
Mathematische Annalen manuscript No.
(will be inserted by the editor)

Positivity for equations involving polyharmonic
operators with Dirichlet boundary conditions

Hans-Christoph Grunau1, Guido Sweers2

1 Mathematisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
2 Vakgroep Algemene Wiskunde, Technische Universiteit Delft, Postbus 5031, 2600 GA Delft

Netherlands

Received: 13 April 1995 /Revised version: 6 March 1996

Mathematics Subject Classification (1991): 35J40; 35B50.

1 Introduction

Cranston, Fabes and Zhao ([26], [5]) established the uniform bound

sup
x, y ∈ Ω
x 6= y

∫
Ω

G1,n (x, z)G1,n (z, y) dz

G1,n (x, y)
≤M <∞, (1)

where G1,n (x, y) is the Green function for the Laplacian −∆ with Dirichlet boundary
conditions on a Lipschitz domain Ω ⊂ Rn with n ≥ 3 (see [27] for n = 2). This
estimate was used in [23] and [18] to obtain positivity, uniformly with respect to
f ≥ 0, for noncooperative elliptic systems as: −∆u = f − εv in Ω,

−∆v = u in Ω,
u = v = 0 on ∂Ω,

when ε ≥ 0 is small. In particular, ∆2v + εv ≥ 0 in Ω, with v = ∆v = 0 on ∂Ω,
implies v ≥ 0 for ε small. In numerical experiments ([14]) for one dimension a similar
behaviour was observed under Dirichlet boundary conditions v = ∂

∂nv = 0.
In this paper we will derive a 3-G type theorem as in (1) but with G1,n replaced by

the Green function Gm,n for the m-polyharmonic operator with Dirichlet boundary
conditions and with Ω replaced by the unit ball B in Rn withn ≥ 1:{

(−∆)m u = f in B,
Dmu = 0 on ∂B,

(2)

where
Dmu =

(
Dku

)
k∈Nn,|k|≤m−1

.
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We use a multi-index k ∈ Nn with Dk =
(

∂
∂x1

)k1

. . .
(

∂
∂xn

)kn
and |k| = k1 + . . .+kn.

N is the set of nonnegative integers. Notice that the Dirichlet boundary condition
may also be written as(

u,
∂

∂r
u,

∂2

∂r2
u, . . . ,

∂m−1

∂rm−1
u

)
= 0 on ∂B.

Boggio in [4] (see also [9], [10]) showed positivity of Gm,n on the ball B. Here we
will establish two-sided pointwise estimates for Gm,n and estimates from above for
derivatives of Gm,n. These estimates enable us to prove 3-G Theorem type results.

For these results we will only use the ball in Rn as a domain. In contrary to the
Laplacian the Green function for the biharmonic or polyharmonic operator is not
positive for arbitrary domains. Hence the estimate of Gm,n from below (by a positive
function) necessarily restricts the possible domains. The question whether or not the
estimates from above remain true on arbitrary smooth and bounded domains, is open
as far as the authors know. Counterexamples of sign changing superpolyharmonic
functions can be found in [6], [7, p. 275], [17] and [22].

The 3-G results are used in three directions. First, one can prove that on B also
the inverse of polyharmonic operators that are perturbed by small lower order terms,
are positivity preserving. That is, if the coefficients ak in

(−∆)m u+
∑
|k|<2m

ak (·) Dku = f, (3)

are sufficiently small, f positive implies that the solution u of the Dirichlet problem
for (3) is positive. Secondly, as in [24], we obtain positivity results for systems of these
operators. Thirdly, estimates for these Green functions on the unit ball in Rn can
be used to obtain local maximum principles for solutions of differential inequalities
in arbitrary domains. Results in this last direction will be studied in a forthcoming
paper [11]. As a consequence we will show in [11] existence of classical solutions of
higher order semilinear elliptic equations for a much wider class as in [9]-[10].

2 Estimates for Gm,n

We will use the following notations.

i. B = {x ∈ Rn; |x| < 1} with n ≥ 1.
ii. s ∧ t = min (s, t) and s+ = max (s, 0) for s, t ∈ R.
iii. Gm,n is the Green operator for (2), that is, u = Gm,nf with

(Gm,nf) (x) =
∫
B

Gm,n (x, y) f (y) dy.

iv. For x, y ∈ B:
[xy] = |x− y| ,

[XY ] =
∣∣∣|x| y − x

|x|

∣∣∣ ,
d (x) = 1− |x| ,

Θ (x, y) = [XY ]2 − [xy]2 .
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Note that [XY ] =
√
|x|2 |y|2 − 2 x · y + 1 = [Y X] and that d (x) is the distance

of x to the boundary. Moreover

Θ (x, y) =
(

1− |x|2
)(

1− |y|2
)
. (4)

Hence [XY ] > [xy] for x, y ∈ B.

Lemma 2.1 (Boggio) [4, p. 126] The Green function Gm,n is as follows:

Gm,n (x, y) = km,n |x− y|2m−n
[XY ]/[xy]∫

1

(
v2 − 1

)m−1

vn−1
dv (5)

with km,n some fixed positive constants.

Remark 1. For m = 2 one finds

G2,n(x, y) =

= cn



[xy]3 − [XY ]3 + 3
2Θ (x, y)[XY ] for n = 1,

[xy]2 (2 log [xy]− 2 log [XY ]) +Θ (x, y) for n = 2,

− [xy] + [XY ] − 1
2Θ (x, y)[XY ]−1 for n = 3,

−2 log [xy] + 2 log [XY ] − Θ (x, y)[XY ]−2 for n = 4,

[xy]−n+4 − [XY ]−n+4 − n−4
2 Θ (x, y)[XY ]−n+2for n ≥ 5,

with
cn = (2 |(n− 4) (n− 2)|Sn)−1 for all n /∈ {2, 4} ,

cn = (8Sn)−1 for n ∈ {2, 4} .

Sn is the area of the surface of the unit ball in Rn (S1 = 2).

Starting from the explicit formula we will prove a two-sided estimate. But to
simplify the statements we will first define an ordering and a related equivalency
relation for nonnegative functions.

Definition 2.2 Let f, g ≥ 0. We call f ∼ g on Ω, iff there are c1, c2 > 0 such that

c1g (x) ≤ f (x) ≤ c2g (x) for all x ∈ Ω.

We will say f � g on Ω, iff there is c > 0 such that

f (x) ≤ c g (x) for all x ∈ Ω.

Proposition 2.3 On B2 (that is (x, y) ∈ B2) we have the following.
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i. For 2m < n :

Gm,n (x, y) ∼ |x− y|2m−n
(

1 ∧ d (x)m d (y)m

|x− y|2m

)
.

ii. For 2m = n :

Gm,n (x, y) ∼ log
(

1 +
d (x)m d (y)m

|x− y|2m

)
.

iii. For 2m > n :

Gm,n (x, y) ∼ (d (x) d (y))m−
1
2
n

(
1 ∧ d (x)

1
2
n d (y)

1
2
n

|x− y|n

)
.

Proposition 2.4 Let k ∈ Nn with |k| ≤ 2m. Then on B2 we have the following.

i. For |k| ≥ 2m− n and n odd, or, |k| > 2m− n and n even:
(a) if |k| ≤ m then∣∣∣Dk

xGm,n (x, y)
∣∣∣ � |x− y|2m−n−|k| (1 ∧ d (x)m−|k| d (y)m

|x− y|2m−|k|

)
;

(b) if |k| ≥ m then∣∣∣Dk
xGm,n (x, y)

∣∣∣ � |x− y|2m−n−|k| (1 ∧ d (y)m

|x− y|m
)
.

ii. For |k| = 2m− n and n even:
(a) if |k| ≤ m (that is m ≤ n) then∣∣∣Dk

xGm,n (x, y)
∣∣∣ � log

(
2 +

d (y)
|x− y|

) (
1 ∧ d (x)m−|k| d (y)m

|x− y|2m−|k|

)
;

(b) if |k| ≥ m (that is m ≥ n) then∣∣∣Dk
xGm,n (x, y)

∣∣∣ � log
(

2 +
d (y)
|x− y|

) (
1 ∧ d (y)m

|x− y|m
)
.

iii. For |k| ≤ 2m− n and n odd, or, |k| < 2m− n and n even:
(a) if |k| ≤ m− 1

2n then

∣∣∣Dk
xGm,n (x, y)

∣∣∣ � d (x)m−
1
2
n−|k| d (y)m−

1
2
n

(
1 ∧ d (x)

1
2
n d (y)

1
2
n

|x− y|n

)
;

(b) if m− 1
2n ≤ |k| ≤ m then

∣∣∣Dk
xGm,n (x, y)

∣∣∣ � d (y)2m−n−|k|

(
1 ∧ d (x)m−|k| d (y)n−m+|k|

|x− y|n

)
;
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(c) if m ≤ |k| then∣∣∣Dk
xGm,n (x, y)

∣∣∣ � d (y)2m−n−|k|

(
1 ∧ d (y)n−m+|k|

|x− y|n−m+|k|

)
.

