 < t1 < t2 < t4, 0 < t1 < t3 < t4
⇒ H(s1, t4)−H(s1, t1) > |H(s2, t2)−H(s2, t3)| .

Indeed, the latter follows again from Lemma 7.6 since

H(s1, t4)−H(s1, t1) =
∫ t4

t1
Ht(s1, t)dt >

∫ t4

t1
Ht(s2, t)dt

>
∫ max{t2,t3}

min{t2,t3}
Ht(s2, t)dt = |H(s2, t2)−H(s2, t3)| .

This completes the proof. �

7.1.2 The moving plane argument

In this section we complete the proof of Theorem 7.1. Consider a fixed nonnegative
nontrivial weak solution u ∈ Hm

0 ∩ L∞(B) of (7.5). From Corollary 2.21 we know
that u ∈C2m−1,γ(B), see also Proposition 7.15 below. Hence, from Lemma 2.27 we
know that u > 0 in B, see also Theorem 3.6 for a direct statement without regularity.
Let Tλ , Σλ and x be defined as in (7.10). We first provide some crucial estimates
for directional derivatives which are related to the Hopf boundary lemma for second
order problems. We recall the following statement as a special case of Theorem 5.7.

Lemma 7.9. If x0 ∈ ∂B and µ is a unit vector with µ · x0 < 0, then
∂ mu
∂ µm (x0) > 0.

In the following we extend u by zero outside of B so that it is defined on the
whole of Rn and we put
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f̃ (s) =
{

f (s) if s > 0
0 if s = 0 (7.18)

so that f̃ : [0,∞)→ [0,∞) is still non-decreasing while it may lose continuity at s = 0.
For the next estimate we need the following technical result.

Lemma 7.10. Let 0 < λ < 1, and suppose that u(x) ≥ u(x) for all x ∈ Σλ . Then
f (u(y))≥ f̃ (u(y))≥ 0 for all y∈ Σλ , and there exists a nonempty open set Oλ ⊂ Σλ

such that f (u(y)) > f̃ (u(y)) or f̃ (u(y)) > 0 for all y ∈ Oλ .

Proof. The inequalities f (u(y))≥ f̃ (u(y))≥ 0 for all y∈ Σλ follow from the mono-
tonicity and positivity assumption on f . For the second statement it then suffices
to show that f (u(y)) 6≡ 0 in Σλ since then one of the two above inequalities would
become strict in a nonempty open set Oλ ⊂ Σλ . By contradiction, if f (u) ≡ 0 in
Σλ then the above inequalities would imply f (u) ≡ 0 in B. In turn, this implies
(−∆)mu≡ 0 which contradicts the positivity of u. �

Thanks to the above lemmas we obtain a statement on the sign of ∂u
∂x1

.

Lemma 7.11. Let 0 < λ < 1, and suppose that u(x) ≥ u(x) for all x ∈ Σλ . Then
there exists γ ∈ (0,λ ) such that ∂u

∂x1
< 0 on T`∩B for all ` ∈ (λ − γ,λ ).

Proof. By Lemma 7.5, for all x ∈ Tλ ∩B we have

∂u
∂x1

(x) =
∫

B
Gx1(x,y) f (u(y))dy =

∫
Σλ

(
Gx1(x,y) f (u(y))+Gx1(x,y) f̃ (u(y))

)
dy.

(7.19)
According to Lemma 7.10 we have f (u(y)) ≥ f̃ (u(y)) ≥ 0 for all y ∈ Σλ and two
cases may occur. In the first case, f (u(y)) > f̃ (u(y)) for all y ∈ Oλ ; in this case,
(7.19) yields

∂u
∂x1

(x) <
∫

Σλ

(Gx1(x,y)+Gx1(x,y)) f̃ (u(y))dy≤ 0 for all x ∈ Tλ ∩B,

where in the first inequality we used (7.11) and in the second we used (7.12). In the
second case, f̃ (u(y)) > 0 for all y ∈ Oλ ; in this case,

∂u
∂x1

(x)≤
∫

Σλ

(Gx1(x,y)+Gx1(x,y)) f̃ (u(y))dy < 0 for all x ∈ Tλ ∩B,

where in the first inequality we used (7.12) which is strict for λ > 0. In any case,

∂u
∂x1

(x) < 0 for all x ∈ Tλ ∩B. (7.20)

For any y ∈ Rn and any a > 0 consider now the cube centered at y, namely

Ua(y) :=
{

x ∈ Rn; max
1≤i≤n

|xi− yi|< a
}

.
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In view of Lemma 7.9, for any x0 ∈ Tλ ∩∂B we know that

(−1)m
(

∂

∂x1

)m−1
∂u
∂x1

(x0) =
(
− ∂

∂x1

)m

u(x0) > 0 .

Since from the boundary conditions we also know that ( ∂

∂x1
)ku(x0) = 0 for all k =

0, . . . ,m−1, there exists a = a(x0) > 0 such that

∂u
∂x1

(x) < 0 for all x ∈Ua(x0)∩B. (7.21)

Then by the compactness of Tλ ∩∂B there exists ā > 0 such that

∂u
∂x1

(x) < 0 for all x ∈ A :=
⋃

x0∈Tλ∩∂B

(Uā(x0)∩B) . (7.22)

Consider now the compact set K := (Tλ ∩ B) \ A and for d > 0 consider Kd :=
K−de1. In view of (7.20), there exists δ > 0 such that

∂u
∂x1

< 0 on Kd for all d ∈ [0,δ ]. (7.23)

Let γ := min{ā,δ}> 0. Then the statement follows from (7.22)-(7.23). �

We are now ready to start the moving plane procedure by shifting the plane Tλ

from the initial tangent position T1 towards the interior of B.

Lemma 7.12. There exists ε > 0 such that for all λ ∈ [1− ε,1) we have

u(x) > u(x) for x ∈ Σλ ,
∂u
∂x1

(x) < 0 for x ∈ Tλ ∩B. (7.24)

Proof. Note that T1∩∂B = {e1}, where e1 = (1,0, . . . ,0). By arguing as for (7.21),
we infer that there exists ε > 0 such that ∂u

∂x1
(x) < 0 for x ∈ B\Σ1−2ε . In turn, from

this we infer that (7.24) holds for all λ ∈ [1− ε,1). �

Next we make sure that we can move the plane until we reach the origin.

Lemma 7.13. We have

Λ :=
{

λ ∈ (0,1); u(x) > u(x) ∀x ∈ Σλ ,
∂u
∂x1

(x) < 0 ∀x ∈ Tλ ∩B
}

= (0,1).

Proof. By Lemma 7.12 we know that [1− ε,1)⊂Λ . Let λ̄ ∈ [0,1) be the smallest
number such that (λ̄ ,1)⊂Λ ; the proof will be complete once we show that λ̄ = 0.
By continuity we have

u(x)≥ u(x) for all x ∈ Σ
λ̄
. (7.25)
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By contradiction assume that λ̄ > 0. Then by Lemma 7.11 and (7.25) we infer that

there exists γ ∈ (0, λ̄ ) such that
∂u
∂x1

< 0 on T`∩B for all ` ∈ (λ̄ − γ, λ̄ ).(7.26)

Consider the function f̃ defined in (7.18). For all x ∈ Σ
λ̄

we compute

u(x)−u(x) =
∫

B
(G(x,y)−G(x,y)) f (u(y))dy (7.27)

=
∫

Σ
λ̄

(G(x,y)−G(x,y)) f (u(y))dy+
∫

Σ
λ̄

(G(x,y)−G(x,y)) f̃ (u(y))dy .

According to Lemma 7.10, two cases may occur. If f (u(y)) > f̃ (u(y)) for all
y ∈ Oλ , then (7.14) and (7.27) yield

u(x)−u(x) >
∫

Σ
λ̄

(G(x,y)−G(x,y)+G(x,y)−G(x,y)) f̃ (u(y))dy≥ 0,

where the last inequality follows from (7.15). If f̃ (u(y)) > 0 for all y ∈ Oλ , then
again (7.14), (7.15) and (7.27) yield

u(x)−u(x)≥
∫

Σ
λ̄

(G(x,y)−G(x,y)+G(x,y)−G(x,y)) f̃ (u(y))dy > 0 .

Hence we have shown in any case that

u(x) > u(x) for all x ∈ Σ
λ̄
. (7.28)

From (7.26) and (7.28) we deduce by a standard compactness argument that there
exists 0 < γ1 < γ such that

u(x) > u(x) for all x ∈ Σ` and ` ∈ (λ̄ − γ1, λ̄ ].

This, combined with (7.26), shows that (λ̄ − γ1, λ̄ ] ⊂ Λ , contrary to the characteri-
sation of λ̄ . �

Now we complete the proof of Theorem 7.1. Since 0 ∈ ∂Λ by Lemma 7.13, the
continuity of u implies that

u(−x1,x2, . . . ,xn)≥ u(x1,x2, . . . ,xn) for x = (x1, . . . ,xn) ∈ B with x1 ≥ 0. (7.29)

Since, for a given rotation A ∈ SO(n), the function uA := u ◦A is also a positive
weak solution of (7.5), inequality (7.29) also holds for uA in place of u. This readily
implies that u is symmetric with respect to every hyperplane containing the origin.
Consequently, u is radially symmetric. Moreover, we have ∂u

∂ r < 0 in B\{0}, since
∂u
∂x1

< 0 in {x ∈ B, x1 > 0} by definition of Λ . �
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7.2 A brief overview of subcritical problems

In this section we briefly show how existence results for higher order semilinear
subcritical problems exhibit no surprises when compared with second order prob-
lems. On the other hand, positivity of particular solutions (such as mountain-pass
solutions) is not ensured in general domains. We start with some important facts
concerning the regularity of the solution.

7.2.1 Regularity for at most critical growth problems

Let Ω ⊂ Rn be a bounded domain and consider the equation

(−∆)mu = λu+ |u|p−1u in Ω , (7.30)

where λ ∈ R and {
1 < p≤ s = n+2m

n−2m if n > 2m,
1 < p < ∞ if n≤ 2m.

(7.31)

These equations are called at most critical with respect to the space Hm(Ω) due
to the upper bound for p, which coincides with the critical Sobolev exponent s. We
complement (7.30) with homogeneous boundary conditions of different kinds. We
mainly focus our attention on the Dirichlet boundary conditions

Dα u|∂Ω = 0 for |α| ≤ m−1, (7.32)

but we will also consider Navier boundary conditions

∆
ju|∂Ω = 0 for j ≤ m−1, (7.33)

or, when m = 2, Steklov boundary conditions

u|∂Ω = (∆u−auν)|∂Ω = 0 (a ∈ R). (7.34)

Before going through existence and nonexistence results, we should clarify what is
meant by a solution for each one of these problems. For the Navier problem, the
suitable space

Hm
ϑ (Ω) =

{
v ∈ Hm(Ω); ∆

jv = 0 on ∂Ω for j < 1
2 m
}

(7.35)

was defined in (2.35) which, thanks to elliptic estimates, is a Hilbert space when
endowed with the following scalar product and corresponding norm

(u,v)Hm
ϑ

=

{ ∫
Ω

∆ ku∆ kv if m = 2k,∫
Ω

∇(∆ ku) ·∇(∆ kv) if m = 2k +1,
‖u‖Hm

ϑ
= (u,u)1/2

Hm
ϑ

. (7.36)
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Note that H2
ϑ
(Ω) = H2 ∩H1

0 (Ω), the space which is needed for Steklov boundary
conditions. Recalling the definition of solution in the linear case, see (2.42), it is
natural to give the following definition.

Definition 7.14. Assume (7.31).

1. Let ( . , .)Hm
0

denote the bilinear form in (2.10). We say that u ∈Hm
0 (Ω) is a weak

solution to (7.30)-(7.32) if

(u,v)Hm
0

=
∫

Ω

(λu+ |u|p−1u)vdx for all v ∈ Hm
0 (Ω).

2. We say that u ∈ Hm
ϑ

(Ω) is a weak solution to (7.30)-(7.33) if

(u,v)Hm
ϑ

=
∫

Ω

(λu+ |u|p−1u)vdx for all v ∈ Hm
ϑ (Ω).

3. We say that u ∈ H2∩H1
0 (Ω) is a weak solution to (7.30)-(7.34) if∫

Ω

∆u∆vdx =
∫

Ω

(λu+ |u|p−1u)vdx+a
∫

∂Ω

uν vν dω for all v ∈ H2∩H1
0 (Ω).

Thanks to the at most criticality assumption (7.31), all the above definitions make
sense. This definition should also be compared with (2.42) which holds for linear
problems. Moreover, we refer to the discussion following Theorem 2.15 to find an
explanation of how these weak formulations “contain” the boundary conditions.

Once existence of a solution (according to the previous definition) is established,
one would like to find out if it has some regularity properties. The answer shows a
deep difference between at most critical and supercritical problems. Let us explain
this crucial fact with a simple example. In a bounded C2m,γ -domain Ω , consider
(7.30) with λ = 0 and complemented with Dirichlet boundary conditions{

(−∆)mu = |u|p−1u in Ω ,
Dα u|∂Ω = 0 for |α| ≤ m−1.

(7.37)

Assume first that p < s. Then, if u∈Hm
0 (Ω) is a weak solution to (7.37), by Theorem

2.4 we know that u ∈ Ls+1(Ω) so that the right hand side f (u) = |u|p−1u of (7.37)
belongs to L(s+1)/p(Ω). Therefore, Theorem 2.20 implies that u ∈W 2m,(s+1)/p(Ω).
In turn, a further application of Theorem 2.4 shows that u∈ Ln(s+1)/(np−2ms−2m)(Ω).
Since p < s we have n(s+1)

np−2ms−2m > s+1 so that we have gained some summability of
u and f (u). By repeating a finite number of times the same combination of Theorems
2.20 and 2.4, we arrive at u ∈W 2m,q(Ω) for some q > n

2m . Hence, Theorem 2.6
applies and we infer that f (u) ∈ C0,γ(Ω) for some γ > 0. Finally, Theorem 2.19
implies that u ∈C2m,γ(Ω) and that u is a classical solution to (7.37).

The same arguments apply to more general semilinear equations such as

(−∆)mu = g(u)
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with g ∈ C1(R), |g(s)| ≤ c(1 + |s|p) for all s ∈ R and for some p < s and c > 0.
Moreover, one can replace Dirichlet boundary conditions (7.32) with (7.33), (7.34),
or any other set of boundary conditions which satisfy the complementing condition,
see Definition 2.9.

On the other hand, this procedure fails if p > s. To see this, let n ≥ 3, let p >
2(n−1)

n−2 and consider the second order problem{
−∆u = λ (1+u)p in B,
u = 0 on ∂B,

(7.38)

with λ = 2
p−2 (n−2− 2

p−2 ) > 0. Some computations allow to verify that the function

u(x) = |x|−2/(p−2)− 1 solves (7.38) in B \ {0}. Moreover, u is a weak solution to
(7.38) in H1

0 (B), if and only if p > s = n+2
n−2 . However, u is not a classical solution

since u 6∈ L∞(B). We study in some detail supercritical biharmonic equations like
(7.38) in Section 7.11.

This striking difference between the two cases p < s and p > s is one of the rea-
sons why p = s is called the critical exponent with respect to the space Hm. In fact,
the above described bootstrap argument also fails for p = s since, in this case, there
is no gain of regularity after an application of Theorems 2.20 and 2.4. However, with
some different and more involved arguments, Luckhaus [281] was able to prove the
optimal regularity result also for the critical growth case. By restricting our attention
to the problem treated in this chapter, we quote the following general result.

Proposition 7.15. Assume that Ω ⊂ Rn is a bounded domain and that (7.31) holds.
Let u be a weak solution to one of the above problems. Then u is an analytic func-
tion in {x ∈ Ω ; u(x) 6= 0}. Moreover, if ∂Ω ∈C2m,γ , then u ∈C2m,γ(Ω) and u is a
classical solution.

Proof. We refer to Luckhaus [281] for the general statement under Dirichlet bound-
ary conditions (7.32). For Navier boundary conditions (7.33), the problem may be
treated as a system, see [399, Appendix B] for the details in the case m = 2. The
same arguments apply also to Steklov boundary conditions (7.34), see [42, Proposi-
tion 23]. The function u 7→ λu + |u|p−1u is analytic for u 6= 0 so that the solution u
is analytic in {x ∈Ω ; u(x) 6= 0} in view of [312, 313]. �

Additional regularity (such as in Ck,γ for k > 2m) can be obtained, provided one
takes into account the regularity of the nonlinearity s 7→ |s|p−1s in a neighbourhood
of s = 0.

Remark 7.16. Since variational methods are involved, the boundary ∂Ω needs not
be smooth if one is merely interested in existence results for (7.30). In general,
solutions only enjoy local smoothness properties. If one wishes to have global reg-
ularity results, Proposition 7.15 tells us that the solution inherits smoothness from
the boundary provided p ≤ s. Global regularity is quite important because, when
p = s, the Pohožaev identity (see Section 7.4 below) shows nonexistence of smooth
solutions in certain domains, and in order to have complementary existence results,
it appears convenient to consider smooth solutions.
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We conclude this section by emphasising a further difference between (strictly)
subcritical problems and critical problems. In the case of reaction-type model non-
linearities f (u) as in (7.30), the possibility of finding a priori estimates seems to be
limited to the (strictly) subcritical case p < s, see [126, 352, 375] and, for second
order equations, the fundamental contribution [196] of Gidas and Spruck. On the
other hand, in the critical regime branches of solutions to (7.30) may blow up for λ

in bounded intervals, see e.g. [25]. The situation is slightly different in the coercive
case, i.e. when λ ≥ 0 and the right hand side in (7.30) is replaced by its negative, see
e.g. [394, 395, 404]. We comment on this issue in more detail in the bibliographical
notes.

7.2.2 Existence

For simplicity, we consider in detail only the superlinear subcritical problem under
Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn{

(−∆)mu = λu+ |u|p−1u in Ω ,
Dα u|∂Ω = 0 for |α| ≤ m−1.

(7.39)

Here λ is a parameter and the exponent p is subject to the superlinearity and
(strict) subcriticality assumption{

1 < p < s = n+2m
n−2m if n > 2m,

1 < p < ∞ if n≤ 2m.
(7.40)

Then according to Proposition 7.15 any Hm
0 -solution to (7.39) is as smooth as ∂Ω

and p permit.
As for “minimal” nontrivial solutions we have the following existence result.

Theorem 7.17. Let Λm,1 denote the first Dirichlet eigenvalue of (−∆)m in Ω and let
p be subject to condition (7.40). Then for all λ < Λm,1 the Dirichlet problem (7.39)
has a nontrivial solution.

Proof. We minimise the functional

Fλ (v) :=


∫

Ω

((
∆

m/2v
)2
−λv2

)
dx if m even,

∫
B

(∣∣∣∇∆
(m−1)/2v

∣∣∣2−λv2
)

dx if m odd,
(7.41)

in Hm
0 (Ω) subject to the constraint v ∈ N with

N :=
{

v ∈ Hm
0 (Ω) :

∫
Ω

|v|p+1 dx = 1
}

. (7.42)
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Since λ < Λm,1 the functional Fλ is coercive. Hence, any minimising sequence
(vk)k∈N ⊂ N is bounded in Hm

0 (Ω). We may extract a subsequence which is
weakly convergent to some ũ ∈Hm

0 (Ω). Due to the compactness of the embeddings
Hm

0 (Ω)⊂ Lp+1(Ω), Hm
0 (Ω)⊂ L2(Ω), see Theorem 2.4, and weak lower semicon-

tinuity of Fλ , which is related to a suitable scalar product in Hm
0 (Ω), we have that

ũ∈N is a minimiser for Fλ in N. We call this minimum Sλ . By putting u = S1/(p−1)
λ

ũ,
we obtain a solution of (7.39). �

In order to remove the restriction λ < Λm,1 in Theorem 7.17 we notice that the
above reasoning shows that a variational approach to (7.39) is quite similar to the
second order case m = 1, as long as only existence of solutions is investigated. As
in Struwe’s book [381, Ch. II, Theorem 6.6], basing upon a mountain pass lemma
for symmetric functionals due to Ambrosetti and Rabinowitz [14], one may prove
the following result.

Theorem 7.18. Let Ω ⊂ Rn be a bounded smooth domain, λ ∈ R and let p be sub-
ject to the strict subcriticality condition (7.40). Then the Dirichlet problem (7.39)
admits an unbounded sequence of solutions (uk)⊂ Hm

0 (Ω).

Theorems 7.17 and 7.18 hold (and can be proved exactly as above) also if ho-
mogeneous Dirichlet conditions (7.32) are replaced by homogeneous Navier condi-
tions (7.33). When m = 2, similar statements are also available under homogeneous
Steklov conditions (7.34), because variational methods apply as well when the linear
term λu in Ω is replaced by the linear term auν on ∂Ω , see Section 3.3.

7.2.3 Positivity and symmetry

As for positivity and symmetry, in view of Chapter 6, we confine ourselves to the
case where Ω = B is the unit ball and λ ∈ [0,Λm,1).

Theorem 7.19. Assume that Ω = B and let 0 ≤ λ < Λm,1. Then any solution con-
structed as in the proof of Theorem 7.17 by means of constrained minimisation is
necessarily of fixed sign and radially symmetric.

Proof. We use the method of decomposition with respect to dual cones which was
explained in detail in Section 3.1.2. As in the proof of Theorem 7.17 let ũ denote a
minimum of Fλ on N. We assume that ũ is sign changing. Let K ⊂ Hm

0 (B) be the
cone of nonnegative functions and K ∗ its dual cone. We decompose

ũ = u1 +u2, u1 ∈K , u2 ∈K ∗, u1 ⊥ u2 in Hm
0 (B).

By Proposition 3.6, our assumption implies that

0 6≡ u1 ≥ 0 and u2 < 0.

Recalling (2.11) and putting û = u1−u2 we see that



7.2 A brief overview of subcritical problems 239

Fλ (ũ) = ‖ũ‖2
Hm

0
−λ

∫
B

ũ2 dx

= ‖û‖2
Hm

0
−λ

∫
B
(u2

1 +2u1u2 +u2
2)dx

≥ ‖û‖2
Hm

0
−λ

∫
B
(u2

1−2u1u2 +u2
2)dx = Fλ (û),

while
|ũ|= |u1 +u2| ≤ u1−u2 = û = |û|

with strict inequality on the set {u1 > 0} of positive measure. Hence

1 = ‖ũ‖Lp+1 < ‖û‖Lp+1

so that
û

‖û‖Lp+1
∈ N, Fλ

(
û

‖û‖Lp+1

)
< Fλ (ũ) .

We achieved a contradiction to the minimality of ũ so that ũ is of fixed sign. A
suitable multiple of ũ solves (7.39). We may assume that 0 6≡ ũ ≥ 0 so that thanks
to Boggio’s principle, see Lemma 2.27, and λ ≥ 0 we even have ũ > 0. Finally,
Theorem 7.1 shows radial symmetry of ũ. �

Conversely, if u ∈ Hm
0 (B) is a strictly positive solution to (7.39) then necessarily

λ < Λm,1. To see this, notice that thanks to Theorem 3.7 we know that the first
Dirichlet eigenfunction ϕ to (−∆)m in B is of fixed sign and the corresponding
eigenvalue Λm,1 is simple. We may assume that ϕ > 0. Multiplying (7.39) by ϕ and
integrating by parts yields

λ

∫
B

uϕ dx <
∫

B
up

ϕ dx+λ

∫
B

uϕ dx =
∫

B
(−∆)muϕ dx

=
∫

B
(−∆)m

ϕ udx = Λm,1

∫
B

uϕ dx. (7.43)

Since by assumption
∫

B uϕ dx > 0, we necessarily have that λ < Λm,1.

Remark 7.20. In view of Theorem 7.3, a statement similar to Theorem 7.19 also
holds if the Dirichlet conditions in (7.39) are replaced by the Navier conditions.
Moreover, when m = 2 (biharmonic operator), λ = 0 and Ω = B, both the Dirichlet
problem (7.39) and the corresponding Navier problem admit a unique positive so-
lution. This follows by combining Theorems 7.1 and 7.3 with a result by Dalmasso
[125].
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7.3 The Hilbertian critical embedding

The existence results stated in the previous section are obtained thanks to the com-
pactness of the embedding Hm

0 ⊂ Lp+1 for p < s. In this section we analyse the
continuous (but not compact) embedding Hm

0 ⊂ Ls+1.
As before, for all n > 2m we define

s :=
n+2m
n−2m

to be the critical Sobolev exponent. Theorem 2.3 states that there exists a constant
S > 0 such that S‖u‖2

Ls+1 ≤ ‖u‖2
Dm,2 for all u ∈ Dm,2(Rn). The optimal (largest)

constant S may be characterised variationally as

S = inf
Dm,2(Rn)\{0}

‖v‖2
Dm,2

‖v‖2
Ls+1

, (7.44)

where

‖v‖Dm,2 :=

{
‖∆ kv‖L2 if m = 2k,

‖∇(∆ kv)‖L2 if m = 2k +1.

The corresponding scalar product ( . , .)Dm,2 , see the bilinear form in (2.13), gives
an Hilbertian structure to Dm,2(Rn) in view of Theorem 2.2.

Obviously, S = S(n,m) and s = s(n,m). Since it will be clear from the context we
prefer to use the short notation.

Up to a multiplier, the Euler-Lagrange equation relative to the minimisation prob-
lem (7.44) reads

(−∆)mu = |u|s−1u in Rn. (7.45)

We now put

cm,n :=

[
m−1

∏
h=−m

(n+2h)

](n−2m)/4m

and for any x0 ∈ Rn and ε > 0 we consider the family of entire functions

uε,x0(x) =
cm,nε(n−2m)/2

(ε2 + |x− x0|2)(n−2m)/2 . (7.46)

We first state

Theorem 7.21. Let m ∈ N+ and let n > 2m. Then Dm,2(Rn)⊂ Ls+1(Rn) and

S‖u‖2
Ls+1 ≤ ‖u‖2

Dm,2 for all u ∈Dm,2(Rn) . (7.47)

Equality in (7.47) holds if and only if, up to multiples, u = uε,x0 for some x0 ∈ Rn

and some ε > 0, where uε,x0 is as in (7.46). Moreover, the functions in (7.46) are the
only positive solutions of (7.45).
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Proof. The estimate (7.47) follows directly from the variational characterisation
(7.44). The rest of the proof is quite delicate, involving a number of deep results.
Whence we briefly sketch it by giving the main points and referring to the literature
for the details.

In [277, 382] it is shown that the functions uε,x0 achieve equality in (7.47). In
order to show that these are the only functions with this property, we first remark that
a suitable multiple of any function achieving the equality in (7.47) satisfies (7.45).
Then from Lemma 7.22 below we know that any minimiser of (7.44) is of constant
sign. Hence, minimisers for the Sobolev ratio are positive (or negative) solutions
of (7.45). Finally, [410, Theorem 1.3] ensures that, up to scaling, translations and
nontrivial multiples, they have precisely the form of uε,x0 . See also earlier results in
[274] for the case m = 2 and subsequent stronger results in [95]. �

In view of [32], we know that (7.45) admits infinitely many nodal finite energy
solutions. Therefore, it is of some interest to prove the following “energy doubling
property” of nodal solutions to (7.45).

Lemma 7.22. Let u ∈ Dm,2(Rn) be a nodal solution of the equation (7.45). Then
‖u‖2

Dm,2 ≥ 2(s−1)/(s+1)S‖u‖2
Ls+1 .

Proof. Consider the convex closed cone

K =
{

u ∈Dm,2(Rn) : u≥ 0 a.e. in Rn} ,

and its dual cone

K ∗ =
{

u ∈Dm,2(Rn) : (u,v)Dm,2 ≤ 0 for all v ∈K
}

.

By Proposition 3.6 we know that K ∗ ⊂−K . Moreover, by the dual cones decom-
position, see Theorem 3.4, for each u ∈Dm,2(Rn) there exists a unique pair (u1,u2)
in K ×K ∗ such that

u = u1 +u2, (u1,u2)Dm,2 = 0. (7.48)

Let u be a nodal solution of (7.45) and let u1 ∈K and u2 ∈K ∗ be the components
of u according to this decomposition. We obtain that ui 6≡ 0 and

|u(x)|s−1u(x)ui(x)≤ |ui(x)|s+1, i = 1,2, (7.49)

for a.e. x ∈Rn. Indeed, if i = 1 and u(x)≤ 0 then (7.49) is trivial, while if u(x)≥ 0,
since u2 ∈ −K , one has u(x) = u1(x)+ u2(x)≤ u1(x) and again (7.49) holds. The
case i = 2 is similar. By combining the Sobolev inequality (7.47) with (7.48) and
(7.49), we get for i = 1,2

S‖ui‖2
Ls+1 ≤ ‖ui‖2

Dm,2 = (u,ui)Dm,2 =
∫
Rn

(−∆)mu ui dx

=
∫
Rn
|u|s−1uui dx≤

∫
Rn
|ui|s+1 dx = ‖ui‖s+1

Ls+1 ,
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which implies ‖ui‖2
Ls+1 ≥ S2/(s−1) for i = 1,2. Hence, again by (7.47) and (7.48),

one obtains

‖u‖2
Dm,2

‖u‖2
Ls+1

= ‖u‖2(s−1)/(s+1)
Dm,2 =

(
‖u1‖2

Dm,2 +‖u2‖2
Dm,2

)(s−1)/(s+1)

≥
(
S‖u1‖2

Ls+1 +S‖u2‖2
Ls+1

)(s−1)/(s+1) ≥ 2(s−1)/(s+1)S ,

which concludes the proof. �

Notice that Theorem 7.21 enables us to compute explicitly the optimal constant S
defined in (7.44). By Theorem 7.21, we know that u1,0 (see (7.46)) solves (7.45). If
we multiply (7.45) by u1,0 and integrate by parts m times we obtain that ‖u1,0‖2

Dm,2 =
‖u1,0‖s+1

Ls+1 . Therefore,

S =
‖u1,0‖2

Dm,2

‖u1,0‖2
Ls+1

= ‖u1,0‖s−1
Ls+1 = c4m/(n−2m)

m,n

(
nen

∫
∞

0

rn−1

(1+ r2)n dr
)2m/n

.

Recalling the definition of the Gamma function, some tedious computations yield

S = π
m
(

Γ ( n
2 )

Γ (n)

)2m/n m−1

∏
h=−m

(n+2h) . (7.50)

In fact, the constant S serves as an embedding constant for Hm
0 (Ω) ⊂ Ls+1(Ω)

for any domain Ω ⊂ Rn.

Theorem 7.23. Let m ∈ N+ and let Ω ⊂ Rn (n > 2m) be a bounded (respectively
unbounded) domain. Then Hm

0 (Ω) ⊂ Ls+1(Ω) (respectively Dm,2(Ω) ⊂ Ls+1(Ω))
and

S = inf
Hm

0 (Ω)\{0}

‖v‖2
Hm

0

‖v‖2
Ls+1

(respectively S = inf
Dm,2(Ω)\{0}

‖v‖2
Dm,2

‖v‖2
Ls+1

). (7.51)

Moreover, the minimum in (7.51) is not attained if Rn \Ω has positive (possibly
infinite) measure.

Proof. We only give the proof when Ω is bounded. In the case of an unbounded Ω

one just has to replace the norms in Hm
0 with the norms in Dm,2.

Let S(Ω) denote the infimum in (7.51). Since any function in Hm
0 (Ω) can be

trivially extended to Rn as a function in Dm,2(Rn), it is clear that

S(Ω)≥ S. (7.52)

To see the converse we consider for ε ↘ 0 the following one-parameter family of
functions of the kind (7.46),
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vε(x) = γm,n
ε(n−2m)/2

(ε2 + |x|2)(n−2m)/2 = ε
−(n−2m)/2v1

( x
ε

)
.

Here γm,n is chosen in such a way that, independently of ε , we have∫
Rn
|vε(x)|s+1 dx = 1. (7.53)

By Theorem 7.21 we know that for every ε > 0

S = ‖vε‖2
Dm,2 . (7.54)

By [382, Lemma 2] we also know that for j = 0, . . . ,m−1, |x| ≥ 1, we have

∣∣∆ jv1(x)
∣∣ ≤ C

|x|2 j

(1+ |x|2)(n−2m+4 j)/2 ,

∣∣∇∆
jv1(x)

∣∣ ≤ C
|x|2 j+1

(1+ |x|2)(n−2m+4 j+2)/2 ,

implying that for 0 < ε ≤ 1
2 , |x| ≥ 1

2 , we have

∣∣∆ jvε(x)
∣∣≤C

ε(n−2m)/2|x|2 j

(ε2 + |x|2)(n−2m+4 j)/2 ,

∣∣∇∆
jvε(x)

∣∣≤C
ε(n−2m)/2|x|2 j+1

(ε2 + |x|2)(n−2m+4 j+2)/2 .

(7.55)

For 0 < ε ≤ 1
2 , 1

2 ≤ |x| ≤ 1 we conclude∣∣∆ jvε(x)
∣∣≤Cε

(n−2m)/2,
∣∣∇∆

jvε(x)
∣∣≤Cε

(n−2m)/2.

Since vε is radially symmetric, for all |α| ≤m, 0 < ε ≤ 1
2 , 1

2 ≤ |x| ≤ 1 one finds that,
in particular,

|Dα vε(x)| ≤Cε
(n−2m)/2. (7.56)

After scaling and translation we may assume that B⊂Ω . Let ξ ∈C∞
c (B) be a fixed

cut-off function, 0 ≤ ξ ≤ 1, ξ (x) = 1 on {|x| ≤ 1
2}. We proceed by localising the

minimisers vε and put
wε := ξ · vε ∈C∞

c (B). (7.57)

For even m we conclude with the help of (7.55) and (7.56) that∣∣∣∣∫Rn

(
∆

m/2vε

)2
dx−

∫
B

(
∆

m/2wε

)2
dx
∣∣∣∣

≤
∣∣∣∣∫ 1

2≤|x|≤1

((
∆

m/2vε

)2
−
(

∆
m/2(ξ vε)

)2
)

dx
∣∣∣∣+∫|x|≥1

(
∆

m/2vε

)2
dx
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≤Cε
n−2m

(
1+

∫
∞

1
r2m−n−1 dr

)
= O(εn−2m).

For odd m an analogous estimate holds true. By virtue of (7.53) and (7.54) it follows
that

‖wε‖2
Hm

0
= S +O(εn−2m); (7.58)∣∣∣∣∫Rn

vs+1
ε dx−

∫
B

ws+1
ε dx

∣∣∣∣ ≤ ∫|x|≥ 1
2

vs+1
ε dx≤C

∫
|x|≥ 1

2

εn

(ε2 + |x|2)n dx = O(εn);∫
B

ws+1
ε dx = 1+O(εn). (7.59)

Since wε ≥ 0 and

w̃ε :=
wε

(
∫

B ws+1
ε dx)1/(s+1)

∈C∞
c (B) , ‖w̃ε‖Ls+1 = 1,

by making use of (7.58) and (7.59) we obtain

‖w̃ε‖2
Hm

0
=

‖wε‖2
Hm

0

(
∫

B ws+1
ε dx)2/(s+1)

=
S +O(εn−2m)

(1+O(εn))2/(s+1) = S +O(εn−2m),

so that S(Ω) ≤ S by letting ε → 0. Together with (7.52), this proves that S is inde-
pendent of the domain.

In order to show that the minimum in (7.51) is not attained, one argues that an
optimal function v0 ∈ Hm

0 (Ω) may be extended by 0 to a function v0 ∈ Hm
0 (Rn)

which vanishes identically on the nonempty open set Rn \Ω . Since we have just
shown that the infimum is domain independent, this extended function would be
a minimiser of the Sobolev ratio in Rn and would therefore solve (7.45), up to a
Lagrange multiplier. This is in contradiction with the unique continuation principle
[336, 345] which excludes the existence of Hm

0 -solutions to (7.45) which vanish
identically on some open set. Let us also mention that if Ω is bounded, the simplest
way to prove nonattainment is to apply Theorem 7.58 below. �

Let us also emphasise that

S = inf
Hm(Rn)\{0}

‖v‖2
Hm

‖v‖2
Ls+1

(7.60)

but, contrary to (7.44), the infimum in (7.60) is not attained since the additional L2-
norms, see (2.8), make the corresponding inequality strict. In order to prove (7.60),
consider the functions uε,x0 in (7.46) with x0 = 0. By Theorem 7.21 they satisfy
S‖uε,0‖2

Ls+1 = ‖uε,0‖2
Dm,2 . A computation shows that ‖Dkuε,0‖L2 → 0 as ε → 0 for

all k = 0, . . . ,m−1, see also the proof of Theorem 7.23 above. This proves (7.60).
One may then wonder whether S and its attainment remain the same if in (7.51)

we replace the functional space Hm
0 (Ω) with a different (larger) subspace of Hm(Ω).
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Restricting our attention to the case of Navier boundary conditions, we consider
the space Hm

ϑ
(Ω) introduced in (7.35) endowed with the norm (7.36). We have the

following positive answer from van der Vorst [399] and Ge [192], see also [187].

Theorem 7.24. Let Ω ⊂ Rn (n > 2m) be a bounded Cm-smooth domain. Then
Hm

ϑ
(Ω)⊂ Ls+1(Ω) and

S = inf
Hm

ϑ
(Ω)\{0}

‖v‖2
Hm

ϑ

‖v‖2
Ls+1

. (7.61)

Moreover, the infimum in (7.61) is not achieved.

Theorems 7.23 and 7.24 tell us that not only the best embedding constant is
independent of the domain Ω , but it is also independent of the kernels of the trace
operators defined in (2.4). We also refer to [41] for embeddings in case of “free”
boundary conditions.
Proof. 1. By scaling we may assume that |Ω |= en = |B|. Since Hm

0 (Ω)⊂ Hm
ϑ

(Ω)
it is obvious that

S ≥ inf
Hm

ϑ
(Ω)\{0}

‖v‖2
Hm

ϑ

‖v‖2
Ls+1

.

In order to prove equality we assume by contradiction that the above inequality were
strict. This means that there exists u ∈ Hm

ϑ
(Ω)\{0} such that

S >
‖u‖2

Hm
ϑ

‖u‖2
Ls+1

. (7.62)

In a first step we prove that there exists a radially symmetric function v ∈ Hm
ϑ

(B)\
{0} satisfying

(−∆) jv is positive and radially decreasing for all j ≤ m
2

(7.63)

and
‖u‖2

Hm
ϑ

‖u‖2
Ls+1

≥
‖v‖2

Hm
ϑ

‖v‖2
Ls+1

. (7.64)

In the case that m = 2k is even, we consider v ∈ Hm,p
ϑ

(B) given by{
(−∆)kv = ((−∆)ku)∗ in B
∆ jv = 0 on ∂B, j = 0, . . . ,k−1,

(7.65)

where ((−∆)ku)∗ denotes the spherical rearrangement of (−∆)ku according to Def-
inition 3.10. Then (−∆) jv is positive, radially symmetric and radially decreasing
for all j = 0, . . . ,k. Moreover, Theorem 3.12 yields v≥ u∗ so that

‖v‖Ls+1(B) ≥ ‖u
∗‖Ls+1(B) = ‖u‖Ls+1(Ω) , (7.66)
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where the last equality follows from standard properties of the spherical rearrange-
ment, see Theorem 3.11. For the same reason, we also have∥∥∥∆

kv
∥∥∥

L2(B)
=
∥∥∥(∆ ku)∗

∥∥∥
L2(B)

=
∥∥∥∆

ku
∥∥∥

L2(Ω)
.

Altogether we see that v has the claimed properties.
To prove (7.64) in the case that m = 2k +1 is odd we consider again v ∈ Hm

ϑ
(B)

defined by (7.65). Then (−∆) jv is positive, radially symmetric and radially decreas-
ing for all j = 0, . . . ,k. Moreover, we obtain again (7.66). Finally, by standard prop-
erties of the spherical rearrangement, see again Theorem 3.11, we infer∥∥∥∇(∆ kv)

∥∥∥
L2(B)

=
∥∥∥∇(∆ ku)∗

∥∥∥
L2(B)

≤
∥∥∥∇(∆ ku)

∥∥∥
L2(Ω)

and v is as stated.

2. Take now v as constructed in the previous step. Below, we shall introduce an
extension procedure and prove that there exists a radially symmetric function w ∈
Dm,2 (Rn) with

‖v‖2
Hm

ϑ

‖v‖2
Ls+1

>
‖w‖2

Dm,2

‖w‖2
Ls+1

. (7.67)

Since by definition of the optimal Sobolev constant one has that

‖w‖2
Dm,2

‖w‖2
Ls+1

≥ S.

Combining this with (7.62), (7.64), and (7.67) yields a contradiction. Quite similarly
one shows that S is not achieved in Hm

ϑ
(Ω). This means that up to showing (7.67),

the proof of Theorem 7.24 is complete. �

In order to prove (7.67) one needs to distinguish between even and odd m.
Even m, m = 2k for some k ≥ 1.

For g : [0,1]→ R let us define

(G0g)(r) :=
∫ 1

r

∫
ρ

0

(
s
ρ

)n−1

g(s)dsdρ.

Hence, G0 is the solution operator for the radially symmetric Poisson problem in the
unit ball of Rn, that is, it satisfies{

−∆ (G0g)(|x|) = g(|x|) for |x|< 1,

(G0g)(|x|) = 0 for |x|= 1.

Let us also define for g : [0,∞)→ R with appropriate integrability conditions
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(G g)(r) :=
∫

∞

r

∫
ρ

0

(
s
ρ

)n−1

g(s)dsdρ.

If g also goes to 0 fast enough for r→∞ (e.g. like r−γ with γ > 2), then an integration
by parts gives

(G g)(r) =
1

n−2
r2−n

∫ r

0
sn−1g(s)ds+

1
n−2

∫
∞

r
sg(s)ds, (7.68)

and
−∆ (G g)(|x|) = g(|x|) for x ∈ Rn.

Note that
g≥ 0 =⇒ G g≥ G0g in B. (7.69)

We now describe the inductive procedure which we will use in order to suitably
extend radial functions in Hm

ϑ
(B) satisfying (7.63).

Lemma 7.25. Let n,γ > 2, γ 6= n and let `≥ 0. If f ∈H`
loc (Rn) is radially symmetric,

positive and such that
f (x)≤ c f |x|−γ for |x|> 1,

then there is a unique radially symmetric solution z ∈ H`+2
loc (Rn) of−∆z = f in Rn,

lim
|x|→∞

z(x) = 0.

Moreover, z = G f implies that z is positive and

z(x)≤ c2 |x|2−n +
c f

(γ−2)(n− γ)
|x|2−γ for |x|> 1.

This inequality becomes an equality if f (x) = c f |x|−γ for |x|> 1.

Proof. In view of the “boundary condition” at infinity, uniqueness follows from
Weyl’s lemma and Liouville’s theorem.

Suppose first that f is continuous. We have

−r1−n ∂

∂ r

(
rn−1 ∂ z

∂ r
(r)
)

= f (r) .

Since ∂ z
∂ r is bounded in 0 we find

rn−1 ∂ z
∂ r

(r) =−
∫ r

0
sn−1 f (s)ds

and since z goes to 0 at ∞, it follows that
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z(r) =
∫

∞

r
ρ

1−n
∫

ρ

0
sn−1 f (s)dsdρ

=
−1

n−2

[
ρ

2−n
∫

ρ

0
sn−1 f (s)ds

]∞

r
+

1
n−2

∫
∞

r
s f (s)ds

=
1

n−2
r2−n

∫ r

0
sn−1 f (s)ds+

1
n−2

∫
∞

r
s f (s)ds. (7.70)

If f ≥ 0 is not identically 0, then z > 0. For r > 1 it follows from (7.70) that

z(r) ≤ 1
n−2

r2−n
(∫ 1

0
sn−1 f (s)ds+ c f

∫ r

1
sn−1−γ ds

)
+

c f

(n−2)(γ−2)
r2−γ

=
1

n−2

(∫ 1

0
sn−1 f (s)ds−

c f

n− γ

)
r2−n +

c f

(γ−2)(n− γ)
r2−γ .

Equality holds if f (x) = c f |x|−γ for |x| > 1. The formula in (7.70) also holds for
f ∈ H`

loc (Rn). The claim that z ∈ H`+2
loc (Rn) is direct. �

The second tool is a variation of an extension result which enables us to modify
radial functions in Hm

ϑ
(B) to functions on the whole space with no increase of the

Dirichlet norm.

Lemma 7.26. Let m = 2k and let v ∈Hm
ϑ

(B)\{0} be radially symmetric and satisfy
(7.63). Let w(r) =

(
G k f

)
(r) for

f (r) =
{

(−∆)k v(r) for r ≤ 1,
0 for r > 1.

Then w ∈Dm,2(Rn) and

1. ‖w‖Dm,2 = ‖v‖Hm
ϑ

(B)

2. ‖w‖Ls+1(Rn) > ‖v‖Ls+1(B).

Proof. From Lemma 7.25 we find that

w(r) = c1r2−n + c2r4−n + · · ·+ cmrm−n for r > 1

which implies with w ∈ Hm
loc(R

n) that w ∈Dm,2 (Rn). Since

f (r) = (−∆)k
(
G k f

)
(r) = (−∆)k w(r)

it even follows that

‖w‖Dm,2 =
∥∥∥∆

kw
∥∥∥

L2(Rn)
= ‖ f‖L2(Rn) = ‖ f‖L2(B) =

∥∥∥∆
kv
∥∥∥

L2(Ω)
= ‖v‖Hm

ϑ
(B) .

Moreover, by (7.68) it follows that G f (1) > 0 =
(
(−∆)k−1 v

)
(1) and hence by the

maximum principle and by (7.69):
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G f ≥ G0 f = (−∆)k−1 v in B. (7.71)

Since G 2 f (1) > 0 =
(
(−∆)k−2 v

)
(1) and since (7.71) holds, a further iteration of

the maximum principle and (7.69) implies

G 2 f ≥ G 2
0 f = (−∆)k−2 v in B.

Repeating this argument we find

w = G k f ≥ G k
0 f = v in B.

Hence ‖w‖Ls+1(Rn) > ‖w‖Ls+1(B) ≥ ‖v‖Ls+1(B). �

If m = 2k is even, the function w ∈ Dm,2(Rn) \ {0} constructed in Lemma 7.26
satisfies (7.67).

Odd m, m = 2k +1 for some k ≥ 1. In this case, we take advantage of what has just
been proved for the even exponent 2k. Since H2k+1

ϑ
(B) ⊂ H2k

ϑ
(B), by Lemma 7.26

we know that any radially symmetric function v ∈ H2k+1
ϑ

(B)\{0} satisfying (7.63)
allows to define an entire function w such that

w > v in B , ∆
k(w− v) = 0 in B , ∆

kw = 0 in Rn \B.

In particular, this implies that also

∇(∆ k(w− v)) = 0 in B , ∇(∆ kw) = 0 in Rn \B.

The construction for the 2k-case also enables us to conclude that w ∈C2k−1(Rn), a
regularity which is not enough to obtain w ∈ D2k+1,2(Rn), we need here one more
degree of regularity. This is obtained by recalling the extra boundary condition that
appears by going from H2k

ϑ
(B) to H2k+1

ϑ
(B), namely ∆ kv = 0 on ∂B, and that ∆ kw =

0 in Rn \B. Hence, (7.67) follows also for odd m.

7.4 The Pohožaev identity for critical growth problems

In what follows we assume again that n > 2m and we consider the case where the
exponent p in (7.39) is critical,

p = s =
n+2m
n−2m

.

When trying to carry over the methods from Section 7.2 to this case, one is imme-
diately confronted with the fact that the embedding Hm

0 (Ω)⊂ Ls+1(Ω) is no longer
compact although still continuous. Not only the arguments break down, but a huge
number of new phenomena can be observed, some of which will be explained be-
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low. On the other hand, according to Proposition 7.15, all weak Hm
0 –solutions of

critical growth equations are as smooth as the domain and the nonlinearity permit.
So in what follows, in smooth domains we need not specify the type of solution we
are dealing with.

The starting point of our analysis is a celebrated identity due to Pohožaev [339,
340], see also Pucci-Serrin [347]. It is deduced from the equation by means of the
testing functions x ·∇u and u itself, and by partial integration. It reflects translation
and scaling equivariance of the differential equation.

Theorem 7.27 (Pohožaev identity). Assume that Ω ⊂ Rn (n > 2m) is a bounded
smooth domain with exterior unit normal ν , and let u ∈C2m(Ω) be a solution of{

(−∆)mu = λu+ |u|s−1u in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,
(7.72)

where λ ∈ R. Then one has the following variational identity

2mλ

∫
Ω

u2 dx =


∫

∂Ω

(
∆

m/2u
)2

(x ·ν) dω if m is even,

∫
∂Ω

(
∂

∂ν
∆

(m−1)/2u
)2

(x ·ν) dω if m is odd.

(7.73)

Proof. We consider first the case where m = 2k is even. Using x ·∇u as testing
function we obtain for each term in (7.72)

∫
Ω

|u|s−1u

(
n

∑
j=1

x jux j

)
dx = −s

n

∑
j=1

∫
Ω

|u|s−1uux j x j dx−n
∫

Ω

|u|s+1 dx

⇒
∫

Ω

|u|s−1u

(
n

∑
j=1

x jux j

)
dx = − n

s+1

∫
Ω

|u|s+1 dx =−n−2m
2

∫
Ω

|u|s+1 dx;

∫
Ω

u

(
n

∑
j=1

x jux j

)
dx =−n

2

∫
Ω

u2 dx;

∫
Ω

(
(−∆)2ku

)( n

∑
j=1

x jux j

)
dx =

∫
Ω

(
∆

k+1u
)

∆
k−1

(
n

∑
j=1

x jux j

)
dx

= 2(k−1)
∫

Ω

(
∆

k+1u
)(

∆
k−1u

)
dx+

n

∑
j=1

∫
Ω

(
∆

k+1u
)

x j

(
∆

k−1u
)

x j
dx

= 2(k−1)
∫

Ω

(
∆

ku
)2

dx−
n

∑
i, j=1

∫
Ω

(
∆

ku
)

xi
δi j

(
∆

k−1u
)

x j
dx

−
n

∑
i, j=1

∫
Ω

(
∆

ku
)

xi
x j

(
∆

k−1u
)

xix j
dx



7.4 The Pohožaev identity for critical growth problems 251

= (2k−1)
∫

Ω

(
∆

ku
)2

dx−
n

∑
i, j=1

∫
∂Ω

(
∆

ku
)(

∆
k−1u

)
xix j

(νix j) dω

+
n

∑
j=1

∫
Ω

(
∆

ku
)

x j

(
∆

ku
)

x j
dx+

n

∑
i, j=1

∫
Ω

(
∆

ku
)

δi j

(
∆

k−1u
)

xix j
dx.

Since
(
∆ k−1u

)
x j
|∂Ω = 0, one has that on ∂Ω

∇

((
∆

k−1u
)

x j

)
=

∂

∂ν

((
∆

k−1u
)

x j

)
·ν =

n

∑
`=1

((
∆

k−1u
)

x`x j
ν`

)
·ν

so that we may proceed as follows.

∫
Ω

(
(−∆)2ku

)( n

∑
j=1

x jux j

)
dx = 2k

∫
Ω

(
∆

ku
)2

dx

−
n

∑
i, j=1

∫
∂Ω

(
∆

ku
)( n

∑
`=1

((
∆

k−1u
)

x`x j
ν`

)
·νi

)
(νix j) dω

+
1
2

∫
∂Ω

(
∆

ku
)2

(x ·ν)dω− n
2

∫
Ω

(
∆

ku
)2

dx

=
2m−n

2

∫
Ω

(
∆

ku
)2

dx−
n

∑
j,`=1

∫
∂Ω

(
∆

ku
)(

∆
k−1u

)
x`x j

(ν`x j) dω

+
1
2

∫
∂Ω

(
∆

ku
)2

(x ·ν)dω

=
2m−n

2

∫
Ω

(
∆

ku
)2

dx−
n

∑
i, j,`=1

∫
∂Ω

(
∆

ku
)(

∆
k−1u

)
x`xi

(νiν jν`x j) dω

+
1
2

∫
∂Ω

(
∆

ku
)2

(x ·ν)dω

=
2m−n

2

∫
Ω

(
∆

ku
)2

dx−
n

∑
j=1

∫
∂Ω

(
∆

ku
)(

∂ 2

∂ν2 ∆
k−1u

)
(ν jx j) dω

+
1
2

∫
∂Ω

(
∆

ku
)2

(x ·ν) dω

=
2m−n

2

∫
Ω

(
∆

ku
)2

dx−
∫

∂Ω

(
∆

ku
)(

∆
ku
)

(x ·ν) dω

+
1
2

∫
∂Ω

(
∆

ku
)2

(x ·ν)dω

= −n−2m
2

∫
Ω

(
∆

ku
)2

dx− 1
2

∫
∂Ω

(
∆

ku
)2

(x ·ν)dω,

where we exploited again that
(
∆ k−1u

)
x j
|∂Ω = 0. Making use of the differential

equation yields
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n−2m
2

∫
Ω

(
∆

ku
)2

dx+
1
2

∫
∂Ω

(
∆

ku
)2

(x ·ν)dω

= λ
n
2

∫
Ω

u2 dx+
n−2m

2

∫
Ω

|u|s+1 dx.

Using now n−2m
2 u as a testing function gives

n−2m
2

∫
Ω

(
∆

ku
)2

dx = λ
n−2m

2

∫
Ω

u2 dx+
n−2m

2

∫
Ω

|u|s+1 dx.

We subtract both equations and come up with

1
2

∫
∂Ω

(
∆

ku
)2

(x ·ν)dω = mλ

∫
Ω

u2 dx,

thereby proving the claim for even m = 2k.
If m = 2k + 1 is odd, only the differential operator needs some extra considera-

tion. ∫
Ω

(
(−∆)2k+1u

)( n

∑
j=1

x jux j

)
dx =−

∫
Ω

(
∆

k+1u
)

∆
k

(
n

∑
j=1

x jux j

)
dx

= −2k
∫

Ω

(
∆

k+1u
)(

∆
ku
)

dx−
n

∑
j=1

∫
Ω

(
∆

k+1u
)

x j

(
∆

ku
)

x j
dx

= 2k
∫

Ω

∣∣∣∇∆
ku
∣∣∣2 dx−

n

∑
i, j=1

∫
∂Ω

(
∆

ku
)

xi

(
∆

ku
)

x j
(x jνi) dω

+
n

∑
i, j=1

∫
Ω

(
∆

ku
)

xi
δi j

(
∆

ku
)

x j
dx+

n

∑
i, j=1

∫
Ω

(
∆

ku
)

xi
x j

(
∆

ku
)

xix j
dx

= (2k +1)
∫

Ω

∣∣∣∇∆
ku
∣∣∣2 dx−

n

∑
i, j=1

∫
∂Ω

(
∂

∂ν
∆

ku
)2

(νiν jx jνi) dω

+
1
2

n

∑
i, j=1

∫
∂Ω

(
∆

ku
)2

xi
(x jν j) dω− n

2

∫
Ω

∣∣∣∇∆
ku
∣∣∣2 dx

= −n−2m
2

∫
Ω

∣∣∣∇∆
ku
∣∣∣2 dx− 1

2

∫
∂Ω

(
∂

∂ν
∆

ku
)2

(x ·ν) dω.

The remaining arguments are exactly the same as for even m. �

Remark 7.28. A careful analysis of the proof shows that the statement remains true
if we merely assume that u∈C2m(Ω)∩C2m−1(Ω). This is also true for the next two
identities.

A similar identity is also available for critical growth problems under Navier
boundary conditions. The following result, which can be proved essentially as The-
orem 7.27, is due to Mitidieri [307] and van der Vorst [398].
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Theorem 7.29. Assume that Ω ⊂ Rn (n > 2m) is a bounded smooth domain with
exterior unit normal ν , and let u ∈C2m(Ω) be a solution of{

(−∆)mu = λu+ |u|s−1u in Ω ,

∆
ju|∂Ω = 0 for j = 0, . . .m−1,

where λ ∈ R. Then one has the following variational identity

2mλ

∫
Ω

u2 dx = (−1)m+1
m

∑
j=1

∫
∂Ω

(∆ j−1u)ν (∆ m− ju)ν(x ·ν)dω. (7.74)

Proof. As for Theorem 7.27, one uses again x ·∇u and n−2m
2 u as testing functions

and integrates by parts by replacing the Dirichlet conditions with the Navier condi-
tions ∆ ju|∂Ω = 0 for j = 0, . . .m−1. This gives rise to different boundary integrals.
And, again, the cases where m is even or odd need to be considered separately. �

There are several equivalent ways of writing the identity (7.74). We chose the
one which appears most elegant since it does not require to distinguish between
even and odd m. Note that if m is even every summand in the right hand side of
(7.74) appears twice while if m is odd the summand indexed with j = m+1

2 appears
only once and all the others summands appear twice. We refer to [375, Lemma 2]
for a different form of (7.74).

Finally, we consider the case of Steklov boundary conditions, where the situation
is slightly different. For later purposes we only need to deal with the case λ = 0.

Theorem 7.30. Assume that Ω ⊂ Rn (n > 4) is a bounded smooth domain with
exterior unit normal ν , let a ∈ R and let u ∈C4(Ω) be a solution of{

∆ 2u = |u|8/(n−4)u in Ω ,
u = ∆u−auν = 0 on ∂Ω .

(7.75)

Then ∫
∂Ω

(
2(x ·∇∆u) − a2 (x ·ν)uν +nauν

)
uν dω = 0 . (7.76)

Proof. The starting point is a Rellich-type identity [307, (2.6)] of Mitidieri for arbi-
trary C4(Ω)-functions, which can be obtained as follows.∫

Ω

(∆ 2u)(x ·∇u)dx =−
∫

Ω

∇∆u ·∇u dx−
n

∑
i, j=1

∫
Ω

(∆u)xix juxix j dx

+
∫

∂Ω

(x ·∇u)(∆u)ν dω
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= (n−1)
∫

Ω

∇∆u ·∇u dx+
n

∑
i, j=1

∫
Ω

(∆u)xix j x juxi dx

+
∫

∂Ω

(
(x ·∇u)(∆u)ν − (∇∆u ·∇u)(x ·ν)

)
dω

= (n−2)
∫

Ω

∇∆u ·∇u dx−
n

∑
j=1

∫
Ω

(∆u)x j x j∆u dx

+
∫

∂Ω

(
(x ·∇u)(∆u)ν − (∇∆u ·∇u)(x ·ν)+(x ·∇∆u)uν

)
dω

= (n−2)
∫

Ω

∇∆u ·∇u dx+
n
2

∫
Ω

(∆u)2 dx

+
∫

∂Ω

(
(x ·∇u)(∆u)ν − (∇∆u ·∇u)(x ·ν)+(x ·∇∆u)uν −

(∆u)2

2
(x ·ν)

)
dω.

By separating interior terms from boundary terms we finally get∫
Ω

(∆ 2u)x ·∇u dx− n
2

∫
Ω

(∆u)2 dx− (n−2)
∫

Ω

∇∆u ·∇u dx

=
∫

∂Ω

(
(x ·∇u)(∆u)ν − (∇∆u ·∇u)(x ·ν)+(x ·∇∆u)uν −

(∆u)2

2
(x ·ν)

)
dω.

(7.77)

Since u = 0 on ∂Ω , (7.77) reduces to∫
Ω

(∆ 2u)x ·∇udx− n
2

∫
Ω

(∆u)2 dx+(n−2)
∫

Ω

(∆ 2u)udx

=−1
2

∫
∂Ω

(∆u)2(x ·ν)dω +
∫

∂Ω

(x ·∇∆u)uν dω. (7.78)

Here we integrated by parts to get the third term in (7.78). Now, for solutions of
(7.75) the left hand side of (7.78) becomes∫

Ω

(∆ 2u)x ·∇udx− n
2

∫
Ω

(∆u)2 dx+(n−2)
∫

Ω

(∆ 2u)udx

=
∫

Ω

|u|8/(n−4)ux ·∇udx− n
2

(∫
Ω

|u|2n/(n−4) dx+a
∫

∂Ω

u2
ν dω

)
+(n−2)

∫
Ω

|u|2n/(n−4) dx

=
n−4

2n

∫
Ω

(x ·∇|u|2n/(n−4))dx+
n−4

2

∫
Ω

|u|2n/(n−4) dx− na
2

∫
∂Ω

u2
ν dω

=−na
2

∫
∂Ω

u2
ν dω.

Combining the latter with (7.78) and using that ∆u = auν on ∂Ω , we get (7.76). �



7.5 Critical growth Dirichlet problems 255

7.5 Critical growth Dirichlet problems

In this section, we consider the semilinear polyharmonic problem{
(−∆)mu = λu+ |u|s−1u, u 6≡ 0 in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,
(7.79)

where Ω ⊂ Rn is a bounded smooth domain and λ ∈ R. As before, n > 2m and s =
(n+2m)/(n−2m) is the critical Sobolev exponent. We will prove both nonexistence
results – essentially based on the Pohožaev identity in Theorem 7.27 – and existence
results.

7.5.1 Nonexistence results

Restricting ourselves to starshaped domains, we draw here the following conclusion
from the Pohožaev identity (7.73). In Section 7.9 we discuss whether nontrivial
solutions exist in geometrically or topologically more complicated domains.

Theorem 7.31. Assume that Ω ⊂ Rn (n > 2m) is a bounded smooth starshaped
domain. Then the Dirichlet problem (7.72) only has the trivial solution u≡ 0, if

1. λ ≤ 0 in the case m = 1,
2. λ < 0 in the case m≥ 2.

Proof. With no loss of generality we may assume that Ω is starshaped with respect
to the origin so that x · ν ≥ 0 on ∂Ω . Therefore, nonexistence of nontrivial solu-
tion for λ < 0 follows from (7.73). Moreover, by the divergence theorem one has∫

∂Ω
(x ·ν) dω = n|Ω | > 0. Hence, there exists a relatively open part of ∂Ω where

x · ν > 0 so that there, also ∇mu = 0. If we assume now in addition that m = 1,
then this is enough to extend u by 0 as a solution of the differential equation (7.72)
beyond this part of ∂Ω . By means of the unique continuation principle for −∆ we
may conclude that u(x)≡ 0 in particular in Ω . See [247] for the details. �

Remark 7.32. If m > 1, one still has a unique continuation principle [336, 345].
Knowing ∇mu = 0 on a part of ∂Ω , however, does not suffice to extend u as a
solution beyond ∂Ω . Instead, one would need ∇ ju = 0 for j = 0, . . . ,2m−1.

If m ≥ 2 and λ = 0, the nonexistence of any nontrivial solution to (7.72) has to
be left open, only more restricted results are available. Concerning the biharmonic
problem, i.e. m = 2, by combining (7.73) with the classical Hopf’s lemma, Oswald
[327] could prove the following.

Theorem 7.33. Assume that Ω ⊂ Rn (n > 4) is a strictly starshaped bounded
smooth domain. Then the problem
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∆

2u = u(n+4)/(n−4) in Ω ,

u = |∇u|= 0 on ∂Ω

(7.80)

admits no nontrivial nonnegative solution.

Proof. With no loss of generality we may assume that Ω is strictly starshaped
with respect to the origin so that x · ν > 0 on ∂Ω . Assume that u is a nonnegative
nontrivial solution to (7.80). Since ∂Ω is smooth, by Proposition 7.15 we know
that u ∈C4(Ω). Then from (7.73) (recall λ = 0) we deduce that ∆u = 0 on ∂Ω . But
−∆(−∆u) = u(n+4)/(n−4) 	 0 in Ω so that−∆u is superharmonic in Ω and vanishes
on its boundary. The maximum principle then yields −∆u > 0 in Ω . Since u = 0
on ∂Ω , Hopf’s boundary lemma for strictly superharmonic functions implies that
uν < 0 on ∂Ω , a contradiction. �

However, in general domains Ω , no result excludes the existence of simplest pos-
sible nontrivial solutions – such as mountain pass solutions or constrained minima
– as they are discussed in the subcritical regime in the proof of Theorem 7.17. As-
suming that such a solution exists would not directly yield a contradiction because
due to the lack of positivity preserving – see Chapter 6 – there does not seem to be
a way to prove its positivity. Such a conclusion would be obvious only in domains
with positive biharmonic Green’s function.

Let us now briefly discuss the situation for general m≥ 2 whenever λ = 0. Here,
it seems that, so far, nonexistence results are available only in balls where, in view
of Theorem 7.1, the class of radial solutions contains the class of nonnegative so-
lutions. Hence, the following statement, due to Lazzo and Schmidt [272], also ex-
cludes the existence of nontrivial nonnegative solutions.

Theorem 7.34. Let B⊂ Rn (n > 2m) be the unit ball, s = (n+2m)/(n−2m). Then
the problem {

(−∆)mu = |u|s−1u in B,

Dα u|∂B = 0 for |α| ≤ m−1
(7.81)

admits no nontrivial radial solution. In particular, (7.81) admits no nontrivial non-
negative solution.

Proof. Assume that r 7→ u(r) 6≡ 0 is a radial solution to (7.81). By putting vi := ∆ i−1u
and wi := rn−1v′i for i ∈ {1, . . . ,m}, equation (7.81) is equivalent to the system

rn−1v′i = wi, w′i = rn−1vi+1, i ∈ {1, . . . ,m},

where we have set vm+1 := (−1)m|v1|s−1v1. Note that the w-components satisfy the
initial conditions

wi(0) = 0 for all i ∈ {1, . . . ,m}. (7.82)

It is clear that u (and so v1) cannot have an accumulation point of zeros since oth-
erwise all its derivatives would have the same accumulation point of zeros and, by
continuity, they would all vanish at that point. Then unique solvability of the Cauchy
problem would imply that u≡ 0, against the assumption.
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For each i ∈ {1, . . . ,m} let σ(vi) be the (finite) number of interior zeros of vi,
namely the number of values r ∈ (0,1) where vi(r) vanishes. Also let β (vi) be
the number of boundary zeros, namely the zeros of vi(r) when r ∈ {0,1}. Clearly,
β (vi) ∈ {0,1,2} for all i. Similarly, we define σ(wi) and β (wi).

Let φ : [0,1]→ R be a continuously differentiable function such that both φ and
φ ′ have a finite number of interior zeros. Between any two zeros of φ there is a point
where φ attains a positive maximum or a negative minimum which is an interior zero
of φ ′. It follows, in particular, that σ(φ ′)≥σ(φ)+β (φ)−1. If we apply this remark
to (v,w), for all i ∈ {1, . . . ,m} we have

σ(wi) = σ(rn−1v′i) = σ(v′i)≥ σ(vi)+β (vi)−1

and
σ(vi+1) = σ(rn−1vi+1) = σ(w′i)≥ σ(wi)+β (wi)−1,

which imply

σ(vi+1)≥ σ(wi)+β (wi)−1≥ σ(vi)+β (vi)+β (wi)−2. (7.83)

We now put k := m/2 if m is even and k := (m−1)/2 if m is odd. We claim that

1. σ(vi+1)−1≥ σ(wi)≥ σ(vi) for all i ∈ {1, . . . ,k},
2. σ(vi+1)≥ σ(wi)≥ σ(vi)−1 for all i ∈ {m− k +1, . . . ,m},
3. if m is odd, σ(vk+2)≥ σ(wk+1)≥ σ(vk+1),
4. σ(v1)≤ σ(v2)−1≤ ·· · ≤ σ(vk)− (k−1)≤ σ(vk+1)− k ≤

≤ σ(vm−k+1)−k≤ σ(vm−k+2)− (k−1)≤ ·· · ≤ σ(vm)−1≤ σ(vm+1).

To see this, notice that if i ∈ {1, . . . ,k}, both vi and wi vanish for r = 1, so that
β (vi) ≥ 1 and β (wi) = 2 in view of (7.82). If i ∈ {m− k + 1, . . . ,m}, there is no
condition at r = 1 for vi or wi, and all we know is that β (vi) ≥ 0 and β (wi) ≥ 1. If
m is odd, then also vk+1 vanishes at 1, but wk+1 needs not, so that β (vk+1)≥ 1 and
β (wk+1) ≥ 1. Items 1-2-3 now follow directly from (7.83). Furthermore, it follows
from Item 1 that

σ(v1)≤ σ(v2)−1≤ ·· · ≤ σ(vk)− (k−1)≤ σ(vk+1)− k

and from Item 2 that

σ(vm+1)≥ σ(vm)−1≥ ·· · ≥ σ(vm−k+2)− (k−1)≥ σ(vm−k+1)− k.

If m is even, k = m− k and so σ(vk+1) = σ(vm−k+1). If m is odd, σ(vk+1) ≤
σ(vk+2) = σ(vm−k+1) due to Item 3. Altogether, these inequalities prove Item 4
and complete the proof of the claim.

In fact, since σ(vm+1) = σ(|v1|s−1v1) = σ(v1) all the inequalities in Item 4 are
necessarily equalities. But then, also the inequalities in Items 1-2-3 are equalities.
From this we finally conclude that also (7.83) are equalities so that, in particular (for
i = k +1),
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β (vk+1)+β (wk+1) = 1 if m is even, β (vk+1)+β (wk+1) = 2 if m is odd.

In turn, since β (wk+1) ≥ 1 in view of (7.82) and since β (vk+1) ≥ 1 whenever m is
odd, the latter implies

β (vk+1) = 0 if m is even β (wk+1) = 1 if m is odd.

From this, using again (7.82) when m is odd, we infer that

vk+1(1) 6= 0 if m is even wk+1(1) 6= 0 if m is odd.

On the other hand, rewritten in our context, (7.73) reads

vk+1(1) = 0 if m is even wk+1(1) = 0 if m is odd.

which gives a contradiction. �

7.5.2 Existence results for linearly perturbed equations

In the previous section several nonexistence results are collected for the critical
growth polyharmonic problem (7.72) in starshaped domains. However, the discus-
sion of the case λ = 0 made clear that an exhaustive treatment of nonexistence
results seems to be out of reach. Only in the ball the nonexistence situation is fairly
well understood although one should also find complementing existence results. For
this reason we mainly restrict our attention in this section to the discussion of exis-
tence for radial solutions to{

(−∆)mu = λu+ |u|s−1u, u 6≡ 0 in B,

Dα u|∂B = 0 for |α| ≤ m−1.
(7.84)

As before, n > 2m and s = (n + 2m)/(n− 2m) is the critical Sobolev exponent. If
one is merely interested in nontrivial solutions, one can also consider the problem
in general domains, see Theorem 7.40 below.

According to Theorems 7.31 and 7.34 one has nonexistence of radial solutions
to (7.84) for all λ ≤ 0. The goal should now be to discuss (7.84) for λ > 0 in the
class of radial functions. However, for general m ≥ 1, as we shall explain below,
this class is still too large for having complementary existence and nonexistence
results. Since we are concerned with the case λ > 0, not only Boggio’s comparison
principle Lemma 2.27 is available but also the symmetry result in Theorem 7.1
becomes applicable. It will turn out that the class of positive radial functions is
suitable for a satisfactory discussion of (7.84) for λ > 0. The argument in (7.43)
then shows that a first natural restriction is λ < Λm,1, the first Dirichlet eigenvalue.
But we will show more serious obstructions than just λ ∈ (0,Λm,1) in order to have
positive radial solutions to (7.84).
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In the case m = 1, Brezis and Nirenberg [72] discovered an interesting phe-
nomenon. They showed that there exists a positive radial solution to (7.84) for every
λ ∈ (0,Λ1,1) if n≥ 4, and for every λ ∈ ( 1

4Λ1,1,Λ1,1) if n = 3. Moreover, in the lat-
ter case, problem (7.84) has no nontrivial radial solution if λ ≤ 1

4Λ1,1. Pucci-Serrin
[348] raised the question in which way this critical behaviour of certain dimensions
depends on the order 2m of the semilinear polyharmonic eigenvalue problem (7.84),
if m increases arbitrarily. In order to have a suggestive name for those dimensions
we define according to Pucci and Serrin:

Definition 7.35. The dimension n is called critical (with respect to the boundary
value problem (7.84)) if and only if there is a positive bound Λ > 0 such that a
necessary condition for a nontrivial radial solution to (7.84) to exist is λ > Λ .

Pucci and Serrin [348] showed that for any m the dimension n = 2m+1 is critical
and, moreover, that n = 5,6,7 are critical in the fourth order problem m = 2. They
also had a clear idea about the precise range of critical dimensions.

Conjecture 7.36. [Pucci-Serrin] The critical dimensions for the boundary value
problem (7.84) are precisely n = 2m+1, . . . ,4m−1.

By the work of Brezis and Nirenberg [72], this conjecture is true for m = 1. Sub-
sequently, Pucci-Serrin [348] and Edmunds-Fortunato-Jannelli [160] showed that
the conjecture is also true for m = 2 while, according to Theorem 7.38 below, for
arbitrary m the critical dimensions are at most n = 2m+1, . . . ,4m−1. Finally, Ber-
nis and Grunau [53, 201] proved the Pucci-Serrin conjecture for m = 3 and m = 4
while for any m ≥ 5 they proved that there are at least five critical dimensions
n = 2m + 1, . . . ,2m + 5. But in general, the conjecture of Pucci and Serrin is still
open. Since in view of Theorem 7.1, for λ ≥ 0, it is equivalent to consider positive
or positive radial solutions, a possible relaxation of the original notion of critical
dimension is the following.

Definition 7.37. The dimension n is called weakly critical (with respect to the
boundary value problem (7.84)) if and only if there is a positive bound Λ̃ > 0 such
that a necessary condition for a positive solution to (7.84) to exist is λ > Λ̃ .

We recall that the case λ ≤ 0 was already studied in Section 7.4. Here we prove
the following result.

Theorem 7.38. Let n > 2m, s = (n + 2m)/(n−2m), B ⊂ Rn the unit ball. Let Λm,1
denote the first Dirichlet eigenvalue of (−∆)m in B.

1. If n≥ 4m, then for every λ ∈ (0,Λm,1) there exists a positive solution u∈C∞(B)∩
C2m+1(B) to the Dirichlet problem (7.84). This solution is radially symmetric,
u = u(r), and strictly decreasing in r = |x| ∈ (0,1).

2. If 2m + 1 ≤ n ≤ 4m− 1, then there exist 0 < Λ ≤ Λ̄ < Λm,1 such that for every
λ ∈ (Λ̄ ,Λm,1) the Dirichlet problem (7.84) has a solution u as above and for
every λ ∈ (0,Λ) it has no positive solution.
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3. If λ ≥Λm,1, then (7.84) has no positive solution.

In particular, Theorem 7.38 – together with Theorems 7.1, 7.31, and 7.34 – shows
a relaxed version of Conjecture 7.36.

Corollary 7.39. The weakly critical dimensions for the boundary value problem
(7.84) are precisely n = 2m+1, . . . ,4m−1

Before starting the proof of Theorem 7.38, let us mention that similar but some-
how weaker results hold in general domains.

Theorem 7.40. Let n > 2m, s = (n+2m)/(n−2m), let Ω ⊂Rn a bounded domain.
Let Λm,1 denote the first Dirichlet eigenvalue of (−∆)m in Ω .

1. If n ≥ 4m, then for every λ ∈ (0,Λm,1) there exists a solution u ∈ Hm
0 (Ω) to the

Dirichlet problem (7.79).
2. If 2m + 1 ≤ n ≤ 4m−1, then there exists 0 < Λ̄ < Λm,1 such that for every λ ∈

(Λ̄ ,Λm,1) the Dirichlet problem (7.79) has a solution u ∈ Hm
0 (Ω).

In order to prove Theorem 7.38 we proceed as in Section 7.2. We minimise the
functional v 7→ Fλ (v) in (7.41) subject to the constraint

v ∈ N =
{

v ∈ Hm
0 (B) :

∫
B
|v|s+1 dx = 1

}
and we define

Sλ := inf
v∈N

Fλ (v). (7.85)

In Section 7.2, the required compactness was a consequence of the Rellich-
Kondrachov embedding theorem 2.4. Here, in general, compactness may fail. How-
ever, we will show that in a suitable energy range, one still has compactness. The
threshold of this range is related to the optimal Sobolev constant defined in (7.51)
and which is independent of the domain Ω , see Theorem 7.23.

Lemma 7.41. Let 0 < λ < Λm,1 and (vk) ⊂ Hm
0 (B)∩N be a minimising sequence

for Fλ |N . Moreover we assume that Sλ < S. Then Fλ |N attains its minimum in a
function v0 ∈Hm

0 (B)∩N, namely Fλ (v0) = Sλ . Up to a subsequence, one has strong
convergence vk→ v0 in Hm

0 (B).

Proof. Since λ < Λm,1 we have that Sλ > 0 and the minimising sequence (vk) is
bounded in Hm

0 (B). After possibly passing to a subsequence we may assume that
there exists v0 ∈ Hm

0 (B) with

vk ⇀ v0 in Hm
0 (B), vk ⇀ v0 in Ls+1(B), vk→ v0 in L2(B), vk→ v0 a.e. in B.

By Vitali’s convergence theorem, we know that for k→ ∞∫
B

(
|vk|s+1−|vk− v0|s+1

)
dx =

∫
B
|v0|s+1 dx+o(1)
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so that, since vk ∈ N, we have

1−
∫

B
|vk− v0|s+1 dx =

∫
B
|v0|s+1 dx+o(1). (7.86)

As for the quadratic functionals, by weak convergence it follows that

‖vk‖2
Hm

0
−‖vk− v0‖2

Hm
0

= ‖v0‖2
Hm

0
+o(1),

Fλ (vk)−‖vk− v0‖2
Hm

0
= Fλ (v0)+o(1). (7.87)

In order to conclude for compactness we need that a positive multiple of v0 obeys
the constraint N. So, we show first that∫

B
|v0|s+1 dx > 0.

Indeed, since by assumption Sλ < S, (7.86)-(7.87) and Fλ (vk) = Sλ +o(1) show that∫
B
|v0|s+1 dx = 1−

∫
B
|vk− v0|s+1 dx+o(1)

≥ 1−S−(s+1)/2‖vk− v0‖s+1
Hm

0
+o(1)

= 1−S−(s+1)/2
(

Fλ (vk)−Fλ (v0)+o(1)
)(s+1)/2

+o(1)

≥ 1−S−(s+1)/2
(

Fλ (vk)+o(1)
)(s+1)/2

+o(1)

= 1−S−(s+1)/2
(

Sλ +o(1)
)(s+1)/2

+o(1) = 1−
(

Sλ

S

)(s+1)/2

+o(1) > 0

for sufficiently large k. Hence,

ṽ0 :=
v0

‖v0‖Ls+1
∈ N;

and by making use of Fλ (ṽ0)≥ Sλ we conclude that

Fλ (v0)≥ Sλ

(∫
B
|v0|s+1 dx

)2/(s+1)

. (7.88)

We now prove strong convergence vk → v0 in Ls+1(Ω). Since 2/(s + 1) ≤ 1 we
employ the simple but very useful inequality

(a+b)2/(s+1) ≤ a2/(s+1) +b2/(s+1) for all a,b≥ 0

to obtain
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Sλ = Fλ (vk)+o(1) = ‖vk− v0‖2
Hm

0
+Fλ (v0)+o(1) due to (7.87)

≥ S‖vk− v0‖2
Ls+1 +Sλ

(∫
B
|v0|s+1 dx

)2/(s+1)

+o(1) due to (7.51), (7.88)

= (S−Sλ )‖vk− v0‖2
Ls+1

+ Sλ

((∫
B
|vk− v0|s+1 dx

)2/(s+1)

+
(∫

B
|v0|s+1 dx

)2/(s+1)
)

+o(1)

≥ (S−Sλ )‖vk− v0‖2
Ls+1 +Sλ

(∫
B
|vk− v0|s+1 dx+

∫
B
|v0|s+1 dx

)2/(s+1)

+o(1)

≥ (S−Sλ )‖vk− v0‖2
Ls+1 +Sλ

(
1+o(1)

)2/(s+1) +o(1) due to (7.86)

= (S−Sλ )‖vk− v0‖2
Ls+1 +Sλ +o(1).

Since by assumption S− Sλ > 0, we obtain vk → v0 in Ls+1 so that v0 ∈ N. Weak
lower semicontinuity of Fλ (see (7.87)) gives

Sλ ≥ Fλ (v0) and because of v0 ∈ N also Sλ = Fλ (v0).

Combining this with (7.87) finally proves that vk→ v0 in Hm
0 (B). �

In order to obtain compactness we verify the assumption Sλ < S of Lemma 7.41.
To this end, we need to take into account the calculations of Theorem 7.23.

Lemma 7.42. 1. Assume n≥ 4m. Then for any λ > 0 we have Sλ < S.
2. Let 2m +1≤ n≤ 4m−1. Then there exists a number Λ̄ = Λ̄(n,m) < Λm,1 such

that for all λ > Λ̄ one has Sλ < S.

Proof. In view of Theorem 7.23 we know that S = infv∈N ‖v‖2
Hm

0
. By using the same

notations as in that proof, we see that there exist constants c1,c2,c3,c4 > 0 such that∫
B

w2
ε dx≥ γ

2
m,nε

n−2m
∫
|x|≤ε

dx
(2ε2)n−2m + γ

2
m,nε

n−2m
∫

ε≤|x|≤ 1
2

dx
(2|x|2)n−2m

= c1ε
2m + c2ε

n−2m
∫ 1/2

ε

r4m−n−1 dr

=


c3ε2m +O(εn−2m) if n > 4m,

c2ε2m| logε|+O(ε2m) if n = 4m,

c4εn−2m +O(ε2m) if n < 4m.

(7.89)

If n > 4m, we use (7.89) to get

Fλ (w̃ε)≤
S +O(εn−2m)−λc3ε2m

(1+O(εn))2/(s+1) = S−λc3ε
2m +O(εn−2m),
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while in the case n = 4m, we obtain

Fλ (w̃ε)≤ S−λc2ε
2m| logε|+O(ε2m).

By choosing ε > 0 small enough, the proof of Item 1 is so complete and Sλ < S.
To prove Item 2, we consider a positive radially symmetric eigenfunction

(−∆)m
ϕ = Λm,1ϕ, ϕ > 0 in B, Dα

ϕ|∂B = 0 for |α| ≤ m−1,

see Theorem 3.7. Alternatively, the Kreı̆n-Rutman theorem may be applied. We may
assume ‖ϕ‖s+1

Ls+1 = 1 so that ϕ ∈ N. Putting Λ̄ = Λm,1−Se−2m/n
n , we find for λ > Λ̄ :

Sλ ≤ Fλ (ϕ) = (Λm,1−λ )
∫

B
ϕ

2 dx < (Λm,1− Λ̄)
(∫

B
ϕ

s+1 dx
)2/(s+1)

e2m/n
n = S

and thereby also proving Item 2. �

Proof of Theorem 7.38. The existence part (Items 1 and 2) is proved exactly as
in Theorem 7.17, while only the reference to the Rellich-Kondrachov theorem has
to be replaced by referring to the compactness Lemma 7.41 and to Lemma 7.42.
Like in Theorem 7.19 one sees that the constructed solution is of one sign and,
hence, may be chosen to be positive. The symmetry result Theorem 7.1 applies and
shows that these solutions are necessarily radially symmetric and strictly decreasing
in the radial variable. The limiting exponent for Luckhaus’s [281] regularity result
(see Proposition 7.15) is also s. The proof of Item 3, i.e. nonexistence of positive
solutions for λ ≥Λm,1 follows as in the subcritical case, see (7.43).

Therefore, in order to complete the proof of Theorem 7.38, it remains to show
the nonexistence part of Item 2, that is, the following statement.

Lemma 7.43. If 2m +1≤ n≤ 4m−1, then there exists Λ ∈ (0,Λm,1) such that for
every λ ∈ (0,Λ) problem (7.84) has no positive solution.

Proof. We assume that there exists a positive solution u ∈C2m(B) to (7.84). From
Theorem 7.31 we know that necessarily λ ≥ 0 so that, from the differential equation
(7.84), we immediately conclude that

(−∆)mu > 0 in B. (7.90)

Theorem 7.1 shows that u is radial, so, we write r = |x|, u = u(r), u′(r) = du
dr (r) =

∇(u(|x|)) · x
|x| . Moreover, [0,1] 3 r 7→ u(r) is strictly decreasing.

1. We introduce the positive weight function w(r) := (1− r2)m−1. With the help of
the simple observations
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(−∆)mw = 0,(
d
dr

) j

w|r=1 = 0 for j = 0, . . . ,m−2,(
− d

dr

)m−1

w|r=1 > 0,

(7.91)

integration by parts yields, if m is even,∫
B

w(−∆)mudx =
∫

B
∇

(
(−∆)(m/2)−1w

)
·∇
(
(−∆)m/2u

)
dx

= (−1)m−1
∫

∂B

(
d
dr

(
∆

(m/2)−1w
))(

∆
m/2u

)
dω = C(n,m)

∫
∂B

∆
m/2udω,

and, if m is odd,∫
B

w(−∆)mudx =
∫

B

(
(−∆)(m−1)/2w

)(
(−∆)(m+1)/2u

)
dx

= (−1)m
∫

∂B

(
∆

(m−1)/2w
)( d

dr
∆

(m−1)/2u
)

dω

= C(n,m)
∫

∂B

(
− d

dr
∆

(m−1)/2u
)

dω.

From (7.91) we see that the constants C(n,m) are strictly positive. Applying the
Cauchy-Schwarz inequality we find

(∫
B

w(−∆)mudx
)2

≤


C(n,m)

∫
∂B

(
∆

m/2u
)2

dω if m is even,

C(n,m)
∫

∂B

(
d
dr

∆
(m−1)/2u

)2

dω if m is odd.
(7.92)

2. The crucial information, which we take from the Dirichlet problem (7.84), is the
following Pohožaev identity, see Theorem 7.27

2mλ

∫
B

u2 dx =


∫

∂B

(
∆

m/2u
)2

dω if m even,∫
∂B

(
d
dr

∆
(m−1)/2u

)2

dω if m odd.
(7.93)

Combining (7.92) and (7.93) we have(∫
B

w(−∆)mudx
)2

≤C(n,m) λ

∫
B

u2 dx. (7.94)

3. We want to show that the weighted L1-norm
∫

B w(−∆)mudx is equivalent to the
L1-norm

∫
B(−∆)mudx =

∫
B |(−∆)mu| dx, see also (7.90). For this purpose we need
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some additional property of (−∆)mu. Employing the strict monotonicity of u in the
radial variable r, we may estimate as follows

0 <
∫

B
(−∆)mudx =

∫
|x|≤1/2

(−∆)mudx+
∫

1/2≤|x|≤1
(−∆)mudx

≤
∫
|x|≤1/2

(−∆)mudx+
∫

1/2≤|x|≤1
dx
(
(−∆)mu|r=1/2

)
≤
∫
|x|≤1/2

(−∆)mudx+2n
∫
|x|≤1/2

dx
(
(−∆)mu|r=1/2

)
≤ (2n +1)

∫
|x|≤1/2

(−∆)mudx≤ (2n +1)
(

4
3

)m−1 ∫
|x|≤1/2

w(−∆)mudx,

⇒ 0 <
∫

B
(−∆)mudx≤C(n,m)

∫
B

w(−∆)mudx.

Together with (7.94) we come up with

‖(−∆)mu‖2
L1 ≤ λ C(n,m)‖u‖2

L2 . (7.95)

4. It remains to estimate the L1-norm of (−∆)mu from below by the L2-norm of
u itself. We use a duality argument, which was proposed by Brezis-Nirenberg [72,
Theorem 1.2′′].

Let ϕ ∈W 2m,2∩W m,2
0 (B) be a solution of (−∆)mϕ = u. Since n < 4m, we have

a continuous embedding W 2m,2(B) ⊂ C0(B). By means of elliptic estimates (see
Theorem 2.20) we find

‖ϕ‖L∞ ≤ C‖ϕ‖W 2m,2 ≤C‖(−∆)m
ϕ‖L2 = ‖u‖L2 ;

‖u‖2
L2 =

∫
B
(−∆)m

ϕ udx =
∫

B
ϕ (−∆)mudx

≤ ‖ϕ‖L∞ ‖(−∆)mu‖L1 ≤C‖u‖L2 ‖(−∆)mu‖L1 ;

‖u‖2
L2 ≤ C(n,m)‖(−∆)mu‖2

L1 .

Combining this estimate with (7.95) we finally have λ ≥Λ := 1
C(n,m) > 0. �

It seems that a full proof of the original Pucci-Serrin conjecture 7.36, if possible
at all, will be significantly more difficult. The most general question in this context,
whether we have nonexistence of any nontrivial (not necessarily radial) solution to
(7.84) for λ close to 0, is completely open as far as the authors know, even in the
second order case (m = 1).
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7.5.3 Nontrivial solutions beyond the first eigenvalue

Here, we address the question whether, in a bounded domain Ω , the critical growth
problem (7.79) has a solution for all positive λ > 0. Let us recall once more that
weak solutions are smooth in smooth domains, see Proposition 7.15.

We remark that according to a bifurcation result of Böhme [64], every Dirich-
let eigenvalue Λm, j, j ∈ N+, of (−∆)m in Ω is a bifurcation point for the semi-
linear problem (7.79). Since the problem is variational, this holds true irrespective
of the multiplicity of the eigenvalues. The following statement suggests a picture
how these branches may look like, having the global bifurcation result of Rabi-
nowitz [349] in mind.

Theorem 7.44. Let Ω ⊂ Rn (n > 2m) be a bounded domain, let (Λm, j) j∈N+ denote
the ordered sequence of Dirichlet eigenvalues of (−∆)m and let µ j denote their
multiplicity, the eigenvalues being repeated according to their multiplicity.

1. For j ∈N+ and for all λ ∈ (Λm, j−S|Ω |−2m/n,Λm, j) problem (7.79) has µ j (pairs
of) solutions.

2. If 4m≤ n≤ (2
√

2+2)m, then (7.79) has a pair of solutions for any λ > 0 such
that λ 6∈ (Λm, j) j∈N+ .

3. If n > (2+2
√

2)m, then (7.79) has a pair of solutions for every λ > 0. Moreover,
for any j ∈ N+ there exists δ j > 0 such that (7.79) has µ j + 1 pairs of solutions
for any λ ∈ (Λm, j−δ j,Λm, j).

Direct methods in the calculus of variations like constrained minimisation as
used in Section 7.5.2 are suitable only for constructing the simplest nontrivial solu-
tions. In order to understand global properties of (7.79) we have to study the “free”
functional

Eλ (v) :=
1
2

Fλ (v)− 1
s+1

∫
Ω

|v|s+1 dx (7.96)

=


∫

Ω

(
1
2

(
∆

m/2v
)2
− 1

2
λv2− 1

s+1
|v|s+1

)
dx if m is even,

∫
Ω

(
1
2

∣∣∣∇∆
(m−1)/2v

∣∣∣2− 1
2

λv2− 1
s+1

|v|s+1
)

dx if m is odd,

in Hm
0 (Ω). To explain the main features of Eλ we need several basic notions.

Definition 7.45. Let H be a Hilbert space and let E : H → R be a continuous func-
tional. We say that E is Fréchet differentiable if for all u ∈ H there exists a linear
continuous operator Lu ∈ H ′ such that

E(u+h)−E(u) = 〈Lu,h〉+o(‖h‖H) as ‖h‖H → 0 .

If the map u 7→ Lu is continuous from H to H ′, we say that E is a continuously
Fréchet differentiable functional and we write dE(u) = Lu. In this case, a sequence
(uk)⊂ H is called a Palais-Smale sequence for E, if
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lim
k→∞

E(uk) ∈ R exists, dE(uk)→ 0 strongly in H ′.

We say that E satisfies a local Palais-Smale condition below the level c0, if every
Palais-Smale sequence with limk→∞ E(uk) < c0 has a strongly convergent subse-
quence in H.

The functional Eλ is continuously Fréchet differentiable. Let us first make pre-
cise the meaning of “critical energy level” below which a suitable compactness
holds true. Since Struwe’s pioneering work [380] such a local compactness is a well
understood phenomenon in critical growth problems. The functional Eλ defined in
(7.96) satisfies indeed a local Palais-Smale condition. Like in Section 7.5.2 a key
role is played by the optimal constant S for the Sobolev embedding Hm

0 ⊂ Ls+1, see
(7.51).

Lemma 7.46. In Hm
0 (Ω) the functional Eλ satisfies a local Palais-Smale condition

below the level c0 = m
n Sn/2m.

Proof. Let (uk)⊂ Hm
0 (Ω) be a Palais-Smale sequence at level below m

n Sn/2m, i.e.

lim
k→∞

Eλ (uk) < c0 =
m
n

Sn/2m, (7.97)

dEλ (uk)→ 0 strongly in H−m(Ω) = (Hm
0 (Ω))′ . (7.98)

1. First we show the boundedness of (uk) in Hm
0 (Ω). A suitable difference between

the functional and its differential gives

2Eλ (uk)−〈dEλ (uk),uk〉=
2m
n

∫
Ω

|uk|s+1 dx,

⇒ ‖uk‖s+1
Ls+1 ≤C

{
|Eλ (uk)|+‖dEλ (uk)‖H−m‖uk‖Hm

0

}
= O(1)+o(1)‖uk‖Hm

0
.

We combine this estimate with the assumption (7.97) of bounded Eλ -energy to ob-
tain

‖uk‖2
Hm

0
= 2Eλ (uk)+λ

∫
Ω

u2
k dx+

2
s+1

∫
Ω

|uk|s+1 dx

≤ O(1)+C‖uk‖s+1
Ls+1 ≤ O(1)+o(1)‖uk‖Hm

0
.

It follows that ‖uk‖Hm
0
≤ O(1).

2. After possibly passing to a subsequence we may assume that

uk ⇀ u in Hm
0 (Ω), uk ⇀ u in Ls+1(Ω),

uk→ u in Lp(Ω), p < s+1, uk→ u almost everywhere in Ω .
(7.99)

For each fixed testing function ϕ ∈C∞
c (Ω) one has 〈dEλ (uk),ϕ〉= o(1). Hence, due

to the convergence properties (7.99) of (uk), the limiting function u weakly solves
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the Dirichlet problem{
(−∆)mu = λu+ |u|s−1u in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1.

Testing the differential equation with u gives

Fλ (u) =
∫

Ω

|u|s+1 dx , Eλ (u) =
m
n

∫
Ω

|u|s+1 dx≥ 0. (7.100)

So, any (weak) limit of such a Palais-Smale sequence has nonnegative Eλ -energy.