Remark 2. The Green function for the Laplacian (n > 2, m = 1) satisfies the
estimates above on arbitrary bounded domains with C2,γ-smooth boundary. This
result (among others) was established by K. O. Widman in [25].

Remark 3. For p, q ≥ 0 one finds on B2(
1 ∧ d (x)p d (y)q

|x− y|p+q

)
∼
(

1 ∧ d (x)
|x− y|

)p(
1 ∧ d (y)
|x− y|

)q
, (6)

and if p+ q > 0

log
(

1 +
d (x)p d (y)q

|x− y|p+q

)
∼ log

(
2 +

d (y)
|x− y|

)(
1 ∧ d (x)p d (y)q

|x− y|p+q

)
. (7)

These results follow from Lemma 3.2 viii. and ix.

Remark 4. From Lemma 3.3 it follows that for all three cases in Proposition 2.4 iii.
we have ∣∣∣Dk

xGm,n (x, y)
∣∣∣ � d (x)m−

1
2
n−|k| d (y)m−

1
2
n

(
1 ∧ d (x)

1
2
n d (y)

1
2
n

|x− y|n

)
. (8)

In the case that m − 1
2n ≤ |k| ≤ m both estimates (Prop. 2.4 iii.(b) and (8)) are

equivalent as can be seen from Lemma 3.3 ii. When |k| > m the estimate in (8) is
less sharp as the one in Prop. 2.4 iii. (c).

3 Proving the Green function estimates

We will repeatedly distinguish the cases [xy] ≥ 1
2 [XY ] and [xy] ≤ 1

2 [XY ]. The
following Lemma will help us doing so.

Lemma 3.1 If [xy] ≥ 1
2 [XY ], then

d (x) d (y) ≤ 3 |x− y|2 , (9)

max (d (x) , d (y)) ≤ 3 |x− y| . (10)

If [xy] ≤ 1
2 [XY ], then

3
4
|x− y|2 ≤ 3

16
[XY ]2 ≤ d (x) d (y) , (11)

1
4
d (x) ≤ d (y) ≤ 4d (x) . (12)
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Proof. If [xy] ≥ 1
2 [XY ], then d (x) d (y) ≤ [XY ]2 − [xy]2 ≤ 3

4 [XY ]2 which implies
(9). The estimate in (10) follows from

d (x)2 ≤ d (x) (d (y) + |x− y|) ≤

≤ 3 |x− y|2 + d (x) |x− y| ≤

≤ 4 |x− y|2 +
1
4
d (x)2

and a similar estimate for d (y).
If [xy] ≤ 1

2 [XY ], then d (x) d (y) ≥ 1
4

(
[XY ]2 − [xy]2

)
≥ 3

16 [XY ]2 which implies
(11) and moreover

d (x) ≤ d (y) + |x− y| ≤ d (y) +

√
4
3
d (x) d (y) ≤

≤ d (y) +
1√
3

(d (x) + d (y)) ≤ 3
5
d (x) +

8
5
d (y)

implies d (x) ≤ 4d (y). Similarly d (y) ≤ 4d (x) and (12) follows.

The following equivalencies will be used several times.

Lemma 3.2 On R+ × R+ (for s, t ∈ R+) we have:

i. min
(

1
s
,
1
t

)
∼ 1
s+ t

,

ii. max (s, t) ∼ s+ t.

On B2 (for x, y ∈ B) we have with p, q ≥ 0 fixed:

iii. Θ (x, y) ∼ d (x) d (y) ,

iv. [XY ] ∼ d (x) + d (y) + |x− y| ,

v. 1 ∧ d (y)
|x− y|

∼ 1 ∧ d (y)
d (x)

∧ d (y)
|x− y|

,

vi. 1 ∧ d (x) d (y)
|x− y|2

∼ d (y)
d (x)

∧ d (x)
d (y)

∧ d (x) d (y)
|x− y|2

,

vii. 1 ∧ d (x)p d (y)q

|x− y|p+q
∼ 1 ∧ d (x)p

|x− y|p
∧ d (y)q

|x− y|q
∧ d (x)p d (y)q

|x− y|p+q
,

viii. 1 ∧ d (x)p d (y)q

|x− y|p+q
∼
(

1 ∧ d (x)
|x− y|

)p(
1 ∧ d (y)
|x− y|

)q
.

On B2 (for x, y ∈ B) we have with p, q ≥ 0 and p+ q > 0 fixed:

ix. log
(

1 +
d (x)p d (y)q

|x− y|p+q

)
∼ log

(
2 +

d (y)
|x− y|

)(
1 ∧ d (x)p d (y)q

|x− y|p+q

)
.

Remark 1. The statements in viii., ix. imply (6,7) in the remark following Proposition
2.4.

Proof.
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i. and ii. are straightforward; iii. follows from (4).
iv. For the first step we use

[XY ]2 = |x|2 |y|2 − 2 x · y + 1 ≥ (1− |x| |y|)2 ≥ (1− |x|)2 = d (x)2 .

With a similar estimate by d (y) and with (4) we find left ≥ 1
3right. By (4) we

also find
[XY ] ≤

√
|x− y|2 + 4d (x) d (y) ≤

≤ |x− y|+ 2
√
d (x) d (y) ≤ |x− y|+ d (x) + d (y) .

v. We use Lemma 3.1 to find the following. If [xy] ≥ 1
2 [XY ], then d(y)

|x−y| �
d(y)
d(x) and

if [xy] ≤ 1
2 [XY ], then 1 � d(y)

d(x) .
vi. The sixth equivalency is proven as follows. Since min

(
t, t−1

)
≤ 1 on R+, one

finds left�right. As in v. we find by Lemma 3.1 if [xy] ≥ 1
2 [XY ], then

d (x) d (y)
|x− y|2

� d (x) d (y)
d (x)2 and

d (x) d (y)
|x− y|2

� d (x) d (y)
d (y)2 ,

and if [xy] ≤ 1
2 [XY ], then

1 � d (y)
d (x)

and 1 � d (x)
d (y)

.

vii. By Lemma 3.1 if [xy] ≥ 1
2 [XY ] then

d (x)p

|x− y|p
∧ d (y)q

|x− y|q
� d (x)p d (y)q

|x− y|p+q
,

and if [xy] ≤ 1
2 [XY ] then

d (x)p

|x− y|p
∧ d (y)q

|x− y|q
� 1.

viii. One uses again Lemma 3.1. If [xy] ≥ 1
2 [XY ] then(

1 ∧ d (x)p d (y)q

|x− y|p+q

)
∼ d (x)p d (y)q

|x− y|p+q
∼
(

1 ∧ d (x)
|x− y|

)p (
1 ∧ d (y)
|x− y|

)q
.

If [xy] ≤ 1
2 [XY ] then(

1 ∧ d (x)p d (y)q

|x− y|p+q

)
∼ 1 ∼

(
1 ∧ d (x)
|x− y|

)p (
1 ∧ d (y)
|x− y|

)q
.

ix. Lemma 3.1 implies if [xy] ≥ 1
2 [XY ] that

log
(

1 +
d (x)p d (y)q

|x− y|p+q

)
∼ d (x)p d (y)q

|x− y|p+q
∼
(

1 ∧ d (x)p d (y)q

|x− y|p+q

)
∼

∼ log
(

2 +
d (y)
|x− y|

)(
1 ∧ d (x)p d (y)q

|x− y|p+q

)
.

If [xy] ≤ 1
2 [XY ] then by Lemma 3.1

log
(

1 +
d (x)p d (y)q

|x− y|p+q

)
∼ log

(
1 +

d (y)p+q

|x− y|p+q

)
∼
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∼ log

((
2 +

d (y)
|x− y|

)p+q)
∼ log

(
2 +

d (y)
|x− y|

)
∼

∼ log
(

2 +
d (y)
|x− y|

)(
1 ∧ d (x)p d (y)q

|x− y|p+q

)
.

Lemma 3.3 Let r, s, t ≥ 0.
i. If s+ t ≥ 2r, then on B2 we have(

1 ∧ d (x)t d (y)s

|x− y|t+s

)
�
(
d (y)
d (x)

)r−t (
1 ∧ d (x)r d (y)r

|x− y|2r

)
. (13)

ii. If s+ t = 2r, then on B2 we have(
1 ∧ d (x)t d (y)s

|x− y|t+s

)
∼
(
d (y)
d (x)

)r−t (
1 ∧ d (x)r d (y)r

|x− y|2r

)
. (14)

By symmetry one may interchange x, t with y, s.