3. Like in the first part of the proof of Lemma 7.41 we deduce the following iden-
tities which quantify the possible deviation from strong convergence

∫
Ω

|uk|s+1 dx−
∫

Ω

|uk−u|s+1 dx =
∫

Ω

|u|s+1 dx+o(1), (7.101)

Fλ (uk)−‖uk−u‖2
Hm

0
= Fλ (u)+o(1),

Eλ (uk)−E0(uk−u) = Eλ (u)+o(1). (7.102)

Using Vitali’s convergence theorem we obtain further that∫
Ω

(
|uk|s−1uk−|u|s−1u

)
(uk−u)dx

=
∫

Ω

|uk|s+1 dx−
∫

Ω

|uk|s−1ukudx−
∫

Ω

|u|s−1uuk dx+
∫

Ω

|u|s+1 dx

=
∫

Ω

|uk|s+1 dx−
∫

Ω

|u|s+1 dx+o(1).

Combining this with (7.101) yields∫
Ω

(
|uk|s−1uk−|u|s−1u

)
(uk−u)dx =

∫
Ω

|uk−u|s+1 dx+o(1). (7.103)

4. The assumption (7.98) on the differential dEλ (uk) and equation (7.103), together
with uk ⇀ u in Hm

0 (Ω), show that

o(1) = 〈dEλ (uk)−dEλ (u),uk−u〉

= Fλ (uk−u)−
∫

Ω

(
|uk|s−1uk−|u|s−1u

)
(uk−u)dx

= ‖uk−u‖2
Hm

0
−
∫

Ω

|uk−u|s+1 dx+o(1),



7.5 Critical growth Dirichlet problems 269

‖uk−u‖2
Hm

0
=
∫

Ω

|uk−u|s+1 dx+o(1), (7.104)

E0(uk−u) =
m
n
‖uk−u‖2

Hm
0

+o(1). (7.105)

Applying (7.104) and the optimal Sobolev embedding (7.51) yields

‖uk−u‖2
Hm

0
= ‖uk−u‖s+1

Ls+1 +o(1)≤ S−(s+1)/2‖uk−u‖s+1
Hm

0
+ o(1)

= S−(s+1)/2‖uk−u‖2
Hm

0

( n
m

E0(uk−u)
)(s−1)/2

+ o(1) by virtue of (7.105)

= S−(s+1)/2‖uk−u‖2
Hm

0

( n
m

Eλ (uk)−
n
m

Eλ (u)+o(1)
)(s−1)/2

+ o(1)

by virtue of (7.102)

≤ S−(s+1)/2‖uk−u‖2
Hm

0

(
n
m

lim
k→∞

Eλ (uk)+o(1)
)(s−1)/2

+ o(1)

by virtue of (7.100)

≤

[
S−(s+1)/2

(
n
m

lim
k→∞

Eλ (uk)
)(s−1)/2

]
‖uk−u‖2

Hm
0

+o(1).

According to assumption (7.97) the square bracket is strictly smaller than 1, indeed

S−(s+1)/2
(

n
m

lim
k→∞

Eλ (uk)
)(s−1)/2

< S−n/(n−2m)
(

Sn/2m
)2m/(n−2m)

= 1.

This shows that ‖uk−u‖Hm
0
→ 0 and, therefore, the local Palais-Smale condition.�

A suitable variational tool for proving Theorem 7.44 is a general “symmetric
mountain pass lemma”, due to Ambrosetti-Rabinowitz [14] and refined by Bartolo-
Benci-Fortunato [30, Theorem 2.4]. We quote the version as used by Capozzi-
Fortunato-Palmieri [84, Theorem 1.2].

Lemma 7.47. Let H be a real Hilbert space, E : H → R a continuously Fréchet
differentiable functional satisfying a local Palais-Smale condition below the level
c0 > 0. Moreover, we assume that

1. E(0) = 0.
2. E is even, i.e. E(u) = E(−u) for all u ∈ H.
3. There exist two closed subspaces V +, V− ⊂ H and positive numbers ρ , δ > 0

such that codim V + < ∞ and

sup
u∈V−

E(u) < c0, (7.106)

E(u)≥ δ for all u ∈V + with ‖u‖H = ρ. (7.107)

Then E has at least

dim(V +∩V−)− codim(V + +V−)
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pairs of nontrivial critical points.

To prove Theorem 7.44, we seek suitable subspaces V +, V− such that the as-
sumptions of Lemma 7.47, in particular (7.106), are satisfied. As we shall see, each
one of Items 1-3 needs its own choice for these spaces.

Proof of Theorem 7.44 (Item 1). In view of Theorem 7.40 we may restrict ourselves
to j ≥ 2. Let (ϕi)i∈N+ be an orthonormal system in L2(Ω) of eigenfunctions for
(−∆)m corresponding to the eigenvalues (Λm,i)i∈N+ . This system is also orthogonal
with respect to the scalar product in Hm

0 (Ω). We put

V + =
(

span{ϕ1, . . . ,ϕ j−1}
)⊥

in Hm
0 , V− = span{ϕ1, . . . ,ϕ j+µ j−1},

where orthogonality ⊥ is meant with respect to the scalar product in Hm
0 (Ω). Let

λ ∈ (Λm, j− S|Ω |−2m/n,Λm, j). For u ∈ V− there exist numbers τ1, . . . ,τ j+µ j−1 ∈ R
and t > 0, such that

u = t
j+µ j−1

∑
i=1

τiϕi,

∥∥∥∥∥
j+µ j−1

∑
i=1

τiϕi

∥∥∥∥∥
Ls+1

= 1.

Let Fλ be as in (7.41). Due to the orthogonality of (ϕi) in L2(Ω) as well as in Hm
0 (Ω)

we find

Fλ

(
j+µ j−1

∑
i=1

τiϕi

)
=

j+µ j−1

∑
i=1

(Λm,i−λ )τ
2
i ‖ϕi‖2

L2

≤
j+µ j−1

∑
i=1

(Λm, j−λ )τ
2
i ‖ϕi‖2

L2 = (Λm, j−λ )

∥∥∥∥∥
j+µ j−1

∑
i=1

τiϕi

∥∥∥∥∥
2

L2

≤ (Λm, j−λ ) |Ω |(s−1)/(s+1)

∥∥∥∥∥
j+µ j−1

∑
i=1

τiϕi

∥∥∥∥∥
2

Ls+1

= (Λm, j−λ ) |Ω |2m/n.

Here and in the sequel, we need the following fact from elementary calculus

max
t≥0

(
a
2

t2− b
s+1

ts+1
)

=
(s−1)a
2(s+1)

(a
b

)2/(s−1)
for any a,b > 0. (7.108)

Recalling the assumption (Λm, j − λ )|Ω |2m/n < S, it follows from (7.108) and by
compactness that

Eλ (u) =
t2

2
Fλ

(
j+µ j−1

∑
i=1

τiϕi

)
− ts+1

s+1
≤ m

n

(
(Λm, j−λ )|Ω |2m/n

)n/2m

⇒ sup
u∈V−

Eλ (u) <
m
n

Sn/2m.
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This means that on V−, Eλ stays below the critical energy level, under which the
local Palais-Smale condition is satisfied according to Lemma 7.46. This proves
(7.106).

Finally, thanks to the variational characterisation of the eigenvalues, we find for
u ∈V +

Eλ (u) =
1
2
‖u‖2

Hm
0
− λ

2
‖u‖2

L2 −
1

s+1
‖u‖s+1

Ls+1

≥ 1
2

(
1− λ

Λm, j

)
‖u‖2

Hm
0
− 1

s+1
S−(s+1)/2‖u‖s+1

Hm
0
≥ δ (7.109)

with some δ > 0, provided that ‖u‖Hm
0

= ρ and ρ > 0 is suitably chosen.
Lemma 7.47 yields the existence of µ j = dim (V + ∩V−) distinct pairs of non-

trivial critical points and so of solutions to (7.79). �

In what follows we assume that n ≥ 4m and we prove Items 2 and 3 of Theo-
rem 7.44. Let c stand for suitable positive constants, which may vary also within
the same formula. In view of Theorem 7.40, we may confine ourselves to the case
where Λm, j−1 < Λm, j and Λm, j−1 ≤ λ < Λm, j for some j ≥ 2.

After scaling and translation we may assume B ⊂ Ω . As in Section 7.5.2, min-
imising sequences for the optimal embedding (7.51) will play a key role. However,
these functions will here be combined with suitable approximating eigenfunctions.
For any i ∈ N+ let ϕi be an L2-normalised eigenfunction relative to Λm,i. For any
h≥ 2 the ball B2/h of radius 2/h is contained in Ω and we define

ζh(x) := ρ(h|x|)

where ρ is a C∞-function with 0≤ ρ ≤ 1, ρ(r) = 0 for r≤ 1 and ρ(r) = 1 for r≥ 2.
Clearly,

‖D`
ζh‖L∞ ≤ ch` for ` = 0, . . . ,m. (7.110)

Defining ϕh
i := ζhϕi for all i = 1, . . . , j− 1, we have that ϕh

i → ϕi in Hm
0 (Ω) as

h→∞. In turn, if we define H− := span{ϕh
1 , . . . ,ϕh

j−1}, this shows in particular that

H−∩
(

span{ϕ1, . . . ,ϕ j−1}
)⊥

= {0} (7.111)

for large enough h where, again, orthogonality ⊥ is meant in Hm
0 (Ω).

If u ∈ H− then for some αi ∈ R (i = 1, . . . , j−1)

u =
j−1

∑
i=1

αiϕ
h
i = ζh

j−1

∑
i=1

αiϕi =: ζhuh

with uh ∈ span{ϕ1, . . . ,ϕ j−1}. Moreover,

‖uh‖2
L2 ≤

∫
Ω

u2(x)dx+
∫

B2/h

u2
h(x)dx≤ ‖u‖2

L2 + c‖uh‖2
L∞h−n. (7.112)
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Let u ∈ H− be such that ‖u‖L2 = 1 and

‖u‖2
Hm

0
= max
{v∈H−;‖v‖L2 =1}

‖v‖2
Hm

0
.

Then u = ζhuh for some uh ∈ span{ϕ1, . . . ,ϕ j−1} and, by means of (7.110)-(7.112),

‖u‖2
Hm

0
≤ ‖uh‖2

Hm
0

+

‖∆
k(ζhuh)‖2

L2(B2/h\B1/h) if m = 2k

‖∇(∆ k(ζhuh))‖2
L2(B2/h\B1/h) if m = 2k +1

≤ Λm, j−1‖uh‖2
L2 + ch2m−n ≤Λm, j−1(1+ c‖uh‖2

L∞h−n)+ ch2m−n

≤ Λm, j−1 + ch2m−n

for sufficiently large h. We have so proved that there exists c j > 0 such that for large
enough h we have

max
{u∈H−;‖u‖L2 =1}

‖u‖2
Hm

0
≤Λm, j−1 + c jh2m−n. (7.113)

Next, we take a positive cut-off function ξ ∈C∞
c (B1/h) such that ξ ≡ 1 in B1/2h and

‖D`
ξ‖L∞ ≤ ch` for ` = 0, . . . ,m. (7.114)

Then we recall the definition (7.57) of wε ∈C∞
c (Ω) and we estimate the energy of

the family (wε) which now depends also on h.

Lemma 7.48. Assume that hε → 0, then there exist c1,c2 > 0, depending on n but
independent of h and ε , such that

max
t∈R

Eλ (twε) ≤
m
n

Sn/2m + c1(hε)n−2m− c2

{
ε2m if n > 4m,
ε2m| log(hε)| if n = 4m.

Proof. First, we slightly refine (7.58), (7.59) and (7.89) by emphasising the depen-
dence on h, namely by replacing B with B1/h. By (7.114) we obtain

‖wε‖2
Hm

0
≤ S + c(hε)n−2m , ‖wε‖s+1

Ls+1 ≥ 1− c(hε)n ,

‖wε‖2
L2 ≥ c

{
ε2m if n > 4m,

ε2m| log(hε)| if n = 4m.

By combining these estimates with (7.108), we obtain the statement. �

Assuming that Λm, j−1 < Λm, j and Λm, j−1 ≤ λ < Λm, j for some j ≥ 2, we now
introduce the spaces

V + :=
(

span{ϕ1, . . . ,ϕ j−1}
)⊥

, V− := span{ϕh
1 , . . . ,ϕh

j−1,wε}. (7.115)
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Notice that the space V− depends both on h and ε . We show that these parameters
may be chosen in such a way that Eλ is below the compactness threshold in the
subspace V−. Here, we have to distinguish whether λ is a Dirichlet eigenvalue or
not.

Lemma 7.49. Assume that n≥ 4m, that Λm, j−1 < Λm, j and that λ ∈ (Λm, j−1,Λm, j)
for some j≥ 2. Let V− be the space defined in (7.115). Then for h large enough and
ε > 0 sufficiently small we have

sup
u∈V−

Eλ (u) <
m
n

Sn/2m. (7.116)

Proof. Take h large enough so that (7.111) holds and that

λ −Λm, j−1 > c j h2m−n (7.117)

where c j is as in (7.113). This h is now kept fixed. Take any function u ∈V− so that
u = v + twε for some v ∈ H− and some t ∈ R. In view of (7.113) and (7.117), we
have

Eλ (v) =
‖v‖2

Hm
0

2
−λ
‖v‖2

L2

2
−
‖v‖s+1

Ls+1

s+1
≤−(λ −Λm, j−1− c jh2m−n)

‖v‖2
L2

2
≤ 0.

Hence, since v and wε have disjoint support, by Lemma 7.48 we infer

Eλ (u) = Eλ (v)+Eλ (twε)≤
m
n

Sn/2m +c1(hε)n−2m−c2

{
ε2m if n > 4m,
ε2m| log(hε)| if n = 4m

so that (7.116) holds for sufficiently small ε . �

Lemma 7.50. Assume that n > (2+2
√

2)m and assume that λ = Λm, j−1 < Λm, j for
some j ≥ 2. Let V− be the space defined in (7.115). Then (7.116) holds, provided h
is sufficiently large and ε is suitably small.

Proof. Here we cannot proceed as in Lemma 7.49 because we cannot obtain (7.117).
We take again a function u∈V− so that u = v+twε for some v∈H− and some t ∈R.
By (7.113) we have

Eλ (v) =
‖v‖2

Hm
0

2
−Λm, j−1

‖v‖2
L2

2
−
‖v‖s+1

Ls+1

s+1
≤ ch2m−n‖v‖2

L2 − c‖v‖s+1
Ls+1 .

Since the norms L2 and Ls+1 are equivalent in the finite dimensional space H−, we
obtain

Eλ (v)≤ ch2m−n‖v‖2
L2 − c‖v‖s+1

L2 ≤ ch−n(n−2m)/2m

where we used (7.108).
Now we let h→ ∞ and we choose

εh = h−(n+2m)/2m (7.118)
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so that Lemma 7.48 applies and

max
t∈R

Eλ (twε) ≤
m
n

Sn/2m + c1(hε)n−2m− c2ε
2m

≤ m
n

Sn/2m + c1h−n(n−2m)/2m− c2h−(n+2m)

where the last inequality is a consequence of the choice in (7.118). By recalling that
v and wε have disjoint support, the two previous estimates show that

Eλ (u) = Eλ (v)+Eλ (twε)

≤ m
n

Sn/2m− c3h−(n+2m) + c4h−n(n−2m)/2m =
m
n

Sn/2m− ch−(n+2m),

the latter equality being a consequence of the assumption n > (2 +2
√

2)m. Hence,
with the choice of ε = εh in (7.118), we see that (7.116) holds for sufficiently large
h. �

For any n ≥ 4m we choose h sufficiently large so that (7.111) holds and we
consider now the space V + defined in (7.115). If u ∈ V + then ‖u‖2

Hm
0
≥ Λm, j‖u‖2

L2

so that, recalling (7.51), we obtain again (7.109). This shows that

there exist α,ρ > 0 such that Eλ (u)≥ α for all u ∈V + , ‖u‖Hm
0

= ρ. (7.119)

Proof of Theorem 7.44 (Item 2). We first fix h as in (7.117). Then we let ε → 0 so
that Lemma 7.48 applies. When ε is sufficiently small, we choose V− according to
(7.115) so that Lemma 7.49 holds true. This shows (7.106) with c0 = m

n Sn/2m which
is precisely the critical energy level under which Eλ satisfies a local Palais-Smale
condition, see Lemma 7.46. Finally, (7.107) follows from (7.119).

Since codimV + = j− 1 and dimV− = j we know that dim(V + ∩V−) ≥ 1 so
that by Lemma 7.47 we have at least a pair of critical points of Eλ , that is, a pair of
nontrivial solutions to (7.79). �

Proof of Theorem 7.44 (Item 3). The first statement can be proved exactly as for
Item 2, it suffices to replace (7.117) with (7.118) and to Lemma 7.49 with Lemma
7.50.

In order to prove the multiplicity statement of Item 3, we modify the spaces in
(7.115) by enlarging V +. More precisely, we set

V + :=
(

span{ϕ1, . . . ,ϕ j−2}
)⊥

, V− := span{ϕh
1 , . . . ,ϕh

j−2+µ j−1
,wε}. (7.120)

To maintain the notations of Lemma 7.50 we have chosen to shift the indices and
take λ ∈ (Λm, j−2,Λm, j−1) for some j ≥ 2 with the convention that Λm,0 = 0 and
V + = Hm

0 (Ω) if j = 2. From Lemma 7.50, we know that there exists ω > 0 such
that
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sup
u∈V−

EΛm, j−1(u) =
m
n

Sn/2m−ω.

Recalling that V− is finite dimensional and since EΛm, j−2(u) < 0 for ‖u‖L2 suffi-
ciently large, we know that

γ := sup{‖u‖2
L2 ; u ∈V−, EΛm, j−2(u) > 0}< ∞.

Let δ j−1 = ω/γ and take λ ∈ (Λm, j−1−δ j−1,Λm, j−1), then

Eλ (u) = EΛm, j−1(u)+
Λm, j−1−λ

2
‖u‖2

L2 ≤
m
n

Sn/2m− ω

2
for all u ∈V−

since Eλ (u)≤ 0 whenever ‖u‖2
L2 ≥ γ . Moreover, since now λ < Λm, j−1 we still have

(7.119) but with the new characterisation of V +, see (7.120). Then the statement
follows again from Lemma 7.47 once we note that dim(V +∩V−)≥ µ j−1 +1. �

Remark 7.51. When m = 1, the additional difficulty for 4m ≤ n ≤ (2 + 2
√

2)m
and λ ∈ (Λm, j) j∈N+ was observed by Zhang [418] but not by Capozzi-Fortunato-
Palmieri [84]. In fact, the proof in [84] would work analogously in balls restricting
to radial functions yielding the existence of radial solutions also in dimension n = 4.
However, in [20] it is proved that for m = 1, n = 4, λ = Λ1,1, (7.84) has no radial so-
lution. For interesting studies of branches of radial solutions one could also see [25].
Combining [20, 25] one sees that the branch of radial solutions emanating from the
second radial eigenvalue of (−∆) in B bends back to the first eigenvalue without
ever crossing it. If n = 5, the same branch also bends back to the first eigenvalue but
crossing it and approaching it from the left, see [180].

On the other hand, for the second order problem (7.79) with m = 1, Fortunato-
Jannelli [171] constructed nonsymmetric solutions in the ball B⊂ Rn, n≥ 4, for all
λ > 0. It is by no means obvious how to generalise such a result to higher order
equations.

7.6 Critical growth Navier problems

As we have seen in the previous section, the Dirichlet problem for polyharmonic
critical growth semilinear elliptic equations is quite delicate, since existence results
strongly depend on the dimension, on subcritical perturbations and on the geometry
of the domain. We restricted ourselves to Dirichlet boundary conditions, since these
ensure the “pure higher order” character of our problems. In this and the next sec-
tion, we show how critical growth problems behave when considered under Navier
or Steklov boundary conditions. We recall that, in these cases, the problem can be
transformed into a second order system. These boundary conditions exhibit slightly
different phenomena for critical growth problems and this is the reason why we
believe that they deserve some attention.

Consider the following Navier boundary value problem at critical growth
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(−∆)mu = λu+ |u|s−1u, u 6≡ 0 in Ω ,

∆ ju|∂Ω = 0 for j ≤ m−1,
(7.121)

where Ω ⊂ Rn (n > 2m) is a bounded domain and λ ∈ R is a parameter.

The case λ = 0

In this case, no positive solution to (7.121) may exist in any starshaped domain Ω .

Theorem 7.52. Assume that Ω is smooth and starshaped with respect to some point
and that λ = 0. Then there exists no nonnegative solution to (7.121).

Proof. With no loss of generality we may assume that Ω is starshaped with respect
to the origin. Assume for contradiction that (7.121) admits a nontrivial solution
u. Since Ω is smooth we have u ∈ C2m,γ(Ω), see Proposition 7.15. Moreover, by
applying m times the maximum principle for−∆ we infer that (−∆) ju≥ 0 in Ω for
j = 0, . . . ,m. Therefore, if j = 0, . . . ,m−1 then (−∆) ju is superharmonic in Ω and
vanishes on ∂Ω , so that Hopf’s boundary lemma yields

∂

∂ν
(−∆) ju < 0 on ∂Ω . (7.122)

On the other hand, by applying (7.74), we obtain

0 =
m

∑
j=1

∫
∂Ω

(∆ j−1u)ν (∆ m− ju)ν(x ·ν)dω. (7.123)

Since Ω is starshaped, we know that x · ν ≥ 0 on ∂Ω . In turn, in view of (7.122)
and (7.123), this yields x ·ν ≡ 0 on ∂Ω . This is impossible since by the divergence
theorem

∫
∂Ω

(x ·ν)dω = n|Ω |> 0. �

If we restrict ourselves to a ball, according to Theorem 7.3, positive solutions
are radially symmetric so that Theorem 7.52 can be improved with the following
statement.

Theorem 7.53. Problem (7.121) has no radial solution when λ = 0 and Ω = B.

Proof. For simplicity we give the proof only in the biharmonic case m = 2 since it
already contains the main ideas of the general proof for which we refer to Lazzo-
Schmidt [272].

We use the same notations introduced in Theorem 7.34 and we assume for con-
tradiction that (7.121) admits a nontrivial radial solution u. Then u and its derivatives
only have a finite number of zeros, see Theorem 7.34. From Theorem 7.34 we also
recall that for any φ ∈C1([0,1];R), such that both φ and φ ′ have a finite number of
interior zeros, we have σ(φ ′) ≥ σ(φ)+ β (φ)− 1. In view of the boundary condi-
tions we have u(1) = ∆u(1) = 0, whereas u′(0) = (∆u)′(0) = 0 since u is smooth at
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the origin. In particular, these equalities imply that β (u),β (u′),β (∆u),β ((∆u)′)≥
1. Taking all these remarks into account, we infer that

σ(u) = σ(|u|8/(n−4)u) = σ(∆ 2u)≥ σ(rn−1(∆u)′) = σ((∆u)′)
≥ σ(∆u) = σ((rn−1u′)′)≥ σ(rn−1u′) = σ(u′)≥ σ(u).

This means that all the above inequalities are in fact equalities. But in view of
Pohožaev’s identity in Theorem 7.29 we have that u′(1) = 0 or (∆u)′(1) = 0 so that
β (u′) = 2 or β ((∆u)′) = 2. This means that at least one of the above inequalities is
strict, a contradiction. �

The case λ > 0

Also under Navier boundary conditions a critical dimension phenomenon can be
observed. Before stating the corresponding result, let us remark that the first Navier
eigenvalue for (−∆)m is Λ m

1,1, that is, the m-th power of the first Dirichlet eigenvalue
for−∆ . Therefore, arguing as in (7.43), one sees that no positive solution to (7.121)
may exist if λ ≥Λ m

1,1.

Theorem 7.54. Let B ⊂ Rn (n > 2m) be the unit ball. Then for problem (7.121) in
B, the following holds:

1. If 2m + 1 ≤ n ≤ 4m− 1, then there exist 0 < λ∗ ≤ λ ∗ < Λ m
1,1 such that (7.121)

admits a positive solution if λ ∈ (λ ∗,Λ m
1,1) and no positive solution if λ ∈ (0,λ∗).

2. If n≥ 4m, then (7.121) admits a positive solution for all λ ∈ (0,Λ m
1,1).

Hence n ∈ {2m + 1, . . . ,4m− 1} are the critical dimensions also for problem
(7.121), when restricting to positive solutions in the ball. Let us also mention that
Item 2 in Theorem 7.54 also holds in general bounded domains Ω , see the proof
below. Again, in Item 1 nonexistence of any nontrivial solution has to be left open.

Proof of Theorem 7.54. 1. We assume here that 2m + 1 ≤ n ≤ 4m− 1. When λ is
in a left neighbourhood of Λ m

1,1, the existence part may be obtained as in Item 2 of
Theorem 7.38. Assume now that λ > 0 and that (7.121) has a positive solution u
in B. By Theorem 7.3, (−∆)ku is radially symmetric and strictly decreasing for all
k = 0, . . . ,m− 1. Moreover, an iterated application of the maximum principle for
−∆ yields that (−∆) ju > 0 in B for j = 0, . . . ,m. Hence, if j = 0, . . . ,m− 1, then
(−∆) ju is superharmonic in B and vanishes on ∂B, so that Hopf’s boundary lemma
yields

∂

∂ν
(−∆) ju < 0 on ∂B. (7.124)

In the radial framework, Theorem 7.29 reads

2mλ

∫
B

u2 dx = (−1)m+1
m

∑
j=1

∫
∂B

(∆ j−1u)′ (∆ m− ju)′ dω. (7.125)
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In view of (7.124), counting also the factor (−1)m+1, all the terms in the sum on the
right hand side of (7.125) are strictly positive. Therefore, (7.125) implies

mλ

∫
B

u2 dx≥ (−1)m+1
∫

∂B
u′ (∆ m−1u)′ dω. (7.126)

Let nen denote the (n− 1)-dimensional surface measure of the unit ball B and
let c(n) denote a generic positive constant which may vary from line to line. As u
is radially symmetric, we may proceed as follows with the terms on the right hand
side of (7.126).∫

∂B
u′ (∆ m−1u)′ dω = nenu′(1) · (∆ m−1u)′(1)

=
1

nen

(∫
∂B

u′ dω

)(∫
∂B

(∆ m−1u)′ dω

)
=

1
nen

(∫
B

∆udx
)(∫

B
∆

mudx
)

. (7.127)

Let w be the unique (smooth radial positive) solution to{
(−∆)m−1w = 1 in B,
∆ jw|∂B = 0 for j ≤ m−2.

Integrating by parts and using the homogeneous Navier boundary conditions both
for u and w, yields

−
∫

B
∆udx =−

∫
B

∆u(−∆)m−1wdx =
∫

B
w(−∆)mudx.

Inserting this identity and (7.127) into (7.126) gives

mλ

∫
B

u2 dx≥ 1
nen

(∫
B
(−∆)mudx

)(∫
B

w(−∆)mudx
)

.

Since u is positive and strictly radially decreasing, by (7.121) also (−∆)mu is pos-
itive and strictly radially decreasing. This fact can be used to get rid of the weight
factor w in the last integral. Indeed,∫

B
(−∆)mudx =

∫
|x|≤1/2

(−∆)mudx+
∫

1/2≤|x|≤1
(−∆)mudx

≤
∫
|x|≤1/2

(−∆)mudx+ c(n)(−∆)mu
(

1
2

)
≤
∫
|x|≤1/2

(−∆)mudx+ c(n)
∫
|x|≤1/2

(−∆)mudx

≤ c(n)
∫

B
w(−∆)mudx.
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Combining this estimate with the previous inequality, we obtain

mλ

∫
B

u2 dx≥ c(n)
(∫

B
(−∆)mudx

)2

= c(n)‖(−∆)mu‖2
L1 . (7.128)

Since 2m + 1 ≤ n ≤ 4m−1, by a duality argument and using elliptic estimates, we
find

‖u‖L2 ≤ c(n)‖(−∆)mu‖L1 . (7.129)

Observe that L2-estimates for the polyharmonic operator under homogeneous Navier
boundary conditions follow immediately from the L2-estimates for the Laplacian,
see Theorem 2.20.

Combining (7.128) and (7.129), we see that for any positive radial solution u of
(7.121) in B, we have

λ

∫
B

u2 dx≥ c(n)
∫

B
u2 dx,

where the constant c(n) is independent of u. Since u > 0, we necessarily have that
λ ≥ c(n) =: λ∗ and no solutions exists if λ < λ∗.

2. We consider again the functional Fλ in (7.41), but instead of minimising it
over N (see (7.42)) we minimise it now over

M =
{

v ∈ Hm
ϑ (B) :

∫
B
|v|s+1 dx = 1

}
, (7.130)

where Hm
ϑ

(B) is defined in (7.35). Correspondingly, instead of (7.85), we define

Sλ := inf
v∈M

Fλ (v).

Arguing as in Lemma 7.41, we see that if Sλ < S, then Fλ |M attains its minimum.
Notice that S is the same as for the Dirichlet problem, see Theorem 7.24. Recalling
that Hm

0 (B) ⊂ Hm
ϑ

(B), Lemma 7.42 ensures that indeed Sλ < S whenever n ≥ 4m.
Hence, Fλ |M attains its minimum at some v ∈M. Once we have a minimiser v, by
the maximum principle for powers of −∆ (which holds in any domain!), we obtain
a positive minimiser by taking a multiple of the unique function u ∈ Hm

ϑ
(B) such

that (−∆)m/2u = |∆ m/2v| if m is even and such that (−∆)(m−1)/2u = |∆ (m−1)/2v| if
m is odd. �

The case λ < 0

In the preceding nonexistence results, the positivity of a solution, the nonexistence
of which had to be shown, is intensively exploited. For λ ≥ 0 one can conclude from
u≥ 0 that even−∆u≥ 0 in B. But for λ < 0, we can only argue as before, when λ is
close enough to 0, see [246, 309]. If λ � 0, the framework of positive solutions is no
longer adequate for (7.121) in B, and the argument in [398, pp. 390-391] and [400,
Theorem 3] breaks down. Instead, one has to look for nonexistence of any nontrivial
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solution. Such a result seems to be still unknown, even for nontrivial radial solutions
in the ball. And also the proof of Theorem 7.53 does not seem to extend to the case
λ < 0.

7.7 Critical growth Steklov problems

Once again we restrict our attention to the case of the unit ball B and we consider
the following fourth order elliptic problem with purely critical growth and Steklov
boundary conditions{

∆ 2u = u(n+4)/(n−4), u > 0 in B,
u = ∆u−auν = 0 on ∂B,

(7.131)

where a ∈ R. In this case we have

Theorem 7.55. If a≤ 4 or a≥ n, then (7.131) admits no solution. For all a ∈ (4,n)
problem (7.131) admits a unique radial solution ua.

We also point out that as a↗ n we have ua→ 0 uniformly in B whereas as a↘ 4
we have ua(0)→+∞ and ua(x)→ 0 for all x ∈ B\{0}, see [189].

As for the proof of Theorem 7.55, we recall that the first Steklov eigenvalue
equals n and the first eigenfunction is given by φ1(x) = 1−|x|2, see Section 3.3.1.
Nonexistence for a ≥ n is obtained again by testing (7.131) with the positive first
eigenfunction φ1, see (7.43). The other parts of the proof are more delicate.

Proof of nonexistence for a ≤ 4. Assume by contradiction that u is a solution of
(7.131) for some a≤ 4. Consider the auxiliary function φ ∈C2(B) defined by

φ(x) = (4−a+a|x|2)∆u(x)−4ax ·∇u(x)+a(8−2n)u(x), x ∈ B.

Then φ = 0 on ∂B, since u = 0 and ∆u = auν on ∂B. A short computation shows

∆φ = 2an∆u+4ax ·∇∆u+(4−a+a|x|2)∆ 2u

− 4a(2∆u+ x ·∇∆u)+a(8−2n)∆u

= (4−a+a|x|2)u(n+4)/(n−4).

If u > 0 solves (7.131), then ∆φ 	 0, since a ≤ 4. By the maximum principle we
conclude that φ < 0 in B, and φν > 0 on ∂B by the Hopf boundary lemma. But on
∂B we also get by direct computation, using the second boundary condition,

φν = 2a∆u+4(∆u)ν −4a(uν +uνν)+a(8−2n)uν

= 2a∆u+4(∆u)ν −4a(uν +∆u− (n−1)uν)+a(8−2n)uν

= 2(2(∆u)ν +a(n−a)uν) ,
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so that 2(∆u)ν +a(n−a)uν > 0 on ∂B. Since u > 0 in B we have uν ≤ 0 on ∂B. We
also use (7.76) which, for solutions of (7.131), reads as follows∫

∂B

(
2(∆u)ν +a(n−a)uν

)
uν dω = 0 . (7.132)

This yields uν = 0 on ∂B. But then u > 0 would be a solution of the Dirichlet
problem in B, which is known to have no positive solutions, see Theorem 7.33.
This contradiction concludes the proof of the nonexistence statement for a ≤ 4 in
Theorem 7.55. �

Proof of existence when a ∈ (4,n). From Theorem 7.24 we know that the optimal
Sobolev constant

S = inf
H2∩H1

0 (B)\{0}

‖∆v‖2
L2

‖v‖2
Ls+1

is not achieved. We recall that the exact value of S is given in (7.50) for m = 2. We
also recall from Theorem 7.21 that S is achieved by the radial entire functions

uε(x) :=
1

(ε2 + |x|2) n−4
2

which satisfy

S =

∫
Rn
|∆uε |2 dx(∫

Rn
|uε |2n/(n−4) dx

)(n−4)/n
for all ε > 0 . (7.133)

Moreover,∫
Rn
|uε |2n/(n−4) dx =

∫
Rn

dx
(ε2 + |x|2)n =

1
εn

∫
Rn

dx
(1+ |x|2)n

=
nen

εn

∫
∞

0

rn−1

(1+ r2)n dr =
nen

2εn

∫
∞

0

t
n
2−1

(1+ t)n dt

=
nen

2εn

Γ ( n
2 )2

Γ (n)
=:

K2

εn , (7.134)

and, by (7.133),

∫
Rn
|∆uε |2 dx = S

(∫
Rn
|uε |2n/(n−4) dx

)(n−4)/n

= S
K(n−4)/n

2
εn−4 =:

K1

εn−4 . (7.135)

Let Hr = {u ∈ H2 ∩H1
0 (B); u = u(|x|)} denote the closed subspace of radially

symmetric functions and for all nontrivial u ∈Hr consider the ratio
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Qa(u) :=
‖∆u‖2

L2 −a‖uν‖2
L2(∂B)

‖u‖2
Ls+1

. (7.136)

We consider the minimisation problem

Σa := inf
Hr\{0}

Qa(v) (7.137)

and prove the following compactness result which is the analogue of Lemma 7.41
for Steklov boundary conditions.

Lemma 7.56. Assume that 0 < a < n. If Σa < S, then the infimum in (7.137) is
achieved. Moreover, up to a sign change and up to a Lagrange multiplier, any min-
imiser is a superharmonic radial solution of (7.131).

Proof. Let (uk)⊂Hr \{0} be a minimising sequence for Σa such that

‖uk‖Ls+1 = 1. (7.138)

Then

‖∆uk‖2
L2 −a‖(uk)ν‖2

L2(∂B) = Σa +o(1) as k→+∞. (7.139)

Moreover, from Theorem 3.20 we know that ‖∆u‖2
L2 ≥ n‖uν‖2

L2(∂B) for all u ∈H2∩
H1

0 (B) and, in turn,

‖∆uk‖2
L2 = Σa +a‖(uk)ν‖2

L2(∂B) +o(1)≤ Σa +
a
n
‖∆uk‖2

L2 +o(1)

so that (uk) is bounded in H2∩H1
0 (B). Hence (∇uk) is bounded in H1(B). Exploiting

the compactness of the embeddings H1(B)⊂ L2(∂B) and H2∩H1
0 (B)⊂ L2(B), we

deduce that there exists u ∈ H2∩H1
0 (B) such that, up to a subsequence,

uk ⇀ u in H2∩H1
0 (B), (uk)ν → uν in L2(∂B), uk→ u in L2(B). (7.140)

That is, if we set vk := uk−u, then

vk ⇀ 0 in H2∩H1
0 (B), (vk)ν → 0 in L2(∂B), vk→ 0 in L2(B). (7.141)

On the other hand, by (7.138) we infer that ‖∆uk‖2
L2 ≥ S, so that from (7.139) we

also obtain

a‖(uk)ν‖2
L2(∂B) = ‖∆uk‖2

L2 −Σa +o(1)≥ S−Σa +o(1)

which remains bounded away from 0 since Σa < S. From this fact we deduce that
u 6= 0.

In view of (7.140)-(7.141) we may rewrite (7.139) as

‖∆u‖2
L2 +‖∆vk‖2

L2 −a‖uν‖2
L2(∂B) = Σa +o(1). (7.142)
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Moreover, by (7.138) and Vitali’s convergence theorem, we have

1 = ‖u+ vk‖s+1
Ls+1 = ‖u‖s+1

Ls+1 +‖vk‖s+1
Ls+1 +o(1)≤ ‖u‖2

Ls+1 +‖vk‖2
Ls+1 +o(1)

≤ ‖u‖2
Ls+1 +

1
S
‖∆vk‖2

L2 +o(1) ,

where we also used the fact that both ‖u‖Ls+1 and ‖vk‖Ls+1 do not exceed 1. Since
Σa ≥ 0 for every 0 < a < n, this last inequality gives

Σa ≤ Σa‖u‖2
Ls+1 +

Σa

S
‖∆vk‖2

L2 +o(1).

By combining the last estimate with (7.142), we obtain

‖∆u‖2
L2 −a‖uν‖2

L2(∂B) = Σa−‖∆vk‖2
L2 +o(1)

≤ Σa‖u‖2
Ls+1 +

(
Σa

S
−1
)
‖∆vk‖2

L2 +o(1)≤ Σa‖u‖2
Ls+1 +o(1),

which shows that u 6= 0 is a radial minimiser for (7.137). This proves the first part
of Lemma 7.56.

Consider now a radial minimiser u for (7.137) and assume for contradiction that
it is not superharmonic (nor subharmonic) in B. Then let w ∈ H2 ∩H1

0 (B) be the
unique solution to {

−∆w = |∆u| in B,
w = 0 on ∂B.

By the maximum principle for superharmonic functions it follows that w > 0 in B
and wν < 0 on ∂B. Moreover, both w±u are superharmonic (but not harmonic!) in
B and vanish on ∂B. This proves that

|u|< w in B , |uν |< |wν | on ∂B .

In turn, these inequalities (and −∆w = |∆u|) prove that Qa(w) < Qa(u) which con-
tradicts the assumption that u minimises (7.137).

Therefore, any minimiser u for (7.137) is superharmonic or subharmonic in B.
By the Lagrange multiplier method, it is readily seen that a multiple of u is a radial
superharmonic solution to (7.131). �

Assume that a > 4, fix a real number

0 < δ < n

√
a−4

n+a−4
(7.143)

and consider the following two-parameters family of functions

Uε,δ (x) = gδ (|x|)uε(x)≡
gδ (|x|)

(ε2 + |x|2) n−4
2

,
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where gδ ∈ C1[0,1]∩W 2,∞(0,1), gδ (r) = 1 for 0 ≤ r ≤ δ and gδ (1) = 0. Then
Uε,δ ∈Hr and

Uε,δ (x) = uε(x) =
1

(ε2 + |x|2) n−4
2

in Bδ = {x ∈ Rn; |x|< δ}.

In view of Lemma 7.56 existence for (7.131) is proved if we find Uε,δ such that

Qa(Uε,δ ) < S (7.144)

for suitable ε,δ > 0. Hence, our purpose is now to estimate the ratio Qa(Uε,δ ). We
proceed as in the proof of Lemma 7.42 but here the explicit expression of the cut-
off function gδ will play a major role. In view of (7.134) a lower bound for the
denominator in (7.136) is readily obtained:∫

B
|Uε,δ |2

∗
dx =

∫
Rn
|uε |2

∗
dx−

∫
Rn\B
|uε |2

∗
dx−

∫
B\Bδ

1−gδ (|x|)2∗

(ε2 + |x|2)n dx

≥ K2

εn +O(1). (7.145)

We seek an upper bound for the numerator. From (7.135) we get∫
B
|∆Uε,δ |2 dx =

∫
Rn
|∆uε |2 dx+

∫
B\Bδ

(
|∆Uε,δ |2−|∆uε |2

)
dx−

∫
Rn\B
|∆uε |2 dx

=
K1

εn−4 +o(1)−4n(n−4)en +
∫

B\Bδ

(
|∆Uε,δ |2−|∆uε |2

)
dx. (7.146)

After some computations we find in radial coordinates r = |x|

∆Uε,δ (r) = U ′′
ε,δ (r)+

n−1
r

U ′
ε,δ (r)

=
g′′

δ
(r)

(ε2 + r2)(n−4)/2 +
g′

δ
(r)

r(ε2 + r2)(n−2)/2

[
(7−n)r2 +(n−1)ε2

]
− (n−4)

gδ (r)
(ε2 + r2)n/2 (2r2 +nε

2) .

Let us recall that g′
δ
(r) = g′′

δ
(r) = 0 for r < δ . Furthermore, as ε → 0, we have

∆Uε,δ (r) =
g′′

δ
(r)

rn−4 +(7−n)
g′

δ
(r)

rn−3 −2(n−4)
gδ (r)
rn−2 +o(1)

uniformly with respect to r ∈ [δ ,1]. By squaring, we get
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|∆Uε,δ (r)|2 =
g′′

δ
(r)2

r2n−8 +(7−n)2 g′
δ
(r)2

r2n−6 +4(n−4)2 gδ (r)2

r2n−4 +2(7−n)
g′′

δ
(r)g′

δ
(r)

r2n−7

−4(n−4)
g′′

δ
(r)gδ (r)
r2n−6 +4(n−4)(n−7)

g′
δ
(r)gδ (r)
r2n−5 +o(1).

We may now rewrite in a simplified radial form the terms contained in the last
integral in (7.146). With some integrations by parts, and taking into account the
behaviour of gδ (r) for r ∈ {1,δ}, we obtain

∫ 1

δ

g′′
δ
(r)g′

δ
(r)

rn−6 dr =
n−6

2

∫ 1

δ

g′
δ
(r)2

rn−5 dr +
g′

δ
(1)2

2
,∫ 1

δ

g′′
δ
(r)gδ (r)
rn−5 dr = −

∫ 1

δ

g′
δ
(r)2

rn−5 dr +(n−5)
∫ 1

δ

g′
δ
(r)gδ (r)
rn−4 dr,∫ 1

δ

g′
δ
(r)gδ (r)
rn−4 dr =

n−4
2

∫ 1

δ

gδ (r)2

rn−3 dr− 1
2δ n−4 .

Collecting terms we find

∫
B\Bδ

(
|∆Uε,δ |2−|∆uε |2

)
dx = nen

∫ 1

δ

(
g′′

δ
(r)2

rn−7 +3(n−3)
g′

δ
(r)2

rn−5

)
dr

+ n(7−n)eng′
δ
(1)2 + 4n(n−4)en. (7.147)

Moreover, simple computations show that∫
∂B

(Uε,δ )2
ν = neng′

δ
(1)2 + o(1)

which, combined with (7.146) and (7.147), yields∫
B
|∆Uε,δ |2 dx−a

∫
∂B

(Uε,δ )2
ν dω

=
K1

εn−4 +nen

∫ 1

δ

(
g′′

δ
(r)2

rn−7 +3(n−3)
g′

δ
(r)2

rn−5

)
dr

+ n(7−n−a)en g′
δ
(1)2 + o(1). (7.148)

Putting f = g′
δ

, we are so led to find negative values for the functional

J( f ) :=
∫ 1

δ

(
f ′(r)2

rn−7 +3(n−3)
f (r)2

rn−5

)
dr +(7−n−a) f (1)2

when f ∈C0[δ ,1]∩W 1,∞(δ ,1) satisfies

f (δ ) = 0 and
∫ 1

δ

f (r)dr =−1. (7.149)
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The Euler-Lagrange equation relative to the functional J reads

r2 f ′′(r)+(7−n)r f ′(r)−3(n−3) f (r) = 0 δ ≤ r ≤ 1,

whose solutions have the following general form f (r) = αrn−3 + β r−3 for any
α,β ∈ R. The first condition in (7.149) yields β = −αδ n. To determine the value
of α , we use the second condition in (7.149) and obtain

α =− 2(n−2)
2−nδ n−2 +(n−2)δ n .

So, let us consider the function f (r) = α(rn−3−δ nr−3) and compute

J( f )
α2 =

∫ 1

δ

[
n(n−3)rn−1 +

3nδ 2n

rn+1

]
dr +(7−n−a)(1−δ

n)2

= (1−δ
n)
[
(4−a)(1−δ

n)+nδ
n
]

=: γ < 0,

where the sign of γ follows from the initial choice of δ in (7.143). Summarising,
with the above choice of f and recalling that gδ (r) = −

∫ 1
r f (s)ds, we obtain from

(7.148) ∫
B
|∆Uε,δ |2 dx−a

∫
∂B

(Uε,δ )2
ν dω =

K1

εn−4 +nenα
2
γ +o(1) .

Finally, by combining this estimate with (7.145) and recalling the definition in
(7.136), we find

Qa(Uε,δ )≤
K1

εn−4 +nenα2γ +o(1)

[K2
εn +O(1)]2/2∗

as ε → 0

so that (7.144) holds for sufficiently small ε . �

Proof of uniqueness. If we consider radially symmetric solutions and put r = |x|,
then for r ∈ [0,1) the equation in (7.131) reads

uiv(r)+
2(n−1)

r
u′′′(r)+

(n−1)(n−3)
r2 u′′(r)− (n−1)(n−3)

r3 u′(r) = u
n+4
n−4 (r)
(7.150)

while the boundary conditions become

u(1) = 0 , u′′(1)+(n−1−a)u′(1) = 0 . (7.151)

Moreover, the Pohožaev-type identity (7.132) yields

2u′′′(1)+2(n−1)u′′(1)+(2(1−n)+a(n−a))u′(1) = 0 . (7.152)

In turn, with the change of variables
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u(r) = r−
n−4

2 v(logr) (0 < r ≤ 1) , v(t) = e
n−4

2 t u(et) (t ≤ 0), (7.153)

equation (7.150) may be rewritten as

viv(t)−C2v′′(t)+C1v(t) = v
n+4
n−4 (t) t ∈ (−∞,0) , (7.154)

where

C1 =
(

n(n−4)
4

)2

, C2 =
n2−4n+8

2
> 0. (7.155)

After some computations we find from (7.151) and (7.152) that

v(0) = 0, v′(0) < 0,

v′′(0) = (a−2)v′(0), v′′′(0) = 1
4

(
n2−4n+2a2−8a+16

)
v′(0).

(7.156)

Assume that there exist two solutions u1 and u2 of (7.150) and let v1 and v2 be
the corresponding functions obtained through the change of variables (7.153). Then
both v1 and v2 satisfy (7.154) and (7.156). Put

wi(t) :=
vi(t)
|v′i(0)|

(i = 1,2)

so that

wiv
i (t)−C2w′′i (t)+C1wi(t) = λiw

(n+4)/(n−4)
i (t), t ∈ (−∞,0),

with

wi(0) = 0, w′i(0) =−1,

w′′i (0) = 2−a, w′′′i (0) =− 1
4

(
n2−4n+2a2−8a+16

)
,

λi = |v′i(0)|8/(n−4) > 0.

With no loss of generality we may assume that λ1 ≥ λ2. Let w := w1−w2 so that
w satisfies

wiv(t)−C2w′′(t)+C1w(t) = λ1w(n+4)/(n−4)
1 (t)−λ2w(n+4)/(n−4)

2 (t)

with homogeneous initial conditions at t = 0. This equation may be rewritten as

wiv(t)−C2w′′(t)+C1w(t) = (λ1−λ2)w
(n+4)/(n−4)
1 (t)+ f (t)w(t), (7.157)

where, by Lagrange’s theorem,

f (t) =
n+4
n−4

λ2

∫ 1

0
(sw1(t)+(1− s)w2(t))

8/(n−4) ds ≥ 0.

We now prove a technical result.
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Lemma 7.57. Let h ∈ C0(−∞,0], then the unique solution w ∈ C4(−∞,0] of the
Cauchy problem{

wiv(t)−C2w′′(t)+C1w(t) = h(t), t ∈ (−∞,0)

w(0) = w′(0) = w′′(0) = w′′′(0) = 0

is given by

w(t) =
4

n(n−4)

∫ 0

t
sinh

n(τ− t)
2

∫ 0

τ

h(s) sinh
(n−4)(s− τ)

2
dsdτ

=
∫ 0

t
G(s− t)h(s)ds, (7.158)

where

G(σ) =
1

n(n−2)
sinh

nσ

2
− 1

(n−2)(n−4)
sinh

(n−4)σ
2

is positive for σ > 0.

Proof. It follows by combining three simple facts. First, the unique solution w of
the problem {

w′′(t)− n2

4 w(t) = z(t), t ∈ (−∞,0)

w(0) = w′(0) = 0

is given by

w(t) =
2
n

∫ 0

t
z(τ) sinh

n(τ− t)
2

dτ .

Second, the unique solution z of the problem{
z′′(t)− (n−4)2

4 z(t) = h(t), t ∈ (−∞,0)
z(0) = z′(0) = 0

is given by

z(t) =
2

n−4

∫ 0

t
h(τ) sinh

(n−4)(τ− t)
2

dτ .

Third, by (7.155) the left hand side of (7.157) may be written as(
d2

dt2 −
(n−4)2

4

)(
d2

dt2 −
n2

4

)
w.

Finally, by changing the order of integration in the second term of (7.158) we get

G(s− t) =
4

n(n−4)

∫ s

t
sinh

(n−4)(s− τ)
2

sinh
n(τ− t)

2
dτ, t < s < 0,

and the explicit form of G follows by elementary calculations. �
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By Lemma 7.57 the homogeneous Cauchy problem for (7.157) is equivalent to
the following integral equation

w(t) = (λ1−λ2)
∫ 0

t
G(s− t)w(n+4)/(n−4)

1 (s)ds +
∫ 0

t
G(s− t) f (s)w(s)ds .

In turn, by putting

W (t) := (λ1−λ2)
∫ 0

t
G(s− t)w(n+4)/(n−4)

1 (s)ds ≥ 0 ,

the above integral equation reads

w(t) = W (t)+
∫ 0

t
G(s− t) f (s)w(s)ds .

The solution to this problem is obtained by iteration. One makes an “initial
guess” w0 and constructs a sequence of approximations which converges to the so-
lution. The sequence is defined by

wk+1(t) = W (t)+
∫ 0

t
G(s− t) f (s)wk(s)ds for all k ≥ 0.

We may start with a nonnegative initial guess w0. Then by recalling that W ≥ 0,
f ≥ 0 on (−∞,0] and that G(s− t)≥ 0 for s > t, we readily obtain

w(t)≥ 0 for all t ≤ 0.

Finally, if we multiply (7.157) by ent/2 we may rewrite it as

d
dt

(
ent/2

(
w′′′(t)− n

2
w′′(t)− (n−4)2

4
w′(t)+

n(n−4)2

8
w(t)

))
= ent/2

(
(λ1−λ2)w

(n+4)/(n−4)
1 (t)+ f (t)w(t)

)
.

By integrating this equation over (−∞,0) and using the homogeneous boundary
conditions we obtain∫ 0

−∞

ent/2
(
(λ1−λ2)w

(n+4)/(n−4)
1 (t)+ f (t)w(t)

)
dt = 0 .

In view of the sign conditions

λ1−λ2 ≥ 0, w1 > 0, f ,w≥ 0,

this implies that λ1 = λ2, w≡ 0 and u1 = u2. Uniqueness is so proved. �
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7.8 Optimal Sobolev inequalities with remainder terms

As we have seen in Theorem 7.23, the best Sobolev constant (in the critical case) is
not achieved on a bounded domain. In this section we show that the corresponding
embedding inequality can be improved by adding remainder terms.

Let Ω ⊂ Rn be a smooth bounded domain and for all q ∈ (1,∞) let

‖u‖Lq
w

:= sup
A⊂Ω , |A|>0

|A|−1/q′
∫

A
|u|dx

denote the weak Lq-norm, where q′ is the conjugate of q.
Recall the scalar product and norm introduced in (2.10)-(2.11) for the space

Hm
0 (Ω) and let S be as in (7.50). We have the following improvement of Theorem

7.23.

Theorem 7.58. Let m ∈ N+ and let Ω ⊂ Rn (n > 2m) be a bounded domain. Then
there exists a constant C = C(diam(Ω),n,m) > 0 such that

‖u‖2
Hm

0
≥ S‖u‖2

Ls+1 +C‖u‖2

L
n

n−2m
w

for all u ∈ Hm
0 (Ω). (7.159)

Proof. Let R > 0 be such that Ω ⊂ BR, where BR denotes the ball centered at the
origin with radius R. Extending any function u ∈ Hm

0 (Ω) by 0 in BR \Ω shows
Hm

0 (Ω)⊂Hm
0 (BR). Therefore, it suffices to prove (7.159) in the case where Ω = BR

for some R > 0. We divide the proof into two parts.
Proof of (7.159) for positive functions. Consider the closed convex cone of non-

negative functions

K = {v ∈ Hm
0 (BR); v≥ 0 a.e. in BR}.

Let g ∈ L∞(BR), g 6≡ 0 and g≥ 0 a.e. in BR. Let v be the solution of the problem{
(−∆)mv = g in BR,
Dα v|∂BR = 0 for |α| ≤ m−1.

Then v ∈ Hm
0 ∩L∞(BR). Take u ∈K \{0} and consider the (entire) function

φ =

{
u− v+‖v‖L∞ in BR,

‖v‖L∞ Pm( R
|x| ) in Bc

R,

where Pm is the polynomial of degree n−m−1 whose lowest power is n−2m and
satisfies

Pm(1) = 1, P(`)
m (1) = 0 ` = 1, . . . ,m−1.

Since φ ∈ Dm,2(Rn), we may write inequality (7.47) for φ and obtain (for some
C = C(n,R) > 0)

‖u− v‖2
Hm

0
+C‖v‖2

L∞ ≥ S‖u‖2
Ls+1 ,
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where we used the fact that both u ≥ 0 and −v + ‖v‖L∞ ≥ 0 a.e. in BR. Therefore,
we obtain

‖u‖2
Hm

0
+‖v‖2

Hm
0
−2(u,v)Hm

0
+C‖v‖2

L∞ ≥ S‖u‖2
Ls+1

and hence

‖u‖2
Hm

0
≥ 2

∫
BR

ugdx− (‖v‖2
Hm

0
+C‖v‖2

L∞)+S‖u‖2
Ls+1 .

Replacing g,v with λg,λv the previous inequality remains true for all λ > 0. Taking
into account that for all a≥ 0 and b > 0 we have maxλ≥0(aλ−bλ 2) = a2

4b , we obtain

‖u‖2
Hm

0
≥ S‖u‖2

Ls+1 +
(
∫

BR
ug)2

‖v‖2
Hm

0
+C‖v‖2

L∞

. (7.160)

Note that here we also used g ≥ 0 and u ≥ 0. Let A ⊂ BR, |A| > 0 and take g = 1A
(the characteristic function of A) in (7.160). Then we have∫

BR

ugdx =
∫

A
udx . (7.161)

Moreover, if γ = n
√

1
en
|A| and G(−∆)m,BR denotes the Green function corresponding

to (−∆)m in BR, then for a.e. x ∈ BR we have by Boggio’s explicit formula (2.65)
for G(−∆)m,BR (see also (4.24))

|v(x)|=
∣∣∣∣∫BR

G(−∆)m,BR(x,y) 1A(y)dy
∣∣∣∣≤C

∫
A
|x− y|2m−n dy

≤C
∫

Bγ (x)
|x− y|2m−n dy≤C

∫
γ

0
ρ

n−1+2m−n dρ

= C|A|2m/n,

where the C denote possibly different constants that only depend on n and m. This
proves that

‖v‖L∞ ≤C(n,m)|A|2m/n . (7.162)

Finally, by Hölder and Sobolev inequalities, we have

‖v‖2
Hm

0
= (v,v)Hm

0
=
∫

A
vdx≤ ‖v‖Ls+1 |A|(n+2m)/2n ≤C(n,m)‖v‖Hm

0
|A|(n+2m)/2n ;

therefore,
‖v‖2

Hm
0
≤C(n,m)|A|1+2m/n . (7.163)

Since |A| ≤ |BR|= enRn, from (7.162) and (7.163) we get

‖v‖2
Hm

0
+C‖v‖2

L∞ ≤C(n,m,R)|A|4m/n .
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By arbitrariness of A, this inequality and (7.161) may be replaced into (7.160) to
obtain

‖u‖2
Hm

0
≥ S‖u‖2

Ls+1 +C‖u‖2

L
n

n−2m
w

for all u ∈ Hm
0 (BR)∩K , (7.164)

for some suitable C > 0.
Proof of (7.159) for sign-changing functions. Take a sign-changing function u ∈

Hm
0 (BR). By Theorem 3.4 we infer that there exists a unique couple (u1,u2) ∈K ×

K ∗ such that u = u1 +u2 and (u1,u2)Hm
0

= 0. Then

‖u‖2
Hm

0
= ‖u1‖2

Hm
0

+‖u2‖2
Hm

0
. (7.165)

Since u1 ≥ 0 and u2 < 0 a.e. in BR (by Proposition 3.6) we have |u1 + u2| ≤
max{|u1|, |u2|} and, for all r > 0,

|u1(x)+u2(x)|r ≤max{|u1(x)|r, |u2(x)|r} ≤ |u1(x)|r + |u2(x)|r for a.e. x ∈ BR.

Furthermore, if r ≥ 2 we obtain

‖u‖2
Lr =

(∫
BR

|u1 +u2|r dx
)2/r

≤
(∫

BR

(|u1|r + |u2|r)dx
)2/r

≤ ‖u1‖2
Lr +‖u2‖2

Lr . (7.166)

Since we already know that (7.164) holds for both u1 and u2, by (7.165) and (7.166),
we get

‖u‖2
Hm

0
= ‖u1‖2

Hm
0

+‖u2‖2
Hm

0

≥ S(‖u1‖2
Ls+1 +‖u2‖2

Ls+1)+C(‖u1‖2

L
n

n−2m
w

+‖u2‖2

L
n

n−2m
w

)

≥ S‖u‖2
Ls+1 +C‖u‖2

L
n

n−2m
w

with C = C/2. This completes the proof of (7.159). �

Recalling the properties of the weak norms (see [234, p. 255] and [393, Section
4.2]), from Theorem 7.58 we immediately obtain

Corollary 7.59. Let m ∈ N+ and let Ω ⊂ Rn (n > 2m) be a bounded domain. Then
for any p ∈ [1, n

n−2m ) there exists a constant C = C(Ω ,m, p) > 0 such that

‖u‖2
Hm

0
≥ S‖u‖2

Ls+1 +C‖u‖2
Lp for all u ∈ Hm

0 (Ω).

Comparing this result with Corollary 7.39 allows for the following interpretation.
On bounded domains, the Sobolev inequality for the embedding Hm

0 ⊂ Ls+1 with
optimal constant S may be improved by adding an L2-norm if and only if the space
dimension is weakly critical.
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Similar results also hold in other subspaces of Hm(Ω) such as Hm
ϑ

(Ω), see (7.35).
We prove here two inequalities which are strictly related to existence and nonexis-
tence results for critical growth problems.

Theorem 7.60. Let Ω ⊂ Rn (n > 2m) be a bounded Cm-smooth domain. Then for
all p ∈ [1, n

n−2m ) there exists a constant C = C(n, p, |Ω |) > 0, such that

‖u‖2
Hm

ϑ
≥ S‖u‖2

Ls+1 +C‖u‖2
Lp for all u ∈ Hm

ϑ (Ω).

Let B⊂ Rn (n > 4) denote the unit ball. Then

‖∆u‖2
L2 ≥ S‖u‖2

L2n/(n−4) +4
∫

∂B
u2

ν dω for all u ∈ H2∩H1
0 (B).

Proof. We keep p ∈ [1, n
n−2m ) fixed as in the first statement. Let B denote the unit

ball. By scaling and Talenti’s comparison principle, see Theorem 3.12, it suffices to
prove that there exists CB > 0 with

‖u‖2
Hm

ϑ
≥ S‖u‖2

Ls+1 +
1

CB
‖u‖2

Lp (7.167)

for each u ∈ Hm
ϑ

(B), which is radially symmetric and radially decreasing with re-
spect to the origin (and hence positive). Let us set

Sλ ,p = inf

{
‖v‖2

Hm
ϑ

−λ‖v‖2
Lp

‖v‖2
Ls+1

;v ∈ Hm
ϑ (B) and v radially decreasing

}
.

If by contradiction (7.167) does not hold, one gets Sλ ,p < S for all λ > 0. Let us fix
some λ ∈ (0,λ1,p), where

λ1,p := inf
Hm

ϑ
(B)\{0}

‖v‖2
Hm

ϑ

‖v‖2
Lp

is the first positive eigenvalue of{
(−∆)mu = λ‖u‖2−p

Lp |u|p−2u in B,

∆ ju|∂B = 0 for j = 0, . . . ,m−1.

Arguing along the lines of Sections 7.5.1 and 7.6 one finds a smooth positive radial
strictly decreasing solution of{

(−∆)mu = us +λ‖u‖2−p
Lp |u|p−2u in B,

∆ ju|∂B = 0 for j = 0, . . . ,m−1.
(7.168)

On the other hand, for any positive radially decreasing solution of (7.168) one has
the following variant of the Pohožaev’s identity (7.74):
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2λ

(
n
p
− n−2m

2

)
‖u‖2

Lp = (−1)m+1
m

∑
j=1

∫
∂B

(∆ j−1u)ν (∆ m− ju)ν dω.

As in the proof of Theorem 7.54, we conclude

λ‖u‖2
Lp ≥ c(n, p)‖∆ mu‖2

L1 ≥ c(n, p) ‖u‖2
Lp ,

since we have assumed that p < n/(n−2m). For λ > 0 sufficiently small, we obtain
a contradiction which proves (7.167).

Similarly, the second inequality is a direct consequence of the definition of Σa in
(7.137) combined with Lemma 7.56 and the nonexistence statement (for a ≤ 4) in
Theorem 7.55. This shows in fact that Σ4 = S. �

7.9 Critical growth problems in geometrically complicated
domains

We consider the semilinear biharmonic equation with purely critical nonlinearity

∆
2u = |u|8/(n−4)u in Ω (7.169)

either with Navier boundary conditions

u = ∆u = 0 on ∂Ω (7.170)

or with Dirichlet boundary conditions

u = |∇u|= 0 on ∂Ω . (7.171)

Here Ω ⊂ Rn (n > 4) is a bounded smooth domain.
According to the results in Sections 7.5.1 and 7.6, in geometrically simple do-

mains obstructions to existence of certain solutions (e.g. positive or, in balls, radially
symmetric) have to be observed. Here, we address the question whether existence of
“relatively simple” nontrivial solutions of (7.169) with one of the above boundary
conditions can be proved in sufficiently complicated domains. In the second order
analogue the question was intensively discussed, see e.g. [29, 128, 332], references
therein and subsequent works. In the next two sections we will specify what is meant
by “complicated” domains. First, we consider domains which are noncontractible
and, for sake of completeness, we quote without proof results from [33, 157]. Then
we consider contractible domains which are however “almost” noncontractible and
we prove the corresponding statement in all details.
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7.9.1 Existence results in domains with nontrivial topology

We consider here classes of domains having a nontrivial topology in a suitable sense.
If Ω is an annulus and if one restricts the functions to be radial, the problem is no
longer critical and both (7.169), (7.170) and (7.169), (7.171) admit a nontrivial solu-
tion. Therefore, it appears reasonable to consider domains which are in a topological
sense “at least as complicated as an annulus”. Although they are slightly beyond the
scope of this book, for the reader’s convenience we quote two results in this direc-
tion without giving proofs.

For the Dirichlet boundary conditions, only the existence of nontrivial solutions
in domains Ω which are contained in suitable annuli could be shown. More pre-
cisely, we quote from Bartsch-Weth-Willem [33] the following statement.

Theorem 7.61. Let Ω ⊂Rn (n > 4) be a bounded smooth domain. Then there exists
q > 1 such that (7.169), (7.171) admits a nontrivial solution provided

{x ∈ Rn; ρ ≤ |x−a| ≤ ρq} ⊂Ω and {x ∈ Rn; |x−a|< ρ} 6⊂Ω

for some ρ > 0 and a ∈ Rn.

For a given domain Ω ⊂ Rn, let Hk(Ω ,Z2) denote the homology of dimension k
with Z2-coefficients. Then, as pointed out in [33], the assumption of Theorem 7.61
implies that Hn−1(Ω ,Z2) 6= 0. In fact, the statement in [33] holds for any polyhar-
monic Dirichlet problem (7.79) with m≥ 2 and λ = 0. The proof of Theorem 7.61
in [33] is obtained as a consequence of a more general result concerning nonde-
generate critical manifolds of the associated energy functional. The isolated critical
values are related to the Sobolev constant (7.44).

On the other hand, for the Navier boundary value problem Ebobisse-Ould Ahme-
dou [157] proved the following statement.

Theorem 7.62. Let Ω ⊂ Rn (n > 4) be a bounded smooth domain such that

Hk(Ω ,Z2) 6= 0

for some positive integer k. Then (7.169), (7.170) admits a positive solution.

The proof of Theorem 7.62 in [157] follows the lines of the celebrated paper by
Bahri-Coron [29] which deals with the second order critical growth problem. It is
assumed for contradiction that (7.169), (7.170) admits no positive solution. Then it
is possible to construct some nontrivial homomorphisms in the k-th homology. A
careful expansion of the corresponding energy functional near its critical points at
infinity (see (7.46)) enables one to show that whenever the “concentration parame-
ter” ε tends to vanish, the above mentioned homomorphisms become trivial, giving
a contradiction. We refer to [157] for the details.
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7.9.2 Existence results in contractible domains

In this section we are interested in topologically simple but geometrically compli-
cated domains. We show that (7.169), (7.170) admits a positive solution in “strange”
contractible domains Ω . As before, for the Dirichlet problem we merely show that
(7.169), (7.171) admits a nontrivial solution in the same kind of contractible domain.
On one hand our proof is inspired by strong arguments developed by Passaseo [332],
on the other hand we have to face several hard difficulties, especially and somehow
unexpectedly under Navier boundary conditions. One of the crucial steps in the
approach by Passaseo is to prove that sign changing solutions of (7.169) “double
the energy” of the associated functional. For the second order problem this may be
shown by the usual technique of testing the equation with the positive and nega-
tive parts of the solution. Of course, this technique fails for (7.169) where higher
order derivatives are involved. We overcome this difficulty thanks to the decompo-
sition method in dual cones explained in Section 3.1.2. This method enables us to
bypass the lack of nonexistence results for nodal solutions of (7.169) in starshaped
domains. Moreover, when dealing with Navier boundary conditions, the required
generalisation of the Struwe compactness lemma [380] turns out to be very delicate
because of the second boundary datum and the lack of a uniform extension oper-
ator for H2 ∩H1

0 –functions in families of domains. See Lemma 7.71 and its proof
in Section 7.9.5. The same problem arises in Lemma 7.73 where a uniform lower
bound for an enlarged optimal Sobolev constant has to be found in a suitable class
of domains. An important tool for this lemma is a Sobolev inequality with optimal
constant and remainder term, see Theorem 7.60. This inequality is closely related to
nonexistence results, which have been discussed above.

For the sake of a precise formulation of the existence results we have to give a
number of definitions.

Definition 7.63. Let K ⊂ Rn be bounded. We say that u ∈ D2,2(Rn) satisfies u = 1
on K in the sense of D2,2(Rn) if there exists a sequence (uk) in C2

c (Rn) such that
uk = 1 on K for each k ∈ N and uk→ u in D2,2(Rn).

Definition 7.64. We define the (2,2)−capacity of K as

capK = inf
{∫

Rn
|∆u|2 dx : u = 1 on K in the D2,2(Rn) sense

}
.

We set cap /0 := 0.

Since the nonempty set{
u ∈D2,2(Rn) : u = 1 on K in the D2,2(Rn) sense

}
is closed and convex, there exists a unique function zK ∈D2,2(Rn) such that zK = 1
on K in the sense of D2,2(Rn) and∫

Rn
|∆zK |2 dx = capK.
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Finally, we specify what we mean by set deformations.

Definition 7.65. Let Ω̃ ⊂ Rn and let H,Ω ⊂ Ω̃ . We say that H can be deformed in
Ω̃ into a subset of Ω if there exists a continuous function

H : H× [0,1]→ Ω̃

such that H (x,0) = x and H (x,1) ∈Ω for all x ∈ H.

Our first result states the existence of positive solutions for the critical growth
equation (7.169) with Navier boundary conditions. Combined with Theorem 7.52,
this shows that the existence of positive solution strongly depends on the geometry
of the domain.

Theorem 7.66. Let Ω̃ be a smooth bounded domain of Rn (n > 4) and let H be a
closed subset contained in Ω̃ . Then there exists ε > 0 such that if Ω ⊂ Ω̃ is a smooth
domain with cap(Ω̃ \Ω) < ε and such that H cannot be deformed in Ω̃ into a subset
of Ω then there exists a positive solution of{

∆ 2u = |u|8/(n−4)u in Ω ,

u = ∆u = 0 on ∂Ω .
(7.172)

We will prove this result in Section 7.9.4.
Next we turn to Dirichlet boundary conditions. In this case, we merely show the

existence of nontrivial solutions to (7.169). The lack of information about the sign
of the solution is due to the lack of information about the sign of the corresponding
Green function. This issue was discussed in detail in Chapter 6.

Theorem 7.67. Let Ω̃ be a smooth bounded domain of Rn (n > 4) and let H be a
closed subset contained in Ω̃ . Then there exists ε > 0 such that if Ω ⊂ Ω̃ is a smooth
domain with cap(Ω̃ \Ω) < ε and such that H cannot be deformed in Ω̃ into a subset
of Ω then there exists a nontrivial solution of{

∆ 2u = |u|8/(n−4)u in Ω ,

u = |∇u|= 0 on ∂Ω .
(7.173)

The proof of this result, which can be obtained by arguing as in Section 7.9.4 be-
low, is simpler than the one of Theorem 7.66. As we will explain below, for (7.172),
one has to study very carefully the behaviour of suitable sequences (u`) such that
u` ∈H2∩H1

0 (Ω`) for varying domains Ω`. In contrast with the spaces H2
0 (Ω`), there

is no obvious extension operator into H2(Rn). Only as far as positivity of solutions
is concerned, the problem with Dirichlet boundary conditions is more involved than
with Navier boundary conditions. Here we have no positivity statement of the solu-
tion because Lemma 7.69 below does not seem to hold.

The solutions given by Theorems 7.61 and 7.62 are not related to the ones in
Theorems 7.67 and 7.66 respectively. To explain this, assume that Ω̃ satisfies the
assumptions of Theorems 7.61 or 7.62. If uΩ is the solution of (7.172) or (7.173),
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then by exploiting the proof of Theorem 7.66 one has that uΩ converges weakly to
zero as cap(Ω̃ \Ω)→ 0. Hence, any nontrivial solution in Ω̃ cannot be obtained
as limit of the solutions uΩ in Ω . On the other hand, one expects the nontrivial
solutions in Ω̃ to be stable and to remain under “small” perturbations Ω ⊂ Ω̃ . These
solutions in Ω will be different from ours. The latter situation was studied in [128]
for the second order problem.

Finally, let us observe that there are also contractible domains Ω which satisfy
the assumptions of the preceding theorems. In the following example we describe
precisely such a situation. Further examples may be adapted to the biharmonic set-
ting from [332, pp. 39-41].

Example 7.68. Let Ω̃ ⊂Rn, with n > 5, be an annular shaped domain and let us drill
a sufficiently “thin” cylindrical hole along a segment in order to obtain the smooth
contractible subdomain Ω . To be more precise, we assume that for ε small enough,
Ω̃ \Ωε is contained in a cylinder with basis Bε ⊂ Rn−1 and fixed height. Then by
simple scaling arguments one finds that cap

(
Ω̃ \Ωε

)
= O(εn−5)→ 0 as ε → 0,

provided that the dimension satisfies n > 5.
We choose H to be a spherical hypersurface in Ω̃ , which cannot be deformed

into a subset of Ωε . This can be seen by looking at the degree of mapping
d(H ( . , t),H,0) for t ∈ [0,1], where H is assumed to exist according to Defi-
nition 7.65. Instead of the above segment of fixed length, one may consider any
bounded piece of a fixed generalised plane, provided that its codimension is at least
5.

7.9.3 Energy of nodal solutions

One may extend the arguments used for Lemma 7.22 to prove a similar statement in
any bounded domain in case of Navier boundary conditions. For Dirichlet boundary
conditions this seems to be impossible due to the lack of information about the
positivity of the corresponding Green’s function.

Lemma 7.69. Let Ω be a bounded domain of Rn and assume that u solves (7.172)
and changes sign. Then ‖∆u‖2

L2 ≥ 24/nS‖u‖2
L2n/(n−4) .

In the case of the half space, by exploiting nonexistence results for positive so-
lutions, we have a stronger result. In fact, we believe that no nontrivial solution
exists in the half space (either with Navier (7.170) or Dirichlet (7.171) boundary
conditions), but the following result is enough for our purposes.

Lemma 7.70. Let Ω = {xn > 0} be the half space and assume that u ∈ D2,2(Ω)∩
C2(Ω) solves the equation

∆
2u = |u|8/(n−4)u in {xn > 0} (7.174)

with boundary data either (7.170) or (7.171). Then ‖∆u‖2
L2 ≥ 24/nS‖u‖2

L2n/(n−4) .
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Proof. Notice first that by Theorem 7.52, which also holds in unbounded domains,
problem (7.174), (7.170) does not admit positive solutions. A similar nonexistence
result holds for boundary conditions (7.171), see Theorem 7.33. This result may be
extended to unbounded domains. We refer to [352, Theorem 4].

Therefore, any nontrivial solution of (7.174), with boundary conditions (7.170) or
(7.171), necessarily changes sign. We obtain the result by repeating the argument of
the proof of Lemma 7.22. With Navier boundary conditions this is straightforward,
while with Dirichlet boundary data one may invoke Boggio’s principle in the half
space, see (2.66). �

From now on we restrict our attention to the H2 ∩H1
0 –framework. We proceed

again by constrained minimisation over the critical unit ball M defined in (7.130)
but with some additional topological constraints. We put

M =
{

u ∈ H2∩H1
0 (Ω) :

∫
Ω

|u|2n/(n−4) dx = 1
}

and we minimise the functional

F(u) :=
∫

Ω

|∆u|2 dx

constrained on the manifold M. This functional was previously represented by F0 in
(7.41).

In the spirit of Definition 7.45, we say that (u`)⊂M is a Palais-Smale sequence
for F at level c if

lim
`→∞

F(u`) = c, lim
`→∞
‖dF(u`)‖(Tu`

M)′ → 0

where Tu`
M denotes the tangent space to the manifold M at u`.

We now state a global compactness result for the biharmonic operator. Even if
the proof is similar to the one by Struwe [380], some difficulties arise. We postpone
the proof, where we emphasise the main differences with respect to second order
equations, until Section 7.9.5

Lemma 7.71. Let (u`) ⊂M be a Palais-Smale sequence for F at level c ∈ R. Then
for a suitable subsequence, one has the following alternative. Either (u`) has a
strongly convergent subsequence in H2∩H1

0 (Ω) or there exist k nonzero functions
û1, . . . , ûk ∈D2,2, solving either (7.45) or (7.174) with boundary conditions (7.170),
and a solution û0 ∈ H2∩H1

0 (Ω) of (7.172) such that

u` ⇀ û0

(
k

∑
j=0

∫
|û j|2n/(n−4) dx

)−(n−4)/2n

in H2∩H1
0 (Ω) (7.175)

and
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lim
`→∞

F(u`) =

(
k

∑
j=0

∫
|û j|2n/(n−4) dx

)4/n

. (7.176)

The domain of integration for û0 is just Ω , while for û1, . . . , ûk, it is either a half
space or the whole Rn.

When working in H2
0 (Ω) a similar result holds true with Dirichlet boundary con-

ditions instead of Navier boundary conditions. Thanks to Lemma 7.71, we may
prove the following compactness property in the second critical energy range.

Lemma 7.72. Let (u`)⊂M be a Palais-Smale sequence for the functional F at level
c ∈ (S,24/nS). Then, up to a subsequence, (u`) strongly converges in H2∩H1

0 (Ω).

Proof. Assume by contradiction that (u`) does not contain a convergent subse-
quence in H2∩H1

0 (Ω). Then by Lemma 7.71 one finds functions û0 ∈H2∩H1
0 (Ω)

and û1, . . . , ûk ∈D2,2 satisfying (7.175) and (7.176). Assume first that all û1, . . . , ûk
are positive solutions of (7.45). Then each û j is of type (7.46) and attains the best
Sobolev constant, i.e.

∫
Rn
|û j|2n/(n−4) dx =

∫
Rn
|∆ û j|2 dx = S

(∫
Rn
|û j|2n/(n−4) dx

)(n−4)/n

j = 1, . . .k,

(7.177)

which implies
∫
Rn |û j|2n/(n−4) dx = Sn/4 for j = 1, . . . ,k. In turn one obtains

lim
`→∞

F(u`) =
(∫

Ω

|û0|2n/(n−4) dx+ kSn/4
)4/n

.

If û0 ≡ 0, we get F(u`)→ k4/nS, while if û0 6≡ 0 for each k ≥ 1 one has(∫
Ω

|û0|2n/(n−4) dx+ kSn/4
)4/n

> (k +1)4/nS.

In any case we have a contradiction to S < lim
`→∞

F(u`) < 24/nS.

We now consider the case in which at least one û j is sign changing or a solution
in the half space {xn > 0}. By Lemmas 7.22 and 7.70 we have for these û j

∫
Rn
|û j|2n/(n−4) dx =

∫
Rn
|∆ û j|2 dx≥ 24/nS

(∫
Rn
|û j|2n/(n−4) dx

)(n−4)/n

,

and hence
∫
Rn |û j|2n/(n−4) dx≥ 2Sn/4, while for the remaining û j, (7.177) holds true.

In any case, we have lim
`→∞

F(u`)≥
(
2Sn/4

)4/n
= 24/nS, again a contradiction. �
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7.9.4 The deformation argument

The proof of Theorem 7.66 is by far more involved than the proof of Theorem 7.67,
because the trivial extension of any function u ∈ H2 ∩H1

0 (Ω) by 0 does not yield
a function in H2(Rn). In particular, for the space H2

0 (Ω) Lemma 7.73 below easily
follows by this extension argument. A further difference is that the positivity con-
clusion of Lemma 7.69 does not hold in the Dirichlet boundary value case. But in
the latter case, one simply has to drop this argument. Therefore we only deal with
the proof of Theorem 7.66.

For all smooth Ω ⊂ Ω̃ let β : M→ Rn be the “barycenter” map

β (u) =
∫

Ω

x|u(x)|2n/(n−4) dx.

Since Ω̃ is smooth one finds r̃ > 0 such that Ω̃ is a deformation retract of

Ω̃+ =
{

x ∈ Rn : dist(x,Ω̃) < r̃
}

.

First we show that the energy or, equivalently, the optimal Sobolev constants will
remain relatively large if we prevent the functions from concentrating “too close” to
their domain of definition.

Lemma 7.73.

γ := inf
{

inf
{

F(u) : u ∈M, β (u) 6∈ Ω̃+

}
, Ω smooth subset of Ω̃

}
> S.

Proof. Assume by contradiction that for each ε > 0 there exists a smooth Ωε ⊂ Ω̃

and uε ∈ H2∩H1
0 ∩C∞(Ωε) such that∫

Ωε

|uε |2n/(n−4) dx = 1 (7.178)

∫
Ωε

|∆uε |2 dx≤ S + ε (7.179)

β (uε) 6∈ Ω̃+. (7.180)

Let Uε ∈ H2(Rn) be any entire extension of uε . Since Ωε is smooth, the existence
of such an extension is well-known. We emphasise that the quantitative properties
of Uε outside Ωε (which are expected to blow up for ε ↘ 0) will not be used.
Furthermore, let 1Ωε

be the characteristic function of Ωε .
Step I. We claim that 1Ωε

Uε → 0 in L2(Rn) as ε → 0.
By Theorem 7.60 there exists C > 0, independent of ε , such that

‖∆u‖2
L2 ≥ S‖u‖2

L2n/(n−4) +
1
C
‖u‖2

L1 for all u ∈ H2∩H1
0 (Ωε). (7.181)

Putting together (7.178), (7.179) and (7.181) we have for each ε > 0
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S + ε ≥
∫

Ωε

|∆uε |2 dx≥ S‖uε‖2
L2n/(n−4) +

1
C
‖uε‖2

L1 = S +
1
C
‖1Ωε

Uε‖2
L1

so that ‖1Ωε
Uε‖L1 → 0 as ε → 0. By (7.178) and classical Lp–interpolation we also

get ‖1Ωε
Uε‖L2 → 0 as ε → 0.

Step II. We show that the weak-∗-limit (in the sense of measures) of 1Ωε
|Uε |2n/(n−4)

is a Dirac mass.
An integration by parts shows that ‖∇uε‖2

L2(Ωε ) ≤ ‖∆uε‖L2(Ωε ) ‖uε‖L2(Ωε ). Then by
Step I and (7.179) we infer that

‖1Ωε
∇Uε‖L2(Rn) = ‖∇uε‖L2(Ωε )→ 0.

Therefore, taking any ϕ ∈C∞
c (Rn), we find as ε → 0∫

Rn
1Ωε
|∆(ϕUε)|2 dx =

∫
Rn

1Ωε
|ϕ|2|∆Uε |2 dx+o(1) . (7.182)

By the L1(Rn) boundedness of the sequences (1Ωε
|Uε |2n/(n−4)) and (1Ωε

|∆Uε |2)
there exist two bounded nonnegative measures ν ,µ on Rn such that

1Ωε
|Uε |2n/(n−4) ⇀∗ ν , 1Ωε

|∆Uε |2 ⇀∗ µ (7.183)

in the sense of measures. By the Sobolev inequality in Ωε we have

S
(∫

Rn
1Ωε
|Uε |2n/(n−4)|ϕ|2n/(n−4) dx

)(n−4)/n

≤
∫
Rn

1Ωε
|∆(ϕUε)|2 dx

for all ε > 0 and therefore, by (7.182) and (7.183), letting ε → 0 yields

S
(∫

Rn
|ϕ|2n/(n−4) dν

)(n−4)/n

≤
∫
Rn
|ϕ|2 dµ.

By (7.178) and (7.179) we also know that

S
(∫

Rn
dν

)(n−4)/n

=
∫
Rn

dµ.

Hence by [277, Lemma I.2] there exist x ∈ Ω̃ and σ > 0 such that ν = σδx. From
(7.178) we see that σ = 1 and the claim follows.

The contradiction to (7.180) is now obtained by means of Step II, since β (uε)→
x. This completes the proof. �

Proof of Theorem 7.66. According to Lemma 7.73, we may choose µ such that
S < µ < min{24/nS,γ}. Let ϕ ∈C∞

c (B1(0)) be such that∫
B1(0)
|ϕ|2n/(n−4) dx = 1,

∫
B1(0)
|∆ϕ|2 dx < µ. (7.184)
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Define for each σ > 0 and y ∈ Rn the function ϕσ ,y : Rn→ R by setting

ϕσ ,y(x) = ϕ

(
x− y

σ

)
where ϕ is set equal to zero outside B1(0). It is readily seen that there exists σ > 0
such that Bσ (y) ⊂ Ω̃ and hence ϕσ ,y ∈ C∞

c (Ω̃) for each y ∈ H. For all Ω ( Ω̃ let
zΩ ∈D2,2(Rn) be such that zΩ = 1 in Ω̃\Ω in the sense of D2,2(Rn) and∫

Rn
|∆zΩ |2 dx = cap(Ω̃\Ω),

see what follows Definition 7.64. Note that one has

(1− zΩ )Ty(ϕ) ∈ H2∩H1
0 (Ω) for all y ∈ H,

where Ty(ϕ) := ϕσ ,y
‖ϕσ ,y‖L2n/(n−4)

. Moreover, for each δ > 0 there exists ε > 0 with

sup
y∈H
‖∆(zΩ Ty(ϕ))‖L2 < δ (7.185)

whenever cap(Ω̃\Ω) < ε . Then one gets

‖(1− zΩ )Ty(ϕ)‖L2n/(n−4) 6= 0 for all y ∈ H,

if ε is sufficiently small. So, we define the map ΦΩ : H→M by

ΦΩ (y) =
(1− zΩ )Ty(ϕ)

‖(1− zΩ )Ty(ϕ)‖L2n/(n−4)
.

Taking (7.184) and (7.185) into account, we find ε > 0 such that

sup{F(ΦΩ (y)) : y ∈ H}< µ (7.186)

provided that cap(Ω̃\Ω) < ε . From now on ε is fixed subject to the previous re-
strictions. Let Ω ⊂ Ω̃ be such that cap(Ω̃\Ω) < ε and r ∈ (0, r̃) be such that Ω is a
deformation retract of

Ω+ =
{

x ∈ Rn : dist(x,Ω) < r
}
.

As in Lemma 7.73 one obtains

inf{F(u) : u ∈M, β (u) 6∈Ω+}> S. (7.187)

Notice that

inf{F(u) : u ∈M, β (u) 6∈Ω+} ≤ sup{F(ΦΩ (y)) : y ∈ H} . (7.188)
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Otherwise, the map R : H× [0,1]→ Ω̃ given by

R(y, t) = (1− t)y+ tβ (ΦΩ (y)) for y ∈ H and t ∈ [0,1]

would deform H in Ω̃ into a subset of Ω+ and then into a subset of Ω (Ω is a
deformation retract of Ω+) contradicting the assumptions. Here, in order to see
R(y, t) ∈ Ω̃ , we used the fact that support(ΦΩ (y)) ⊂ Bσ (y) and that, since ϕ ≥ 0,
β (ΦΩ (y)) ∈ Bσ (y)⊂ Ω̃ .

Therefore, by combining (7.186), (7.187) and (7.188) one gets

S < inf{F(u) : u ∈M, β (u) 6∈Ω+} ≤ sup{F(ΦΩ (y)) : y ∈ H}

< µ < γ ≤ inf
{

F(u) : u ∈M, β (u) 6∈ Ω̃+

}
.

In what follows we need to find two appropriate levels, such that the corresponding
sublevel sets

Fc = {u ∈M : F(u)≤ c}

cannot be deformed into each other. For this purpose let c1,c2 > S be such that

c1 < inf{F(u) : u ∈M, β (u) 6∈Ω+} ,

c2 = sup{F(ΦΩ (y)) : y ∈ H}.

Assume by contradiction that there exists a deformation ϑ of Fc2 into Fc1 , i.e.

ϑ : Fc2 × [0,1]→ Fc2 , ϑ( . ,0) = IdFc2 and ϑ(Fc2 ,1)⊂ Fc1 .

We define H : H× [0,1]→ Ω̃ by setting for each x ∈ H

H (x, t) =


(1−3t)x+3tβ (ΦΩ (x)) if t ∈ [0,1/3] ,
ρ̃(β (ϑ(ΦΩ (x),3t−1))) if t ∈ [1/3,2/3] ,
ρ̃ (ρ (β (ϑ(ΦΩ (x),1)) ,3t−2)) if t ∈ [2/3,1] ,

where ρ̃ : Ω̃+ → Ω̃ is a retraction and ρ : Ω+× [0,1]→ Ω+ is a continuous map
with ρ(x,0) = x and ρ(x,1) ∈ Ω for all x ∈ Ω+. In order to see that H (x, t) ∈
Ω̃ , one should observe that c2 < γ and ϑ(ΦΩ (x),3t − 1) ∈ Fc2 , hence we find
β (ϑ(ΦΩ (x),3t−1)) ∈ Ω̃+.

As ϑ(ΦΩ (x),1) ∈ Fc1 for each x ∈ H and

c1 < inf{F(u) : u ∈M, β (u) 6∈Ω+} ,

then for each x ∈ H
β (ϑ(ΦΩ (x),1)) ∈Ω+

and H is a deformation of H in Ω̃ into a subset of Ω , a contradiction to our as-
sumptions. Then the sublevel set



7.9 Critical growth problems in geometrically complicated domains 305

Fc2 = {u ∈M : F(u)≤ c2}

cannot be deformed into

Fc1 = {u ∈M : F(u)≤ c1} .

Hence, by combining Lemma 7.72 with the standard deformation lemma, see [328,
Theorem 4.6] and also [140, Lemma 27.2], [381, Ch. II, Theorem 3.11], one obtains
a constrained critical point uΩ such that

S < F(uΩ )≤ sup{F (ΦΩ (y)) : y ∈ H}< µ < 24/nS.

Finally, uΩ does not change sign by Lemma 7.69. �

7.9.5 A Struwe-type compactness result

In this section we give the proof of Lemma 7.71. In fact, we prove the corresponding
statement for the “free” functional

EΩ (u) =
1
2

∫
Ω

|∆u|2 dx− n−4
2n

∫
Ω

|u|2n/(n−4) dx

which is defined on the whole space H2∩H1
0 (Ω). More precisely, we have

Lemma 7.74. Let (u`) ⊂ H2 ∩H1
0 (Ω) be a Palais-Smale sequence for EΩ at level

c ∈ R. Then either (u`) has a strongly convergent subsequence in H2 ∩H1
0 (Ω) or

there exist k > 0 nonzero functions û j ∈D2,2(Ω0, j), j = 1, . . . ,k, with Ω0, j either the
whole Rn or a half space, solving either (7.45) or (7.174) with boundary conditions
(7.170) and a solution û0 ∈ H2∩H1

0 (Ω) of (7.172) such that, up to a subsequence,
as `→ ∞ we have

u` ⇀ û0 in H2∩H1
0 (Ω),

‖∆u`‖2
L2 → ‖∆ û0‖2

L2 +
k

∑
j=1
‖∆ û j‖2

L2 ,

EΩ (u`)→ EΩ (û0)+
k

∑
j=1

EΩ0, j(û j).

Proof. The proof is lengthy and delicate, so we divide it into seven steps (to heaven).
Step I. Reduction to the case u` ⇀ 0.

It follows as in Lemma 7.46, see (7.99), that there exists u ∈ H2 ∩H1
0 (Ω) such

that dEΩ (u) = 0 and, up to a subsequence, one has

u` ⇀ u in H2∩H1
0 (Ω), u` ⇀ u in Ls+1(Ω),

u`→ u in Lp(Ω), p < s+1, u`→ u a.e. in Ω .
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As in (7.102) one has

EΩ (u`)−EΩ (u`−u) = EΩ (u)+o(1)

and, like there, Vitali’s convergence theorem proves that∫
Ω

|u`|s+1 dx−
∫

Ω

|u`−u|s+1 dx =
∫

Ω

|u|s+1 dx+o(1).

Together with dEΩ (u) = 0, this yields

dEΩ (u`)−dEΩ (u`−u)→ 0 in (H2∩H1
0 (Ω))′

so that also (u`−u) is a Palais-Smale sequence for EΩ . Therefore, we may assume
that

u` ⇀ 0, EΩ (u`)→ c≥ 2
n

Sn/4. (7.189)

Indeed, if c < 2
n Sn/4, then we are in the compactness range of EΩ and by arguing as

in Lemma 7.46, we infer that u`→ 0 up to a subsequence. In this case the statement
follows with k = 0.

As in (7.105) the Palais-Smale properties of (u`) give

EΩ (u`) =
2
n

∫
Ω

|∆u`|2 dx+o(1).

Together with (7.189) this yields∫
Ω

|∆u`|2 dx≥ Sn/4 +o(1). (7.190)

Let L ∈ N be such that B2(0) is covered by L balls of radius 1. By continuity of the
maps

y 7→
∫

B1/R(y)∩Ω

|∆u`|2 dx , R 7→ sup
y∈Ω

∫
B1/R(y)∩Ω

|∆u`|2 dx

and (7.190), for ` large enough one finds R` > 1/diam(Ω) and x` ∈Ω such that

∫
B1/R`

(x`)∩Ω

|∆u`|2 dx = sup
y∈Ω

∫
B1/R`

(y)∩Ω

|∆u`|2 dx =
Sn/4

2L
. (7.191)

When passing to a suitable subsequence, three cases may occur.
Case I. R`→+∞ and (R` dist(x`,∂Ω)) is bounded;
Case II. R` dist(x`,∂Ω)→+∞;
Case III. (R`) is bounded.

Step II. Preliminaries for Case I.
For every x ∈ Rn let us write x′ for its projection onto Rn−1, so that x = (x′,xn).

Since dist(x`,∂Ω)→ 0 we find that, up to a subsequence x`→ x0 ∈ ∂Ω and ρ` :=
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R` dist(x`,∂Ω)→ ρ . Moreover, for sufficiently large ` there exists a unique y` ∈ ∂Ω

such that dist(x`,∂Ω) = |y`− x`|.
Up to a rotation and a translation, we may assume that x0 = 0 and that −ηn =

(0′,−1) is the exterior unit normal to ∂Ω in 0. Then y` → 0 and the exterior unit
normal to ∂Ω in y` converges to −ηn. We now translate and scale the domain Ω by
setting

Ω` := R`

(
Ω − x`

)
,

so that x` is mapped into the origin 0 while y` is mapped into a point at distance
ρ` from the origin and converges to the point (0′,−ρ) as `→ ∞. In view of the
smoothness of ∂Ω we have that Ω` converges locally uniformly to

Ω0 =
{
(x′,xn) ∈ Rn : xn >−ρ

}
.

In particular, for every ϕ ∈C∞
c (Ω0) we also have that ϕ ∈C∞

c (Ω`) for sufficiently
large `. This will be used below. Let us now set

v`(x) = R
4−n

2
` u`

(
x` +

x
R`

)
, (7.192)

so that v` ∈ H2∩H1
0 (Ω`) and, by (7.191),

sup
y∈Rn

∫
Ω`∩B1(y)

|∆v`|2 dx =
∫

Ω`∩B1(0)
|∆v`|2 dx =

Sn/4

2L
. (7.193)

By boundedness of (u`) we infer that there exists C > 0 such that ‖∆v`‖L2(Ω`) ≤
C. Let 1Ω`

denote the characteristic function of Ω`. Then the sequence (1Ω`
v`) is

bounded in D1,2n/(n−2)(Rn), and in L2n/(n−4)(Rn), so that, up to a subsequence, we
have

1Ω`
v` ⇀ v0 in D1,2n/(n−2)∩L2n/(n−4)(Rn) (7.194)

where support(v0)⊂Ω0 and v0|xn=−ρ = 0. Moreover, since (1Ω`
D2v`) is bounded in

L2(Rn), by weak continuity of distributional derivatives, up to a further subsequence
we deduce ∫

Ω`

D2
i jv` ϕ dx→

∫
Ω0

D2
i jv0 ϕ dx

for all ϕ ∈C∞
c (Ω0) and i, j = 1, . . . ,n. In particular, v0 has in Ω0 second order weak

derivatives.
Step III. The limiting function v0 in (7.194) solves (7.172) in Ω0.