Proof of Lemma 3.3. We will use Lemma 3.1 several times.
• The case [xy] ≤ 1

2 [XY ]. We have(
1 ∧ d (x)t d (y)s

|x− y|t+s

)
∼ 1 ∼

(
d (y)
d (x)

)r−t
∼

∼
(
d (y)
d (x)

)r−t(
1 ∧ d (x)r d (y)r

|x− y|2r

)
.

• The case [xy] ≥ 1
2 [XY ]. We have(

1 ∧ d (x)t d (y)s

|x− y|t+s

)
∼ d (x)t d (y)s

|x− y|t+s
=

=
(
d (y)
d (x)

)r−t d (x)r d (y)r

|x− y|2r
d (y)s+t−2r

|x− y|s+t−2r �

�
(
d (y)
d (x)

)r−t d (x)r d (y)r

|x− y|2r
∼

∼
(
d (y)
d (x)

)r−t(
1 ∧ d (x)r d (y)r

|x− y|2r

)
.

Note that when s+ t = 2r we may replace � by = in the previous estimate.

Before proving both propositions of the previous section we will introduce two
convenient transformations of (5). For the case that [xy] ≥ 1

2 [XY ] we will use the
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integral transformation with s = 1− v−2 and we obtain the following expression for
Gm,n:

Gm,n (x, y) =
1
2
km,n |x− y|2m−n

Axy∫
s=0

sm−1 (1− s)
1
2
n−m−1 ds, (15)

where

Axy =
[XY ]2 − [xy]2

[XY ]2
. (16)

We set

fm,n (t) =

t∫
s=0

sm−1 (1− s)
1
2
n−m−1 ds. (17)

By straightforward calculus it follows that for t ∈ [0, 1], if m ≥ j > 0,∣∣∣f (j)
m,n (t)

∣∣∣ � tm−j (1− t)
1
2
n−m−j

(
tj−1 + (1− t)j−1

)
�

� tm−j (1− t)
1
2
n−m−j , (18)

and if m < j∣∣∣f (j)
m,n (t)

∣∣∣ � (1− t)
1
2
n−m−j

(
tm−1 + (1− t)m−1

)
� (1− t)

1
2
n−m−j . (19)

For the case that [xy] ≤ 1
2 [XY ] we use the transformation with w = v−1 and (5)

becomes:

Gm,n (x, y) = km,n |x− y|2m−n
1∫

w=[xy]/[XY ]

wn−2m−1
(
1− w2

)m−1
dw. (20)

We also set

gm,n (t) =

1∫
w=t

wn−2m−1
(
1− w2

)m−1
dw. (21)

Proof of Proposition 2.3.
First we prove Proposition 2.3 i. which follows rather directly from (15). Indeed,

if n > 2m, then one finds by distinguishing the cases 0 ≤ t ≤ 1
2 and 1

2 ≤ t ≤ 1 that
fm,n in (17) satisfies

fm,n (t) ∼ tm on [0, 1]

and hence by (15), using respectively Lemma 3.2 iii./iv., i. and vi., that

Gm,n (x, y) ∼ |x− y|2m−n (Axy)
m ∼

∼ |x− y|2m−n
(

d (x) d (y)
d (x)2 + d (y)2 + |x− y|2

)m
∼

∼ |x− y|2m−n
(

min
(
d (y)
d (x)

,
d (x)
d (y)

,
d (x) d (y)
|x− y|2

))m
∼

∼ |x− y|2m−n min
(

1,
(
d (x) d (y)
|x− y|2

)m)
.
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For Proposition 2.3 ii. and iii. we have to distinguish two cases.

• The case [xy] ≥ 1
2 [XY ]. Then Axy ≤ 3

4 and the formula in (15) implies

Gm,n (x, y) ∼ |x− y|2m−n (Axy)
m ∼

∼ |x− y|2m−n d (x)m d (y)m

[XY ]2m
∼

∼ d (x)m d (y)m

[XY ]n
∼

∼ d (x)m d (y)m

(d (x) + d (y) + |x− y|)n
∼

∼ d (x)m−
1
2
n d (y)m−

1
2
n

(
min

(
d (x)
d (y)

,
d (y)
d (x)

,
d (x) d (y)
|x− y|2

)) 1
2
n

∼

∼ d (x)m−
1
2
n d (y)m−

1
2
n min

(
1,
(
d (x) d (y)
|x− y|2

) 1
2
n
)
.

In the last three steps we used respectively Lemma 3.2 iv., i. and vi. Notice that, if
2m = n, (9) implies

d (x)m−
1
2
n d (y)m−

1
2
n min

(
1,
(
d (x) d (y)
|x− y|2

) 1
2
n
)
∼

∼ log

(
1 +

(
d (x) d (y)
|x− y|2

) 1
2
n
)
.

• The case [xy] ≤ 1
2 [XY ]. Now it follows from (20) that we find

Gm,n (x, y) ∼ |x− y|2m−n
1∫

w=[xy]/[XY ]

wn−2m−1dw ∼

∼

{
if n = 2m : log ([XY ] / [xy]) ;

if n < 2m : [XY ]2m−n .

For n = 2m one uses log (1 + a) ∼ log
(

1 + a
1
2
n
)

for a ∈
[

3
4 ,∞

)
, and continues by

log
(

[XY ]
[xy]

)
∼ log

(
1 +

[XY ]2 − [xy]2

[xy]2

)
∼

∼ log
(

1 +
d (x) d (y)
|x− y|2

)
∼ log

(
1 +

(
d (x) d (y)
|x− y|2

) 1
2
n
)
.

In the last step we used (11). For n < 2m one has, using respectively Lemma 3.2
iv., (11) and (12), and again (11)

[XY ]2m−n ∼ (d (x) + d (y) + |x− y|)2m−n ∼

∼ (d (x) d (y))m−
1
2
n ∼
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∼ (d (x) d (y))m−
1
2
n min

(
1,
(
d (x) d (y)
|x− y|2

) 1
2
n
)
.

Proposition 2.4 will be a consequence of the following lemmas.

Lemma 3.4 We have on Ω1 :=
{

(x, y) ∈ B2; [xy] ≥ 1
2 [XY ]

}
that

i. if |k| ≤ m ∣∣∣Dk
xGm,n (x, y)

∣∣∣ � |x− y|2m−n−|k|( d (x)
[XY ]

)m−|k|( d (y)
[XY ]

)m
;

ii. if |k| ≥ m ∣∣∣Dk
xGm,n (x, y)

∣∣∣ � |x− y|2m−n−|k|( d (y)
[XY ]

)m
.

Proof of Lemma 3.4. We will use (15). With the assumption [xy] ≥ 1
2 [XY ] it is

sufficient to estimate fm,n (t) on
[
0, 3

4

]
since 0 ≤ Axy ≤ 3

4 for all (x, y) ∈ Ω1. We
find by (17-19) that∣∣∣f (j)

m,n (t)
∣∣∣ � tmax(m−j,0) on

[
0,

3
4

]
for all j ≥ 0. (22)

Since

Axy =

(
1− |x|2

)(
1− |y|2

)
[XY ]2

,

|Dp
x [XY ]| � [XY ]1−|p| ,

and 1− |x|2 ≤ 2d (x) � [XY ] by Lemma 3.2 iv., it follows that on B2

|Dp
xAxy| �

d (y)

[XY ]|p|+1
. (23)

By a tedious application of the chain rule we find that∣∣∣Dk
xGm,n (x, y)

∣∣∣ �
�
∑
p≤k

∣∣∣Dk−p
x |x− y|2m−n

∣∣∣ |Dp
xfm,n (Axy)| �

�
∑
p≤k

∣∣∣Dk−p
x |x− y|2m−n

∣∣∣ |p|∑
j=0

∣∣∣f (j)
m,n (Axy)

∣∣∣ ∑
∑j
i=1

p(i)=p

1≤|p(i)|

j∏
i=1

∣∣∣Dp(i)

x Axy

∣∣∣ = (24)

where the last sum is 1 for j = 0. Note that (23) implies

∑
∑j
i=1

p(i)=p

1≤|p(i)|

j∏
i=1

∣∣∣Dp(i)

x Axy

∣∣∣ � d (y)j

[XY ]|p|+j
.
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Using respectively (22), Lemma 3.2 iii. and iv., and again iv., we continue by

(24) �
∑
p≤k
|x− y|2m−n−|k|+|p|

|p|∑
j=0

(Axy)
max(m−j,0) d (y)j

[XY ]j+|p|
�

�
∑
p≤k
|x− y|2m−n−|k|+|p|

|p|∑
j=0

(
d (x) d (y)

[XY ]2

)max(m−j,0) d (y)j

[XY ]j+|p|
�

�
∑
p≤k
|x− y|2m−n−|k|+|p|

(
d (x)
[XY ]

)max(m−|p|,0)( d (y)
[XY ]

)m
[XY ]−|p| �

� |x− y|2m−n−|k|
(
d (x)
[XY ]

)max(m−|k|,0)( d (y)
[XY ]

)m
.