Fix ϕ ∈ C∞
c (Ω0). Then for ` large enough we have support(ϕ) ⊂ Ω`. Define

ϕ` ∈C∞
c (Ω) by setting

ϕ`(x) = R
n−4

2
` ϕ

(
R`(x− x`)

)
.
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Therefore, (D2ϕ`) being bounded in L2(Ω) and taking into account (7.192), one
obtains

o(1) =〈dEΩ (u`),ϕ`〉= R
n
2
`

∫
Ω

∆u`∆ϕ

(
R`(x− x`)

)
dx

−R
n−4

2
`

∫
Ω

|u`|8/(n−4)u`ϕ

(
R`(x− x`)

)
dx

=
∫
Rn

∆v`∆ϕ dx−
∫
Rn
|v`|8/(n−4)v`ϕ dx (7.195)

=
∫
Rn

∆v0∆ϕ dx−
∫
Rn
|v0|8/(n−4)v0ϕ dx+o(1).

Then v0 ∈ D2,2(Ω0) solves (7.172) in distributional sense. The delicate point is to
see that ∆v0 = 0 on ∂Ω0. To this end, let ϕ ∈ C2

c (Rn) with ϕ = 0 on ∂Ω0 and let
U be a neighbourhood of the support of ϕ . Then for ` large enough we find smooth
diffeomorphisms χ` such that

χ`(U ∩Ω0) = χ`(U )∩Ω` , χ`(U ∩∂Ω0) = χ`(U )∩∂Ω`

and (χ`) converges locally uniformly to the identity as `→ ∞. For x ∈ χ`(U ) we
define ϕ`(x) = ϕ(χ

−1
` (x)) and extend ϕ` by 0 to a C2

c (Rn)-function such that ϕ` = 0
on ∂Ω`. Since (χ

−1
` ) also tends to the identity, we obtain ϕ`→ ϕ in C2(Rn) and∫

Ω0

(∆v0∆ϕ −|v0|8/(n−4)v0ϕ)dx = lim
`→∞

∫
Ω`

(∆v`∆ϕ` −|v`|8/(n−4)v`ϕ`)dx

= lim
`→∞

∫
Ω

[
∆u`∆

(
R

n−4
2

` ϕ`(R`(x− x`))
)
−|u`|8/(n−4)u`R

n−4
2

` ϕ`(R`(x− x`))
]
dx

= lim
`→∞

〈
dEΩ (u`),R

n−4
2

` ϕ`(R`(x− x`))
〉

= 0.

Therefore, by extending any given ϕ ∈ H2 ∩H1
0 (Ω0) with bounded support oddly

with respect to ∂Ω0 as a function of H2(Rn) and then by approximating it by a
sequence of C2 functions (ϕk) with ϕk = 0 on ∂Ω0, we get∫

Ω0

∆v0∆ϕ dx =
∫

Ω0

|v0|8/(n−4)v0ϕ dx for all ϕ ∈ H1
0 ∩H2(Ω0),

which implies that v0 is also a solution of (7.172) in Ω0.
Step IV. The limiting function v0 in (7.194) is nontrivial.

Let ϕ ∈C∞
c (Rn) such that Ω0∩ support(ϕ) 6= /0; then for ` large enough, we may

define

ṽ0,` : Ω`∩ support(ϕ)→ R, ṽ0,`(x) = v0
(
χ
−1
` (x)

)
. (7.196)

Since v0 ∈C2(Ω0), v0 = ∆v0 = 0 on ∂Ω0 and (χ`) converges to the identity, we get
as `→+∞
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‖1Ω0v0−1Ω`
ṽ0,`‖L2(support(ϕ)) = o(1),

‖1Ω0v0−1Ω`
ṽ0,`‖L2n/(n−4)(support(ϕ)) = o(1),

‖1Ω0∇v0−1Ω`
∇ṽ0,`‖L2(support(ϕ)) = o(1),

‖1Ω0∆v0−1Ω`
∆ ṽ0,`‖L2(support(ϕ)) = o(1).

(7.197)

To simplify the notations we omit in what follows the 1Ω`
in front of v`,∇v`,∆v`

and the 1Ω0 in front of v0,∇v0,∆v0. Then by (7.197) and some computations one
obtains, as `→+∞∫

Rn
|∆(ϕv0−ϕv`)|2 dx =

∫
Ω`∩support(ϕ)

|∆(ϕ ṽ0,`−ϕv`)|2 dx+o(1)

≥ S
(∫

Ω`∩support(ϕ)
|ϕ(ṽ0,`− v0)|2n/(n−4) dx

)(n−4)/n

+o(1)

≥ S
(∫

Rn
|ϕ(v0− v`)|2n/(n−4) dx

)(n−4)/n

+o(1).

By compact embedding one has v`→ v0 in L2
loc(Rn) and thanks to an integration by

parts one gets

‖∇(ϕ(v`− v0))‖L2 ≤ ‖ϕ(v`− v0)‖L2‖∆(ϕ(v`− v0))‖L2 (7.198)

and therefore ∇v`→ ∇v0 in L2
loc(Rn). Hence the previous inequality yields

∫
Rn

ϕ
2|∆(v0− v`)|2 dx≥ S

(∫
Rn
|ϕ|2n/(n−4)|v0− v`|2n/(n−4) dx

)(n−4)/n

+o(1),

which implies ∫
Rn

ϕ
2 dµ ≥ S

(∫
Rn
|ϕ|2n/(n−4) dν

)(n−4)/n

, (7.199)

where dµ and dν denote respectively the weak-∗-limits of |∆(v0− v`)|2 and |v0−
v`|2n/(n−4) in the sense of measures. By the concentration-compactness principle
[277, Lemma I.2] of Lions we know that there exists an at most countable set J
and two families (y j) j∈J ⊂ Rn and (ν j) j∈J ⊂ (0,+∞) such that dν = ∑ j∈J ν jδy j ,
where δy is the Dirac distribution supported at y. In fact, since dν is a finite measure
satisfying (7.199), also the set J is finite. See [178, Formula (2.8)] for the details.
Therefore, there exists a finite number N ∈ N such that

|v0− v`|2n/(n−4) ⇀∗ dν =
N

∑
j=1

ν jδy j , (7.200)

the convergence ⇀∗ being in the weak-∗-sense of measures.
In order to show that v0 6≡ 0 we assume by contradiction that v0 ≡ 0. Since the

number of Dirac masses in (7.200) is finite, we may choose τ ∈ (0, 1
2 ) such that
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y j 6∈ (B1+3τ(0) \B1(0)) for all j = 1, . . . ,N. For simplicity we write from now on
Br = Br(0). For any ϕ ∈C∞

c (Rn) such that support(ϕ) ⊂ (B1+3τ \B1) we know by
(7.200), recalling v0 ≡ 0, that∫

Ω`

ϕ|v`|2n/(n−4) dx→ 0 as `→+∞.

Hence, using ϕv` as test function in (7.195) and observing (7.198), we see that also∫
Ω`

ϕ|∆v`|2 dx→ 0 as `→+∞.

In particular, this shows that∫
Ω`∩(B1+2τ\B1+τ )

|∆v`|2 dx→ 0 as `→+∞. (7.201)

Take now ψ ∈C∞
c (Rn; [0,1]) such that ψ = 1 in B1+τ and ψ = 0 outside B1+2τ .

Since (ψv`) is bounded, we may use it as test function in (7.195) and obtain

o(1) =
∫

Ω`∩B1+2τ

|∆(ψv`)|2 dx−
∫

Ω`∩B1+2τ

|ψv`|2n/(n−4) dx,

where we used (7.198) and (7.201). The latter allows us to handle the region B1+2τ \
B1+τ where different powers of ψ and its derivatives play a role. Therefore, by
applying to ψv` ∈H2∩H1

0 (Ω`∩B1+2τ) the Sobolev inequality derived from (7.61),
we infer(

1−S−
n

n−4

[∫
Ω`∩B1+2τ

|∆(ψv`)|2 dx
] 4

n−4
)∫

Ω`∩B1+2τ

|∆(ψv`)|2 dx≤ o(1) .

(7.202)
On the other hand, from (7.193), (7.198), and (7.201) we deduce∫

Ω`∩B1+2τ

|∆(ψv`)|2 dx ≤
∫

Ω`∩B2

|∆v`|2 dx+o(1)

≤ L
∫

Ω`∩B1

|∆v`|2 dx+o(1)≤ Sn/4

2
+o(1).

This, combined with (7.202), yields(
1− 1

24/(n−4)

)∫
Ω`∩B1+2τ

|∆(ψv`)|2 dx≤ o(1) ,

so that ∫
Ω`∩B1+2τ

|∆(ψv`)|2 dx→ 0 as `→+∞ .

In turn, recalling the shape of ψ , this yields
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lim
`→∞

∫
Ω`∩B1

|∆v`|2 dx = 0

which contradicts (7.193) and shows that v0 6≡ 0.
Step V. In Case II, a solution of (7.45) appears.

One can proceed similarly as in steps II-IV. However, since in this case we have
ρ` = R`dist(x`,∂Ω)→ ∞, the boundary ∂Ω disappears at infinity. Therefore, the
previous arguments simplify because one does not have to consider the boundary
∂Ω0. Defining v` as in (7.192), one finds that (v`) converges to a solution v0 ∈
D2,2(Rn) of (7.45).
Step VI. Case III cannot occur.

By contradiction, assume that (R`) is bounded. Since R` > 1/diam(Ω) we may
assume that, up to a subsequence,

x`→ x0 ∈Ω , R`→ R0 > 0.

Let us set Ω0 = R0(Ω − x0) and

v` = R
4−n

2
0 u`

(
x0 +

x
R0

)
.

As in Case I (with the obvious simplifications), one gets for a subsequence v` ⇀
v0 ∈ H2 ∩H1

0 (Ω0) and that v0 6≡ 0 solves (7.172) in Ω0. But this is absurd since
u` ⇀ 0.
Step VII. Conclusion.

If (u`) is a Palais-Smale sequence for EΩ , then by Step I its weak limit û0 solves
(7.172). By Steps III, IV and V the “remaining part” (u` − û0), suitably scaled,
gives rise to a nontrivial solution v0 of (7.45) (if Case II occurs) or (7.174) (if Case
I occurs). With the help of this solution, we construct from (u`− û0) a new Palais-
Smale sequence (w`) for EΩ in H2∩H1

0 (Ω) at a strictly lower energy level. In the
case where v0 is a solution of (7.174) in a half space Ω0 we again have to use the
locally deformed versions ṽ0,` in Ω` of v0. These have been defined in (7.196). Let
ϕ ∈ C∞

c (Rn) be any cut–off function with 0 ≤ ϕ ≤ 1, ϕ = 1 in B1(0) and ϕ = 0
outside B2(0). We put

w`(x) := (u`− û0)(x)−R(n−4)/2
` ṽ0,`

(
R`(x− x`)

)
ϕ

(√
R`(x− x`)

)
.

First we remark that w` is well-defined since ϕ = 0 for R`|x−x`| ≥ 2
√

R` and since
the domain of definition of ṽ0,` grows at rate R`. Further we notice that χ` and χ

−1
`

converge uniformly to the identity even on B2
√

R`
(0). For this reason we have

ṽ0,`( .)ϕ

(
.√
R`

)
→ v0 in D2,2(Ω0)

and also in D1,2n/(n−2)(Ω0) and in L2n/(n−4)(Ω0). Hence, we have
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EΩ (w`) = EΩ (u`)−EΩ (û0)−EΩ0(v0)+o(1)

and dEΩ (w`)→ 0 strongly in
(
H2∩H1

0 (Ω)
)′. In the case where we find the solution

v0 in the whole space, we argue similarly with some obvious simplifications.
Now, the same procedure from Steps II to VI is applied to (w`) instead of (u`−

û0). As v0 6≡ 0 and hence

EΩ0(v0)≥
2
n

Sn/4,

this procedure stops after finitely many iterations. �

7.10 The conformally covariant Paneitz equation in hyperbolic
space

For a brief review of the geometrical background we refer to Section 1.5. Here we
do not aim at giving an overview of the huge field of Paneitz equations, where a lot
of work has been done, see the bibliographical notes in Section 7.12. Such a task
is beyond the scope of this monograph. We want to discuss a special noncompact
manifold and to explain a result for the Paneitz equation in the hyperbolic space.
Details concerning the related differential equations problems are explained below
and in Section 7.10.1.

The manifold (M ,g) to be considered here is the hyperbolic space Hn with its
standard metric. We focus on finding a complete metric h = U

4
n−4 g on Hn such

that h has prescribed Q-curvature. We give conditions on Q, which include the case
Q ≡ constant, such that an entire continuum of mutually distinct complete radially
symmetric conformal metrics exist all having the same prescribed Q-curvature. In
the case where Q ≡ 1

8 n(n2− 4) this family contains in its “center” the explicitly
known standard hyperbolic Poincaré metric, and at least a sub-continuum of these
metrics has negative scalar curvature.

We point out that it is surprising to find such highly non-unique solutions. In
previous work on the second order Yamabe problem, uniqueness of metrics with
constant scalar curvature was found in the case of Hn by Loewner-Nirenberg [279].
In the case of Sn uniqueness, up to isometries, was proved by Obata [325] and later
by Caffarelli, Gidas, Spruck [82] and Chen, Li [94]. In the fourth order Paneitz
problem uniqueness, again up to isometries, of metrics with constant Q-curvature
on Sn was found by Chang, Yang [93] for n = 4, by Wei, Xu [410] and C.S. Lin
[274] for n > 4 and by Choi, Xu [96] in the exceptional case n = 3.
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7.10.1 Infinitely many complete radial conformal metrics with the
same Q-curvature

As a model for hyperbolic space Hn we use the Poincaré ball, i.e. Hn is repre-
sented by the unit-ball B = B1(0)⊂ Rn with standard coordinates x1, . . . ,xn and the
Poincaré metric gi j = 4δi j/(1− |x|2)2. Since Hn is conformally flat we may seek

the metric h of the form hi j = U
4

n−4 gi j = u
4

n−4 δi j and the corresponding Paneitz
equation (1.28) for u reduces to

∆
2u =

n−4
2

Qu(n+4)/(n−4), u > 0 in B, u|∂B = ∞. (7.203)

The condition u|∂B = ∞ is necessary, and as we shall show also sufficient, for com-
pleteness of the metric h. For U = 1 we are at the Poincaré metric. In this case the
conformal factor is given explicitly by

u0(x) =
(

2
1−|x|2

)(n−4)/2

. (7.204)

The Poincaré metric
(

u4/(n−4)
0 δi j

)
i j

with u0 as above has constant Q-curvature Q≡
1
8 n(n2−4).

Theorem 7.75. For every α > 0, there exists a radial solution of the prescribed Q-
curvature equation (7.203) in the unit ball with Q ≡ 1

8 n(n2− 4), infinite boundary
values at ∂B and with u(0) = α . Moreover,

1. the conformal metric
(

u4/(n−4)δi j

)
i j

on B is complete;

2. if u(0) > 0 is sufficiently small, then the corresponding solution generates a met-
ric with negative scalar curvature.

The existence part and Item 2 are proved in Section 7.10.2, see Proposition 7.83,
whereas Item 1 is proved in Section 7.10.3.

The equation (7.203) is invariant under Möbius transformations of the unit ball.
But the only solution which is invariant under all Möbius transformations of the unit
ball is the explicit solution (7.204). Hence, we also have infinitely many distinct
nonradial solutions, which is again in striking contrast to the second order analogue
of (7.203). The following interesting open problem remains to be studied.

Find a geometric criterion, which singles out the explicit solution (7.204) among all other
solutions of (7.203).

One might guess that among all radially symmetric metrics the explicit Poincaré
metric is uniquely characterised by a condition of the kind

−C ≤ Rh ≤−
1
C

< 0
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with a suitable constant C. This is apparently wrong, since it will follow from a
forthcoming result in [142] that for every radial solution u of (7.203) one has that
the scalar curvature of the generated metric satisfies limr→1 Rh = −n(n− 1). It is
however trivially true that the Poincaré metric is the only one with Rh ≡−n(n−1).

Remark 7.76. A similar result as Theorem 7.75 can be proved for radial nonconstant
Q ∈C1[0,1] for which there are two positive constants Q0,Q1 > 0 such that Q0 <
Q(r) < Q1 on [0,1] and for which r 7→ rqQ(r) is monotonically increasing for some
q ∈ [0,1). For details see [205].

7.10.2 Existence and negative scalar curvature

Here we look for radial solutions of (7.203). By means of a shooting method we
shall construct infinitely many distinct solutions. Applying the special Möbius trans-
forms

ϕa : B→ B, ϕa(x) =
1
|a|2

(
a− (|a|2−1)

x−|a|−2 a∣∣x−|a|−2 a
∣∣2
)

,

we even find nonradial solutions by setting

ũ := J(n−4)/(2n)
ϕa u◦ϕa.

Here Jϕa is the modulus of the Jacobian determinant of ϕa. All these conformal
metrics have constant Q-curvature 1

8 n(n2−4) and a continuum of them has negative
scalar curvature.

Solutions of (7.203) with Q≡ 1
8 n(n2−4) are multiples of solutions for the sim-

plified problem

∆
2u = u(n+4)/(n−4), u > 0 in B, u|∂B = ∞.

For radial solutions we study the initial value problem∆
2u(r) =

(
r1−n d

dr

(
rn−1 d

dr

))2

u(r) = u(r)(n+4)/(n−4), r > 0,

u(0) = α, u′(0) = 0, ∆u(0) = β , (∆u)′(0) = 0,

(7.205)

where α ≥ 0, β ∈ R are given. If necessary, u(n+4)/(n−4) will denote also the odd
extension to the negative reals; however, we mainly focus on positive solutions. It
is a routine application or modification of the Banach fixed point theorem or the
Picard-Lindelöf-result to show that (7.205) always has unique local C4–solutions.

It is a simple but very useful observation that the initial value problem enjoys a
comparison principle by McKenna-Reichel [296].
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Lemma 7.77. Let u,v ∈C4([0,R)) and Q̃≥ 0 be such that{
∆

2u(r)− Q̃u(r)(n+4)/(n−4) ≥ ∆
2v(r)− Q̃v(r)(n+4)/(n−4) for all r ∈ [0,R)

u(0)≥ v(0), u′(0) = v′(0) = 0, ∆u(0)≥ ∆v(0), (∆u)′(0) = (∆v)′(0) = 0.

Then we have

u(r)≥ v(r), u′(r)≥ v′(r), ∆u(r)≥ ∆v(r), (∆u)′(r)≥ (∆v)′(r) for all r ∈ [0,R).

Moreover,

1. the initial point 0 can be replaced by any initial point ρ > 0 if all four initial data
at ρ are weakly ordered,

2. a strict inequality in one of the initial data at ρ ≥ 0 or in the differential in-
equality on (ρ,R) implies a strict ordering of u,u′,∆u,∆u′ and v,v′,∆v,∆v′ on
(ρ,R).

According to Theorem 7.21, problem (7.205) has the following entire solutions

Uα(r) = α

(
n(n2−4)(n−4)

) n−4
4

(√
n(n2−4)(n−4)+

(
α2/(n−4)r

)2
) n−4

2

with α > 0. Moreover, these functions are the only positive entire solutions of
(7.205), provided β is suitably chosen, say β = β0 = β0(α). The metric

h = U
4

n−4
α δi j (7.206)

arises as the pullback of the standard metric of the sphere Sn under a stereographic
projection to Rn.

For our purposes it is enough to show that the solution Uα is a separatrix in
the r-u-plane, i.e., if we fix α > 0 and consider β as a varying parameter then Uα

separates the blow-up solutions from the solutions with one sign-change, which lie
below Uα .

Lemma 7.78. Let α > 0 be fixed. Then for β > β0, the solution u = uα,β blows
up on a finite interval [0,R(α,β )). The blow-up radius R(α,β ) is monotonically
decreasing in β .

Proof. It is useful to have the explicit solutions

Vα(r) = α

(
1−
(

r
λα

)2
)−(n−4)/2

(7.207)

of (7.205) at hand, where λα = α−2/(n−4) (n(n2−4)(n−4)
)1/4. We fix any α > 0,

some β > β0(α) and look at the corresponding solution u = uα,β of (7.205). In
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order to see that u′(r)−U ′α(r) is strictly increasing, note first by Lemma 7.77
that ∆u(r)− ∆Uα(r) is positive and strictly increasing. Since u′(r)−U ′α(r) =∫ 1

0 rtn−1(∆u−∆Uα)(rt)dt it follows that u′(r)−U ′α(r) is also strictly increasing.
So u(r) cannot converge to 0 and hence has to become unbounded as r→ ∞. By
integrating successively the differential equation of u we find R large enough such
that

u(R) > 0, u′(R) > 0, ∆u(R) > 0, (∆u)′(R) > 0.

Since limα̃→0 Vα̃(r) = 0 locally uniformly in C4, we can find a sufficiently small
α̃ > 0 such that

u(R) > Vα̃(R), u′(R) > V ′α̃(R), ∆u(R) > ∆Vα̃(R), (∆u)′(R) > (∆Vα̃)′(R).

But then the comparison principle Lemma 7.77 shows that for all r > R we have
u(r) > Vα̃(r) and hence, blow-up of u at some finite radius R(α,β ). The mono-
tonicity of R(α,β ) is also a direct consequence of Lemma 7.77. �

Lemma 7.79. Let α > 0 be fixed. The blow-up radius R(α,β ) is a continuous func-
tion of β ∈ (β0,∞).

Proof. Let β > β0 be arbitrary but fixed and let u = uα,β denote the corresponding
solution of (7.205). The continuity from the right

βk↘ β ⇒ R(α,βk)→ R(α,β )

follows directly from monotonicity and lower semicontinuity of β 7→ R(α,β ).
Hence, only continuity from the left has to be proved.

First we show that for r close enough to R = R(α,β ) the functions u, u′, ∆u and
(∆u)′ are finally strictly increasing. For u, rn−1u′, ∆u and rn−1 (∆u)′, this follows
from successive integration of the differential equation, since the relevant quantities
become – at least finally – positive.

It remains to consider u′(R) and (∆u)′ (R). We observe that

∞ = Rn−1u′(R) =
∫ R

0
rn−1

∆udr;

∞ = Rn−1(∆u)′(R) =
∫ R

0
rn−1

∆
2udr =

∫ R

0
rn−1u(n+4)/(n−4) dr.

(7.208)

From this we conclude for r↗ R that

(∆u)′(r) =
∫ r

0

( s
r

)n−1
u(n+4)/(n−4)(s)ds = r

∫ 1

0
(u(rt))(n+4)/(n−4)tn−1 dt;

(∆u)′′(r) =
∫ 1

0
(u(rt))(n+4)/(n−4)tn−1 dt + r

n+4
n−4

∫ 1

0
(u(rt))8/(n−4) u′(rt)tn dt

→ +∞ by (7.208);
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u′(r) =
∫ r

0

( s
r

)n−1
∆u(s)ds = r

∫ 1

0
tn−1

∆u(rt)dt;

u′′(r) =
∫ 1

0
tn−1

∆u(rt)dt + r
∫ 1

0
tn(∆u)′(rt)dt

→ +∞ by (7.208).

Moreover, for later purposes we note that for r↗ R

u′′′(r) = 2
∫ 1

0
tn(∆u)′(rt)dt + r

∫ 1

0
tn+1(∆u)′′(rt)dt

≥ 2
rn+1

∫ r

0
sn(∆u)′(s)ds−C ≥ 1

C
∆u(r)−C→+∞.

Here, C denotes a constant which depends on the solution u.
Let us consider a sequence βk ↗ β . By monotonicity we have R(α,βk) ≥

R(α,β ). For tk > 1, which will be adequately chosen below, we define the func-
tion

vk(r) := t(4−n)/2
k uα,β

(
r
tk

)
,

which solves the same differential equation as uα,β . We find values r0− δ < r0 <
R(α,β ) such that

uα,β (r0) > 0, u′
α,β (r0) > 0, ∆uα,β (r0) > 0, (∆uα,β )′(r0) > 0,

and all these quantities are strictly increasing on (r0− δ ,R(α,β )). By continuous
dependence on data, for βk close enough to β we also have

uα,βk
(r0) > 0, u′

α,βk
(r0) > 0, ∆uα,βk

(r0) > 0, (∆uα,βk
)′(r0) > 0.

For suitably chosen tk we conclude that

vk(r0) = t(4−n)/2
k uα,β

(
r0

tk

)
≤ t(4−n)/2

k uα,β (r0) < uα,βk
(r0),

v′k(r0) = t(2−n)/2
k u′

α,β

(
r0

tk

)
≤ t(2−n)/2

k u′
α,β (r0) < u′

α,βk
(r0),

∆vk(r0) = t−n/2
k ∆uα,β

(
r0

tk

)
≤ t−n/2

k ∆uα,β (r0) < ∆uα,βk
(r0),

(∆vk)′(r0) = t(−n−2)/2
k (∆uα,β )′

(
r0

tk

)
≤ t(−n−2)/2

k (∆uα,β )′(r0) < (∆uα,βk
)′(r0).

By continuous dependence on data, we may achieve

tk↘ 1 (k→ ∞).

The comparison result of Lemma 7.77 yields for r ≥ r0,
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uα,βk
(r)≥ vk(r).

This gives finally

R(α,β )≤ R(α,βk)≤ R(vk) = R(α,β ) tk→ R(α,β ) as k→ ∞,

where R(vk) denotes the blow-up radius of vk. The proof is complete. �

Lemma 7.80. Let α > 0 be fixed. Then for the limits of the blow-up radius R(α,β ),
one has

lim
β↘β0

R(α,β ) = ∞, lim
β↗∞

R(α,β ) = 0.

Proof. The first claim is just a consequence of the global existence of the solution for
β = β0 and continuous dependence of solutions on the initial data. The proof of the
second statement bases upon some scaling arguments. First we note that the same
argument as in the proof of Lemma 7.78 shows that R(0,1) < ∞. By the comparison
result from Lemma 7.77 we conclude that

R(α ′,1)≤ R(0,1) < ∞ for all α
′ > 0. (7.209)

For β > 0 we find the relation

uα,β (r) =
(

α

α ′

)
uα ′,1

((
α

α ′

)2/(n−4)
r
)

, (7.210)

where α ′ is chosen such that

β =
(

α

α ′

)n/(n−4)
, i.e. α

′ = α β
(4−n)/n.

Obviously, α ′↘ 0 for β ↗ ∞. We read from (7.210) and (7.209) that

R(α,β ) = R(α ′,1)
(

α ′

α

)2/(n−4)

≤ R(0,1)
(

α ′

α

)2/(n−4)

= R(0,1)β−2/n,

which tends to 0 as β → ∞. �

Lemma 7.81. Let u : B→ (0,∞) be a C4-function such that−∆u≤ 0 in B. Then the
conformal metric h given by (7.206), namely

hi j = u4/(n−4)
δi j,

satisfies Ru ≤ 0 in B.

Proof. In order to compute the scalar curvature it is more convenient to write the
conformal factor as

hi j = v4/(n−2)
δi j,

i.e. we set v := u(n−2)/(n−4), u = v(n−4)/(n−2). The scalar curvature Ru of the metric
(hi j)i j is then given by
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Ru =−4(n−1)
(n−2)

v−(n+2)/(n−2)
∆v =−4(n−1)

(n−2)
u−(n+2)/(n−4)

∆u(n−2)/(n−4)

=−4(n−1)
(n−4)

u−(n+2)/(n−4)
(

u2/(n−4)
∆u+

2
(n−4)

u(6−n)/(n−4)|∇u|2
)

so that Ru ≤ 0. �

Remark 7.82. The subharmonicity assumption in Lemma 7.81 is justified by the fact
that, for radially symmetric solutions, it is also a necessary condition in order to have
negative scalar curvature, see [205, Proposition 1].

We now prove the existence part and Item 2 of Theorem 7.75 which is sum-
marised in

Proposition 7.83. For every α > 0 there exists a radial solution of (7.205) with
u(0) = α which blows up at r = 1. Moreover,

1. if u, ũ are two such solutions with u(0) < ũ(0), then ∆u(0) > ∆ ũ(0),
2. if 0 < u(0)≤ (n(n2−4)(n−4))

n−4
8 , then the corresponding solution generates a

metric with negative scalar curvature.

Proof. Let α > 0 be fixed and let uα,β denote the solution of (7.205). According
to Lemmas 7.79 and 7.80, we find a suitable β > β0(α) such that for the blow-up
radius we have precisely R(α,β ) = 1. Item 1 is a consequence of Lemma 7.77.
To prove Item 2, we consider Vα as defined in (7.207) and note that under the hy-
pothesis 0 < u(0) < Vα0(0) with α0 = (n(n2−4)(n−4))

n−4
8 we find by Item 1 that

∆u(0) > ∆Vα0(0) > 0 and hence ∆u > 0 on [0,1). Thus by Lemma 7.81 the solution
u generates a metric with negative scalar curvature. �

In order to complete the proof of Theorem 7.75, it remains to show the complete-
ness of the induced metrics.

7.10.3 Completeness of the conformal metric

Completeness of the metric h = u
4

n−4 δi j on B means that every maximally extended
geodesic curve has infinite length. However, the following lemma reduces this to a
property which is simpler to check.

Lemma 7.84. Let u be a radial solution of (7.203). The induced metric u
4

n−4 δi j on
Hn is complete if and only if ∫ 1

0
u(r)2/(n−4) dr = ∞.
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Proof. To see the necessity of the above condition note that for fixed z∈Rn\{0} the
curve γ(r) = rz/|z| for r ∈ (−1,1) is a maximally extended geodesic and its length
is given by

2
∫ 1

0
(γ ′(r),γ ′(r))1/2

h dr = 2
∫ 1

0
u

2
n−4 dr.

Next we prove the sufficiency. Let γ be a maximally extended geodesic in (B,h)
parameterised over R. Then limt→±∞ |γ(t)| = 1. Clearly γ has infinite length if
δ (t) = disth(γ(t),0) becomes unbounded for t→±∞. Since

δ (t) =
∫ |γ(t)|

0
u

2
n−4 (r)dr

the claim follows. �

Diaz-Lazzo-Schmidt [142, 143] announced that for the unbounded solutions with
constant Q-curvature constructed in Theorem 7.75, one has asymptotically for r↗ 1

u(r)∼C(1− r2)(4−n)/2, (7.211)

where C = C(n) does not depend on the solution. Furthermore, the derivatives of u
exhibit a corresponding uniform behaviour. This is an even more precise information
than just completeness of the conformal metric since it shows in particular that∫ 1

u(r)2/(n−4) dr = ∞

and so, the completeness of the conformal metric in view of Lemma 7.84. Their
work is announced to cover a very general situation, will be quite involved and rely
on a deep result of Mallet-Paret and Smith [282] on Poincaré-Bendixson results for
monotone cyclic feedback systems.

In what follows we give an independent and relatively simple proof of the state-
ment of completeness by means of a suitable transformation and energy consider-
ations. The proof applies in the same way both to the case of constant and non-
constant Q-curvature functions, which is useful in view of Remark 7.76. The final
statement concerning completeness is given in Proposition 7.88 below.

In what follows we consider for simplicity ( n−4
2 Q)(n−4)/8u instead of u, so that

in radial coordinates the Paneitz equation (7.203) reads

uiv(r)+
2(n−1)

r
u′′′(r)+

(n−1)(n−3)
r2 u′′(r)− (n−1)(n−3)

r3 u′(r) = u
n+4
n−4 (r).

(7.212)
We estimate the maximal blow-up rate for solutions of (7.212). The following

statement proves “half” of the optimal asymptotic behaviour (7.211) and is therefore
of independent interest.

Proposition 7.85. Let u : [0,1)→ [0,∞) be an unbounded smooth solution to (7.212).
Then there exists a constant C = C(u) such that
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u(r)≤C
( 1

1− r2

) n−4
2

.

Proof. As was shown in the proof of Lemma 7.79, we may choose ρ ∈ (0,1) such
that

u,u′,u′′,∆u,(∆u)′ > 0 are increasing in (ρ,1).

Rewriting the Pohožaev-Rellich-type identity (7.77) for the solution u on Br for
any r ∈ (0,1), the volume integrals (over Br) vanish and therefore

0 = rn−1(∆u)′
(

ru′+
n−4

2
u
)

+
n
2

rn−1u′∆u− rn
(1

2
(∆u)2 +

n−4
2n

u
2n

n−4

)
. (7.213)

In the sequel, C denotes a constant depending on u. By using the analogue of (7.213)
on the interval [ρ,r] we obtain for all r ∈ (ρ,1)

n−4
2n

rnu
2n

n−4 (r) +
rn

2
(∆u(r))2 = rn−1(∆u)′

(
ru′ +

n−4
2

u
)
+

n
2

rn−1u′∆u + C.

(7.214)

We estimate the two sides of (7.214) separately.
Right-hand side. The following estimates for r > ρ are obtained by integration

u(r) = u(ρ)+
∫ r

ρ

u′(s)ds≤ u′(r)+C,

∆u(r) ≤ (∆u)′ (r)+C.

Hence the entire right-hand side of (7.214) can be estimated by C1u′(r)(∆u)′ (r)+
C2 and since u′(r), (∆u)′ (r)→∞ for r→ 1 we find that Cu′(r)(∆u)′ (r) for ρ < r <
1 is an upper estimate for the right-hand side of (7.214).
Left-hand side. After dropping the last term in the left-hand side of (7.214) a lower
bound is given by

n−4
2n

rnu
2n

n−4 (r).

Hence, (7.214) yields the existence of a constant C = C(u,ρ,ε) such that

u
2n

n−4 ≤Cu′ (∆u)′ on [ρ,1).

The multiplication by u′ leads to

(u
3n−4
n−4
)′ ≤Cu′2 (∆u)′ = C

(
u′2∆u

)′
−2Cu′u′′∆u≤C

(
u′2∆u

)′
on [ρ,1),

and an integration shows

u
3n−4
n−4 ≤C1u′2∆u+C2 ≤Cu′2∆u on [ρ,1).

Now, as above, we can estimate
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∆u(r) = u′′(r)+
n−1

r
u′(ρ)+

n−1
r

∫ r

ρ

u′′(s)ds≤Cu′′(r)+C ≤Cu′′(r)

and we may proceed to the inequality

u
3n−4
n−4 ≤C(u′)2

∆u≤C(u′)2u′′.

In a similar way the multiplication by u′ and an integration leads to

u
4n−8
n−4 ≤Cu′4 on [ρ,1), u

n−2
n−4 ≤Cu′ on [ρ,1).

Solutions of Cv′ = v
n−2
n−4 on some interval [ρ,δ ) with 0 < δ ≤ 1 are given by

vδ (r) =
(n−4

2
C
) n−4

2 (δ − r)
4−n

2 .

If for some value of r0 ∈ [ρ,1) we would have u(r0) > v1(r0), then u(r0) > vδ (r0)
for some δ ∈ (0,1). Then u stays strictly above vδ and hence u blows up somewhere
in the interval (ρ,δ ), i.e., strictly before the point 1. This contradiction shows that
u(r)≤ v1(r) for all r ∈ [ρ,1) which in turn proves the claim. �

Next, we establish a first lower bound for the blow-up rate of radial solutions to
the Paneitz equation (7.203). This bound is far from being optimal, see (7.211).

Lemma 7.86. Let u : [0,1)→ [0,∞) be an unbounded smooth solution to (7.212).
Then there exists a constant C = C(u) such that

u(r)≥C
( 1

1− r2

) n−4
4

on [1/2,1).

Proof. Let u = u(r) solve (7.212) on [0,1) with u(1) = ∞. Then for some r0 ∈ (0,1)
we may assume that u′(r)≥ 0 and (∆u)′(r)≥ 0 whenever r ≥ r0. Thus

(∆u)′(r) =
( r0

r

)n−1
(∆u)′(r0)+

∫ r

r0

( s
r

)n−1
u

n+4
n−4 (s)ds≤ (∆u)′(r0)+u

n+4
n−4 (r),

and hence

∆u(r)≤ ∆u(r0)+(∆u)′(r0)+u
n+4
n−4 (r) = K +u

n+4
n−4 (r)

with suitably chosen K = K(u) > 0. Now let v be the unique radial solution of

∆v = K + v
n+4
n−4 for r0 < r < 1, v(r0) = u(r0), v(1) = ∞.

Then v is a subsolution for u and

u(r)≥ v(r)≥C
( 1

1− r2

) n−4
4

on [r0,1),
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where C = C(r0;u). �

Instead of proving the expected asymptotic behaviour (7.211), we show the
weaker result that

∫ 1 u2n/(n−4) = +∞. This is enough for our purposes and the proof
appears to be much simpler. To this end we employ some dynamical systems tech-
niques. We apply a sort of Emden-Fowler transformation to (7.212) in order to ob-
tain an “asymptotically autonomous” differential equation. The stability analysis
performed for the limit autonomous equation can be carried over to this asymptoti-
cally autonomous equation. Energy considerations then allow to reach a contradic-
tion if

∫ 1 u2n/(n−4) < +∞.
With the transformation

u(r) = (1− r2)
4−n

2 v(− log(1− r2)), v(t) = e(4−n)t/2u(
√

1− e−t), t ∈ (0,∞),

(7.212) becomes

K4(t)viv(t)+K3(t)v′′′(t)+K2(t)v′′(t)+K1(t)v′(t)+K0v(t) =
1

16
v

n+4
n−4 (t), (7.215)

where the boundary r = 1 is transformed into t = +∞ and

K0 =
1

16
(n+2)n(n−2)(n−4),

K1(t) =
1

16

(
(1− e−t)2(−4n2 +24n−32)+(1− e−t)(4n3−16n2−16n+64)

+ 4n3−4n2−24n
)
,

K2(t) =
1

16

(
(1− e−t)2(4n2−40n+80)+(1− e−t)(16n2−16n−96)

+ 4n2 +8n
)
,

K3(t) = (1− e−t)2(n−4)+(1− e−t)(n+2),

K4(t) = (1− e−t)2.

Note that (7.215) is asymptotically autonomous, since all the Ki(t) have finite limits
as t→ ∞, and that (7.215) has the constant solutions v0 ≡ 0 and v1 ≡ (16K0)

n−4
8 .

Motivated by the observation that

u′(r) = 0⇔ v′(t)+
n−4

2
v(t) = 0

we transform (7.215) into a system for w(t) = (w1(t),w2(t),w3(t),w4(t))T by set-
ting

w1(t) = v(t), w2(t) = v′(t)+
n−4

2
v(t),

w3(t) = v′′(t)+
n−4

2
v′(t), w4(t) = v′′′(t)+

n−4
2

v′′(t).
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The resulting system is
w′1(t) = − n−4

2 w1(t)+w2(t)
w′2(t) = w3(t)
w′3(t) = w4(t)

K4(t)w′4(t) = C2(t)w2(t)+C3(t)w3(t)+C4(t)w4(t)+ 1
16 w1(t)

n+4
n−4 ,

(7.216)

where

Cm(t) =−
4

∑
k=m−1

Kk(t)
(

4−n
2

)k+1−m

.

By explicit calculations we get C1(t)≡ 0 and

C2(t) =−1
8

n3 +
1
2

n,

C3(t) = 1− 3
4

n2 +
n(n−2)

2
e−t +

n−2
2

e−2t ,

C4(t) =−3
2

n+ e−t(2n−2)+ e−2t(2− 1
2

n).

To get an idea of the behaviour of the asymptotically autonomous system (7.216)
we replace the functions Ci(t) by their limit C∞

i = limt→∞ Ci(t), i = 2,3,4. We study
the autonomous limit system

w′1(t) = − n−4
2 w1(t)+w2(t)

w′2(t) = w3(t)
w′3(t) = w4(t)
w′4(t) = C∞

2 w2(t)+C∞
3 w3(t)+C∞

4 w4(t)+ 1
16 w1(t)

n+4
n−4 ,

(7.217)

where
C∞

2 =−1
8

n3 +
1
2

n, C∞
3 = 1− 3

4
n2, C∞

4 =−3
2

n.

The autonomous system has the steady-states

O = (0,0,0,0) and P =
(
(16K0)

n−4
8 ,

n−4
2

(16K0)
n−4

8 ,0,0
)
.

Note that O and P are also steady states for the asymptotically autonomous system
(7.217). At the point O the system (7.217) admits the linearised matrix

MO =


4−n

2 1 0 0
0 0 1 0
0 0 0 1
0 C∞

2 C∞
3 C∞

4


with four negative eigenvalues
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λ1 = 2− n
2

> λ2 = 1− n
2

> λ3 =−n
2

> λ4 =−1− n
2

and corresponding eigenvectors

φ1 = (1,0,0,0), φ2 =
(

1,−1,−1+
n
2
,− (n−2)2

4

)
,

φ3 =
(

1,−2,n,−n2

2

)
, φ4 =

(
1,−3,3+

3n
2

,−3(n+2)2

4

)
.

Thus O is asymptotically stable for (7.217). At the point P the linearised matrix is

MP =


4−n

2 1 0 0
0 0 1 0
0 0 0 1

n+4
n−4 K0 C∞

2 C∞
3 C∞

4


with the eigenvalues

µ1 = 1, µ2 =−n,

µ3 = 1−n
2 −

i
2

√
n2 +2n−9, µ4 = 1−n

2 + i
2

√
n2 +2n−9.

Thus P has a three-dimensional stable manifold and a one-dimensional unstable
manifold.

Lemma 7.87. The origin O is an asymptotically stable steady state of system
(7.216). Moreover, the following facts hold.

1. If w is a solution to system (7.216) such that w(tk)→ O for a sequence tk → ∞,
then for any ε > 0 one has that eventually

|w(t)| ≤ exp
((

4−n
2

+ ε

)
t
)

.

2. The corresponding solution u(r) = (1− r2)
4−n

2 w1(− log(1− r2)) of the original
equation (7.203) is bounded near r = 1.

Proof. System (7.216) has the form

w′(t) = MOw(t)+G(t,w(t)),

G(t,w) =
(

1
16

+O(e−t)
)(

0,0,0,w(n+4)/(n−4)
1

)T
+ e−tBw+ e−2tCw,

with constant 4×4–matrices B and C. In particular

lim
t→∞,w→O

G(t,w)
|w|

= 0,
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i.e. condition [223, Ch. X, (8.11)] is satisfied. Since all eigenvalues of MO are
smaller than (4− n)/2, the corollary of [223, Ch. X, Theorem 8.1] shows asymp-
totic stability of the origin O. Moreover, for a solution w with w(tk)→ 0, it follows
from this corollary that

limsup
t→∞

log |w(t)|
t

≤ 4−n
2

.

Hence, for any ε > 0, one has that eventually

|w(t)| ≤ exp
((

4−n
2

+ ε

)
t
)

.

For the solution u of the original equation (7.203) this means that for r < 1 close
enough to 1

u(r)≤
(
1− r2)−ε

.

In view of the minimal blow-up rate for unbounded solutions proved in Lemma 7.86,
this shows that r 7→ u(r) has to remain bounded near r = 1. �

We are now ready to prove Item 1 in Theorem 7.75, namely the completeness
of the conformal metric. To this end, thanks to Lemma 7.84, it suffices to prove the
following statement.

Proposition 7.88. Let u : B→ [0,∞) be an unbounded smooth radial solution of the
Paneitz equation (7.203). Then∫ 1

u(r)2/(n−4)dr = ∞.

Proof. From Proposition 7.85 we infer that v is bounded as long as it solves (7.215).
Then t 7→ K4(t)viv(t)+K3(t)v′′′(t)+K2(t)v′′(t)+K1(t)v′(t) is also bounded for t ∈
(0,∞). Hence, by local Lq–estimates for fourth order elliptic equations (see Section
2.5.2), we infer that for any q > 1 there exists a constant Cq > 0 such that for any
t > 1 we have

‖v‖W 4,q(t−1,t+2) ≤Cq ‖v‖L∞(0,∞) .

By combining Sobolev embeddings and local Schauder estimates we conclude that
there exists a positive constant independent of t, still called Cq, such that

‖v‖C4,γ (t,t+1) ≤Cq ‖v‖L∞(0,∞) .

Therefore, all the derivatives v′ . . .viv are bounded in (0,∞) and may be used as test
functions. Let us assume by contradiction that∫ 1

u(r)2/(n−4)dr < ∞,

which gives that ∫
∞

0
v(s)2 ds≤C

∫
∞

0
v(s)2/(n−4) ds < ∞.
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Consider the values K∞
i = limt→∞ Ki(t), i.e,

K∞
0 = K0 =

1
16

(n+2)n(n−2)(n−4), K∞
1 =

1
2
(n−1)(n2−2n−4),

K∞
2 =

3
2

n2−3n−1, K∞
3 = 2n−2, K∞

4 = 1.

Testing the differential equation (7.215) once with v and once with v′ gives that for
t→ ∞ ∫ t

0
v′′(s)2 ds−K∞

2

∫ t

0
v′(s)2 ds = O(1),

K∞
3

∫ t

0
v′′(s)2 ds−K∞

1

∫ t

0
v′(s)2 ds = O(1).

Observe that only the terms with constant coefficients are relevant since all other
terms contain a factor e−t and produce finite integrals.

Since K∞
2 K∞

3 6= K∞
1 , the two above estimates show that∫

∞

0
v′(s)2 ds < ∞ ,

∫
∞

0
v′′(s)2 ds < ∞.

Testing the differential equation (7.215) with v′′′ finally gives∫
∞

0
v′′′(s)2 ds < ∞

so that ∫
∞

0

(
w1(s)2 +w2(s)2 +w3(s)2 +w4(s)2) ds < ∞.

Consequently there is a sequence tk↗ ∞ such that

lim
k→∞

(w1,w2,w3,w4)(tk) = 0.

Since O = (0,0,0,0) is stable, this shows that

lim
t→∞

(w1,w2,w3,w4)(t) = 0.

From Lemma 7.87 we conclude that u(r) remains bounded near r = 1, contradicting
the assumption on u. �

7.11 Fourth order equations with supercritical terms

It has become clear that the growth of the nonlinear term in semilinear elliptic equa-
tions has a crucial influence on its properties. After a brief overview of subcritical
problems, see Section 7.2, we have so far focussed on problems with critical growth.
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Since phenomena and proofs are quite different beyond critical growth – any vari-
ational approach seems to break down completely – we finally study here a fourth
order model Dirichlet problem∆ 2u = λ (1+u)p in B,

u > 0 in B,
u = |∇u|= 0 on ∂B,

(7.218)

of supercritical growth, i.e. we assume that n > 4 and p > n+4
n−4 . As before, B ⊂ Rn

is the unit ball and λ > 0 a nonlinear eigenvalue parameter. By regularity theory for
the biharmonic operator, see Chapter 2, any bounded solution u of (7.218) satisfies
u∈C∞(B) and, by Theorem 7.1, it is also radially symmetric. Moreover, by Boggio’s
principle Lemma 2.27, the sub-supersolution method applies in B while it may fail
in general domains. For all these reasons, we restrict ourselves to balls. As already
shown for (7.38), when p is supercritical unbounded weak solutions to (7.218) may
exist. Similar problems for higher polyharmonic operators (−∆)m (m ≥ 2) could
also be considered but the proofs appear significantly more technical.

According to related work on second order equations, see e.g. [70, 73, 188, 196,
239, 302, 408], we address questions concerning existence/nonexistence, smooth-
ness and stability of positive minimal solutions, regularity of the extremal solution
within a certain regime for p and existence of singular solutions for a suitable value
of the parameter λ . Moreover, we characterise radial singular solutions in terms of
critical points of associated dynamical systems and give some further qualitative
properties of singular solutions. Here, a singular solution is always understood to be
singular at the origin x = 0.

Since the problem is of supercritical growth, we cannot work within a variational
framework and there is no canonical space for weak solutions to (7.218).

Definition 7.89. We say that u ∈ Lp(B) is a solution of (7.218) if u≥ 0 and if for all
ϕ ∈C4(B)∩H2

0 (B) one has∫
B

u∆
2
ϕ dx = λ

∫
B
(1+u)p

ϕ dx.

We call u singular if u 6∈ L∞(B), and regular if u∈ L∞(B). Finally, we call a solution
u of (7.218) minimal if u≤ v a.e. in B for any further solution v of (7.218).

In order to state the results we recall that Λ2,1 > 0 denotes the first eigenvalue for
the biharmonic operator with Dirichlet boundary conditions in B. By Theorem 3.7
we know that Λ2,1 is and simple and that the corresponding eigenfunction ϕ1 does
not change sign. Define

Λ := {λ > 0 : (7.218) admits a solution} ; λ
∗ := supΛ . (7.219)

A first result concerns the existence of minimal solutions. It shows that one has
existence of stable regular minimal solutions to (7.218) for λ ∈ (0,λ ∗), while for
λ > λ ∗, not even singular solutions exist. In second order problems this immediate
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switch from existence of regular to nonexistence of singular solutions is established
by using suitable functions of possibly existing singular solutions as bounded su-
persolutions, see [70]. Such techniques fail completely for fourth and higher order
problems. Here, we employ dynamical systems arguments, and this is one further
reason why we have to formulate our results for positive – hence radial – solutions
in the ball.

Theorem 7.90. Let n > 4 and p > (n+4)/(n−4). Then the following holds true.

1. For λ ∈ (0,λ ∗) problem (7.218) admits a minimal regular solution uλ . This so-
lution is radially symmetric and strictly decreasing in r = |x|.

2. For λ = λ ∗ problem (7.218) admits at least one solution u∗ ∈H2(B) which is the
a.e. pointwise monotone limit of uλ as λ ↗ λ ∗.

3. For λ > λ ∗ problem (7.218) admits no (not even singular) solutions.

Moreover
λ
∗ ∈
[
K0,

Λ2,1

p

)
, (7.220)

where

K0 =
4

p−1

(
4

p−1
+2
)(

n−2− 4
p−1

)(
n−4− 4

p−1

)
. (7.221)

For the proof see Section 7.11.2. Next, we establish that the regular minimal solution
is stable.

Theorem 7.91. Let n > 4 and p > (n+4)/(n−4). Assume that λ ∈ (0,λ ∗) and let
uλ be the corresponding minimal solution of (7.218). Let µ1(λ ) be the first eigen-
value of the linearised operator ∆ 2−λ p(1+uλ )p−1. Then µ1(λ ) > 0.

For the proof see Section 7.11.4. We remark that Theorems 7.90 and 7.91 also
hold in the subcritical and critical range, i.e. for any p > 1. For 1 < p≤ n+4

n−4 , we may
define the action functional Jλ associated with the Euler-Lagrange equation (7.218)

Jλ (u) =
1
2

∫
B
|∆u|2 dx− λ

p+1

∫
B
|1+u|p+1 dx for all u ∈ H2

0 (B).

Then variational methods enable us to show that for any λ ∈ (0,λ ∗) the correspond-
ing minimal solution uλ is a strict local minimum for the functional Jλ . Moreover,
according to the related result [40, Theorem 2.2] we expect for any λ ∈ (0,λ ∗) the
existence of a second positive solution, a mountain-pass critical point for Jλ .

For the corresponding second order problem an explicit singular solution for a
suitable value of the parameter λ turned out to play a fundamental role for the
description of the shape of the corresponding bifurcation diagram, see in particular
[73] and (7.38). When turning to the biharmonic problem (7.218) the second bound-
ary condition |∇u| = 0 prevents to find an explicit singular solution directly from
the entire singular solution to the differential equation ∆ 2u = |u|p−1u in Rn \ {0},
namely
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u(r) = K1/(p−1)
0 r−4/(p−1), (7.222)

where K0 is as in (7.221). Nevertheless, the existence of a singular (i.e. unbounded)
solution us for a suitable eigenvalue parameter λs can be proved.

Theorem 7.92. Let n > 4 and p > (n+4)/(n−4). Then there exists a unique param-
eter λs > 0 such that for λ = λs, problem (7.218) admits a radial singular solution
and this radial solution is unique.

This result is proved in Section 7.11.5, where supercriticality is intensively ex-
ploited.

By means of energy considerations we can give bounds for radial singular so-
lutions and the corresponding singular parameter. The precise blow-up rate ∼
C|x|−4/(p−1) at x = 0 is determined and an explicit estimate from below is deduced.
For this purpose we transform in Section 7.11.1 the differential equation in (7.218)
into an autonomous system of ordinary differential equations and apply subtle en-
ergy estimates. This technique has proved to be very powerful for studying the pre-
cise asymptotic behaviour of entire solutions in Rn in [182]. Moreover, a character-
isation of singular (respectively regular) radial solutions to (7.218) in terms of the
corresponding dynamical system is given. This system is shown to have two critical
points, the unstable manifolds of which are related to singular (respectively regular)
radial solutions.

Theorem 7.93. Let n > 4 and p > (n + 4)/(n− 4). Assume that us is a singular
radial solution of (7.218) with parameter λs. Then λs > K0 and

us(x) >

(
K0

λs

)1/(p−1)

|x|−4/(p−1)−1,

us(x) ∼
(

K0

λs

)1/(p−1)

|x|−4/(p−1) as x→ 0.

In particular, any radial solution to (7.218) for λ ≤ K0 is regular.

For the proof we refer to Section 7.11.3. Again supercriticality is crucial here.
Furthermore, we address the question whether the extremal solution is regular

or not. This question seems to be quite difficult. Inspired by stability techniques
developed in [131], we give here a partial result. In this respect a further critical
exponent pc arises for n > 12,see Proposition 7.97 below, which is defined as the
unique solution pc ∈

( n+4
n−4 ,∞

)
of

4 pc

pc−1

(
4

pc−1
+2
)(

n−2− 4
pc−1

)(
n−4− 4

pc−1

)
=

n2(n−4)2

16
. (7.223)

Equivalently, pc is the unique value of p > n+4
n−4 such that

−(n−4)(n3−4n2−128n+256)(p−1)4 +128(3n−8)(n−6)(p−1)3

+ 256(n2−18n+52)(p−1)2−2048(n−6)(p−1)+4096 = 0
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and is given by

pc =
n+2−

√
n2 +4−n

√
n2−8n+32

n−6−
√

n2 +4−n
√

n2−8n+32
.

In Section 7.11.4 we prove the following result.

Theorem 7.94. Let pc ∈ ((n + 4)/(n− 4),∞) be the number which is defined by
(7.223) for n≥ 13. We assume that

n+4
n−4

< p < pc if n≥ 13,
n+4
n−4

< p < ∞ if 5≤ n≤ 12.

Let u∗ ∈H2
0 ∩Lp(B) be the extremal radial solution of (7.218) corresponding to the

extremal parameter λ ∗, which is obtained as monotone limit of the minimal regular
solutions uλ for λ ↗ λ ∗. Then u∗ is regular.

This result suggests that, in the parameter regime between (n+4)/(n−4) and pc,
(λ ∗,u∗) is a turning point on the branch of solutions to (7.218). This and much more
has been recently proved by Dávila-Flores-Guerra [132]. Concerning the asymptotic
behaviour of the branch of regular radial solutions they have the following result.

Theorem 7.95. Let pc ∈ ((n + 4)/(n− 4),∞) be the number which is defined by
(7.223) for n≥ 13. We assume that

n+4
n−4

< p < pc if n≥ 13,
n+4
n−4

< p < ∞ if 5≤ n≤ 12.

Then (7.218) has infinitely many regular radial solutions for λ = λs. For λ 6= λs,
there are finitely many regular radial solutions the number of which becomes un-
bounded when λ → λs.

We sketch the basic ideas of the proof at the end of Section 7.11.5.

7.11.1 An autonomous system

In radial coordinates r = |x| ∈ [0,1], the differential equation in (7.218) reads

uiv(r)+
2(n−1)

r
u′′′(r)+

(n−1)(n−3)
r2 u′′(r)− (n−1)(n−3)

r3 u′(r)

= λ (1+u(r))p. (7.224)

We put first

U(x) := 1+u(x/ 4√
λ ) for x ∈ B 4√

λ
(0), u(x) = U( 4√

λx)−1 for x ∈ B.

For x ∈ B 4√
λ
(0) one has
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∆
2U(x) = U(x)p. (7.225)

Our purpose here is to transform (7.225) first into an autonomous equation and,
subsequently, into an autonomous system. For some of the estimates which follow,
it is convenient to rewrite the original assumption p > n+4

n−4 as

(n−4)(p−1) > 8. (7.226)

Next, for t < logλ

4 we set

U(r) = r−4/(p−1) v(logr), r ∈ (0,
4√

λ ), v(t) = e4t/(p−1)U
(
et) . (7.227)

After the change (7.227) equation (7.225) takes the form

viv(t)+K3v′′′(t)+K2v′′(t)+K1v′(t)+K0v(t) = vp(t) , t <
logλ

4
, (7.228)

where the constants Ki = Ki(n, p), with i = 1, . . . ,3, are given by

K1 = −2 (n−2)(n−4)(p−1)3+4(n2−10n+20)(p−1)2−48(n−4)(p−1)+128
(p−1)3 ,

K2 = (n2−10n+20)(p−1)2−24(n−4)(p−1)+96
(p−1)2 ,

K3 = 2 (n−4)(p−1)−8
p−1 .

For K0, we refer to (7.221). By using the supercriticality assumption (7.226), it is
not difficult to show that

K0 > 0 , K1 < 0 , K3 > 0.

On the other hand, the sign of K2 depends on n and p.
Finally, we put

z(t) := v(−t), t >− logλ

4
.

For z, we have the differential equation analogous to (7.228), namely

ziv(t)−K3z′′′(t)+K2z′′(t)−K1z′(t)+K0z(t) = zp(t) for t >− logλ

4
. (7.229)

In order to study the possibly singular behaviour of u near r = 0, we have to inves-
tigate the behaviour of z for t → ∞. Equation (7.229) has two equilibrium points,
namely 0 and K1/(p−1)

0 . First we show that once the solution converges to an equi-
librium point, then all derivatives converge to 0 as t→ ∞.

Proposition 7.96. Assume that z : [T0,∞)→ R exists for some T0 and solves a con-
stant coefficient fourth order equation

ziv(t)−K3z′′′(t)+K2z′′(t)−K1z′(t) = f (z(t)) for t >−T0, (7.230)
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where f ∈ C1(R) and where the coefficients may be considered as arbitrary real
numbers K j ∈R. Moreover, let z0 be such that f (z0) = 0 and assume that z satisfies
limt→∞ z(t) = z0. Then for k = 1, . . . ,4, one has that

lim
t→∞

z(k)(t) = 0. (7.231)

Proof. By assumption we have for any q > 1 that

lim
t→∞

∫ t+3

t−2
| f (z(τ))|q dτ = 0, lim

t→∞
‖z( .)− z0‖C0([t−2,t+3]) = 0.

We consider (7.230) as a fourth order “elliptic” equation and apply local Lq-
estimates, which could of course be directly obtained in a much easier way for the
ordinary differential equation (7.230), and conclude

lim
t→∞
‖z( .)− z0‖W 4,q(t−1,t+2) = 0.

By combining Sobolev embedding, see Theorem 2.6, and classical local Schauder
estimates (Theorem 2.19) we then have that

lim
t→∞
‖z( .)− z0‖C4,γ ([t,t+1]) = 0

which proves (7.231). �

We now write (7.228) as a system in R4. We obtain from (7.227)

U ′(r)
r3 = r−4p/(p−1)

(
v′(t)− 4

p−1
v(t)
)

(7.232)

so that
U ′(r) = 0 ⇐⇒ v′(t) =

4
p−1

v(t) .

This fact suggests the definition

w1(t) = v(t) , w2(t) = v′(t)− 4
p−1

v(t) ,

w3(t) = v′′(t)− 4
p−1

v′(t) , w4(t) = v′′′(t)− 4
p−1

v′′(t)

so that (7.228) becomes

w′1(t) = 4
p−1 w1(t)+w2(t)

w′2(t) = w3(t)

w′3(t) = w4(t)

w′4(t) = C2w2(t)+C3w3(t)+C4w4(t)+wp
1(t),

(7.233)
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where for w1 < 0 we interpret wp
1 := |w1|p−1w1 as its odd extension and

Cm =−
4

∑
k=m−1

Kk4k+1−m

(p−1)k+1−m for m = 1,2,3,4 with K4 = 1 .

This gives first that C1 = 0 so that the term C1w1(t) does not appear in the last
equation of (7.233). Moreover, we have the explicit formulae

C2 = p−1
4 K0,

C3 = − 1
(p−1)2

(
(n2−10n+20)(p−1)2−16(n−4)(p−1)+48

)
,

C4 = − 2
p−1 ((n−4)(p−1)−6) .

System (7.233) has the two stationary points (corresponding to v0 := 0 and vs :=
K1/(p−1)

0 )

O
(

0,0,0,0
)

and P
(

K1/(p−1)
0 ,− 4

p−1
K1/(p−1)

0 ,0,0
)
.

Let us study first the “regular point” O. The linearised matrix at O is

MO =


4

p−1 1 0 0
0 0 1 0
0 0 0 1
0 C2 C3 C4


and the characteristic polynomial is

µ 7→ µ
4 +K3µ

3 +K2µ
2 +K1µ +K0.

Then the eigenvalues are given by

µ1 = 2
p+1
p−1

, µ2 =
4

p−1
, µ3 =

4p
p−1

−n, µ4 = 2
p+1
p−1

−n.

Since we assume that p > n+4
n−4 > n

n−4 > n+2
n−2 , we have

µ1 > µ2 > 0 > µ3 > µ4.

This means that O is a hyperbolic point and that both the stable and the unstable
manifolds are two-dimensional.

At the “singular point” P, the linearised matrix of the system (7.233) is given by

MP =


4

p−1 1 0 0
0 0 1 0
0 0 0 1

pK0 C2 C3 C4

 .
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The corresponding characteristic polynomial is

ν 7→ ν
4 +K3 ν

3 +K2 ν
2 +K1ν +(1− p)K0

and the eigenvalues are given by

ν1 =
N1 +

√
N2 +4

√
N3

2(p−1)
, ν2 =

N1−
√

N2 +4
√

N3

2(p−1)
,

ν3 =
N1 +

√
N2−4

√
N3

2(p−1)
, ν4 =

N1−
√

N2−4
√

N3

2(p−1)
,

where

N1 := −(n−4)(p−1)+8 , N2 := (n2−4n+8)(p−1)2 ,

N3 := (9n−34)(n−2)(p−1)4 +8(3n−8)(n−6)(p−1)3

+(16n2−288n+832)(p−1)2−128(n−6)(p−1)+256
= (p−1)4 ((n−2)2 + pK0

)
.

The stability of the stationary point P is described by the following

Proposition 7.97. Assume that n > 4 and p > n+4
n−4 .

1. We have ν1,ν2 ∈ R and ν2 < 0 < ν1.
2. For 5≤ n≤ 12 we have ν3,ν4 6∈ R and Re ν3 =Re ν4 < 0.
3. For n≥ 13 there exists a unique pc > n+4

n−4 satisfying (7.223) and:
if p < pc, then ν3,ν4 6∈ R and Re ν3 =Re ν4 < 0,
if p = pc, then ν3,ν4 ∈ R and ν4 = ν3 < 0,
if p > pc, then ν3,ν4 ∈ R and ν4 < ν3 < 0.

Proof. We first observe that (7.226) is equivalent to

N1 < 0 (7.234)

and that (7.226) implies

N2−N2
1 = 4(n−2)(p−1)2 +16(n−4)(p−1)−64 > 4(n−2)(p−1)2 +64 > 0.

Next, we show that

N3 >
(N2−N2

1 )2

16
. (7.235)

Indeed, by exploiting again (7.226), we have:
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N3 −
(N2−N2

1 )2

16
= 8(n−2)(n−4)(p−1)4 +16(n2−10n+20)(p−1)3−128(n−4)(p−1)2

+ 256(p−1)
> 16(n2−6n+12)(p−1)3−128(n−4)(p−1)2 +256(p−1)
= 64(p−1)3 +16(n−2)(n−4)(p−1)3−128(n−4)(p−1)2 +256(p−1)
> 64(p−1)3 +128(n−2)(p−1)2−128(n−4)(p−1)2 +256(p−1)
= 64(p−1)3 +256(p−1)2 +256(p−1) = 64(p+1)2(p−1) > 0.

In particular, (7.235) implies that N3 > 0. In turn, together with the fact that N2 > N2
1 ,

this shows that
√

N2 +4
√

N3 > |N1| which proves Item 1.
In order to discuss the stability properties of the eigenvalues ν3 and ν4 we intro-

duce the function

N4 := 16N3−N2
2

= −(n−4)(n3−4n2−128n+256)(p−1)4 +128(3n−8)(n−6)(p−1)3

+ 256(n2−18n+52)(p−1)2−2048(n−6)(p−1)+4096 (7.236)
= −(n−4)2n2(p−1)4

+ 64p(p−1)3
(

2+
4

p−1

)(
n−2− 4

p−1

)(
n−4− 4

p−1

)
.

For 1.939 . . . < n < 12.565 . . ., the first coefficient in (7.236) is positive, so that
assuming

5≤ n≤ 12,

we obtain with the help of (7.226):

N4 = −(n−4)(n3−4n2−128n+256)(p−1)4 +128(3n−8)(n−6)(p−1)3

+256(n2−18n+52)(p−1)2−2048(n−6)(p−1)+4096
> −8(n3−4n2−128n+256)(p−1)3 +128(3n−8)(n−6)(p−1)3

+ 256(n2−18n+52)(p−1)2−2048(n−6)(p−1)+4096
= 64n2(p−1)3−8(n−4)(n2−40n+128)(p−1)3

+ 256(n2−18n+52)(p−1)2−2048(n−6)(p−1)+4096
> 64n(n−4)(p−1)3−64(n2−40n+128)(p−1)2

+ 256(n2−18n+52)(p−1)2−2048(n−6)(p−1)+4096
> 512n(p−1)2 +64(n−4)(3n−20)(p−1)2−2048(n−6)(p−1)+4096
= 2048(p−1)2 +192(n−4)2(p−1)2−2048(n−6)(p−1)+4096
> 2048(p−1)2 +1536(n−4)(p−1)−2048(n−6)(p−1)+4096
= 2048(p−1)2−512(n−12)(p−1)+4096 > 0,

since n≤ 12. This, together with (7.234), proves Item 2.
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In order to prove Item 3, we assume that n≥ 13 and we study N4 = N4(n, p) as a
function of p. We compute its second derivative (with respect to p):

−∂ 2N4

∂ p2 = 12(n−4)(n3−4n2−128n+256)(p−1)2

−768(3n−8)(n−6)(p−1)−512(n2−18n+52).

This is a quadratic function of p which tends to +∞ as p→ +∞. Its minimum is
smaller than the Sobolev exponent (n+4)/(n−4) if and only if

0 < (n3−4n2−128n+256)−4(3n−8)(n−6) = (n−18)(n2 +2n+12)+280.

This is certainly true for n≥ 18, while for n = 13, . . . ,17, we have ∂ 2N4
∂ p2 (n, n+4

n−4 ) < 0.

Summarising, for p > (n + 4)/(n− 4), ∂ 2N4
∂ p2 has at most one zero. Therefore, for

p > n+4
n−4 ,

p 7→ N4(n, p) is either always concave or it is first convex and then concave.
(7.237)

Moreover, since the first coefficient in (7.236) is negative (recall n≥ 13), we have

lim
p→∞

N4(n, p) =−∞ for all n≥ 13. (7.238)

Finally, note that

N4

(
n,

n+4
n−4

)
=

32768n2

(n−4)3 > 0 and
∂N4

∂ p

(
n,

n+4
n−4

)
=

20480n2

(n−4)2 > 0. (7.239)

By (7.237)-(7.238)-(7.239) there exists a unique pc > (n+4)/(n−4) such that

N4(n, p) > 0 for all p < pc , N4(n, pc) = 0 , N4(n, p) < 0 for all p > pc.

This proves Item 3 and completes the proof of the proposition. �

According to Proposition 7.97 we have in all cases

ν1 > 0, ν2 < 0, Reν4 ≤ Reν3 < 0.

This means that P has a three-dimensional stable manifold and a one-dimensional
unstable manifold.

We now show that there are only a few possible values for limt→−∞ v(t), provided
the limit exists. Here, v is as in (7.227). The following proposition holds indepen-
dently of the signs of the coefficients Ki (i = 1,2,3).

Proposition 7.98. Let v be a positive solution of (7.228) on (−∞, 1
4 logλ ) and as-

sume that there exists L ∈ [0,+∞] such that
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lim
t→−∞

v(t) = L .

Then L ∈ {0,K1/(p−1)
0 }.

Proof. In order to avoid confusion with respect to the time direction we switch to
the solution z of (7.229):

ziv(t)−K3z′′′(t)+K2z′′(t)−K1z′(t)+K0z(t) = zp(t) for t >−1
4

logλ .

For contradiction, assume first that L is finite and L 6∈ {0,K1/(p−1)
0 }. Then zp(t)−

K0z(t)→ α := Lp−K0L 6= 0 and for all ε > 0 there exists T > 0 such that

α− ε ≤ ziv(t)−K3z′′′(t)+K2z′′(t)−K1z′(t)≤ α + ε for all t ≥ T. (7.240)

Take ε ∈ (0, |α|) such that α− ε and α + ε have the same sign and let

δ := sup
t≥T
|z(t)− z(T )|< ∞.

Integrating (7.240) over [T, t] for any t ≥ T yields

(α−ε)(t−T )+C−|K1|δ ≤ z′′′(t)−K3z′′(t)+K2z′(t)≤ (α +ε)(t−T )+C+ |K1|δ ,

where C =C(T ) is a constant containing all the terms z(T ), z′(T ), z′′(T ) and z′′′(T ).
Repeating this procedure twice more gives

α− ε

6
(t−T )3 +O(t2)≤ z′(t)≤ α + ε

6
(t−T )3 +O(t2) as t→ ∞ .

This contradicts the assumption that z admits a finite limit as t→+∞.
Next, we exclude the case L = +∞. Assume by contradiction that

lim
t→+∞

z(t) = +∞. (7.241)

Then there exists T ∈ R such that

ziv(t)−K3z′′′(t)+K2z′′(t)−K1z′(t)≥ zp(t)
2

for all t ≥ T.

Moreover, by integrating this inequality over [T, t] (for t ≥ T ), we get

z′′′(t)−K3z′′(t)+K2z′(t)−K1z(t)≥ 1
2

∫ t

T
zp(s)ds+C for all t ≥ T, (7.242)

where C =C(T ) is a constant containing all the terms z(T ), z′(T ), z′′(T ) and z′′′(T ).
From (7.241) and (7.242) we deduce that there exists T ′≥ T such that α := z′′′(T ′)−
K3z′′(T ′)+ K2z′(T ′)−K1z(T ′) > 0. Since (7.228) is autonomous, we may assume
that T ′ = 0. Therefore, we have
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ziv(t)−K3z′′′(t)+K2z′′(t)−K1z′(t)≥ zp(t)
2

for all t ≥ 0 , (7.243)

z′′′(0)−K3z′′(0)+K2z′(0)−K1z(0) = α > 0 . (7.244)

We may now apply the test function method developed by Mitidieri-Pohožaev [308].
More precisely, fix T1 > T > 0 and a nonnegative function φ ∈C4

c [0,∞) such that

φ(t) =
{

1 for t ∈ [0,T ]
0 for t ≥ T1 .

In particular, these properties imply that φ(T1) = φ ′(T1) = φ ′′(T1) = φ ′′′(T1) = 0.
Hence, multiplying inequality (7.243) by φ(t), integrating by parts, and recalling
(7.244) yields∫ T1

0
[φ iv(t)+K3φ

′′′(t)+K2φ
′′(t)+K1φ

′(t)]z(t)dt ≥ 1
2

∫ T1

0
zp(t)φ(t)dt +α .

(7.245)
We now apply Young’s inequality. For any ε > 0 there exists C(ε) > 0 such that

zφ
(i) = zφ

1/p φ (i)

φ 1/p ≤ εzp
φ +C(ε)

|φ (i)|p/(p−1)

φ 1/(p−1) , φ
(i) =

diφ

dt i for i = 1,2,3,4.

Then, provided ε is chosen sufficiently small, (7.245) becomes

C
4

∑
i=1

∫ T1

0

|φ (i)(t)|p/(p−1)

φ 1/(p−1)(t)
dt ≥ 1

4

∫ T

0
zp(t)dt +α (7.246)

where C = C(ε,Ki) > 0. We now choose φ(t) = φ0( t
T ), where φ0 ∈C4

c [0,∞), φ0 ≥ 0
and

φ0(τ) =
{

1 for τ ∈ [0,1]
0 for τ ≥ τ1 > 1 .

As noticed in [308], there exists a function φ0 in such class satisfying moreover

∫
τ1

0

|φ (i)
0 (τ)|p/(p−1)

φ
1/(p−1)
0 (τ)

dτ =: Ai < ∞ (i = 1,2,3,4).

To see this, it suffices to fix any nonnegative nontrivial ϕ ∈C4
c [0,∞) and take φ0 =

ϕk for a sufficiently large integer power k. Thanks to a change of variables in the
integrals, (7.246) becomes

C
4

∑
i=1

AiT 1−ip/(p−1) ≥ 1
4

∫ T

0
zp(t)dt +α for all T > 0.

Letting T → ∞, the previous inequality contradicts (7.241). �
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7.11.2 Regular minimal solutions

The main goal here is to prove Theorem 7.90. We first prove the estimate (7.220)
for λ ∗. Let K0 be as in (7.221). Then the function

u(x) := |x|−4/(p−1)−1

is an explicit singular solution of the differential equation in (7.218) with λ = K0
and also a weak supersolution for (7.218) with parameter λ = K0. To see this, one
observes that u ∈ H2(B) in view of (7.226) and that also for biharmonic equations
one has a kind of Hopf lemma for the boundary data, see Theorem 5.7 and Lemma
7.9. This shows λ ∗ ≥ K0.

In order to show that λ ∗ < Λ2,1/p, we proceed as for (7.43), that is, we multi-
ply (7.218) by a positive first eigenfunction ϕ1 (see Theorem 3.7) of the Dirichlet
problem and obtain

Λ2,1

∫
B

uϕ1 dx =
∫

B
u∆

2
ϕ1 dx = λ

∫
B
(1+u)p

ϕ1 dx > pλ

∫
B

uϕ1 dx, (7.247)

thereby proving the desired inequality.
We now turn to the most difficult part of Theorem 7.90, namely the immediate

switch from existence of regular minimal solutions to nonexistence even of singular
solutions. We start by proving boundedness of the transformed function v.

Lemma 7.99. Let u be a radial solution of the Dirichlet problem (7.218), and define
the corresponding functions U =U(r) and v = v(t) according to (7.225) and (7.227)
respectively for r ∈ (0,

4√
λ ) and t ∈ (−∞, 1

4 logλ ). Then v is bounded.

Proof. By contradiction, assume that v is not bounded. In view of Proposition 7.98
we may exclude that the limit as t→−∞ exists. Hence, we assume that

0≤ liminf
t→−∞

v(t) < limsup
t→−∞

v(t) = +∞.

Then there exists a sequence tk→−∞ of local maxima for v such that for all k

lim
k→+∞

v(tk) = +∞, v′(tk) = 0. (7.248)

Define
λk = vp−1(tk) (7.249)

so that
lim

k→+∞
λk = +∞.

Since (7.228) is an autonomous equation, the translated function

ṽk(t) = v(t + tk−
1
4

logλk), t ∈ (−∞,
1
4

logλ − tk +
1
4

logλk)
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also solves (7.228). In particular, the function

Ũk(r) = r−4/(p−1)ṽk(logr)

is a radial solution of equation (7.225) which satisfies the conditions

Ũk(
4
√

λk) = λ
−1/(p−1)
k ṽk(

1
4

logλk) = λ
−1/(p−1)
k v(tk) = 1 (7.250)

and by (7.232), (7.248), (7.249)

Ũ ′k(
4
√

λk) =− 4
p−1

λ
−1/4
k < 0. (7.251)

Next, we define the radial function

uk(r) = Ũk(
4
√

λkr)−1 = λ
−1/(p−1)
k e4tk/(p−1)U

(
retk
)
−1

so that by (7.250) and (7.251) we have
∆ 2uk = λk(1+uk)p, uk > 0 in B,

uk = 0 on ∂B,

−∂uk

∂ν
=

4
p−1

> 0 on ∂B.

This boundary value problem is solved in a weak sense, since U is a weak solution of
(7.225). In view of the comparison principle in B with respect to the boundary datum
∂u
∂ν

, see Theorem 5.6, this shows that uk is a weak supersolution for the problem{
∆ 2u = λk(1+u)p, u > 0 in B,
u = |∇u|= 0 on ∂B.

(7.252)

By standard arguments, see for example [40, Lemma 3.3], we infer that for any
λk problem (7.252) admits a weak solution. Since λk → +∞ this contradicts the
nonexistence of solutions of (7.218) for large λ , see (7.247). This completes the
proof of the lemma. �

In Section 7.11.1 we transformed the differential equation in (7.218) for radial
functions into the autonomous system (7.233) which has two critical points O and
P. With the help of the former we give a precise characterisation of regular solutions
of (7.218).

Proposition 7.100. Let u = u(r) be a radial solution of (7.218) and let

W (t) = (w1(t),w2(t),w3(t),w4(t))

be the corresponding trajectory relative to (7.233). Then u is regular (i.e. u∈ L∞(B))
if and only if
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lim
t→−∞

W (t) = O.

Proof. If W corresponds to a regular solution, it is obvious that limt→−∞ W (t) = O.
Let us now assume conversely that limt→−∞ W (t) = O; we have to prove that the
corresponding solution u of (7.218) is regular. We calculate the eigenvectors of MO
corresponding to the positive eigenvalues i.e. spanning the unstable manifold. These
are

W1 =

(
1,2,4

p+1
p−1

,8
(

p+1
p−1

)2
)

for µ1 = 2
p+1
p−1

;

W2 = (1,0,0,0) for µ2 =
4

p−1
.

Since µ1 > µ2, all trajectories approaching O as t →−∞ are tangent to W2 except
one, which is tangent to W1, see [36] for p 6= 3 and [219] for p = 3.

But for a solution to (7.218), the latter case cannot occur, since one always has
u(r) > 0,u′(r) ≤ 0, i.e. w1 > 0,w2 ≤ 0. So, for any solution of (7.218), we may
conclude that ru′(r) = o(u(r)) for r↘ 0. That means that for any ε > 0 and r > 0
close enough to 0 we have

−ε <
ru′(r)
u(r)

≤ 0.

Integration yields that for r↘ 0

0≤ u(r)≤Cr−ε .

Using this information, the differential equation and limt→∞ W (t) = 0, i.e.

r4/(p−1)u(r)→ 0, r1+4/(p−1)u′(r)→ 0,

r2+4/(p−1)∆u(r)→ 0, r3+4/(p−1) (∆u)′ (r)→ 0,

successive integrations of (7.218) show that

(∆u)′ (r) = O(1), ∆u(r) = O(1), u′(r) = O(1), u(r) = O(1)

for r↘ 0. This proves that u is regular. �

We may now prove

Proposition 7.101. Assume that us is a solution of (7.218) with parameter λs. Then
the Dirichlet problem (7.218) has for any λ ∈ (0,λs) a regular radially decreasing
minimal solution.

Proof. Suppose that us is a solution of (7.218) corresponding to λ = λs. After
possibly replacing us by the minimal solution of (7.218) corresponding to λ = λs,
we may assume that us is radial. We look for a regular solution of (7.218) for a fixed
λ ∈ (0,λs). Put u0 = us and define u1 = λ

λs
u0 so that u1 solves
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B

u1∆
2
ϕ dx = λ

∫
B
(1+u0)p

ϕ dx for all ϕ ∈C4(B)∩H2
0 (B).

We define by iteration uk as the unique solution of∫
B

uk∆
2
ϕ dx = λ

∫
B
(1+uk−1)p

ϕ dx for all ϕ ∈C4(B)∩H2
0 (B). (7.253)

By Proposition 3.6 we deduce that

0 < umin ≤ uk ≤ uk−1 for all k ≥ 1, (7.254)

where umin denotes the minimal solution of (7.218) with respect to the parameter λ .
By monotone convergence it follows that there exists u ∈ Lp(B) such that uk→ u in
Lp(B) as k→ ∞, u≥ umin. Moreover, passing to the limit in (7.253) we have∫

B
u∆

2
ϕ dx = λ

∫
B
(1+u)p

ϕ dx for all ϕ ∈C4(B)∩H2
0 (B).

Fix ϑ ∈ ( λ

λs
,1) and introduce a strictly increasing sequence (ϑk) with λ

λs
< ϑk < ϑ

for any k ≥ 1. Note that for any α > 0 and for any β > α there exists γ > 0 such
that for all s≥ 0

(1+αs)p ≤ β
p(1+ s)p + γ. (7.255)

By (7.255) there exists C1 > 0 such that for all ϕ ∈C4(B), ϕ ≥ 0, ϕ = |∇ϕ|= 0 on
∂B ∫

B
u2∆

2
ϕ dx = λ

∫
B
(1+u1)p

ϕ dx = λ

∫
B

(
1+

λ

λs
u0

)p

ϕ dx

≤ λ

∫
B

(
ϑ

p
1 (1+u0)p +C1

)
ϕ dx =

∫
B
(ϑ p

1 u1 +λC1ψ)∆ 2
ϕ dx,

where ψ is the unique solution of the Dirichlet problem{
∆ 2ψ = 1 in B,
ψ = |∇ψ|= 0 on ∂B.

The weak comparison principle (Proposition 3.6) yields

u2 ≤ ϑ
p
1 u1 +λC1ψ ≤ ϑ1u1 +λC1ψ.

Iterating this procedure we prove that for any k ≥ 1 there exists Ck > 0 such that

uk+1 ≤ ϑkuk +λCkψ. (7.256)

Since we chose λ

λs
< ϑk < ϑ < 1 it follows by (7.256) that for any k ≥ 1

uk ≤ (ϑ)ku0 +Dk for all k ≥ 1 (7.257)
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for suitable Dk > 0. Therefore, for any ε > 0 there exists k such that (ϑ)k < ε and
hence, by (7.254) and (7.257), we have

0≤ u≤ uk ≤ εu0 +Dk.

From this we deduce that for any ε > 0

0≤ limsup
r↘0

r4/(p−1)u(r)≤ limsup
r↘0

(
εr4/(p−1)u0(r)+ r4/(p−1)Dk

)
= εL,

where L = limsupr↘0 r4/(p−1)u0(r) is finite according to Lemma 7.99. This proves
that

lim
r↘0

r4/(p−1)u(r) = 0.

Finally by (7.227), Propositions 7.96 and 7.100 we conclude that u ∈ L∞(B).
The minimal solution umin may now be obtained by means of an iterative pro-

cedure starting with 0. Radial symmetry is hence obvious, see also Theorem 7.1.
Furthermore, the equation written in radial coordinates shows that u is radially de-
creasing. �

Proof of Theorem 7.90. First, we remark that Items 1 and 3 are proved by Proposi-
tion 7.101.

As for Item 2, i.e. existence of a possibly singular solution for the extremal pa-
rameter λ ∗, we obtain by means of a generalised Pohožaev identity uniform bounds
for minimal regular solutions to (7.218) (for λ ∈ (0,λ ∗)) in H2

0 ∩Lp+1(B), which
allows to take a monotone limit as λ ↗ λ ∗.

The estimates (7.220) are proved at the beginning of this section. �

7.11.3 Characterisation of singular solutions

Let u be a radial singular solution of (7.218) and let v = v(t) be the corresponding
function defined in (7.227). Let z(t) = v(−t) so that z(t) solves the equation (7.229)
for t >− 1

4 logλ .
We introduce here the energy function

E(t) :=
1

p+1
z(t)p+1− K0

2
z(t)2− K2

2
|z′(t)|2 +

1
2
|z′′(t)|2. (7.258)

This energy function will prove to be a useful tool to establish integrability prop-
erties of z. These are essential in order to characterise singular solutions in terms of
critical points of the dynamical system (7.233). See Proposition 7.107 below which
is the main result of this section.

The first result is analogous to Proposition 7.96.
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Lemma 7.102. Let z :
(
− 1

4 logλ ,∞
)
→ R be the solution of (7.229) corresponding

to a radial singular solution of (7.218). Then for k = 1, . . . ,4 the functions z and z(k)

are bounded in
(
− 1

4 logλ ,∞
)
.

Proof. By Lemma 7.99 it follows that z(t) = v(−t) is bounded in
(
− 1

4 logλ ,∞
)
.

Put I =
(
− 1

4 logλ ,∞
)

and t0 = − 1
4 logλ . Then zp(t)−K0z(t) is bounded in I and

hence, by local Lq–estimates for fourth order elliptic equations (see Section 2.5.2),
we infer that for any q > 1 there exists a constant Cq > 0 such that for any t > t0 +1
we have

‖z( .)‖W 4,q(t−1,t+2) ≤Cq ‖z‖L∞(I) .

By combining Sobolev embeddings and local Schauder estimates we conclude that
there exists a positive constant independent of t, still called Cq, such that

‖z( .)‖C4,γ (t,t+1) ≤Cq ‖z‖L∞(I) .

�

In the next four lemmas we prove some summability properties for the function
z and its derivatives.

Lemma 7.103. Let t0 =− 1
4 logλ . Then∫
∞

t0
|z′(s)|2ds+

∫
∞

t0
|z′′(s)|2ds < ∞.

Proof. Let E(t) be the function defined in (7.258). For any t > t0 we obtain by
integration by parts and exploiting (7.229)

E(t)−E(t0) =
∫ t

t0
E ′(s)ds =

∫ t

t0

(
zpz′−K0zz′−K2z′z′′+ z′′z′′′

)
ds

= z′(t)z′′′(t)− z′(t0)z′′′(t0)+
∫ t

t0
z′
(
zp−K0z−K2z′′− ziv) ds

= z′(t)z′′′(t)− z′(t0)z′′′(t0)+
∫ t

t0
z′
(
−K3z′′′−K1z′

)
ds

= z′(t)z′′′(t)− z′(t0)z′′′(t0)−K3z′(t)z′′(t)+K3z′(t0)z′′(t0)

+
∫ t

t0

(
K3z′′(s)2−K1z′(s)2) ds. (7.259)

By Lemma 7.102 it follows that E(t) and the functions z′(t),z′′(t),z′′′(t) are bounded
in I = (t0,∞), while around t0 they are obviously smooth. This together with (7.259)
and the fact that K3 > 0,K1 < 0 proves the claim. �

Lemma 7.104. We have ∫
∞

t0
|z′′′(s)|2ds < ∞.

Proof. We multiply the equation (7.229) by z′′ and integrate over (t0, t) to obtain
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t0

(
ziv(s)−K3z′′′(s)+K2z′′(s)−K1z′(s)+K0z(s)

)
z′′(s) ds =

∫ t

t0
zp(s)z′′(s) ds.

(7.260)
First, we prove that all the lower order terms in the integral identity (7.260) are
bounded. By Lemmas 7.102, 7.103, and integrating by parts we have∣∣∣∣∫ t

t0
z(s)z′′(s) ds

∣∣∣∣≤ |z(t)z′(t)|+ |z(t0)z′(t0)|+∫ t

t0
|z′(s)|2ds = O(1) as t→ ∞.

By Lemma 7.103 and Hölder’s inequality we have∣∣∣∣∫ t

t0
z′(s)z′′(s) ds

∣∣∣∣≤ (∫ t

t0
|z′(s)|2ds

)1/2(∫ t

t0
|z′′(s)|2ds

)1/2

= O(1) as t→ ∞.

By Lemma 7.102, integrating by parts, and Lemma 7.103, we obtain∣∣∣∣∫ t

t0
zp(s)z′′(s) ds

∣∣∣∣≤ |zp(t)z′(t)|+ |zp(t0)z′(t0)|+
∣∣∣∣∫ t

t0
pzp−1(s)z′(s)2 ds

∣∣∣∣= O(1)

as t→ ∞. Using again Lemma 7.102 we conclude that∣∣∣∣∫ t

t0
z′′′(s)z′′(s) ds

∣∣∣∣≤ 1
2
|z′′(t)|2 +

1
2
|z′′(t0)|2 = O(1) as t→ ∞.

Finally, after integrating by parts we infer that∫ t

t0
|z′′′(s)|2ds = z′′′(t)z′′(t)− z′′′(t0)z′(t0)−

∫ t

t0
ziv(s)z′′(s) ds = O(1) as t→ ∞

in view of Lemmas 7.102, 7.103, and by inserting the above estimates into (7.260).
This completes the proof of the lemma. �

Lemma 7.105. We have ∫
∞

t0
|ziv(s)|2ds < ∞.

Proof. We multiply the equation (7.229) by ziv and integrate over (t0, t) to obtain∫ t

t0
|ziv(s)|2ds =

∫ t

t0

(
zp(s)−K0z(s)+K1z′(s)−K2z′′(s)+K3z′′′(s)

)
ziv(s) ds.

(7.261)
Arguing as in the proof of Lemma 7.104 one can easily prove that the right hand side
of (7.261) remains bounded as t→ ∞. This completes the proof of the lemma. �

Lemma 7.106. We have ∫
∞

t0
z2(s)|zp−1(s)−K0|2ds < ∞.

Proof. Using the differential equation (7.229) we obtain
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ziv(s)−K3z′′′(s)+K2z′′(s)−K1z′(s)

)2
= z2(s)|zp−1(s)−K0|2.

The proof of the lemma follows immediately from Lemmas 7.103 and 7.105. �

By considering the autonomous system (7.233) we can now characterise singular
solutions of (7.218). The next result is the complement to Proposition 7.100

Proposition 7.107. Let u = u(r) be a radial solution of (7.218) and let

W (t) = (w1(t),w2(t),w3(t),w4(t))

be the corresponding trajectory relative to (7.233). Then u is singular if and only if

lim
t→−∞

W (t) = P.

Proof. Let W = (w1,w2,w3,w4) be the solution of the dynamical system (7.233)
corresponding to a radial singular solution u of (7.218). In view of Lemmas 7.103
and 7.106, we infer that

there exists {σk} such that σk+1 < σk, lim
k→∞

σk =−∞, lim
k→+∞

(σk+1−σk) = 0

and such that
either lim

k→∞
W (σk) = P or lim

k→∞
W (σk) = O. (7.262)

Then we claim that (7.262) holds on the whole real line, without extracting a subse-
quence, that is

either lim
t→−∞

W (t) = P or lim
t→−∞

W (t) = O (7.263)

respectively in the two cases of (7.262). We prove that the first alternative in (7.262)
implies the first alternative in (7.263), the implication with the corresponding second
alternative (obtained by replacing P with O) being similar. So, assume for contradic-
tion that limk→∞ W (σk) = P and that limt→−∞ W (t) does not exist. Then there would
exist a subsequence (k`)`∈N with the following properties: for any small enough
ε > 0 there exists `ε such that for all `≥ `ε one has that∣∣W (σk`

)−P
∣∣< ε, σk`

−σk`+1 < ε
2

and moreover there exists θ` ∈ (σk`+1,σk`
) with

|W (s)−P|< 2ε for all s ∈ (θ`,σk`
) and |W (θ`)−P|= 2ε.

The triangle inequality shows that |W (θ`)−W (σk`
)|> ε and hence

1
σk`
−θ`

∣∣W (θ`)−W (σk`
)
∣∣> 1

ε
.
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By the mean value theorem we conclude that

1
ε

<
1

σk`
−θ`

∣∣∣∣∫ σk`

θ`

W ′(s)ds
∣∣∣∣≤ 1

σk`
−θ`

∫
σk`

θ`

∣∣W ′(s)∣∣ ds

so that there exists τ` ∈ [θ`,σk`
] with

∣∣W ′(τ`)
∣∣> 1

ε
.

Since ε is arbitrarily small,
∣∣W (σk`

)−P
∣∣< ε , |W (τ`)−P| ≤ 2ε and since W solves

system (7.233), this is impossible for large enough `. This contradiction shows that
(7.263) holds.

In view of Proposition 7.100 we may exclude the second case in (7.263) since
it would imply that u is a regular solution. Therefore, only the first case may occur
and this proves that if W corresponds to a radial singular solution u of (7.218), then
limt→−∞ W (t) = P. The converse conclusion is obvious. �

The energy function defined in (7.258) will help us to specify further the be-
haviour of singular solutions of (7.218) near r = 0. To this end we may assume by
Proposition 7.107 that

lim
t→∞

z(t) = K1/(p−1)
0 .

Next we prove the following.

Lemma 7.108. Let us be a singular solution of (7.218) with parameter λs and let
z(t) : (− 1

4 logλs,∞)→ (0,∞) be the corresponding solution of (7.229). Then it can-
not happen that z′(t0) = 0 for some t0.

Proof. Assume by contradiction that z′(t0) = 0 for some t0. Then by (7.232), we
have that z′(− 1

4 logλs) 6= 0 and hence, z is not a constant. We infer from (7.259) that
for any t > t0

E(t)−E(t0) = z′(t)z′′′(t)−K3z′(t)z′′(t)+
∫ t

t0

(
K3z′′(s)2−K1z′(s)2) ds.

Letting t→ ∞ and observing Proposition 7.96 yields

E(∞)−E(t0) =
∫

∞

t0

(
K3z′′(s)2−K1z′(s)2) ds > 0

⇒− p−1
2(p+1)

K(p+1)/(p−1)
0 >

1
p+1

z(t0)p+1− K0

2
z(t0)2 +

1
2
|z′′(t0)|2

≥min
ζ≥0

(
ζ p+1

p+1
− K0

2
ζ

2
)

=− p−1
2(p+1)

K(p+1)/(p−1)
0 ,

a contradiction. �
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Proof of Theorem 7.93. We know from (7.232) that

v′(
1
4

logλs) =
4

p−1
v(

1
4

logλs) > 0

so that
z′(−1

4
logλs) < 0.

Lemma 7.108 then shows that for all t ≥− 1
4 logλs we have

z′(t) < 0 ⇒ z(t) > K1/(p−1)
0 ⇒ U(x) > K1/(p−1)

0 |x|−4/(p−1)

so that

us(x) >

(
K0

λs

)1/(p−1)

|x|−4/(p−1)−1.

In particular 0 = us(1), which entails λs > K0.
Finally, as a straightforward consequence of Proposition 7.107, we obtain the

asymptotic behaviour of singular solutions at the origin. If us is a singular radial
solution of (7.218) with parameter λs, then

us(r)∼
(

K0

λs

)1/(p−1)

r−4/(p−1) as r→ 0.

This completes the proof. �

Remark 7.109. With a completely analogous proof one can show a similar result for
different nonlinearities such as f (u) = eu or f (u) = (1− u)−k for k > 1. See [39].
Here one can also find related results under Steklov boundary conditions.