We used d(x)
[XY ] ≤ 1, d(y)

[XY ] ≤ 1 and [xy] ∼ [XY ].

Lemma 3.5 We have on Ω2 :=
{

(x, y) ∈ B2; [xy] ≤ 1
2 [XY ]

}
that

i. if |k| > 2m− n ∣∣∣Dk
xGm,n (x, y)

∣∣∣ � |x− y|2m−n−|k| ;
ii. if |k| = 2m− n ∣∣∣Dk

xGm,n (x, y)
∣∣∣ � log

(
[XY ]
[xy]

)
for n even,∣∣∣Dk

xGm,n (x, y)
∣∣∣ � 1 for n odd;

iii. if |k| < 2m− n ∣∣∣Dk
xGm,n (x, y)

∣∣∣ � [XY ]2m−n−|k| .

Proof of Lemma 3.5. First we will derive some estimates for gm,n defined in (21). If
n > 2m then for all j ≥ 0 ∣∣∣g(j)

m,n (t)
∣∣∣ � 1 on [0, 1] .

If n = 2m = 2 then
g1,2 (t) = − log (t) (25)

and if n = 2m > 2 then

gm,2m (t) = − log (t) + P2m−2 (t) ,

where P2m−2 is some polynomial of degree 2m− 2. Hence if n = 2m we get

|gm,2m (t)| � − log t on
[
0,

1
2

]
. (26)
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and for j > 0 that ∣∣∣g(j)
m,2m (t)

∣∣∣ � t−j on
[
0,

1
2

]
. (27)

Which implies that we obtain for n ≥ 2m and |p| ≥ 1:∣∣∣∣Dp
xgm,n

(
[xy]

[XY ]

)∣∣∣∣ �
�
|p|∑
j=1

∣∣∣∣g(j)
m,n

(
[xy]

[XY ]

)∣∣∣∣ ∑
p(1)+...+p(j)=p

|p(i)|≥1

j∏
i=1

∣∣∣∣Dp(i)

x

(
[xy]

[XY ]

)∣∣∣∣ �

�
|p|∑
j=1

(
[xy]

[XY ]

)−j ∑
p(1)+...+p(j)=p

|p(i)|≥1

j∏
i=1

(
[xy]1−|p

(i)|

[XY ]

)
�

� |x− y|−|p| . (28)

Next we distinguish the cases n > 2m, n = 2m and n < 2m.
• The case n > 2m. Inequality (28) implies that∣∣∣Dk

xGm,n (x, y)
∣∣∣ �

�
∑
p≤k

∣∣∣Dk−p
x |x− y|2m−n

∣∣∣ ∣∣∣∣Dp
xgm,n

(
[xy]

[XY ]

)∣∣∣∣ �
�
∑
p≤k
|x− y|2m−n−|k|+|p| |x− y|−|p| �

� |x− y|2m−n−|k| .
• The case n = 2m. If |k| = 0 the result follows from (25) and (26). If |k| ≥ 1 we
obtain by (28) that∣∣∣Dk

xGm,n (x, y)
∣∣∣ ∼ ∣∣∣∣Dk

xgm,n

(
[xy]

[XY ]

)∣∣∣∣ � |x− y|−|k| .
• The case n < 2m. Integration by part yields

gm,n (t) =
1

2m− n
tn−2m

(
1− t2

)m−1 − 2m− 2
2m− n

gm−1,n (t) =

=
∑̀
i=1

αm,n,i
2 (m− i)

tn−2m+2i−2
(
1− t2

)m−i − αm,n,` gm−`,n (t) (29)

with

αm,n,i = (−1)i−1

(
m−1
i

)(m− 1
2
n

i

) ,
for all ` ≤ m− 1

2n if n is even and for all ` < m if n is odd. Define

Hm,n,` (x, y) =
∑̀
i=1

αm,n,i
2 (m− i)

[xy]2i−2 [XY ]2m−n−2i+2 (Axy)
m−i
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and we have

Gm,n (x, y) = Hm,n,` (x, y)− αm,n,` [xy]2m−n gm−`,n

(
[xy]

[XY ]

)
.

From ∣∣∣Dk
x [xy]2i−2

∣∣∣ = 0 for k > 2i− 2,

since 2i− 2 is even and positive, and (23), we get for ` < m that∣∣∣Dk
xHm,n,` (x, y)

∣∣∣ �
�
∑̀
i=1

∑
p≤k

∣∣∣Dk−p
x |x− y|2i−2

∣∣∣ ∣∣∣Dp
x

(
[XY ]2m−n−2i+2 (Axy)

m−i
)∣∣∣ �

�
∑̀
i=1

∑
p≤k

|k|+2−2i≤|p|

|x− y|2i−2−|k|+|p| [XY ]2m−n−2i+2−|p| �

� [XY ]2m−n−|k| (30)

Hence Hm,n,` (x, y) for ` < m is the innocent part. The estimate for the derivatives
of [xy]2m−n gm−`,n ([xy] / [XY ]) will be crucial.

We distinguish further the cases n is even and n odd.
•• n even. We use (29) with ` = m− 1

2n and we get that∣∣∣∣Dk
x

(
[xy]2m−n g 1

2
n,n

(
[xy]

[XY ]

))∣∣∣∣ �
�

∑
p≤k

|k|−2m+n≤|p|

∣∣∣Dk−p
x |x− y|2m−n

∣∣∣ ∣∣∣∣Dp
xg 1

2
n,n

(
[xy]

[XY ]

)∣∣∣∣ = (31)

A next distinction will be |k| ≤ 2m− n and |k| > 2m− n.

• • • n even and |k| ≤ 2m− n. Using (28) and (26) we get

(31) � |x− y|2m−n−|k| g 1
2
n,n

(
[xy]

[XY ]

)
+
∑
p≤k
1≤|p|

|x− y|2m−n−|k|+|p| |x− y|−|p| �

� |x− y|2m−n−|k| log
(

[XY ]
[xy]

)
+ |x− y|2m−n−|k| �

� |x− y|2m−n−|k| log
(

[XY ]
[xy]

)
.

With (30) we find if |k| = 2m− n that∣∣∣Dk
xGm,n (x, y)

∣∣∣ � log
(

[XY ]
[xy]

)
,

and if |k| < 2m− n then

|x− y|2m−n−|k| log
(

[XY ]
[xy]

)
� [XY ]2m−n−|k|
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which implies ∣∣∣Dk
xGm,n (x, y)

∣∣∣ � [XY ]2m−n−|k| .

• • • n even and |k| > 2m− n. With (28) we get

(31) �
∑
p≤k

|k|−2m+n≤|p|

|x− y|2m−n−|k|+|p| |x− y|−|p| �

� |x− y|2m−n−|k| .

•• n odd. If n = 1 we proceed straightforwardly from Boggio’s formula:

Gm,1 (x, y) =

= cm,1 |x− y|2m−1

[XY ]/[xy]∫
v=1

(
v2 − 1

)m−1
dv =

=
m−1∑
q=0

αq [XY ]2m−2q−1 [xy]2q + αm [xy]2m−1 .

Hence it follows that ∣∣∣Dk
xGm,n (x, y)

∣∣∣ �
�

m−1∑
q=0

∑
p≤k

∣∣∣Dk−p
x [XY ]2m−2q−1

∣∣∣ ∣∣∣Dp
x [xy]2q

∣∣∣+
∣∣∣Dk

x [xy]2m−1
∣∣∣ �

�
m−1∑
q=0

∑
p≤k
|p|≤2q

[XY ]2m−2q−1−|k|+|p| [xy]2q−|p| + [xy]2m−1−|k| �

� [XY ]2m−1−|k| + [xy]2m−1−|k| .

If |k| ≤ 2m−1, then [XY ]2m−1−|k|+[xy]2m−1−|k| � [XY ]2m−1−|k| and if |k| > 2m−1,
then [XY ]2m−1−|k| + [xy]2m−1−|k| � [xy]2m−1−|k|.

If n > 1 is odd we use (29) with ` = m− 1
2 (n− 1) to find

Gm,n (x, y) =

= Hm,n,m− 1
2

(n−1) (x, y)− αm,n,m− 1
2

(n−1) [xy]2m−n g 1
2
n− 1

2
,n

(
[xy]

[XY ]

)
.

Notice that, since n− 3 is nonnegative and even,

g 1
2
n− 1

2
,n (t) =

∫ 1

t

(
1− w2

)n−3
2 dw

is a polynomial in [xy] / [XY ]. We find that∣∣∣∣Dk
x

(
[xy]2m−n g 1

2
n− 1

2
,n

(
[xy]

[XY ]

))∣∣∣∣ � |x− y|2m−n−|k| . (32)
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Hence, combining (30) and (32) we find that∣∣∣Dk
xGm,n (x, y)

∣∣∣ � [XY ]2m−n−|k| + |x− y|2m−n−|k| ,

which implies if |k| ≥ 2m− n that∣∣∣Dk
xGm,n (x, y)

∣∣∣ � |x− y|2m−n−|k| ,
and if |k| ≤ 2m− n that ∣∣∣Dk

xGm,n (x, y)
∣∣∣ � [XY ]2m−n−|k| .