7.11.4 Stability of the minimal regular solution

In this section we shall give the proof of Theorem 7.91.
Let λ ∈ (0,λ ∗), and let uλ be the corresponding minimal solution. By Proposition

7.101 we know that uλ is a regular solution. Consider the following weighted η-
eigenvalue problem {

∆ 2ψ = ηλ p(1+uλ )p−1ψ in B,
ψ = |∇ψ|= 0 on ∂B,

(7.264)

and let

η1(λ ) = inf
ψ∈H2

0 (B)\{0}

∫
B
|∆ψ|2 dx

λ p
∫

B
(1+uλ )p−1

ψ
2 dx

(7.265)
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be the corresponding first eigenvalue. Since uλ ∈ L∞(B), we infer by compactness
of the embedding H2

0 (B) ⊂ L2(B) that the minimum in (7.265) is achieved. Note
that by the Lagrange multiplier method any minimiser ψ1 of η1(λ ) solves (7.264)
with η = η1(λ ).

Since uλ is a regular solution of (7.218), we infer by Lq–estimates for fourth
order elliptic equations and Schauder estimates that both uλ and ψ1 are classical
solutions of (7.218) and (7.264), respectively. In the next lemma we show that ψ1
does not change sign in B.

Lemma 7.110. Let ψ1 be a minimiser for η1(λ ). Then ψ1 > 0 in B up to a constant
multiple.

Proof. This can be obtained by using the dual cones decomposition, exactly in the
same way as in the proof of Theorem 3.7. �

Lemma 7.111. Let η1(λ ) be the first eigenvalue of (7.264). Then η1(λ ) > 1.

Proof. Fix λ ∈ (λ ,λ ∗) and consider the corresponding minimal solution u
λ

of
(7.218). Since uλ ,u

λ
are minimal solutions for the respective problems, we have

that uλ ≤ u
λ

in B. Boggio’s maximum principle yields uλ < u
λ

in B. By Lemma
7.110 we may fix a positive minimiser ψ1 of (7.265). Convexity of s 7→ (1 + s)p

yields

λ pη1(λ )
∫

B
(u

λ
−uλ )(1+uλ )p−1

ψ1 dx =
∫

B
(u

λ
−uλ )∆ 2

ψ1 dx

=
∫

B

[
λ (1+u

λ
)p−λ (1+uλ )p

]
ψ1 dx > λ

∫
B

[
(1+u

λ
)p− (1+uλ )p]

ψ1 dx

≥ λ p
∫

B
(1+uλ )p−1(u

λ
−uλ )ψ1 dx.

This proves that η1(λ ) > 1. �

Proof of Theorem 7.91. Consider now the first eigenvalue µ1(λ ) for the linearised
operator ∆ 2−λ p(1+uλ )p−1. We have

µ1(λ ) = inf
w∈H2

0 (B)\{0}

∫
B
|∆w|2 dx−λ p

∫
B
(1+uλ )p−1w2 dx∫

B
w2 dx

.

Observing that η1(λ ) > 1 by Lemma 7.111, we have for any w ∈ H2
0 (B)∫

B
|∆w|2dx−λ p

∫
B
(1+uλ )p−1w2 dx ≥

(
1− 1

η1(λ )

)∫
B
|∆w|2 dx

≥ Λ2,1

(
1− 1

η1(λ )

)∫
B

w2 dx,
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where Λ2,1 denotes the first eigenvalue of the linear Dirichlet problem. It follows
that

µ1(λ )≥Λ2,1

(
1− 1

η1(λ )

)
> 0.

This completes the proof of Theorem 7.91. �

Proof of Theorem 7.94. We make use of an idea from [131]. Let uλ denote the
positive minimal regular solution of (7.218) for 0≤ λ < λ ∗. According to Theorem
7.91 these are stable so that one has in particular∫

B
(∆ϕ(x))2 dx− pλ

∫
B
(1+uλ (x))p−1

ϕ(x)2 dx≥ 0 for all ϕ ∈C∞
c (B).

By taking the monotone limit we obtain that∫
B
(∆ϕ(x))2 dx− pλ

∗
∫

B
(1+u∗(x))p−1

ϕ(x)2 dx≥ 0 for all ϕ ∈C∞
c (B).

(7.266)
We assume now for contradiction that u∗ is singular. Then according to Theorem
7.93 we have the following estimate from below:

u∗(x) >

(
K0

λ ∗

)1/(p−1)

|x|−4/(p−1)−1.

Combining this with (7.266) yields∫
B
(∆ϕ(x))2 dx≥ pK0

∫
B

ϕ(x)2

|x|4
dx for all ϕ ∈C∞

c (B).

However under the “subcriticality” assumptions that we made it follows that we
have pK0 > n2(n−4)2/16. This contradicts the optimality of the constant in Hardy’s
inequality∫

B
(∆ϕ(x))2 dx≥ n2(n−4)2

16

∫
B

ϕ(x)2

|x|4
dx for all ϕ ∈C∞

c (B) ,

see [353] and the more recent paper [130]. Therefore, u∗ is regular. �

7.11.5 Existence and uniqueness of a singular solution

Existence of a singular solution for a parameter λ to be specified will be shown by
passing to the limit in a sequence of suitably rescaled regular solutions u to (7.218).
We recall the transformation used throughout Section 7.11.1

U(x) = 1+u(x/ 4√
λ ) for x ∈ B 4√

λ
(0)
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so that we shall study the equation

∆
2U = U p in B 4√

λ
(0). (7.267)

Since the equation (7.267) is invariant under the scaling

Ua(x) = aU(a
p−1

4 x)

i.e. U is a solution of (7.267) if and only if Ua is a solution of (7.267), it is not
restrictive to concentrate our attention on solutions U of the equation (7.267) which
satisfy the condition U(0) = 1.

Next we define Uγ = Uγ(r) as the unique solution of the initial value problem
(see (7.224))

U iv
γ +

2(n−1)
r

U ′′′γ +
(n−1)(n−3)

r2 U ′′γ −
(n−1)(n−3)

r3 U ′γ = |Uγ |p−1Uγ ,

Uγ(0) = 1, U ′γ(0) = U ′′′γ (0) = 0, U ′′γ (0) = γ < 0.

(7.268)

We report here a crucial result from [182].

Lemma 7.112. Let n > 4 and p > (n+4)/(n−4).

1. There exists a unique γ < 0 such that the solution Uγ of (7.268) exists on the whole
interval [0,∞), it is positive everywhere, it vanishes at infinity and it satisfies
U ′

γ
(r) < 0 for any r ∈ (0,∞).

2. If γ < γ , there exist 0 < R1 < R2 < ∞ such that the solution Uγ of (7.268) satisfies
Uγ(R1) = 0, limr↗R2 Uγ(r) =−∞ and U ′γ(r) < 0 for any r ∈ (0,R2).

3. If γ > γ , there exist 0 < R1 < R2 < ∞ such that the solution Uγ of (7.268) sat-
isfies U ′γ(r) < 0 for r ∈ (0,R1), U ′γ(R1) = 0, U ′γ(r) > 0 for r ∈ (R1,R2) and
limr↗R2 Uγ(r) = +∞.

4. If γ1 < γ2 < 0, then the corresponding solutions Uγ1 ,Uγ2 of (7.268) satisfy Uγ1 <
Uγ2 and U ′γ1

< U ′γ2
as long as they both exist.

5. r4/(p−1)Uγ(r)→ K1/(p−1)
0 as r→ ∞.

Proof. See the statements and proofs of [182, Theorem 2, Theorem 3, Lemma 2].�

For any γ < 0 let Uγ be the unique local solution of (7.268). Thanks to Item 3 in
Lemma 7.112, we may define Rγ for γ > γ as the unique value of r > 0 for which
we have U ′γ(Rγ) = 0.

The idea in constructing a singular solution to (7.218) consists in suitably scaling
Uγ( .)−Uγ(Rγ)|BRγ

to B and in finding a suitable subsequence for γ ↘ γ , which
locally converges in B \ {0} to a singular solution. A first step is proving Rγ → ∞

for γ ↘ γ .

Lemma 7.113. Let n > 4, p > (n + 4)/(n− 4) and γ be as in the statement of
Lemma 7.112. Then the map γ 7→ Rγ is non-increasing on the interval (γ,0) and
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lim
γ↘γ

Rγ = +∞.

Proof. The fact that the map γ 7→ Rγ is non-increasing on the interval (γ,0) follows
immediately by Items 3 and 4 of Lemma 7.112 and the definition of Rγ . This shows
that the function γ 7→ Rγ admits a limit as γ → γ . Suppose by contradiction that

R := lim
γ↘γ

Rγ < +∞.

Then by Lemma 7.112, Items 1 and 4, we have for all γ ∈ (γ,0) that

Uγ(Rγ) > Uγ(Rγ)≥Uγ(R) > 0. (7.269)

Define for any γ ∈ (γ,0), r ∈ [0,1] the function

uγ(r) =
Uγ(Rγ r)
Uγ(Rγ)

−1. (7.270)

Then uγ solves the Dirichlet problem{
∆ 2uγ = R4

γUγ(Rγ)p−1(1+uγ)p in B,

uγ = |∇uγ |= 0 on ∂B.
(7.271)

Since the function Uγ is decreasing on the interval (0,Rγ) we find that

Uγ(Rγ)≤Uγ(r)≤Uγ(0) = 1 for all r ∈ [0,Rγ ]. (7.272)

Then by (7.269) and (7.272) we obtain for all γ ∈ (γ,0) and all r ∈ [0,1) that

0≤ uγ(r)≤
1

Uγ(Rγ)
−1≤ 1

Uγ(R)
−1.

This shows that the set {uγ : γ ∈ (γ,0)} is bounded in L∞(B) and hence by a bootstrap
argument, from (7.271) and the fact that R4

γUγ(Rγ)p−1 ≤ λ ∗ (see (7.219) for the
definition of λ ∗), we deduce that there exists a sequence γk ↘ γ and a function
u ∈ H2

0 (B)∩C∞(B) such that

uγk → u in C4(B) (7.273)

as k→∞. Take any r ∈ [0,R). Since Rγk ↗ R, there exists k = k(r) such that r < Rγk

for any k > k. Hence, for k > k, we may take r/Rγk instead of r in (7.270) and obtain

Uγk(r) = Uγk(Rγk)
(

uγk

(
r/Rγk

)
+1
)
. (7.274)

Since the sequence (γk) is decreasing, we infer by Items 3 and 4 of Lemma 7.112 that
Uγk(Rγk) is non-increasing. By (7.269), Uγk(Rγk) is also bounded from below and
hence admits a strictly positive limit. Thanks to (7.273) we also have uγk(r/Rγk)→
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u(r/R) as k→ ∞. Therefore by (7.274) we deduce that for any r ∈ [0,R)

U(r) := lim
k→∞

Uγk(r) =
(

lim
k→∞

Uγk(Rγk)
)(

u(r/R)+1
)
. (7.275)

In fact, we deduce from (7.273) and (7.274) that Uγk → U in C4([0,R]) for any
0 < R < R. Since u ∈ H2

0 (B), (7.275) shows that

lim
r↗R

U ′(r) = 0. (7.276)

On the other hand, by continuous dependence on the initial conditions it follows

lim
k→∞

Uγk(r) = Uγ(r) for all r ∈ [0,R)

and hence U(r) = Uγ(r) for any r ∈ [0,R). This with (7.276) implies

lim
r↗R

U ′γ(r) = 0,

which is absurd since U ′
γ
(R) < 0, see Item 1 in Lemma 7.112. This completes the

proof of the lemma. �

Lemma 7.114. Let n > 4 and p > (n+4)/(n−4) and let u be a regular solution of
(7.218). Then

u(x)≤
(

λ ∗

λ

)1/(p−1)

|x|−4/(p−1)−1 for all x ∈ B\{0}.

Proof. Let u be a regular solution of (7.218) for some λ > 0 and define the scaled
function

U(x) =
1

1+u(0)

(
1+u

(
x

4√
λ (1+u(0))

p−1
4

))
(7.277)

so that U satisfies

∆
2U = U p in BR(0) and U(0) = 1

where we put R = 4√
λ (1+u(0))

p−1
4 . Let

M = max
r∈[0,R]

r4/(p−1)U(r)

and let R ∈ (0,R] be such that R4/(p−1)U(R) = M. Defining

w(r) =
U(Rr)
U(R)

−1 ,
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we obtain a solution of∆ 2w = R4U(R)p−1(1+w)p in B,
w = 0 on ∂B,
w′ ≤ 0 on ∂B.

This proves that Mp−1 = R4U(R)p−1 ≤ λ ∗ since otherwise by the super-subsolution
method, see [40, Lemma 3.3] for the details, we would obtain a solution of (7.218)
for λ = R4U(R)p−1 > λ ∗. This yields for all r ∈ [0,R] that

U(r)≤Mr−4/(p−1) ≤ (λ ∗)1/(p−1)r−4/(p−1). (7.278)

Then reversing the identity (7.277), by (7.278) we obtain

u(r) = λ
−1/(p−1)R4/(p−1)U(Rr)−1≤

(
λ ∗

λ

)1/(p−1)

r−4/(p−1)−1

which completes the proof of the lemma. �

Proof of Theorem 7.92. For γ ∈ (γ,0) consider the corresponding solution Uγ of
the Cauchy problem (7.268) and the function uγ introduced in (7.270). If we put
λγ = R4

γUγ(Rγ)p−1, then by (7.271) we have that uγ solves{
∆ 2uγ = λγ(1+uγ)p in B,
uγ = |∇uγ |= 0 on ∂B.

(7.279)

We show that λγ remains bounded away from zero for γ > γ sufficiently close to γ ,
which is defined in Lemma 7.112. By Item 5 of Lemma 7.112 we infer that for a
fixed ε ∈ (0,K1/(p−1)

0 ) there exists a corresponding rε > 0 such that

Uγ(r) > (K1/(p−1)
0 − ε)r−4/(p−1) for all r > rε . (7.280)

On the other hand, by Lemma 7.113, we deduce that there exists γ0 ∈ (γ,0) such
that for any γ ∈ (γ,γ0) then Rγ > rε . Therefore by Item 4 of Lemma 7.112 we obtain
for all γ ∈ (γ,γ0)

Uγ(Rγ) > Uγ(Rγ) > (K1/(p−1)
0 − ε)R−4/(p−1)

γ

and this yields for all γ ∈ (γ,γ0)

λγ > (K1/(p−1)
0 − ε)p−1 =: C. (7.281)

Combining (7.281) and Lemma 7.114 we obtain for all γ ∈ (γ,γ0), x ∈ B\{0}

uγ(x)≤
(

λ ∗

C

)1/(p−1)

|x|−4/(p−1)−1. (7.282)
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Since p > (n+4)/(n−4) and uγ solves (7.279), we obtain by (7.282)∫
B
|∆uγ |2dx = λγ

∫
B
(1+uγ)puγ dx≤ λ

∗
∫

B
(1+uγ)p+1dx

≤ (λ ∗)
2p

p−1

C
p+1
p−1

∫
B
|x|−

4(p+1)
p−1 dx < +∞.

This proves that the set {uγ : γ ∈ (γ,γ0)} is bounded in H2
0 (B) and hence there exists

a sequence γk↘ γ and a function u ∈H2
0 (B) such that uγk ⇀ u in H2

0 (B). Moreover,
by (7.282) and applying Lebesgue’s theorem, u weakly solves (7.218) for a suitable
λ̃ ≥C.

It remains to prove that the function u is unbounded. For simplicity, in the rest of
the proof uγk ,Uγk ,Rγk ,λγk will be called respectively uk,Uk,Rk,λk.

By compact embedding we have that uk→ u in L1(B) and hence we have

lim
r↘0

1
|Br(0)|

∫
Br(0)

u(x)dx = lim
r↘0

(
1

enrn lim
k→∞

∫
Br(0)

uk(x)dx
)

and passing to radial coordinates, we obtain by (7.270) and Item 4 of Lemma 7.112

lim
r↘0

1
enrn

∫
Br(0)

u(x)dx = lim
r↘0

(
−1+

n
rn lim

k→∞

∫ r

0

Uk(Rkρ)
Uk(Rk)

ρ
n−1dρ

)
= lim

r↘0

(
−1+

n
rn lim

k→∞

1
Rn

kUk(Rk)

∫ Rkr

0
Uk(ρ)ρn−1dρ

)
≥ lim

r↘0

(
−1+

n
rn lim

k→∞

1
Rn

kUk(Rk)

∫ Rkr

0
Uγ(ρ)ρn−1dρ

)
. (7.283)

By (7.280) we have that there exist C,R0 > 0 such that

Uγ(ρ) > Cρ
−4/(p−1) for all ρ ∈ (R0,∞).

Hence, we have for k > k = k(r)∫ Rkr

0
Uγ(ρ)ρn−1dρ ≥

∫ R0

0
Uγ(ρ)ρn−1dρ +

C
n− 4

p−1

(
R

n− 4
p−1

k rn− 4
p−1 −R

n− 4
p−1

0

)
.

(7.284)
Since p > (n + 4)/(n− 4) > (n + 4)/n, since λk is bounded away from zero by
(7.281), and since Rk→ ∞ by Lemma 7.113 as k→ ∞, we find

lim
k→∞

Rn
kUk(Rk) = lim

k→∞
R

n− 4
p−1

k λ

1
p−1

k = +∞.

Hence, we obtain by (7.284)
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lim
k→∞

1
Rn

kUk(Rk)

∫ Rkr

0
Uγ(ρ)ρn−1dρ

≥ liminf
k→∞

C(
n− 4

p−1

)
Rn

kUk(Rk)

(
R

n− 4
p−1

k rn− 4
p−1 −R

n− 4
p−1

0

)

= liminf
k→∞

Crn− 4
p−1(

n− 4
p−1

)
λ

1/(p−1)
k

≥ Crn− 4
p−1(

n− 4
p−1

)
(λ ∗)1/(p−1)

=: C̃rn− 4
p−1 .(7.285)

Inserting (7.285) in (7.283) we obtain

lim
r↘0

1
enrn

∫
Br(0)

u(x)dx≥ lim
r↘0

(−1+nC̃r−4/(p−1)) = +∞.

This proves that u /∈ L∞(B). The existence of a parameter λs > 0 and of the corre-
sponding singular solution us is so proved.

Concerning uniqueness of λs and us, we refer to Propositions 3.1 and 3.2 by
Dávila-Flores-Guerra [132] which are based on a slightly modified version of
(7.233) for W = (w1,w2,w3,w4), see (2.12) in their paper. �

Sketch of the basic ideas of the proof of Theorem 7.95. The analysis by Dávila-
Flores-Guerra [132] is based on the Emden-Fowler transform (7.227) of (7.218) and
on the just mentioned modified version of (7.233) for W = (w1,w2,w3,w4). The sta-
bility analysis of the stationary points O and P, which is performed in Section 7.11.1,
plays a crucial role. According to Proposition 7.100, regular solutions are charac-
terised by limt→−∞ W (t) = O while, according to Proposition 7.107, singular solu-
tions correspond to limt→−∞ W (t) = P. Dirichlet boundary conditions mean that the
corresponding trajectories intersect the hyperplane H = {w2 = 0}. The goal is to
understand all trajectories W ( .) solving (7.233) and intersecting H .

As a first observation, Ferrero-Gazzola-Grunau-Karageorgis [168, 182] proved
that in the parameter regime below pc one has a heteroclinic orbit We connecting O
to P which, for t→ ∞, spirals infinitely many times around P in its stable manifold.
This corresponds to an entire solution of ∆ 2U = U p oscillating around the singular
solution ū, see (7.222).

Secondly, one has – up to a shift in time – precisely one singular orbit Ws – i.e.
limt→−∞ Ws(t) = P – intersecting H in a point Q0. This trajectory corresponds to
the uniquely determined singular solution of (7.218), see Theorem 7.92.

One then studies trajectories W ( .) “very close” to We in the unstable manifold
of O, which is shown to intersect the stable manifold of P transversally. This means
that W ( .) eventually hits a local three-dimensional manifold close to Ws and to P
and “almost parallel” to the stable manifold of P. If this intersection point is close
enough to Ws the singular orbit takes it for increasing t until W ( .) finally intersects
H in a point Q close Q0. Such a trajectory W ( .) gives rise to a regular solution
to (7.218). The spiraling behaviour of We around P yields that that the intersection
points Q spiral around and converge to Q0 in H . Transforming this result back into
the λ -u-picture proves Theorem 7.95. �
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7.12 Bibliographical notes

The seminal paper by Serrin [368] which is based on Alexandrov’s technique of
moving planes [7] initiated a huge series of work on symmetry properties of sec-
ond order elliptic equations and systems. As prototypes we only mention the work
by Gidas-Ni-Nirenberg [195] and Troy [396], the latter referring to systems and
therefore to Navier boundary conditions, see Theorem 7.3. Concerning the Dirich-
let problem, we refer to preliminary work by Bennett [38] and Dalmasso [122] who
extended with different proofs Serrin’s result to the biharmonic problem. Subse-
quently, Lazer-McKenna [269] and Dalmasso [124] extended the result by Gidas-
Ni-Nirenberg under quite restrictive assumptions on the nonlinearity f . Moreover,
first symmetry results concerning minimisers of Sobolev embeddings were obtained
in by Ferrero-Gazzola-Weth [166]. Theorem 7.1 is due to Berchio-Gazzola-Weth
[45] and takes advantage of refined monotonicity properties of the Green function
with respect to reflections at hyperplanes, which were first observed in [166]. The
moving plane method has been previously applied to some integral equations in
papers by Chang-Yang [93], Li [273], Birkner, López-Mimbela, Wakolbinger [56],
and Chen-Li-Ou [95]. The proof of Theorem 7.1 has common points with some of
these papers but also contains new features since, in particular, it deals with very
general nonlinearities f and reduces the problem to Green’s function inequalities.
Finally, the counterexample 7.4 is due to Sweers [386].

Proposition 7.15, namely the regularity result for at most critical problems, is
due to Luckhaus [281]. Theorems 7.17 and 7.18 are quite standard and cannot be
precisely located in literature. Let us just mention that, among many others, some
work on polyharmonic problems of subcritical growth is contained in papers by von
Wahl [405], Oswald [327], Dalmasso [121], Clément-de Figueiredo-Mitidieri [106],
Soranzo [375]. Theorem 7.19 is an application of the decomposition method in dual
cones developed in Section 3.1.2.

The best Sobolev constant S in (7.50) was determined by Lions [277] and Swan-
son [382], see also previous work in [160, 390]. Theorem 7.21 is obtained as a
combination of results in [95, 274, 277, 382, 410] and uses Lemma 7.22 which is
the generalisation of [186, Lemma 2] from the case m = 2 to the general case m≥ 2.
This is a further application of the decomposition method in dual cones. Concern-
ing the Sobolev inequalities in the critical case on bounded domains, Theorem 7.23
is due to Lions [277] whereas Theorem 7.24 is due to van der Vorst [399] when
m = 2 and to Ge [192] for general m≥ 2. Here, we give a relatively simple proof for
bounded smooth domains which directly extends to the non-Hilbertian spaces W m,p

ϑ

(1 < p < ∞) and is taken from [187]. For p = 1, such a result was proved to become
false, see [86].

It appears to be impossible to survey all the huge literature concerning second
order semilinear problems of critical growth, namely (7.72) when m = 1. However,
the starting point may be identified with the investigation of the Yamabe problem
[417]. The so-called “positive case” was solved 1976 by Aubin [26] (see also [27])
and the general case 1984 by Schoen [362]. At the same time, further critical growth
problems from geometry and physics like the system for parametric surfaces of pre-
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scribed mean curvature and the Yang-Mills-functional were under investigation. In
1983, Brezis-Nirenberg studied in their seminal paper [72] a semilinear model prob-
lem of critical growth and opened the way for a systematic investigation of relevant
compactness phenomena. Struwe [380] made clear in which way the problem lacks
compactness, we come back to this issue below. Since then, many contributions
on (7.72) when m = 1 have appeared. With no hope of being complete, let us just
mention the papers which are more closely related to the spirit of the present book,
namely [15, 20, 25, 29, 37, 84, 87, 88, 104, 128, 190, 332, 339, 340, 418]. We also
refer to the monograph [381] for a survey of results and further references.

The critical semilinear polyharmonic model problem (7.72) for m≥ 2 was stud-
ied e.g. in [235, 306, 327, 347, 348, 375], as far as nonexistence is concerned, and
e.g. in [84, 160, 179, 204, 382] as for existence. The Navier problem was treated in
[52, 106, 193, 307, 398, 399, 400] and many other papers. For a recent contribution
on both boundary conditions see [272]. We also refer to [31] for related results on
systems of equations and to [44, 189] for results concerning the Steklov problem
(7.75). The material here is related to [44, 53, 179, 180, 185, 186, 189, 201, 202,
203, 204]. In [181] this subject was viewed from a Sobolev inequality point of view.

Theorem 7.27 was proved by Pohožaev in his celebrated paper [339] for m = 1,
and later extended to any m≥ 1 in [340, Lemma 3], see also [347, 348]. The identity
in Theorem 7.29 was found independently and at the same time by Mitidieri [307]
and van der Vorst [398]. The Pohožaev identity of Theorem 7.30 is taken from [44].

The application of Pohožaev’s identity in order to prove Theorem 7.31 is due to
Brezis-Nirenberg [72] when m = 1 and to Pucci-Serrin [347] when m≥ 2. Theorem
7.33 was proved by Oswald [327]. Theorem 7.34 is due to Lazzo-Schmidt [272].
In the particular cases when m = 2 or m = 3, Theorem 7.34 was previously proved
using the identities in [348], which are based on refined choices of testing functions,
see [204, Theorem 3.11]. Moreover, for the biharmonic case m = 2, an even simpler
proof may be found in [186, Theorem 4]. As already mentioned, Theorem 7.34
excludes, in particular, the existence of positive solutions to (7.81), a fact that was
already observed by Soranzo [375].

The existence part of Theorem 7.38 is taken from [202], although the biharmonic
case m = 2 was treated earlier in [160]. Critical dimensions were defined by Pucci-
Serrin [348] and subsequently emphasised from different points of view in [53, 181,
201, 235, 306]. The nonexistence part of Theorem 7.38 was proved in [203] for
radial solutions since Theorem 7.1 was not known at that time. Theorem 7.40 is
taken from [179] and may be proved essentially as Theorem 7.38. Theorem 7.44
was proved independently by Gazzola [179] and Grunau [204]. The proof suggested
here is taken from [179] and uses the orthogonalisation method developed in [190].
The proof in [204] follows ideas of Capozzi-Fortunato-Palmieri [84]. The proof
of Item 1 is based on the work by Cerami-Fortunato-Struwe [87], see again [179,
204]. Finally, let us also mention that the proof given here allows to treat more
general subcritical perturbations g(x,u) instead of λu, see [179]. For the second
order special case m = 1, we also refer to [15, 84, 418].

Theorem 7.52 is taken from [398, Theorem 3.10] and also [307, Theorem 3.3].
Theorem 7.53 was first proved in [186] when m = 2 but the proof presented here is
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taken from Lazzo-Schmidt [272]. Theorem 7.54 is due to Ge [192], see also previous
work when m = 2 by Gazzola-Grunau-Squassina [186] (Item 1) and van der Vorst
[400, Theorem 3] (Item 2). The nonexistence part of Theorem 7.55 is proved in [44]
where one can also find results about (7.131) in general bounded domains Ω . The
existence and uniqueness parts are taken from [189], see also [44] for preliminary
partial results. Finally, we refer to [43] for existence and nonexistence results for
sign-changing solutions of (7.131) in general domains.

The proof of (7.159) for positive functions is obtained by adjusting the argu-
ments by Brezis-Lieb [71] in the case m = 1 when there is no need to distinguish
between positive and sign-changing functions because it suffices to replace u with
|u|. In higher order spaces, this trick is no longer available and one has to treat
sign-changing functions differently. For this case, our proof is taken from Gazzola-
Grunau [180], and once more, the decomposition method with respect to dual cones
(see Section 3.1.2) proves to be quite helpful. The two inequalities in Theorem 7.60
are taken respectively from [192] (see also [186] for indepedent work when m = 2)
and [44]. Theorem 7.61 is due to Bartsch-Weth-Willem [33] whereas Theorem 7.62
is due to Ebobisse-Ould Ahmedou [157]. We also refer to Ge [193] for related re-
sults under Navier boundary conditions and superlinear subcritical perturbations of
us. All the other material from Section 7.9 (including the Struwe-type compactness
result in Lemma 7.74) is taken from [186]. We emphasise that the proof of Lemma
7.74 is similar to the original second order proof (m = 1) by Struwe [380, Proposi-
tion 2.1], see also the simplified proof in [381, Ch. III, Theorem 3.1]. It also takes
advantage of the work by Alves-do Ó [12, Theorem 1] in the biharmonic Dirich-
let case. The first occurrence of a Struwe-type compactness result in the context of
higher order equations is due to Hebey-Robert [224], while related generalisations
can also be found in [33, 157]. However, none of these applies directly to our sit-
uation since a particular difficulty arises from the existence of the boundary ∂Ω in
combination with Navier boundary conditions.

Concerning the field of fourth order Paneitz-type equations, numerous impor-
tant papers are devoted to this subject, too many to be recalled here in detail. We
only give a brief and by far non-exhaustive survey on some of these results. In
Chang-Yang [92], Wei-Xu [409] and Gursky [218] existence results for the constant
Q-curvature problem in compact 4-manifolds are given. Recent work of Djadli-
Malchiodi [145] provides further extensions and completions of these works. On
compact manifolds of dimension greater than 4 existence results were given for
Einstein manifolds by Djadli-Hebey-Ledoux [144] and Esposito-Robert [161] and
in the case of invariance of both the manifold and Q-curvature function under a
group of isometries by Robert [356]. On the sphere Sn we refer to results of Djadli-
Malchiodi-Ould Ahmedou [146, 147] and Felli [163]. Finally, we refer to the mono-
graph [89] and the references therein. Section 7.10 is based on the work by Grunau-
Ould Ahmedou-Reichel [205]. Results closely related to the proof of completeness
are announced by Diaz-Lazzo-Schmidt [143, 142]. The procedure in [205] takes ad-
vantage of some techniques developed for radial solutions to fourth order semilinear
equations in [167, 182].
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For semilinear elliptic equations of second order with supercritical growth of the
kind of (7.218), it is almost impossible to review the existing literature; we only re-
fer to the fundamental contributions [70, 73, 196, 239, 408] and references therein.
Entire solutions to higher order supercritical problems were studied in [18, 123,
131, 132, 133, 168, 182, 216, 242, 369, 406], while for Dirichlet problems we re-
fer to Arioli-Gazzola-Grunau-Mitidieri [19], Berchio-Gazzola [40], Cassani-do Ó-
Ghoussoub [85], Cowan-Esposito-Ghoussoub-Moradifam [113] Dávila-Dupaigne-
Guerra-Montenegro [131], Dávila-Flores-Guerra [132, 133], Ferrero-Grunau [167],
Ferrero-Grunau-Karageorgis [168], Ferrero-Warnault [169], Guo-Wei [217] and ref-
erences therein. Uniqueness issues were addressed by Reichel [351]. The material
presented in Section 7.11 is mostly taken from Gazzola-Grunau [182], Ferrero-
Grunau [167], Ferrero-Grunau-Karageorgis [168], and takes advantage of some
tools introduced in [18, 19], see also [196, 239, 408] for preliminary work on sec-
ond order problems. Theorem 7.95 and the uniqueness part in Theorem 7.92 were
proved by Dávila-Flores-Guerra [132].

Here, we do not cover “coercive” problems like{
(−∆)mu+ |u|p−1u = f in Ω ⊂ Rn, n > 2m,
Dα u = 0 on ∂Ω for |α|< m.

If m = 1, thanks to the maximum principle, one has a classical solution for any
exponent p ≥ 1 and any f ∈C0,γ(Ω) in any bounded C2,γ -smooth domain. Due to
the lack of maximum principles, the situation is still completely different for higher
order equations m ≥ 2 and, in general, one imposes additional growth conditions
on p. Assuming at most critical growth, i.e. p≤ s = (n+2m)/(n−2m), allows for
proving existence of classical solutions, see e.g. [394, 404, 405]. This is achieved by
means of a continuity method, where a priori bounds are found in dependence and
in the course of this continuity procedure. Also variants of growth conditions were
studied, see e.g. [200, 209, 395] and references therein. The biharmonic case m = 2
appears to be somehow special and intermediate between the second order and the
general polyharmonic case, see e.g. [395]. While weak solutions exist for any m and
any p (see e.g. [75]), we are not aware neither of any result concerning existence of
classical solutions where, for general m, growth restrictions on p could have been
completely removed nor of any nonexistence result.





Chapter 8
Willmore surfaces of revolution

This last chapter serves to give a first existence result for a priori bounded classical
solutions of the Dirichlet problem for Willmore surfaces and thereby to outline pos-
sible directions of further research. In order to see which kind of phenomena and
results concerning compact embedded solutions in R3 of boundary value problems
for the corresponding equation might be expected, we investigate Dirichlet problems
in a particularly symmetric situation.

8.1 An existence result

We look at surfaces of revolution, which are obtained by rotating in R3 a graph over
the x-axis around the x-axis. These are described by sufficiently smooth functions

u : [−1,1]→ (0,∞)

which themselves are supposed to be symmetric, meaning that u(x) = u(−x), and
are parametrised as follows:

(x,ϕ) 7→ (x,u(x)cosϕ,u(x)sinϕ), x ∈ [−1,1], ϕ ∈ [0,2π].

We consider the Willmore problem under Dirichlet boundary conditions, where the
height u(±1) = α > 0 and a horizontal angle u′(±1) = 0 are prescribed at the bound-
ary:

Theorem 8.1. For each α > 0, there exists a smooth function u∈C∞([−1,1],(0,∞))
such that the corresponding surface of revolution solves the Dirichlet problem for
the quasilinear Willmore equation{

∆gH+2H(H2−K) = 0 in (−1,1),

u(±1) = α, u′(±1) = 0.
(8.1)

363
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The solution u may be taken to be even and to have the following additional prop-
erties:

0≤ x+u(x)u′(x), u′(x)≤ 0 for all x ∈ [0,1].

α ≤ u(x)≤ α +1, |u′(x)| ≤ 1
α

for all x ∈ [−1,1].

When comparing this result with the situation for minimal surfaces of revolution
one may be surprised that existence holds true even for α ↘ 0. Moreover, with a
quite involved proof one can show existence when prescribing any boundary an-
gle u′(−1) = −u′(1) = β with β ∈ R together with the position u(±1) = α , see
[116]. There also the singular limit α↘ 0 is discussed. The solutions constructed in
Theorem 8.1 minimise the Willmore energy in suitable classes and converge locally
uniformly in (−1,1) to x 7→

√
1− x2. This means that the corresponding surfaces

of revolution converge to the unit sphere when α ↘ 0, where the second Dirichlet
datum u′(±1) = 0 gets lost.

We solve (8.1) by minimising the Willmore functional in the class of surfaces of
revolution, which are given by even functions u : [−1,1]→ (0,∞). A priori, min-
imising sequences need not be bounded in the Sobolev space H2(−1,1). This ob-
servation reflects the lack of uniformity in the ellipticity of the corresponding Euler-
Lagrange equation. The goal is to pass to suitable minimising sequences where
strong enough quantitative information is available. In the following section we give
a reformulation as a minimisation problem of the elastic energy for curves in the hy-
perbolic half plane. This point of view opens the possibility for specific geometric
constructions. In Section 8.3, taking advantage of using geodesic arcs in the hyper-
bolic half plane and refined energy reducing constructions, we show that one may
construct suitable minimising sequences satisfying quite strong a priori estimates
ensuring sufficient compactness. These constructions take advantage of the confor-
mal invariance of the Willmore functional; i.e. applying any Möbius transformation
of R3 leaves this functional unchanged, see e.g. [360]. Further interesting properties
of minimising sequences and of the minimal Willmore energy, such as e.g. mono-
tonicity in α of the latter, are also proved in Section 8.3.

Langer and Singer [267] gave explicit expressions for the curvature of elastic
curves in the hyperbolic half plane in terms of the arclength of the unknown curve.
However, there does not seem to be a direct way to use these results for proving
Theorem 8.1. Moreover, we think that the constructions made below in order to
improve the properties of minimising sequences are of independent interest and
explain to a good extent the shape of solutions.
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8.2 Geometric background

8.2.1 Geometric quantities for surfaces of revolution

The calculations below are based on the formulae given in the Notations-Section on
pages 385 and forward. For a more profound geometric background one may also
see [59]. Let

u : [−1,1]→ (0,∞)

be a sufficiently smooth function. We consider the surface generated by the graph
of u, the parametrisation of which is given by

R : (x,ϕ) 7→ (x,u(x)cosϕ,u(x)sinϕ), x ∈ [−1,1], ϕ ∈ [0,2π].

Here we consider x = x1 as first and ϕ = x2 as second parameter. First and second
fundamental forms and the inward pointing normal on the surface of revolution are
given as follows:

(gi j) =
(

1+u′(x)2 0
0 u(x)2

)
,

g = det(gi j) = u(x)2 (1+u′(x)2) ,
(Li j) =

1√
1+u′(x)2

(
−u′′(x) 0

0 u(x)

)
,

ν(x,ϕ) =
1√

1+u′(x)2

(
u′(x),−cosϕ,−sinϕ

)
.

We use the sign convention that the mean curvature H is positive if the surface is
mean convex and negative if it is mean concave with respect to the inward pointing
normal ν . The mean and Gaussian curvature are then given respectively by

H(x) =− u′′(x)

2(1+u′(x)2)3/2 +
1

2u(x)
√

1+u′(x)2

=
1

2u(x)u′(x)
∂

∂x

(
u(x)√

1+u′(x)2

)
,

K(x) =− u′′(x)

u(x)(1+u′(x)2)2 .

(8.2)

The Laplace-Beltrami operator on the surface of revolution acts on smooth functions
(x,ϕ) 7→ h(x,ϕ) as follows
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∆gh =
1
√

g

2

∑
i, j=1

∂i
(√

ggi j
∂ jh
)

=
1

u(x)
√

1+u′(x)2

×

(
∂

∂x

(
u(x)√

1+u′(x)2

∂

∂x
h

)
+

∂

∂ϕ

(√
1+u′(x)2

u(x)
∂

∂ϕ
h

))
,

where gi j are the entries of the inverse of (gi j)i, j. The terms in equation (8.1) for a
surface of revolution are then

∆gH =
1

u(x)
√

1+u′(x)2

× ∂

∂x

(
u(x)√

1+u′(x)2

∂

∂x

(
1

2u(x)
√

1+u′(x)2
− u′′(x)

2(1+u′(x)2)3/2

))
,

2H(H2−K) =
1

4(1+u′(x)2)3/2

(
1

u(x)
− u′′(x)

1+u′(x)2

)(
1

u(x)
+

u′′(x)
1+u′(x)2

)2

.

For surfaces of revolution R generated by the graph of u as described above, the
Willmore functional reads

W (u) =
∫

R
H2 dω

=
π

2

∫ 1

−1

(
1

u(x)
√

1+u′(x)2
− u′′(x)

(1+u′(x)2)3/2

)2

u(x)
√

1+u′(x)2 dx.

We show that the Euler-Lagrange equation for this functional is indeed the differen-
tial equation in (8.1).

Lemma 8.2. Let u ∈C4([−1,1],(0,∞)). Then for all ϕ ∈ H2∩H1
0 (−1,1) we have

−1
2π

d
dt

W (u+ tϕ)|t=0

=
[
H(x)

u(x)ϕ ′(x)
1+u′(x)2

]1

−1
+
∫ 1

−1
u(x)ϕ(x)

(
∆gH(x)+2H(x)(H(x)2−K(x))

)
dx.

Proof.
1

2π

d
dt

W (u+ tϕ)|t=0 =
∫ 1

−1
H(x)u(x)

√
1+u′(x)2

×

(
−ϕ(x)

u(x)2
√

1+u′(x)2
− u′(x)ϕ ′(x)+u(x)ϕ ′′(x)

u(x)(1+u′(x)2)3/2 +3
u′(x)ϕ ′(x)u′′(x)

(1+u′(x)2)5/2

)
dx

+
∫ 1

−1
H2(x)

(
ϕ(x)

√
1+u′(x)2 +

u(x)u′(x)ϕ ′(x)√
1+u′(x)2

)
dx
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= −
∫ 1

−1
H(x)

ϕ(x)
u(x)

dx−
∫ 1

−1
H(x)

u′(x)ϕ ′(x)
1+u′(x)2 dx

−
∫ 1

−1
H(x)

∂

∂x

(
ϕ ′(x)

(1+u′(x)2)3/2

)
u(x)

√
1+u′(x)2 dx

+
∫ 1

−1
H2(x)ϕ(x)

√
1+u′(x)2 dx−

∫ 1

−1
H2(x)ϕ(x)

u′(x)2√
1+u′(x)2

dx

−
∫ 1

−1
H2(x)u(x)ϕ(x)

∂

∂x

(
u′(x)√

1+u′(x)2

)
dx−2

∫ 1

−1
H(x)H′(x)

ϕ(x)u(x)u′(x)√
1+u′(x)2

dx

= −
∫ 1

−1
H(x)

ϕ(x)
u(x)

dx−
[
H(x)

u(x)ϕ ′(x)
1+u′(x)2

]1

−1
+
∫ 1

−1
H′(x)

ϕ ′(x)u(x)
1+u′(x)2 dx

+
∫ 1

−1
H(x)

ϕ ′(x)u(x)u′(x)u′′(x)
(1+u′(x)2)2 dx+

∫ 1

−1
H2(x)ϕ(x)

1√
1+u′(x)2

dx

−
∫ 1

−1
H2(x)u(x)

(
−2H(x)+

1

u(x)
√

1+u′(x)2

)
ϕ(x)dx

− 2
∫ 1

−1
H(x)H′(x)

u(x)u′(x)ϕ(x)√
1+u′(x)2

dx

= −
∫ 1

−1
H(x)

ϕ(x)
u(x)

dx−
[
H(x)

u(x)ϕ ′(x)
1+u′(x)2

]1

−1

−
∫ 1

−1

ϕ(x)√
1+u′(x)2

∂

∂x

(
u(x)H′(x)√
1+u′(x)2

)
dx

+
∫ 1

−1

u(x)u′(x)u′′(x)
(1+u′(x)2)2 (H′(x)ϕ(x)+H(x)ϕ ′(x))dx

+ 2
∫ 1

−1
H3(x)u(x)ϕ(x)dx−2

∫ 1

−1
H(x)H′(x)

u(x)u′(x)ϕ(x)√
1+u′(x)2

dx

= −
∫ 1

−1

H(x)ϕ(x)
u(x)

dx−
[
H(x)u(x)ϕ ′(x)

1+u′(x)2

]1

−1

−
∫ 1

−1
u(x)ϕ(x)

(
∆gH(x)−2H(x)3) dx

−
∫ 1

−1

(
2H(x)

u(x)u′(x)√
1+u′(x)2

− u′(x)
1+u′(x)2

)
∂

∂x
(H(x)ϕ(x)) dx

− 2
∫ 1

−1
H(x)H′(x)

u(x)u′(x)ϕ(x)√
1+u′(x)2

dx
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= −
∫ 1

−1

H(x)ϕ(x)
u(x)

dx−
[
H(x)u(x)ϕ ′(x)

1+u′(x)2

]1

−1
−
∫ 1

−1
u(x)ϕ(x)

(
∆gH(x)−2H(x)3) dx

+ 2
∫ 1

−1
H2(x)ϕ(x)

(
u′(x)2√

1+u′(x)2
−2H(x)u(x)+

1√
1+u′(x)2

)
dx

−
∫ 1

−1
H(x)ϕ(x)

(
u′′(x)

1+u′(x)2 −2
u′(x)2u′′(x)

(1+u′(x)2)2

)
dx

= −
∫ 1

−1

H(x)ϕ(x)
u(x)

dx−
[
H(x)u(x)ϕ ′(x)

1+u′(x)2

]1

−1

−
∫ 1

−1
u(x)ϕ(x)

(
∆gH(x)+ 2H(x)3) dx

+ 2
∫ 1

−1
H2(x)ϕ(x)

√
1+u′(x)2 dx−2

∫ 1

−1
H(x)ϕ(x)

u′′(x)

(1+u′(x)2)2 dx

+
∫ 1

−1
H(x)ϕ(x)

u′′(x)
1+u′(x)2 dx

= −
∫ 1

−1

H(x)ϕ(x)
u(x)

dx−
[
H(x)u(x)ϕ ′(x)

1+u′(x)2

]1

−1
−
∫ 1

−1
u(x)ϕ(x)

(
∆gH(x)+2H(x)3) dx

+
∫ 1

−1
H(x)ϕ(x)

(
− u′′(x)

1+u′(x)2 +
1

u(x)
−2

u′′(x)

(1+u′(x)2)2︸ ︷︷ ︸
−2K(x)u(x)

+
u′′(x)

1+u′(x)2

)
dx

= −
[
H(x)u(x)ϕ ′(x)

1+u′(x)2

]1

−1
−
∫ 1

−1
u(x)ϕ(x)

(
∆gH(x)+2H(x)3−2H(x)K(x)

)
dx.

�

8.2.2 Surfaces of revolution as elastic curves in the hyperbolic half
plane

We give here a different interpretation and a reformulation of the Willmore func-
tional that is more suitable for our purposes. It turns out that the Willmore energy of
surfaces of revolution may equivalently be described by the elastic energy of its gen-
erating graphs in the hyperbolic half plane. The following formulae and calculations
are mainly based on [266].

The hyperbolic half plane R2
+ := {(x,y) : y > 0} is equipped with the metric

ds2 =
1
y2 (dx2 +dy2).
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In order to introduce the elastic energy for curves in the hyperbolic half plane and
to take advantage of the hyperbolic geodesics we first deduce formulae for the hy-
perbolic curvature.

Lemma 8.3. Let s 7→ γ(s) = (γ1(s),γ2(s)) be a curve in R2
+ parametrised with re-

spect to its arclength, i.e.

1≡ (γ1′(s))2 +(γ2′(s))2

(γ2(s))2 . (8.3)

Then its hyperbolic curvature is given by

κ(s) =− (γ2(s))2

γ2′(s)
d
ds

(
γ1′(s)

(γ2(s))2

)
=

(γ2(s))2

γ1′(s)

(
1

γ2(s)
+

d
ds

(
γ2′(s)

(γ2(s))2

))
. (8.4)

It seems that this is the most frequently used sign convention. However, the argu-
ments below are not affected by choosing the opposite sign.

Proof. We take any point (x,y) = (γ1(s),γ2(s)) and keep it fixed in what follows.
In this point the tangent of γ is

(τ1,τ2) = (γ1′,γ2′)

and its normal – up to sign –

(ν1,ν2) = (−τ
2,τ1) =

(
−γ

2′,γ1′
)

.

In order to calculate the covariant derivative of τ we need the Christoffel symbols
Γ k

i j = 1
2 gk`

(
gi`, j +g j`,i−gi j,`

)
, where here gi j = 1

y2 δi j refers to the hyperbolic met-
ric:

Γ 1
11 = 0, Γ 1

12 = Γ 1
21 =− 1

y , Γ 1
22 = 0,

Γ 2
11 = 1

y , Γ 2
12 = Γ 2

21 = 0, Γ 2
22 =− 1

y .