Proof of Proposition 2.4. Again we separate the two cases.
• The case [xy] ≥ 1

2 [XY ]. We find by (10) that on Ω1:

d (x)
[XY ]

∼ d (x)
[xy]

� 1 and
d (y)
[XY ]

∼ d (y)
[xy]

� 1 (33)

and

log
(

2 +
d (y)
|x− y|

)
∼ 1.

Since t ∼ (1 ∧ t) for t ∈ [0,M ] and M fixed, we find that Lemma 3.4 i. implies
Proposition 2.4 i./ii. (a) and that Lemma 3.4 ii. implies Proposition 2.4 i./ii. (b). It
remains to prove Proposition 2.4 iii.

If m− 1
2n ≥ |k| it follows from Lemma 3.4 i. and (33) that∣∣∣Dk

xGm,n (x, y)
∣∣∣ � |x− y|2m−n−|k| d (x)m−|k|

|x− y|m−|k|
d (y)m

|x− y|m
=

= d (x)m−
1
2
n−|k| d (y)m−

1
2
n d (x)

1
2
n d (y)

1
2
n

|x− y|n
�

� d (x)m−
1
2
n−|k| d (y)m−

1
2
n

(
1 ∧ d (x)

1
2
n d (y)

1
2
n

|x− y|n

)
.

which implies Proposition 2.4 iii.(a).
If m ≥ |k| ≥ m− 1

2n it follows from Lemma 3.4 i. and (33) that∣∣∣Dk
xGm,n (x, y)

∣∣∣ � |x− y|2m−n−|k| d (x)m−|k|

|x− y|m−|k|
d (y)m

|x− y|m
=

= d (y)2m−n−|k| d (x)m−|k| d (y)n−m+|k|

|x− y|n
�

� d (y)2m−n−|k|

(
1 ∧ d (x)m−|k| d (y)n−m+|k|

|x− y|n

)
which implies Proposition 2.4 iii.(b).

If 2m− n ≥ |k| ≥ m it follows from Lemma 3.4 ii. and (33) that∣∣∣Dk
xGm,n (x, y)

∣∣∣ � |x− y|2m−n−|k| d (y)m

|x− y|m
=
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= d (y)2m−n−|k| d (y)n−m+|k|

|x− y|n−m+|k| � d (y)2m−n−|k|

(
1 ∧ d (y)n−m+|k|

|x− y|n−m+|k|

)
,

which implies Proposition 2.4 iii.(c).
• The case [xy] ≤ 1

2 [XY ]. From (11-12) we find that on Ω2

d (x)
|x− y|

� 1 and
d (y)
|x− y|

� 1.

Hence Lemma 3.5 i. implies Proposition 2.4 i. (a) and (b). Since (11) shows that on
Ω2

[XY ] � d (x) and [XY ] � d (y) ,

Lemma 3.5 iii. implies Proposition 2.4 iii. (a), (b) and (c). For Proposition 2.4 ii.
notice that on Ω2

log
(

[XY ]
[xy]

)
� log

(
2 +

d (y)
|x− y|

)
∼

∼ log
(

2 +
d (y)
|x− y|

)(
1 ∧ d (x)(m−|k|)+

d (y)m

|x− y|(m−|k|)
++m

)
,

implying both (a) and (b).

4 Results of 3-G type

Proposition 4.1 For k ∈ Nn with |k| ≤ 2m the following holds on B3 (x, y, z ∈ B).

i. If 2m ≥ |k| > 2m− n, then:

Gm,n (x, z)
∣∣Dk

zGm,n (z, y)
∣∣

Gm,n (x, y)
� |x− z|2m−n−|k| + |z − y|2m−n−|k| ;

ii. if |k| = 2m− n with n even, then

Gm,n (x, z)
∣∣Dk

zGm,n (z, y)
∣∣

Gm,n (x, y)
� log

(
3

|x− z|

)
+ log

(
3

|z − y|

)
;

iii. if either |k| = 2m− n with n odd, or |k| < 2m− n, then:

Gm,n (x, z)
∣∣Dk

zGm,n (z, y)
∣∣

Gm,n (x, y)
� 1.

Corollary 4.2 There exists M ∈ R+, depending on n,m only, such that for k ∈ Nn
with |k| ∈ [0, 2m− 1] the following holds. Let f ∈ Lp (B) , p > 1, with f ≥ 0 and we
have ∣∣∣(Gm,nDkGm,nf

)
(x)
∣∣∣ ≤M (Gm,nf) (x) for almost all x ∈ B.
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Proof of Corollary 4.2. Note that, due to the additional assumption |k| ≤ 2m − 1,
all right hand sides in Proposition 4.1 are uniformly integrable. That means there
exists M ∈ R+ such that for all x, y ∈ B∫

z∈B

Gm,n (x, z)
∣∣Dk

zGm,n (z, y)
∣∣

Gm,n (x, y)
dz ≤M.

Hence, since |k| ≤ 2m − 1 by dominated convergence, see also [8, Lemma 4.1], and
Fubini-Tonelli ∣∣∣(Gm,nDkGm,nf

)
(x)
∣∣∣ =

=
∣∣∣∣∫
z∈B

Gm,n (x, z)Dk
z

∫
y∈B

Gm,n (z, y) f (y) dy dz

∣∣∣∣ ≤
≤
∫
y∈B

∫
z∈B

Gm,n (x, z)
∣∣∣Dk

zGm,n (z, y)
∣∣∣ dz f (y) dy ≤

≤M
∫
y∈B

Gm,n (x, y) f (y) dy = M (Gm,nf) (x) .

Before proving Proposition 4.1 we need a technical lemma.

Lemma 4.3 On B3 (x, y, z ∈ B) one finds that

i. T (x, y, z) :=

(
1 ∧ d(x)d(z)

|x−z|2

)(
1 ∧ d(z)d(y)

|y−z|2

)
(

1 ∧ d(x)d(y)

|x−y|2

) � 1;

ii. Q (x, y, z) :=

(
1 ∧ d(x)d(z)

|x−z|2

)(
1 ∧ d(y)

|y−z|

)
(

1 ∧ d(x)d(y)

|x−y|2

) � 1 +
|x− y|
|x− z|

;

iii. L (x, y, z) :=
log
(

1 + d(x)d(z)

|x−z|2

)(
1 ∧ d(y)

|y−z|

)
log
(

1 + d(x)d(y)

|x−y|2

) � 1 +
|x− y|
|x− z|

;

iv. R (x, y, z) :=
|x− y|

|x− z| |z − y|
≤ 1
|x− z|

+
1

|z − y|
.

Proof of Lemma 4.3. First we suppose that [xy] ≤ 1
2 [XY ]. Hence Lemma 3.1 implies

d(x)d(y)

|x−y|2 �
d(x)
|x−y| � 1 and the estimates in i. and ii. follow from

(
1 ∧ d(x)d(y)

|x−y|2

)
∼ 1.

The estimate in iii. uses

log (1 + t)
log (1 + s)

≤ 1 +
t

s
for t, s ∈ R+. (34)

Indeed, let s ≥ 0 and one finds if α ≥ 1 that log (1 + αs) ≤ α log (1 + s) by the
concavity of log; if α ∈ [0, 1] one finds log (1 + αs) ≤ log (1 + s); (34) follows with
αs = t. From Lemma 3.2 ix. we find

log
(

1 +
d (x) d (y)
|x− y|2

)
∼ log

(
2 +

d (x)
|x− y|

)
∼ log

(
1 +

d (x)
|x− y|

)
� 1
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and

log
(

1 +
d (x) d (z)
|x− z|2

)
� log

(
2 +

d (x)
|x− z|

)
� 1 + log

(
1 +

d (x)
|x− z|

)
.

Hence it follows that

L (x, y, z) �
1 + log

(
1 + d(x)

|x−z|

)
log
(

1 + d(x)
|x−y|

) � 1 +
log
(

1 + d(x)
|x−z|

)
log
(

1 + d(x)
|x−y|

) � 1 +
|x− y|
|x− z|

.

If [xy] ≥ 1
2 [XY ], then(

1 ∧ d (x) d (y)
|x− y|2

)
∼ log

(
1 +

d (x) d (y)
|x− y|2

)
∼ d (x) d (y)
|x− y|2

and we distinguish the following cases.
• The case |x− z| ≥ 1

2 |x− y|. Using Lemma 3.2 vi. we get

T (x, y, z) � |x− y|2

d (x) d (y)
d (x) d (z)
|x− z|2

d (y)
d (z)

≤ 4, (35)

and using Lemma 3.2 v. we obtain

Q (x, y, z) � |x− y|2

d (x) d (y)
d (x) d (z)
|x− z|2

d (y)
d (z)

≤ 4. (36)

Similarly we obtain that

L (x, y, z) � |x− y|2

d (x) d (y)
d (x) d (z)
|x− z|2

d (y)
d (z)

≤ 4. (37)

• The case |x− z| ≤ 1
2 |x− y|. Then |y − z| ≥ |y − x| − |x− z| ≥ 1

2 |x− y| and
one proceeds for i. as in (35) using T (x, y, z) = T (y, x, z). In order to prove ii. we
proceed by using Lemma 3.2 vii.:

Q (x, y, z) � |x− y|2

d (x) d (y)
d (x)
|x− z|

d (y)
|y − z|

≤ 2
|x− y|
|x− z|

.

Similarly we find by Lemma 3.2 ix.,viii. and again ix.:

L (x, y, z) � |x− y|2

d (x) d (y)
log
(

1 +
d (x)
|x− z|

)
d (y)
|y − z|

≤ 2
|x− y|
|x− z|

.

Note that the estimate in iv. is straightforward.

Proof of Proposition 4.1.
• The case n > 2m. One finds by Proposition 2.3, Proposition 2.4 i., respectively,
(6) and Lemma 4.3 that

Gm,n (x, z)
∣∣Dk

zGm,n (z, y)
∣∣

Gm,n (x, y)
�
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�
|x− y|n−2m

(
1 ∧ d(x)md(z)m

|x−z|2m

)(
1 ∧ d(z)(m−|k|)+d(y)m

|y−z|(m−|k|)
++m

)
(

1 ∧ d(x)md(y)m

|x−y|2m

)
|x− z|n−2m |z − y|n−2m+|k|

=

=
|x− y|n−2m

|x− z|n−2m |z − y|n−2m+|k| (T (x, y, z))(m−|k|)+

(Q (x, y, z))m∧|k| �

� |x− y|n−2m

|x− z|n−2m |z − y|n−2m+|k|

(
1 +

(
|x− y|
|x− z|

)m∧|k|)
=

=
1

|z − y||k|
R (x, y, z)n−2m +

1

|z − y|(|k|−m)+R (x, y, z)n−2m+(m∧|k|) �

� 1

|z − y||k| |x− z|n−2m
+

1

|z − y||k|+n−2m
+

+
1

|z − y|(|k|−m)+

|x− z|n−2m+(m∧|k|)
�

� |x− z|2m−n−|k| + |z − y|2m−n−|k| . (38)

• n = 2m and 0 < |k| ≤ 2m. By using Lemma 3.2 ix. we have

Gm,n (x, z)
∣∣Dk

zGm,n (z, y)
∣∣

Gm,n (x, y)
�

�
log
(

1 + d(x)d(z)

|x−z|2

)(
1 ∧ d(x)m−1d(z)m−1

|x−z|2m−2

)
log
(

1 + d(x)d(y)

|x−y|2

)(
1 ∧ d(x)m−1d(y)m−1

|x−y|2m−2

) ·
· |y − z|2m−n−|k|

(
1 ∧ d (z)(m−|k|)+

d (y)m

|y − z|(m−|k|)
++m

)
=

=
|x− y|n−2m

|x− z|n−2m |z − y|n−2m+|k| ·

· (T (x, y, z))(m−|k|)+

L (x, y, z) (Q (x, y, z))(m∧|k|)−1 .

Since L and Q can be bounded similarly (see Lemma 4.3 ii. and iii.) we may continue
as in (38).
• n = 2m and |k| = 0. We find by using Lemma 3.2 ix., the estimate for T (x, y, z)
and the symmetry of Gm,n (x, y) that

Gm,n (x, z)Gm,n (z, y)
Gm,n (x, y)

�

�
log
(

2 + d(x)
|x−z|

)(
1 ∧ d(x)md(z)m

|x−z|2m

)
log
(

2 + d(y)
|y−z|

)(
1 ∧ d(z)md(y)m

|y−z|2m

)
max

(
log
(

2 + d(x)
|x−y|

)
, log

(
2 + d(y)

|x−y|

))(
1 ∧ d(x)md(y)m

|x−y|2m

) �
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�
log
(

2 + d(x)
|x−z|

)
log
(

2 + d(y)
|y−z|

)
max

(
log
(

2 + d(x)
|x−y|

)
, log

(
2 + d(y)

|x−y|

)) = (39)

If |x− z| ≥ 1
2 |x− y| then log

(
2 + d(x)

|x−z|

)
� log

(
2 + d(x)

|x−y|

)
and we continue by

(39) � log
(

2 +
d (y)
|y − z|

)
� log

(
3

|y − z|

)
.

If |x− z| ≤ 1
2 |x− y| then |y − z| ≥ |y − x| − |x− z| ≥ 1

2 |x− y| and we conclude by

(39) � log
(

2 +
d (x)
|x− z|

)
� log

(
3

|x− z|

)
.

• n < 2m and 0 ≤ |k| < 2m−n, or, n < 2m and |k| = 2m−n and n odd. Note that
by Lemma 3.3 (see also (8)) we may estimate as follows:

Gm,n (x, z)
∣∣Dk

zGm,n (z, y)
∣∣

Gm,n (x, y)
�

�
(d (x) d (z))m−

1
2
n
(

1 ∧ d(x)d(z)

|x−z|2

) 1
2
n

(d (x) d (y))m−
1
2
n
(

1 ∧ d(x)d(y)

|x−y|2

) 1
2
n
·

·d (z)m−
1
2
n−|k| d (y)m−

1
2
n

(
1 ∧ d (z) d (y)

|y − z|2

) 1
2
n

=

= d (z)2m−n−|k| (T (x, y, z))
1
2
n � 1

• n < 2m and |k| = 2m−n with n even. We use Lemma 3.3. Note that |k| = 2m−n
implies m− |k| = n−m. We have

Gm,n (x, z)
∣∣Dk

zGm,n (z, y)
∣∣

Gm,n (x, y)
�

�
(d (x) d (z))m−

1
2
n
(

1 ∧ d(x)d(z)

|x−z|2

) 1
2
n

log
(

2 + d(y)
|z−y|

)(
1 ∧ d(z)(m−|k|)+d(y)m

|y−z|(m−|k|)
++m

)
(d (x) d (y))m−

1
2
n
(

1 ∧ d(x)d(y)

|x−y|2

) 1
2
n

�

�
d (z)m−

1
2
n
(

1 ∧ d(x)d(z)

|x−z|2

) 1
2
n

log
(

2 + d(y)
|z−y|

) (
d(y)
d(z)

)m− 1
2
n (

1 ∧ d(z)d(y)

|y−z|2

) 1
2
n

d (y)m−
1
2
n
(

1 ∧ d(x)d(y)

|x−y|2

) 1
2
n

=

= log
(

2 +
d (y)
|z − y|

)
(T (x, y, z))

1
2
n � log

(
3

|z − y|

)
.

• n < 2m and 2m− n < |k| ≤ 2m− 1
2n. We find that

Gm,n (x, z)
∣∣Dk

zGm,n (z, y)
∣∣

Gm,n (x, y)
�
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�
(d (x) d (z))m−

1
2
n
(

1 ∧ d(x)d(z)

|x−z|2

) 1
2
n
|z − y|2m−n−|k|

(
1 ∧ d(z)(m−|k|)+d(y)m

|y−z|(m−|k|)
++m

)
(d (x) d (y))m−

1
2
n

(
1 ∧ d(x)

1
2nd(y)

1
2n

|x−y|n

) =

= |z − y|2m−n−|k|

(
d(z)
d(y)

)m− 1
2
n (

1 ∧ d(x)d(z)

|x−z|2

) 1
2
n
(

1 ∧ d(z)(m−|k|)+d(y)m

|y−z|(m−|k|)
++m

)
(

1 ∧ d(x)
1
2nd(y)

1
2n

|x−y|n

) = (40)

By Lemma 3.3 it follows that(
1 ∧ d (y) d (z)

|y − z|2

)m− 1
2
n

∼
(

1 ∧ d (z)
|y − z|

)2m−n(d (y)
d (z)

)m− 1
2
n

. (41)

By Lemma 3.2 and (41) it follows that(
1 ∧ d (z)(m−|k|)+

d (y)m

|y − z|(m−|k|)
++m

)
∼

∼
(

1 ∧ d (z) d (y)
|y − z|2

)2m− 1
2
n−|k|(

1 ∧ d (y)
|y − z|

)|k|+n−2m

·

·
(

1 ∧ d (z)
|y − z|

)(|k|−m)+ (
1 ∧ d (z)
|y − z|

)n−2m(
1 ∧ d (y) d (z)

|y − z|2

)m− 1
2
n

�

�
(

1 ∧ d (z) d (y)
|y − z|2

)2m− 1
2
n−|k|(

1 ∧ d (y)
|y − z|

)|k|+n−2m(d (y)
d (z)

)m− 1
2
n

, (42)

and using (42) we continue by

(40) � |z − y|2m−n−|k| ·

·

(
1 ∧ d(x)d(z)

|x−z|2

) 1
2
n (

1 ∧ d(z)d(y)

|y−z|2

)2m− 1
2
n−|k| (

1 ∧ d(y)
|y−z|

)|k|+n−2m(
1 ∧ d(x)

1
2nd(y)

1
2n

|x−y|n

) =

= |z − y|2m−n−|k| (T (x, y, z))2m− 1
2
n−|k| (Q (x, y, z))|k|+n−2m �

� |z − y|2m−n−|k|
(

1 +
|x− y|
|x− z|

)|k|+n−2m

�

� |z − y|2m−n−|k| + |x− z|2m−n−|k| .