The covariant derivative of τ along τ is parallel to the normal ν , the proportionality
factor defining the curvature of γ . Making also use of (8.3), we calculate

∇τ

ds
=

dτ

ds
+
(

Γ
k

i j τ
i
τ

j
)

k=1,2
=

d2

ds2 γ +
1
γ2

(
−2γ

1′
γ

2′,(γ1′)2− (γ2′)2
)

!= κ

(
−γ

2′,γ1′
)

⇒ κ = −γ1′′

γ2′ +2
γ1′

γ2 =
γ2′′

γ1′ +
γ2

γ1′ −2
(γ2′)2

γ2γ1′

This proves (8.4). �

Considering graphs [−1,1] 3 x 7→ (x,u(x)) ∈R2
+ as curves in the hyperbolic half

plane, their arclength is given by
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s(x) =
∫ x

−1

√
1+u′(ξ )2

u(ξ )
dξ

so that by means of
d
ds

=
u(x)√

1+u′(x)2

d
dx

,

formula (8.4) yields

κ(x) =−u(x)2

u′(x)
d
dx

(
1

u(x)
√

1+u′(x)2

)
=

u(x)u′′(x)
(1+u′(x)2)3/2 +

1√
1+u′(x)2

. (8.5)

From these formulae it is immediate that hyperbolic geodesics are circular arcs cen-
tered on the x-axis and lines parallel to the y-axis. The first will play a crucial role
in choosing suitable minimising sequences for the modified Willmore functional,
which we are going to define now.

We introduce the hyperbolic Willmore energy of graphs [−1,1]3 x 7→ (x,u(x))∈
R2

+ as their elastic energy and relate it to the original Willmore energy of the corre-
sponding surface of revolution.

Ŵ (u) :=
∫ 1

−1
κ(x)2 ds(x) =

∫ 1

−1
κ(x)2

√
1+u′(x)2

u(x)
dx

=
∫ 1

−1

(
u′′(x)

(1+u′(x)2)3/2 −
1

u(x)
√

1+u′(x)2

)2

u(x)
√

1+u′(x)2 dx

+4
∫ 1

−1

u′′(x)
(1+u′(x)2)3/2 dx

=
2
π

∫
R
H2 dω− 2

π

∫
R
Kdω =

2
π

∫
R
H2 dω +4

[
u′(x)√

1+u′(x)2

]1

−1

,

with H and K as given in (8.2). The latter identity for
∫
K may be viewed as a kind of

Gauss-Bonnet theorem for the surface of revolution R with boundary. We conclude
that

W (u) =
π

2
Ŵ (u)−2π

[
u′(x)√

1+u′(x)2

]1

−1

,

where the Willmore energy W (u) of the surface of revolution R generated by u is
defined in (8.3). In our situation where we assume Dirichlet data

u(±1) = α, u′(±1) = 0,

we even have
W (u) =

π

2
Ŵ (u). (8.6)
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In proving Theorem 8.1, we benefit a lot from considering Ŵ instead of W . We do
not only take technical advantage from this point of view, but we think that it is
geometrically more suitable as the constructions in Section 8.3 will make clear.

Concerning the Euler-Lagrange equation for critical points of the “hyperbolic
Willmore functional” Ŵ one has:

Lemma 8.4. Assume that u ∈ C4([−1,1]) is positive and such that for all ϕ ∈
C∞

c (−1,1) one has that 0 = d
dt Ŵ (u + tϕ)|t=0. Then u satisfies the following Euler-

Lagrange equation:

u(x)√
1+u′(x)2

d
dx

(
u(x)√

1+u′(x)2
κ
′(x)

)
−κ(x)+

1
2

κ(x)3 = 0, x ∈ (−1,1),

(8.7)
with κ as defined in (8.5).

One may observe that u(x)√
1+u′(x)2

d
dx is the derivative with respect to the hyperbolic

arclength of x 7→ (x,u(x)). The following proof of Lemma 8.4 will also be used in
proving regularity for our Willmore surfaces of revolution.

Proof. In order to calculate the Euler-Lagrange equation for the functional Ŵ , we
observe first that for arbitrary ϕ ∈C∞

c (−1,1):

d
dt

κ[u+ tϕ]|t=0 = − d
dt

{
(u+ tϕ)2

u′+ tϕ ′
d
dx

(
1

(u+ tϕ)
√

1+(u′+ tϕ ′)2

)}∣∣∣∣∣
t=0

= −2
uϕ

u′
d
dx

(
1

u
√

1+u′2

)
+

u2ϕ ′

u′2
d
dx

(
1

u
√

1+u′2

)
+

u2

u′
d
dx

(
ϕ

u2
√

1+u′2

)
+

u2

u′
d
dx

(
u′ϕ ′

u(1+u′2)3/2

)
and writing it in terms of κ

d
dt

κ[u+ tϕ]|t=0 = 2
ϕ

u
κ− ϕ ′

u′
κ− ϕ

u
κ +

u

u′
√

1+u′2

(
ϕ

u

)′
− u′ϕ ′

1+u′2
κ +

u

u′
√

1+u′2

(
u′ϕ ′

1+u′2

)′
=

ϕ

u
κ− ϕ ′

u′
κ− u′ϕ ′

1+u′2
κ +

ϕ ′

u′
√

1+u′2
− ϕ

u
√

1+u′2

+
u

u′
√

1+u′2

(
ϕ ′′u′

1+u′2
+

ϕ ′u′′

1+u′2
−2

ϕ ′u′2u′′

(1+u′2)2

)
.

As for the last large bracket we have
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ϕ ′′u′

1+u′2
+

ϕ ′u′′

1+u′2
−2

ϕ ′u′2u′′

(1+u′2)2

)
=

ϕ ′′u′

1+u′2
− ϕ ′u′′

1+u′2
+2

ϕ ′u′′

(1+u′2)2

=
ϕ ′′u′

1+u′2
+ϕ

′
√

1+u′2
(
−κ

u
+

1
u
√

1+u′2

)
− 2ϕ ′√

1+u′2

(
−κ

u
+

1
u
√

1+u′2

)
=

ϕ ′′u′

1+u′2
− κϕ ′

u

√
1+u′2 +

ϕ ′

u
+

2κϕ ′

u
√

1+u′2
− 2ϕ ′

u(1+u′2)

so that the variation of κ becomes

d
dt

κ[u+ tϕ]|t=0 =
ϕκ

u
−3

u′ϕ ′κ
1+u′2

− ϕ

u
√

1+u′2
+

2u′ϕ ′+uϕ ′′

(1+u′2)3/2 .

So, if u ∈ C4([−1,1],(0,∞)) is such that for all ϕ ∈ C∞
c (−1,1) one has that 0 =

d
dt Ŵ (u+ tϕ)|t=0, it follows:

0 =
d
dt

Ŵ (u+ tϕ)|t=0 =
d
dt

∫ 1

−1
κ[u+ tϕ]2

√
1+(u′+ tϕ ′)2

u+ tϕ
dx
∣∣∣
t=0

=
∫ 1

−1
2κ

√
1+u′2

u

(
ϕκ

u
−3

u′ϕ ′κ
1+u′2

− ϕ

u
√

1+u′2
+

2u′ϕ ′+uϕ ′′

(1+u′2)3/2

)
dx

+
∫ 1

−1
κ

2

(
u′ϕ ′

u
√

1+u′2
− ϕ
√

1+u′2

u2

)
dx

=
∫ 1

−1
κ

2

√
1+u′2

u2 ϕ dx−5
∫ 1

−1
κ

2 u′

u
√

1+u′2
ϕ
′ dx−2

∫ 1

−1
κ

1
u2 ϕ dx

+4
∫ 1

−1
κ

u′

u(1+u′2)
ϕ
′ dx+2

∫ 1

−1
κ

1
1+u′2

ϕ
′′ dx (8.8)

(integrating by parts first the last integral and then the second one)

=
∫ 1

−1
κ

2

√
1+u′2

u2 ϕ dx−
∫ 1

−1
κ

2 u′

u
√

1+u′2
ϕ
′ dx−2

∫ 1

−1
κ

1
u2 ϕ dx

− 2
∫ 1

−1
κ
′ 1
1+u′2

ϕ
′ dx

=
∫ 1

−1
κ

2

√
1+u′2

u2 ϕ dx+
∫ 1

−1
κ

2u′
(

1
u
√

1+u′2

)′
ϕ dx

+ 2
∫ 1

−1
κκ
′ u′

u
√

1+u′2
ϕ dx+

∫ 1

−1
κ

2 u′′

u
√

1+u′2
ϕ dx

− 2
∫ 1

−1
κ

1
u2 ϕ dx−2

∫ 1

−1
κ
′ 1
1+u′2

ϕ
′ dx
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=
∫ 1

−1
κ

2
ϕ

(√
1+u′2

u2 − u′2

u2
√

1+u′2
− u′2u′′

u(1+u′2)3/2 +
u′′

u
√

1+u′2

)
dx

− 2
∫ 1

−1
κ

1
u2 ϕ dx+2

∫ 1

−1
κκ
′ u′

u
√

1+u′2
ϕ dx

− 2
∫ 1

−1

u√
1+u′2

κ
′ 1
u
√

1+u′2
ϕ
′ dx

(integrating by parts the last term)

=
∫ 1

−1
κ

3 1
u2 ϕ dx−2

∫ 1

−1
κ

1
u2 ϕ dx+2

∫ 1

−1

u√
1+u′2

d
dx

(
u√

1+u′2
κ
′
)

1
u2 ϕ dx.

�

8.3 Minimisation of the Willmore functional

For α ∈ (0,∞) we define

Nα := {u ∈C1,1([−1,1]),u is even and positive,u(1) = α,u′(1) = 0}, (8.9)

and
Mα := inf{Ŵ (u) : u ∈ Nα}. (8.10)

In this section, we show that Mα is attained, i.e. that there exists uα ∈ Nα , which is
even in C∞([−1,1]), such that Ŵ (uα) = Mα .

According to (8.6) we have for all u ∈ Nα

W (u) =
π

2

∫ 1

−1
κ(x)2 ds(x) =

π

2
Ŵ (u).

Hence, the surface of revolution generated by the graph of uα is a minimiser of
the Willmore functional in the class of surfaces of revolution generated by graphs
of functions in Nα . According to Lemma 8.2 the corresponding Euler-Lagrange
equation is the Dirichlet problem (8.1) for the Willmore equation.

Remark 8.5. We use the following rescaling property which is a special case of
the conformal invariance of the Willmore functional. If u is a positive function
in C1,1([−r,r]) for some r > 0, then the function v ∈ C1,1([−1,1]) defined by
v(x) = 1

r u(rx) satisfies

Ŵ (v) =
∫ r

−r
κ

2[u]ds[u].

Here and in the following κ[u] denotes the curvature of the graph of u in the hyper-
bolic half plane defined in (8.5) and ds[u] denotes the corresponding line element.

Beside rescaling, a number of geometric constructions will be involved in the
minimisation process. All these will be based on gluing geodesic arcs C1,1-smoothly
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to suitable parts of comparison functions for Mα or elements of minimising se-
quences respectively. In a first step we will give an accurate bound from above for
the optimal Willmore energy Mα . The proof will be developed further in order to
show that α 7→ Mα is decreasing. Finally, by further refining these gluing tech-
niques we come up with suitable minimising sequences obeying strong C1 a priori
bounds and related qualitative properties. Basing on these properties a minimiser of
the Willmore functional is obtained by using direct methods from the calculus of
variation.

8.3.1 An upper bound for the optimal energy

Lemma 8.6. Let Mα be defined as in (8.10). Then

Mα ≤ 8tanh
(

1
α

)
.

In particular, limα→∞ Mα = 0.

Proof. For x 6= 0 let v(x) := α cosh((|x| − 1)/α). The corresponding surface of
revolution consists of two branches of minimal surfaces with v(±1) = α , v′(±1) =
0. Moreover, let x0 ∈ (0,1) be the uniquely determined point in (0,1) such that

0 = x0 + v(x0)v′(x0), and r =
√

x2
0 + v(x0)2. One may observe that x0 + v(x0)v′(x0)

is the intersection point of the euclidean normal of the graph of v in (x0,v(x0)) with
the x-axis. We consider the C1,1 comparison function

u(x) :=

{
v(x) for x0 ≤ |x| ≤ 1,√

r2− x2 for 0≤ |x| ≤ x0.

See Figure 8.1.
For the hyperbolic Willmore energy we compute

Ŵ (u) = 2
1∫

x0

(
u′′

(1+u′2)
3
2
− 1

u
√

1+u′2

)2

u
√

1+u′2 dx+8
1∫

x0

u′′

(1+u′2)
3
2

dx

= 8
1∫

x0

u′′

(1+u′2)
3
2

dx =−8
v′(x0)√

1+ v′(x0)2
= 8tanh

(
1− x0

α

)

≤ 8tanh
(

1
α

)
< 8min{1,1/α},

and the claim follows. �
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-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

Fig. 8.1 Comparison function to estimate Mα . Here α = 1/4.

8.3.2 Monotonicity of the optimal energy

In order to show that α 7→ Mα is decreasing we introduce several geometric con-
structions which will also be used to suitably modify minimising sequences for Mα .
One key observation will be that functions in Nα may be shortened while main-
taining the boundary values and decreasing the hyperbolic Willmore energy. As a
first step we introduce this procedure for functions in Nα which are decreasing on
[0,1]. Since this result will also be applied on rescaled intervals we formulate it on
arbitrary intervals [−a,a].

Lemma 8.7. Fix a > 0. Assume that u ∈C1,1([−a,a]) has only finitely many critical
points and is positive and symmetric with u′(a) = 0 and such that u′(x) ≤ 0 for
all x ∈ [0,a]. Then for each ρ ∈ (0,a] there exists a positive symmetric function
uρ ∈ C1,1([−ρ,ρ]) such that uρ(ρ) = u(a), u′ρ(ρ) = 0, uρ has at most as many
critical points as u and satisfies for all x ∈ [0,ρ]

u′ρ(x)≤ 0 as well as
∫

ρ

−ρ

κ[uρ ]2 ds[uρ ]≤
∫ a

−a
κ[u]2 ds[u].

In particular if a = 1, then ∫
ρ

−ρ

κ[uρ ]2 ds[uρ ]≤ Ŵ (u).

Proof. Let r ∈ (0,a) be a parameter. The normal to the graph of u in (r,u(r)) has
direction (−u′(r),1). The straight line generated by the normal intersects the x-axis
left of r, since u is decreasing. We take this intersection point (c(r),0) as center for a
geodesic circular arc, where the radius is chosen such that the arc is tangential to the
graph of u in (r,u(r)). This means that the radius is given by the distance between
(c(r),0) and (r,u(r)). We build a new symmetric function with smaller curvature in-
tegral as follows. On [c(r),r] we take this geodesic arc, which has horizontal tangent
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in c(r), while on [r,a] we take u. By construction, this function is C1,1([c(r),a]) and
decreasing. We shift it such that c(r) is moved to 0, and extend this to an even func-
tion, which is again C1,1, now on a suitable interval [−`(r), `(r)]. This function has
the same boundary values as u, at most as many critical points as u and, by construc-
tion, a smaller curvature integral. This construction yields the claim since r 7→ `(r)
is continuous and limr↘0 `(r) = a, limr↗a `(r) = 0. The procedure is illustrated in
Figure 8.2. �

-a a

Fig. 8.2 Proof of Lemma 8.7.

Next, it is important to observe that for functions in Nα bending upwards re-
quires less energy than bending downwards. This statement cannot be verified by
just reflecting the graph about the straight line through its boundary points. Instead,
it requires a refined geometric construction based on the previous observation.

Lemma 8.8. Fix a > 0. Assume that u ∈C1,1([−a,a]) has only finitely many critical
points and is symmetric, positive with u′(a) = 0 and such that u′(x) ≥ 0 for all
x ∈ [0,a]. Then there exists a positive symmetric function v ∈ C1,1([−a,a]) with
v(a) = u(a), v′(a) = 0, v has at most as many critical points as u and

v′(x)≤ 0 for all x ∈ [0,a], as well as
∫ a

−a
κ[v]2 ds[v]≤

∫ a

−a
κ[u]2 ds[u].

In particular if a = 1, Ŵ (v)≤ Ŵ (u).

Proof. We may assume that u(0) < u(a). We consider

ũ(x) :=
{

u(x+a), if x ∈ [−a,0]
u(x−a), if x ∈ [0,a].

We apply the procedure of Lemma 8.7 to ũ and find for all ρ ∈ (0,a] a symmetric
positive function ũρ ∈C1,1([−ρ,ρ]) with lower Willmore energy, at most as many
critical point as ũ and such that ũρ(ρ) = ũ(a) = u(0), ũ′ρ(ρ) = 0 and ũ′ρ(x)≤ 0 for
all x ∈ [0,ρ]. Let ρ0 ∈ (0,a] be such that ũ(a) = u(0) = ρ0

a u(a). Then by rescaling
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(see Remark 8.5) the function v(x) = a
ρ0

ũρ0(
ρ0
a x) defined on [−a,a] is the desired

decreasing function with smaller Willmore energy. The procedure is illustrated in
Figure 8.3. �

uHxL

vHxL

1. switch left and right

2. shorten

3. rescale

-a a

Fig. 8.3 Proof of Lemma 8.8.

In order to extend the shortening procedure of Lemma 8.7 to functions not nec-
essarily decaying on [0,1] we combine both previous constructions and proceed
iteratively.

Lemma 8.9. Fix a > 0. Assume that u ∈C1,1([−a,a]) is a symmetric, positive func-
tion having only finitely many critical points and satisfying u′(a) = 0. Then for
each ρ ∈ (0,a] there exists a symmetric positive function uρ ∈ C1,1([−ρ,ρ]) with
u′ρ(ρ) = 0 and uρ(ρ) = u(a) with at most as many critical points as u such that∫

ρ

−ρ

κ[uρ ]2 ds[uρ ]≤
∫ a

−a
κ[u]2 ds[u].

If u′(x) < 0 for x close to a, the same may be achieved for u′ρ(x) for x close to ρ . In
particular if a = 1 ∫

ρ

−ρ

κ[uρ ]2 ds[uρ ]≤ Ŵ (u).

Proof. We may assume that u is not a constant. Let x0 > 0 be such that [−x0,x0] is the
smallest possible symmetric interval with u′(x0) = 0. In [0,x0] the derivative of u has
a fixed sign. If u′(x)≥ 0 in [0,x0], then by Lemma 8.8 there is a positive symmetric
function v ∈ C1,1([−x0,x0]) with lower Willmore energy such that v(x0) = u(x0),
v′(x0) = 0 and v′(x) ≤ 0 in [0,x0]. Hence we may assume that u′(x) ≤ 0 in [0,x0].
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By Lemma 8.7 for all r ∈ (0,x0] there exists a positive symmetric function vr ∈
C1,1([−r,r]) such that vr(r) = u(x0) and v′r(r) = 0 and v′r(x)≤ 0 in [0,r]. Hence the
function

ur(x) :=

u(x+ x0− r), if r < x≤ a+ r− x0,
vr(x), if − r ≤ x≤ r,
u(x− x0 + r), if −a− r + x0 < x≤−r,

is in C1,1([−a−r+x0,a+r−x0]), is symmetric, u′r(a+r−x0) = 0, ur(a+r−x0) =
u(a) and ∫ a+r−x0

−(a+r−x0)
κ[ur]2 ds[ur]≤

∫ a

−a
κ[u]2 ds[u].

With this construction the claim is proved for ρ ≥ a− x0.
For ρ < a− x0 we start from the function just constructed obtained at the limit

for r going to zero. That is v(x) = u(x + x0) for x ∈ [0,a− x0] and extended by
symmetry on [−a + x0,0]. This function is in C1,1([−a + x0,a− x0]), positive and
symmetric. We can repeat the same construction just done. We continuously de-
crease the interval of definition and, at the same time, the curvature integral. Since
we have only finitely many critical points and at each iteration step we decrease the
number of critical points, this procedure is well-defined and terminates after finitely
many iterations.

If u′ < 0 close to a the same may be achieved for u′ρ since in the construction we
do not change the function near the end-points of the interval of definition. �

Corollary 8.10. Fix a > 0 and α > 0. For each positive symmetric u∈C1,1([−a,a])
having only finitely many critical points and satisfying

u(±a) = α, u′(±a) = 0

and for each β ≥ α , there exists a symmetric positive function v ∈ C1,1([−a,a])
having at most as many critical points as u, satisfying

v(±a) = β , v′(±a) = 0

and ∫ a

−a
κ[v]2 ds[v]≤

∫ a

−a
κ[u]2 ds[u].

If u′(x) < 0 for x close to a, the same may be achieved for v′. In particular, if a = 1
then Ŵ (v)≤ Ŵ (u).

Proof. By Lemma 8.9 for each ρ ∈ (0,a], there exists a symmetric positive function
uρ ∈C1,1([−ρ,ρ]) having at most as many critical points as u with u′ρ(ρ) = 0 and
uρ(ρ) = u(a) = α such that∫

ρ

−ρ

κ[uρ ]2 ds[uρ ]≤
∫ a

−a
κ[u]2 ds[u].



8.3 Minimisation of the Willmore functional 379

Choosing ρ0 such that a
ρ0

α = β the function v(x) = a
ρ0

uρ0(
ρ0
a x) for x∈ [−a,a] yields

the claim. �

Theorem 8.11. Let Mα for α ∈ (0,∞) be as defined in (8.10). Then for 0 < α < α̂

we have that
Mα̂ ≤Mα .

Proof. Since the polynomials are dense in H2, a minimising sequence for Mα may
be chosen in Nα , which consists of symmetric positive polynomials. Corollary 8.10
yields the claim. �

8.3.3 Properties of minimising sequences

The first main step consists in finding a procedure which does not increase the Will-
more energy but allows to restrict oneself to functions v in Nα such that v′(x) ≤ 0
for all x ∈ [0,1]. We recall that the set Nα is defined in (8.9). Here, the techniques
developed in Section 8.3.2 are used essentially.

Theorem 8.12. Let Nα be as defined in (8.9). For each u ∈ Nα having only finitely
many critical points, we find v ∈ Nα having at most as many critical points as u,
satisfying

v′(x)≤ 0 for all x ∈ [0,1] and Ŵ (v)≤ Ŵ (u).

Proof. If u does not have the claimed property then there exist x0,x1 ∈ [0,1], x0 < x1,
with u′(x) > 0 in (x0,x1), u′(x0) = u′(x1) = 0 and u′(x) ≤ 0 in [x1,1]. Using that
u(x0) < u(x1), we construct a positive symmetric function v1 ∈C1,1([−x1,x1]) such
that v1 has at most as many critical points as u|[−x1,x1], v′1(x)≤ 0 in [x̃0,x1], where x̃0
is the largest critical point of v1 below x1. Moreover,

v′1(x1) = 0, v1(x1) = u(x1),
∫ x1

−x1

κ[v1]2ds[v1]≤
∫ x1

−x1

κ[u]2ds[u]. (8.11)

The claim will then follow by finitely many iterations proceeding from the boundary
points towards the central point 0.

We consider u|[−x0,x0] and apply Corollary 8.10 with β = u(x1). If x0 = 0
one simply skips this first step. There exists a symmetric positive function w1 ∈
C1,1([−x0,x0]) with w1(x0) = u(x1), w′1(x0) = 0, having no more critical points than
u|[−x0,x0] and satisfying∫ x0

−x0

κ[w1]2ds[w1]≤
∫ x0

−x0

κ[u]2ds[u].

Interchanging the parts of u over [−x1,−x0] and [x0,x1], we define on [−x1,x1]

ṽ1(x) :=

u(x+ x1 + x0), if x ∈ [−x1,−x0],
w1(x), if x ∈ [−x0,x0],
u(x− x1− x0), if x ∈ [x0,x1].
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Certainly, ṽ1 ∈C1,1([−x1,x1]) is positive, symmetric and it does not have more crit-
ical points than u|[−x1,x1]. Moreover, ṽ′1(x)≤ 0 for x ∈ [x0,x1] and∫ x1

−x1

κ[ṽ1]2ds[ṽ1]≤
∫ x1

−x1

κ[u]2ds[u], ṽ1(x1) = u(x0), ṽ′1(x1) = 0.

Corollary 8.10 now yields a positive symmetric function v1 ∈C1,1([−x1,x1]), having
no more critical points than u|[−x1,x1] and satisfying (8.11), with v′1(x)≤ 0 in [x̃0,x1],
where x̃0 is the largest critical point of v1 below x1. The last property is verified first
close to x1; it holds on the whole interval since no further critical points arise. �

Moreover, in choosing a minimising sequence for Mα we may restrict ourselves to
functions in Nα satisfying

0≤ x+ v(x)v′(x) for all x ∈ [0,1]. (8.12)

For x = 0 and x = 1, this inequality is trivially satisfied and for x = 1, it is even
strict. If for some x0 ∈ (0,1) we have that 0 = x0 + v(x0)v′(x0), then the euclidean
normal in (x0,v(x0)) to the graph of v goes through the origin. Hence, with the
same construction as in Lemma 8.6 we could substitute over [−x0,x0] the original
graph by a geodesic circular arc lowering the Willmore energy. Observe that this
procedure, applied to a positive symmetric C1,1-function with v′(x) ≤ 0 for all x ∈
[0,1] preserves all these properties. See Figure 8.4.

Combining (8.12) with Theorem 8.12 we may restrict ourselves to minimising
sequences (vk) for the optimal Willmore energy Mα defined in (8.10), which have
the following properties:

vk ∈C1,1([−1,1]) are positive, symmetric and satisfy
for all x ∈ [0,1] : 0≤ x+ vk(x)v′k(x), v′k(x)≤ 0.

(8.13)

This implies immediately a priori estimates for this suitably chosen minimising se-
quence. For all x ∈ [−1,1] we have

α ≤ vk(x)≤
√

α2 +1− x2 ≤ α +1, |v′k(x)| ≤
|x|
α

. (8.14)

8.3.4 Attainment of the minimal energy

We are now able to state and to prove a more precise result than Theorem 8.1.

Theorem 8.13. For arbitrary α > 0, there exists a positive symmetric function u ∈
H2(−1,1)∩C1,1/2([−1,1]) satisfying

u(±1) = α, u′(±1) = 0,
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-1 1
x

vHxL

Fig. 8.4 The idea how to achieve the condition 0≤ x+ v(x)v′(x).

such that

Ŵ (u) = Mα

def
= inf{Ŵ (v) : v ∈C1,1([−1,1]),v is even, v(±1) = α,v′(±1) = 0}.

This minimum is a weak solution to the Dirichlet problem (8.1) satisfying

0≤ x+u(x)u′(x), u′(x)≤ 0 for all x ∈ [0,1]. (8.15)

α ≤ u(x)≤
√

α2 +1− x2 ≤ α +1, |u′(x)| ≤ |x|
α

for x ∈ [−1,1]. (8.16)

Moreover, u is a classical solution, i.e. u ∈C∞([−1,1]).

Proof. Step1. Existence and quantitative properties of a minimiser.
Let (vk) ⊂ Nα be a minimising sequence for Mα satisfying (8.13)–(8.14). By the
uniform bounds in (8.14) we find

Ŵ (vk) =
∫ 1

−1

v′′k (x)
2vk(x)

(1+ v′k(x)
2)5/2 dx+

∫ 1

−1

1

vk(x)
√

1+ v′k(x)
2

dx

≥ α(
1+ 1

α2

)5/2

∫ 1

−1
v′′k (x)

2 dx+2
1

(α +1)
√

1+ 1
α2

.
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This shows uniform boundedness of (vk) in H2(−1,1). After passing to a subse-
quence, we find a positive symmetric function u ∈ H2(−1,1) such that

vk ⇀ u in H2(−1,1), vk→ u ∈C1([−1,1]),

and satisfying (8.15)–(8.16). Since

Mα +o(1) = Ŵ (vk) =
∫ 1

−1

v′′k (x)
2u(x)

(1+u′(x)2)5/2 dx+
∫ 1

−1

1

u(x)
√

1+u′(x)2
dx+o(1)

≥
∫ 1

−1

u′′(x)2u(x)
(1+u′(x)2)5/2 dx+

∫ 1

−1

1

u(x)
√

1+u′(x)2
dx+o(1),

it follows that u minimises Ŵ in the class of all positive symmetric H2(−1,1)-
functions v, satisfying v(±1) = α , v′(±1) = 0. So, u weakly solves (8.1), see
Lemma 8.2. At a first instance only symmetric testing functions are admissible. But
since the integral of odd functions vanishes and each function may be decomposed
into an odd and an even part this does not give rise to any restriction. Analogously,
(8.7) is solved in the sense of (8.17) below. See also (8.8).

Step 2. Regularity of the minimiser.
From the calculations in the proof of Lemma 8.4 we see that for any even ϕ ∈
C2([−1,1]) with ϕ(1) = 0, ϕ ′(1) = 0 one has that

−2
∫ 1

−1
κ

1
1+u′2

ϕ
′′ dx =

∫ 1

−1
κ

2

√
1+u′2

u2 ϕ dx−5
∫ 1

−1
κ

2 u′

u
√

1+u′2
ϕ
′ dx

− 2
∫ 1

−1
κ

1
u2 ϕ dx+4

∫ 1

−1
κ

u′

u(1+u′2)
ϕ
′ dx, (8.17)

see (8.8). First, we observe that (8.17) is still true for any ϕ ∈ C2([−1,1]) with
ϕ(±1) = 0 and ϕ ′(±1) = 0. This follows by decomposing ϕ in its even and odd
part and using that these satisfy the same boundary conditions. We use further that
integrals over odd functions vanish. For arbitrary η ∈C∞

c (−1,1) we take

ϕ(x) :=
∫ x

−1

∫ y

−1
η(s)dsdy−β (x+1)2− γ(x+1)3,

where

β = −1
2

∫ 1

−1
η(s)ds+

3
4

∫ 1

−1

∫ y

−1
η(s)dsdy,

γ =
1
4

∫ 1

−1
η(s)ds− 1

4

∫ 1

−1

∫ y

−1
η(s)dsdy

are chosen such that ϕ(±1) = 0 and ϕ ′(±1) = 0. Since Ŵ (u) is finite, u obeys (8.16)
and since

β ,γ,‖ϕ‖C1 ≤C‖η‖L1 ,
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we can conclude from (8.17) that for each η ∈C∞
c (−1,1),∣∣∣∣∫ 1

−1
κ

1
1+u′2

η dx
∣∣∣∣≤C(u)‖η‖L1 .

By the bounds on u in (8.16), the above inequality shows that κ is bounded and so,

u ∈W 2,∞(−1,1).

Next, for arbitrary η ∈C∞
c (−1,1) we choose

ϕ(x) =
∫ x

−1
η(s)ds− 3

4

(∫ 1

−1
η(s)ds

)
(x+1)2 +

1
4

(∫ 1

−1
η(s)ds

)
(x+1)3

so that

ϕ(±1) = 0, ϕ
′(±1) = 0, ‖ϕ‖C0 ≤C‖η‖L1 , ‖ϕ ′‖L1 ≤C‖η‖L1 .

Since we already know that κ is bounded, we conclude from (8.17) that for each
η ∈C∞

c (−1,1), ∣∣∣∣∫ 1

−1
κ

1
1+u′2

η
′(x)dx

∣∣∣∣≤C(u)‖η‖L1 .

This proves that

κ
1

1+u′2
∈W 1,∞(−1,1), κ ∈W 1,∞([−1,1]) = C0,1([−1,1]),

u ∈W 3,∞([−1,1]) = C2,1([−1,1]).

Finally, rewriting (8.7) as follows

d
dx

(
u(x)√

1+u′(x)2
κ
′(x)

)
=

√
1+u′(x)2

u(x)
(
κ(x)− 1

2
κ(x)3) in (−1,1),

we get an equation for κ with W 1,∞-coefficients and right hand side. Hence,
κ ∈W 3,∞([−1,1]) = C2,1([−1,1]), u ∈C4,1([−1,1]) and finally, by straightforward
bootstrapping, u ∈C∞([−1,1]). �

8.4 Bibliographical notes

A historical survey over the Willmore functional and a profound discussion of mod-
eling aspects is provided by Nitsche [324]. There, also Euler-Lagrange equations
are deduced and sets of natural boundary conditions are discussed. The Willmore
functional was already considered as a model for the elastic energy of thin plates in
the 19th century, see e.g. [341], but a mathematical treatment seemed to have been
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out of reach for more than 100 years. It was popularised again in the second half of
the 20th century by Willmore’s work, see e.g. [413, 414].

Existence of closed Willmore surfaces of prescribed genus was proved by Simon
and Bauer-Kuwert [35, 371]. Rivière [355] showed a far reaching regularity result.
Also, local and global existence results for the Willmore flow of closed surfaces
are available, see e.g. [262, 263, 264, 372]. On the other hand, Mayer and Simonett
[287] gave a numerical example providing evidence that for particular initial data
the Willmore flow may develop geometric singularities – change of topology – in
finite time. An analytic proof for occurrence of such a singularity in finite or infi-
nite time for the same initial data was given by Blatt [60]. The Willmore flow for
one-dimensional closed curves was studied by Dziuk-Kuwert-Schätzle [156] and
Polden [342].

Numerical experiments concerning Willmore surfaces of revolutions were per-
formed by Fröhlich [175], where as boundary data, the position α > 0 and the mean
curvature H = 0 were prescribed. Bryant, Griffiths [77, 78] and Hertrich-Jeromin,
Pinkall (see e.g. [229]) observed that Willmore surfaces of revolution can be consid-
ered as elastic curves in the hyperbolic half space. This observation was exploited
in [266, 267], where also many properties of elastic curves in the hyperbolic half
space were deduced. This reformulation helped a lot in proving our main result from
[115], which is a joint work of Deckelnick, Dall’Acqua, and Grunau. The underly-
ing geometric constructions benefit from previous works on related one-dimensional
problems [137, 139]. More general Dirichlet prolems for Willmore surfaces of rev-
olution are studied in [116], while Navier-type boundary value problems are subject
of [50, 138].

Quite recently, Schätzle [360] proved an important general result concerning ex-
istence of branched Willmore immersions in Sn satisfying Dirichlet boundary con-
ditions. Assuming the boundary data to obey some explicit geometrically motivated
smallness condition these immersions can even be shown to be embedded. By work-
ing in Sn, some compactness problems could be overcome. On the other hand, when
pulling pack these immersions to Rn it cannot be excluded that they contain ∞.
Moreover, in general, the existence of branch points cannot be ruled out, and due to
the generality of the approach, it seems to us that only little topological information
about the solutions can be extracted from the existence proof.



Notations, citations, and indexes

Notations

C positive constants in estimates, which may change their
value from term to term.

t+ max{t,0} for t ∈ R.

t− max{−t,0} for t ∈ R.

ak ∼ bk lim
k→∞

ak

bk
= 1.

N = {0,1,2,3 . . .}.

N+ = {1,2,3 . . .}.

n space dimension.

Rn
+ = {x ∈ Rn : x1 > 0}, half space.

Ω domain, an open and connected subset of Rn.

∂Ω Ω ∩Rn \Ω , the boundary of Ω .

Ω0 ⊂⊂Ω Ω0 is compact and Ω0 ⊂Ω .

Ac for A⊂Ω : complement of A in Ω , Ω \A.

dω surface element for ∂Ω .

ν exterior unit normal at ∂Ω .

Br(x) open ball with radius r and centre x.

B = B1(0), open unit ball in Rn.

Sn−1 = ∂B⊂ Rn, unit sphere.
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en =
πn/2

Γ (1+n/2)
, volume of the n-dimensional unit ball

B ⊂ Rn. So nen is the (n− 1)-dimensional measure of
the unit sphere.

d(x) = dist(x,∂Ω), for x ∈Ω .

d(x) = 1−|x|, for x ∈ B.

[XY ] =
∣∣∣∣|x|y− x

|x|

∣∣∣∣, for x,y ∈ B.

r = |x|, x ∈ Rn.

Di1,...,ik =
∂ k

∂xi1 · · ·∂xik
.

α, β multiindices ∈ Nn
0, |α|=

n

∑
i=1

αi.

Dα =
n

∏
i=1

(
∂

∂xi

)αi

with |α|=
n

∑
i=1

αi.

C∞
c (Ω) space of C∞(Ω)-functions having compact support in Ω .

W m,p(Ω) Sobolev space of the m-times weakly differentiable
functions in Ω with Lp-derivatives.

Dku ·Dkv =
n

∑
i1,...,ik=1

∂ ku
∂xi1 . . .∂xik

· ∂ kv
∂xi1 . . .∂xik

.

|Dku| =
(

Dku ·Dku
)1/2

.

‖u‖W m,p =
(
‖u‖p

Lp(Ω) +‖D
mu‖p

Lp(Ω)

)1/p
.

‖u‖W m,p
0

= ‖Dmu‖Lp(Ω).

W m,p
0 (Ω) in bounded domains Ω , closure of C∞

c (Ω)
with respect to the norm ‖ .‖W m,p

0
.

W m,p
0 (Ω) in any domain Ω , closure of C∞

c (Ω)
with respect to the norm ‖ .‖W m,p .

Dm,p(Ω) in unbounded domains Ω , closure of C∞
c (Ω)

with respect to the norm ‖ .‖W m,p
0

.

Hm(Ω) = W m,2(Ω).

Hm
0 (Ω) = W m,2

0 (Ω).

Hm
ϑ (Ω) =

{
v ∈ Hm(Ω); ∆

jv = 0 on ∂Ω for j <
m
2

}
.



Notations 387

H−m(Ω) dual space (Hm
0 (Ω))′.

‖u‖2
Hm

0
=

n

∑
i1,...,im=1

∫
Ω

|Di1,...,im u|2 dx = (see (2.12))

=


∫

Ω

(
∆

m/2u
)2

dx if m is even,∫
Ω

∣∣∣∇∆
(m−1)/2u

∣∣∣2 dx if m is odd.

( . , .)Hm
0

corresponding scalar product in Hm
0 (Ω).

‖u‖2
Dm,2 =


∫

Ω

(
∆

m/2u
)2

dx if m is even,∫
Ω

∣∣∣∇∆
(m−1)/2u

∣∣∣2 dx if m is odd.

( . , .)Dm,2 corresponding scalar product in Dm,2.

〈 f ,u〉 dual pairing: u ∈ Banach space, f ∈ its dual.

Λm, j j-th Dirichlet-eigenvalue of (−∆)m,
according to its multiplicity.

ϕ j corresponding eigenfunctions, orthonormal in Hm
0 (Ω).

Gm,n, Gm,n Green’s function, Green’s operator, resp. for (−∆)m

under Dirichlet boundary conditions in B⊂ Rn.

G(−∆)m,Ω , G(−∆)m,Ω the same for Ω ⊂ Rn.

Gm,n,A , Gm,n,A the same for (−∆)m +A in B⊂ Rn,
where A u = ∑

|α|≤2m−1
aα Dα u.

G(−∆)m,Ω ,A , G(−∆)m,Ω ,A the same in Ω ⊂ Rn.

s =
n+2m
n−2m

, for n > 2m; critical Sobolev exponent.

For measurable functions f :

f > 0 f (x) > 0 for almost all x.

f > g f −g > 0.

f � 0 f (x) < 0 for x in a set of positive measure.

f � g f −g� 0.

f 	 0 f (x) 6= 0 for x in a set of positive measure and f (x)≥ 0
for almost all x.

f 	 g f −g	 0.

f (t)' g(t) ∃C > 0 ∀ t :
1
C

f (t)≤ g(t)≤C f (t); for f ,g≥ 0.
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f (t)� g(t) ∃C > 0 ∀t : f (t)≤C g(t), for f ,g≥ 0.

Ω
∗ a ball centered at the origin such that |Ω |= |Ω ∗|.

u∗ spherical rearrangement of a measurable function u, see
Definition 3.10.

(gi j)i, j=1,...,n Riemannian metric, positive definite tensor. In case of
parametrisations X in R3 over a two dimensional pa-
rameter domain: gi j = ∂iX ·∂ jX .

g = det
(
(gi j)i, j=1,...,n

)
, Gram’s determinant.

(gi j)i, j=1,...,n inverse of the metric tensor.

(Li j)i, j=1,...,n second fundamental form. In case of parametrisations
X in R3 over a two dimensional parameter domain:

Li j =
1
√

g
det(∂i∂ jX ,∂1X ,∂2X) .

H mean curvature. In case of parametrisations X in R3

over a two dimensional parameter domain:

H=
1
2

2

∑
i, j=1

gi jLi j =
1

2g
(g22L11−2g12L12 +g11L22) .

K Gaussian curvature. In case of parametrisations X inR3

over a two dimensional parameter domain:

K=
det
(
(Li j)i, j=1,2

)
g

.

.

Γ k
i j =

n

∑
`=1

1
2

gk` (
∂ jgi` +∂ig j`−∂`gi j

)
, Christoffel symbols.

R`
ki j =−R`

k ji = ∂iΓ
`
jk−∂ jΓ

`
ik +

n

∑
m=1

(
Γ

`
imΓ

m
jk −Γ

`
jmΓ

m
ik

)
,

Riemannian curvature tensor.

Rk`i j =−R`ki j = Ri jk` =
n

∑
m=1

gkmRm
`i j.

Ri j =
n

∑
k,`=1

gk`Rik j` =
n

∑
k=1

Rk
ik j, Ricci tensor.

R =
n

∑
i, j=1

gi jRi j, scalar curvature.

Si j =
1

n−2

(
2Ri j−

R
(n−1)

gi j

)
, Schouten tensor.
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Wi jk` = Ri jk`−
1

n−2
(
Rikg j`−Ri`g jk +R j`gik−R jkgi`

)
+

R
(n−1)(n−2)

(
g j`gik−g jkgi`

)
, Weyl tensor.
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28. I. Babuška. Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme
der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elas-
tizitätstheorie. I, II (Russian, German summary). Czechoslovak Math. J., 11 (86):76–105,
165–203, 1961.

29. A. Bahri and J.M. Coron. On a nonlinear elliptic equation involving the critical Sobolev
exponent: the effect of the topology of the domain. Comm. Pure Appl. Math., 41:253–294,
1988.

30. P. Bartolo, V. Benci, and D. Fortunato. Abstract critical point theorems and applications
to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal., Theory
Methods Appl., 7:981–1012, 1983.

31. Th. Bartsch and Y. Guo. Existence and nonexistence results for critical growth polyharmonic
elliptic systems. J. Differential Equations, 220:531–543, 2006.

32. Th. Bartsch, M. Schneider, and T. Weth. Multiple solutions of a critical polyharmonic equa-
tion. J. Reine Angew. Math., 571:131–143, 2004.

33. Th. Bartsch, T. Weth, and M. Willem. A Sobolev inequality with remainder term and crit-
ical equations on domains with topology for the polyharmonic operator. Calc. Var. Partial
Differential Equations, 18:253–268, 2003.

34. L. Bauer and E.L. Reiss. Block five diagonal matrices and the fast numerical solution of the
biharmonic equation. Math. Comp., 26:311–326, 1972.

35. M. Bauer and E. Kuwert. Existence of minimizing Willmore surfaces of prescribed genus.
Int. Math. Res. Not., 2003 (10):553–576, 2003.

36. G.R. Belickiı̆. Functional equations and conjugacy of local diffeomorphisms of a finite
smoothness class. Funct. Anal. Appl., 7:268–277, 1973. Russian original: Funkcional. Anal.
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pliquées pour la Maı̂trise. Masson, Paris, 1983.

70. H. Brezis, Th. Cazenave, Y. Martel, and A. Ramiandrisoa. Blow up for ut − ∆u = g(u)
revisited. Adv. Differential Equations, 1:73–90, 1996.

71. H. Brezis and E.H. Lieb. Sobolev inequalities with remainder terms. J. Funct. Anal., 62:73–
86, 1985.

72. H. Brezis and L. Nirenberg. Positive solutions of nonlinear elliptic equations involving criti-
cal Sobolev exponents. Comm. Pure Appl. Math., 36:437–477, 1983.



Bibliography 393

73. H. Brezis and J.L. Vazquez. Blow-up solutions of some nonlinear elliptic problems. Rev.
Mat. Univ. Complutense Madrid, 10:443–469, 1997.

74. J. Brothers and W. Ziemer. Minimal rearrangements of Sobolev functions. J. Reine Angew.
Math., 384:153–179, 1988.

75. F.E. Browder. Existence theory for boundary value problems for quasilinear elliptic systems
with strongly nonlinear lower order terms. In Partial differential equations (Proc. Sym-
pos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pages 269–286. Amer.
Math. Soc., Providence, R.I., 1973.

76. B.M. Brown, E.B. Davies, P.K. Jimack, and M.D. Mihajlovic. A numerical investigation of
the solution of a class of fourth-order eigenvalue problems. R. Soc. Lond. Proc. Ser. A. Math.
Phys. Eng. Sci., 456:1505–1521, 1998.

77. R. Bryant. A duality theorem for Willmore surfaces. J. Differential Geom., 20:23–53, 1984.
78. R. Bryant and P. Griffiths. Reduction for constrained variational problems and

∫ 1
2 k2 ds.

Amer. J. Math., 108:525–570, 1986.
79. L.L. Bucciarelli and N. Dworsky. Sophie Germain, An essay in the history of the theory of

elasticity, volume 6 of Studies in the History of Modern Science. D. Reidel Publishing Co.,
Dordrecht, 1980.

80. D. Bucur, A. Ferrero, and F. Gazzola. On the first eigenvalue of a fourth order Steklov
problem. Calc. Var. Partial Differential Equations, 35:103–131, 2009.

81. D. Bucur and N. Varchon. Global minimizing domains for the first eigenvalue of an elliptic
operator with non-constant coefficients. Electron. J. Differential Equations, 2000 (36):1–10,
2000.

82. L. Caffarelli, B. Gidas, and J. Spruck. Asymptotic symmetry and local behavior of semilinear
equations with critical Sobolev growth. Comm. Pure Appl. Math., 42:271–297, 1989.

83. A.P. Calderón and A. Zygmund. On the existence of certain singular integrals. Acta Math.,
88:85–139, 1952.

84. A. Capozzi, D. Fortunato, and G. Palmieri. An existence result for nonlinear elliptic problems
involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2:463–470,
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matics. Birkhäuser-Verlag, Basel, 2006.
229. U. Hertrich-Jeromin and U. Pinkall. Ein Beweis der Willmoreschen Vermutung für Kanal-

tori. J. Reine Angew. Math., 430:21–34, 1992.
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252. V.A. Kozlov, V.A. Kondratiev, and V.G. Maz’ya. On sign variation and the absence of strong
zeros of solutions of elliptic equations. Math. USSR Izvestiya, 34:337–353, 1990. Russian
original: Izv. Akad. Nauk SSSR Ser. Mat. 53: 328–344, 1989.
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équatons elliptiques d’ordre quelconque. C. R. Acad. Sci. Paris, Sér. A, 262:1407–1410,
1966.

378. E. Sperner Jr. Symmetrisierung für Funktionen mehrerer reeller Variablen. Manuscripta
Math., 11:159–170, 1974.
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Pólya, G., 14, 70, 75
Pucci, P., 21, 259, 359

Rabinowitz, P.H., 269
Rayleigh, J.W.S., 13, 72, 94
Reichel, W., 314, 360, 361
Rivière, T., 384
Robert, F., 19, 20, 143, 221, 360
Rossmann, J., 57
Rutman, M.A., 12, 59, 60, 94, 185

Salaun, M., 5
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limaçons de Pascal, 10, 193
Liouville’s theorem, 217
local maximum principle, 162, 163



SUBJECT–INDEX 413

local positivity
biharmonic operator, 205
polyharmonic operator, 206

Lopatinski-Shapiro condition, 57
Lp-estimates, 44

maximum modulus estimate, 46
mean curvature, 5, 23, 365
mild solution, 43
minimal solution, 328
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