• n < 2m and 2m − 1
2n < |k| ≤ 2m. Similar as in the previous case we obtain the

estimate in (40). By Lemma 3.2 we get(
1 ∧ d (z)(m−|k|)+

d (y)m

|y − z|(m−|k|)
++m

)
�
(
d (y)
d (z)

)m− 1
2
n(

1 ∧ d (y)
|y − z|

) 1
2
n

,
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and we continue by

(40) � |y − z|2m−n−|k|
(

1 ∧ d(x)d(z)

|x−z|2

) 1
2
n (

1 ∧ d(y)
|y−z|

) 1
2
n(

1 ∧ d(x)
1
2nd(y)

1
2n

|x−y|n

) =

= |z − y|2m−n−|k| (Q (x, y, z))
1
2
n �

� |z − y|2m−n−|k|
(

1 +
(
|x− y|
|x− z|

) 1
2
n
)

=

= |z − y|2m−n−|k| + |z − y|2m−
1
2
n−|k| (R (x, y, z))

1
2
n �

� |z − y|2m−n−|k| + |z − y|2m−
1
2
n−|k| |x− z|−

1
2
n �

� |z − y|2m−n−|k| + |x− z|2m−n−|k| .

In the last step we used that 2m− n− |k| ≤ −1
2n.

5 Positivity for related equations and systems

5.1 More general equations

Consider the equation {
((−∆)m +A)u = f in B,

Dmu = 0 on ∂B,
(43)

with
A =

∑
|α|<2m

aα (x)Dα (44)

and aα ∈ C
(
B̄
)
. The boundary condition is as in (2). The operator A is a lower

order perturbation of (−∆)m.
In this section we will fix some p > 1. The operator Gm,n is well defined on Lp (B)

and we may use the regularity theory of [1].

Theorem 5.1 There exists ε0 > 0 such that, if ‖aα‖∞ ≤ ε0 for all α with |α| < 2m,
then the following holds.

i. For all f ∈ Lp (B) there exists a solution u ∈W 2m,p (Ω) ∩Wm,p
0 (Ω) of (43).

ii. Moreover, if f ∈ Lp (B) and 0 6≡ f ≥ 0 in B, then the solution of (43) satisfies
u > 0 in B.
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Remark 1. Let Ω be a simply connected two dimensional domain and let h : B → Ω
be a bijection such that h (x1 + ix2) = h1 (x1, x2) + i h2 (x1, x2) is a holomorphic
mapping. Then ∆ (u ◦ h) = 1

2 |∇h|
2 (∆u)◦h. We write g (x) = 2 |(∇h) (x)|−2. If ∂Ω

is sufficiently smooth, then a Theorem of Kellogg-Warschawski (see [20]) implies that
h is sufficiently smooth and that there exist ci > 0 such that c1 ≤ |(∇h) (x)| ≤ c2.
The elliptic problem (−∆)m u = f in Ω with Dirichlet boundary condition can be
transformed to

(−g (·)∆)m (u ◦ h) = f ◦ h in B,

which can also be written as

((−∆)m +A) (u ◦ h) = g−m (f ◦ h) in B,

for some A as in (44). Since 0 6≡ f ≥ 0 yields 0 6≡ g−m (f ◦ h) ≥ 0 one finds that
domains that are close to the disk still have a positive Green function Gm,n,Ω. Close
to the disk means ‖h− I‖C2m−1(B̄) sufficiently small. For example this holds for an
ellipse that is close to a circle, see [12].

The theorem will be proven in two steps. We may rewrite (43) as

u = −Gm,nAu+ Gm,nf

and then formally
u = (I + Gm,nA)−1 Gm,nf.

First we will justify that (I + Gm,nA)−1 is well defined. The next step will be to
prove the estimate (I + Gm,nA)−1 Gm,n ≥ cGm,n.

Definition 5.2 By S ≥ T we mean that (Sf) (x) ≥ (T f) (x) for all f ∈ Lp (B) with
f ≥ 0.

Lemma 5.3 Set W 2m,p
D (B) := W 2m,p(B) ∩ Wm,p

0 (B). If ‖aα‖∞ ≤ η1 and η1 is
sufficiently small, then

(I + Gm,nA)−1 ∈ L
(
W 2m,p
D (B);W 2m,p

D (B)
)
.

Proof. It is sufficient to prove that ‖Gm,nA‖ < 1. Set

κn,m =
∑
|k|<2m

1 =
(

2m− 1 + n

2m− 1

)
(45)

and we obtain that

‖Au‖p ≤
∑
|α|<2m

‖aα‖∞ ‖D
αu‖p ≤ κn,m η1 ‖u‖W 2m,p .

By [1] it follows that Gm,nAu ∈ W 2m,p
D (B) and that Gm,n : Lp (B) → W 2m,p

D (B) is
bounded. For η1 small enough we have ‖Gm,nA‖ < 1.
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Lemma 5.4 Let M be as Corollary 4.2, ‖aα‖∞ ≤ η. Then

Gm,nAGm,n ≤Mηκn,m Gm,n,

with κn,m as in (45).

The proof is straightforward from Corollary 4.2. By symmetry we also have

−Gm,nAGm,n ≤Mηκn,m Gm,n.

Lemma 5.5 If ‖aα‖∞ ≤ η2 and η2 is sufficiently small, then there is c > 0 such
that

(I + Gm,nA)−1 Gm,n ≥ c Gm,n.

Proof of Lemma 5.5. Assume that f ∈ Lp (B). By [1] it follows that Gm,nf ∈
W 2m,p
D (B). The solution u of (43) is the limit in W 2m,p

D (B) of {uν} where

uν =
ν∑
i=0

(−Gm,nA)i Gm,nf. (46)

Hence there is a subsequence, again denoted by {uν}, such that uν → u pointwise.
Let us denote Az =

∑
|α|<2m aα (z)Dα

z and G = Gm,n. By Lemma 5.4 we find,
assuming ‖aα‖∞ ≤ η, that for f ≥ 0∣∣∣((Gm,nA)i Gm,nf

)
(x)
∣∣∣ =

=

∣∣∣∣∣∣
∫
z1

G (x, z1)Az1
∫
z2

G (z1, z2)Az2 · · ·
∫
y

G (zi, y) f (y) dydzi . . . dz2dz1

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∫
y

∫
zi

. . .

∫
z2

∫
z1

G (x, z1)Az1G (z1, z2)
G (x, z2)

G (x, z2)Az2G (z2, z3)
G (x, z3)

· · ·

. . .
G (x, zi)AziG (zi, y)

G (x, y)
G (x, y) f (y) dz1dz2 . . . dzidy

∣∣∣∣∣∣ ≤

≤
∫
y

∫
zi

. . .

∫
z2

∫
z1

∣∣∣∣G (x, z1)Az1G (z1, z2)
G (x, z2)

∣∣∣∣ dz1

∣∣∣∣G (x, z2)Az2G (z2, z3)
G (x, z3)

∣∣∣∣ dz2 · · ·

. . .

∣∣∣∣G (x, zi)AziG (zi, y)
G (x, y)

∣∣∣∣ dziG (x, y) f (y) dy ≤

≤ (κn,mηM)i

∫
y

G (x, y) f (y) dy

 . (47)
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Take η1 such that C = κn,mη1M < 1 and it follows from (46) that

|uν (x)− (Gm,nf) (x)| ≤

∣∣∣∣∣
(

ν∑
i=1

(−Gm,nA)i Gm,nf

)
(x)

∣∣∣∣∣ ≤
≤

ν∑
i=1

∣∣∣((Gm,nA)i Gm,nf
)

(x)
∣∣∣ ≤

≤ C

1− C
(Gm,nf) (x) ,

which implies

uν (x) ≥ 1− 2C
1− C

(Gm,nf) (x) . (48)

Hence we find for 0 ≤ f 6≡ 0 that uν > 0 in B for C < 1
2 . Since C does not depend

on ν it follows that u satisfies (48).

Proof of Theorem 5.1. For ε0 = η1 as in Lemma 5.3 it follows that we have a
solution in W 2m,p

D (Ω) of (43) for all f ∈ Lp (Ω). Indeed, Gm,nf ∈ W 2m,p
D (Ω) by [1]

and Lemma 5.3 implies u = (I + Gm,nA)−1 Gm,nf ∈ W 2m,p
D (Ω). For ε0 = η2 (< η1)

as in Lemma 5.5 we find that u ≥ cGm,nf > 0.

5.2 Systems with the same polyharmonic operator

Consider the system {
Lu = Au+ (f, 0, . . . , 0)T in B,
Du = 0 on ∂B,

(49)

with u a vector-function with k components and where we have

i. L is a diagonal k × k-matrix of polyharmonic operators: (L)ii = (−∆)m;
ii. D is a diagonal k × k-matrix of the corresponding Dirichlet boundary condition:

(D)ii = Dm;
iii. A is a (full) matrix of lower order coupling terms:

Ai,j =
∑
|α|<2m

aijα Dα,

with aijα ∈ C
(
B̄
)
.

The question is the following. What kind of (small) nonzero coupling is allowed
such that one has u1 > 0 whenever 0 6≡ f ≥ 0?

The last equation of (49), (−∆)m uk =
∑k

j=1Ak,juj , is ’solved’ by

uk = Tk
k−1∑
j=1

Ak,j uj

where
Tk = (I − Gm Ak,k)−1 Gm
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The operator is Tk is well defined for
∥∥akkα ∥∥∞ small. Moreover, for every ε > 0 there

is δ > 0 such that if
∥∥akkα ∥∥∞ < δ then

(1− ε)Gm ≤ Tk ≤ (1 + ε)Gm.

We obtain a system with k − 1 terms, of which the coupling terms are

A(k−1)
i,j = Ai,j +Ai,kTkAk,j .

Repeating such an argument for the last equation of the newly obtained system,
which corresponds to the one but last equation of (49), we find

uk−1 = Tk−1

k−2∑
j=1

A(k−1)
k−1,j uj

where

Tk−1 =
(
I − Gm A(k−1)

k−1,k−1

)−1
Gm.

The operator is Tk−1 is well defined for
∥∥akkα ∥∥∞ ,∥∥∥ak,k−1

α

∥∥∥
∞
,
∥∥∥ak−1,k

α

∥∥∥
∞

and
∥∥∥ak−1,k−1

α

∥∥∥
∞

small. Moreover, for every ε > 0 there is δ > 0 such that if
∥∥∥aijα ∥∥∥

∞
< δ for

i, j ∈ {k − 1, k} then
(1− ε)Gm ≤ Tk−1 ≤ (1 + ε)Gm.

Etc. In an iterative way one defines A(k) = A for ` = k and for ` ∈ {1, . . . , k − 1} :

T` =
(
I − Gm A(`)

`,`

)−1
Gm

A(`−1)
i,j = A(`)

i,j +A(`)
i,` T`A

(`)
`,j 1 ≤ i, j ≤ `− 1.

Finally we obtain
u1 = T1f.

One proves the following.

Lemma 5.6 If all
∥∥∥aijα ∥∥∥

∞
are sufficiently small, then we find that the operator T1 ∈

L
(
Lp (B) ;W 2m,p

D (B)
)

is well defined. Moreover, for all ε > 0 there is δ > 0, such

that if
∥∥∥aijα ∥∥∥

∞
< δ for all i, j ≤ k, |α| < 2m, then

(1− ε)Gm ≤ T1 ≤ (1 + ε)Gm.

The next theorem is a direct corollary.

Theorem 5.7 There exists ε0 > 0 such that, if
∥∥∥aijα ∥∥∥

∞
≤ ε0 for all i, j ≤ k and all

α with |α| < 2m, then the following holds. If f ∈ Lp (Ω) with 0 6≡ f ≥ 0 in B, then
the solution of (49) satisfies u1 > 0 in B.
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5.3 Systems with different polyharmonic operators

In general there is no hope to find

Gm,nAG`,n ≤ c Gm,n (50)

for arbitrary m and `. However, if m ≤ ` such a result holds.

Lemma 5.8 Suppose ` ≥ m > 0, |k| < 2`. Then we have on B ×B ×B:

Gm,n(x, z)
∣∣Dk

zG`,n(z, y)
∣∣

Gm,n(x, y)
� |x− z|1−n + |y − z|1−n.

Proof. We use Proposition 2.4 in the following weak form∣∣∣Dk
zG`,n(z, y)

∣∣∣ � |z − y|1−n(1 ∧ d(y)`

|z − y|`

)
�

� |z − y|1−n
(

1 ∧ d(y)m

|z − y|m

)
= |z − y|2m−n−(2m−1)

(
1 ∧ d(y)m

|z − y|m

)
.

Now we may use the proof of Proposition 4.1 replacing |Dk
zG`,n(z, y)| formally by

|Dk̃
zGm,n(z, y)| for some k̃, |k̃| = 2m− 1.

Corollary 5.9 Suppose that ` ≥ m > 0 and let A =
∑
|α|<2` aα D

α with aα ∈ C(B̄).
Then there is c > 0 such that (50) holds.

This allows us to generalize the result of the previous section.

Theorem 5.10 Consider (49) with (L)ii = (−∆)mi and (D)ii = Dmi and suppose
that m = m1 ≤ mi for all i ≥ 1. Assume that Ai,j =

∑
|α|<2mj

aijα Dα. There exists

ε0 > 0 such that, if
∥∥∥aijα ∥∥∥

∞
≤ ε0 for all i, j and α, then the following holds. If

f ∈ Lp (Ω) with 0 6≡ f ≥ 0 in B, then the solution of (49) satisfies u1 > 0 in B.

Notice that polyharmonic equations with some non Dirichlet boundary conditions
can be taken care of this way. For instance the boundary value problem

(−∆)m1+m2+...+mk u = f in B,
Dm1∆

m2+m3+...+mku = 0 on ∂B,
...

Dmk−2
∆mk−1+mku = 0 on ∂B,
Dmk−1

∆mku = 0 on ∂B,
Dmku = 0 on ∂B,

(51)

can be transformed to a system as in (49) with different polyharmonic operators on
the diagonal.
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6 Only small perturbations

For second order boundary value problems the following holds. Let u ∈ W 2,p
D (Ω)

satisfy {
−∆u = au+ f in Ω,
u = 0 on ∂Ω,

where Ω is a bounded sufficiently regular domain in Rn. Then there exists a first
eigenvalue λ1 such that

– if a < λ1 then 0 6≡ f ≥ 0 implies u > 0;
– if a = λ1 then 0 6≡ f ≥ 0 implies nonexistence of a solution u;
– if a > λ1 then 0 6≡ f ≥ 0 implies u 6≥ 0.

For the Dirichlet problem with the Laplacian replaced by a polyharmonic opera-
tor in general domains there is no such structure. What will remain is the following.
Consider {

(−∆)m u = au+ f in Ω,
Dmu = 0 on ∂Ω,

(52)

with Ω a bounded domain in Rn with ∂Ω ∈ C2m,γ for some γ > 0. Let λ1,m,n denote
the first eigenvalue:

λ1,m,n = inf
u∈Wm,2

0 (Ω)

∫
Ω

∣∣∣∇∆m−1
2 u (x)

∣∣∣2 dx∫
Ω |u (x)|2 dx

for m odd;

λ1,m,n = inf
u∈Wm,2

0 (Ω)

∫
Ω

∣∣∣∆m
2 u (x)

∣∣∣2 dx∫
Ω |u (x)|2 dx

for m even.

Let Φ1,m,n denote a corresponding eigenfunction which is normalized by

max
x∈Ω

Φ1,m,n (x) = 1.

To simplify notation let ((−∆)m − a)inv denote the Green operator corresponding
to the Dirichlet problem (52): u = ((−∆)m − a)inv f . These operators

((−∆)m − a)inv : Lp (Ω)→W 2m,p
D (Ω)

are well defined for a ∈ C
(
Ω̄
)

with a < λ1,m,n.

Theorem 6.1 Suppose that there is a ∈ C
(
Ω̄
)

with a < λ1,m,n in Ω̄, such that

((−∆)m − a)inv : Lp (Ω)→W 2m,p
D (Ω) ⊂ Lp (Ω) is positivity preserving.

Then for all b ∈ C
(
Ω̄
)

with a ≤ b < λ1,m,n in Ω̄, we find that

((−∆)m − b)inv : Lp (Ω)→W 2m,p
D (Ω) ⊂ Lp (Ω) is positivity preserving.

Moreover, ((−∆)m − a)inv being strongly positive implies ((−∆)m − b)inv to be strongly
positive.



30 H.-Ch. Grunau and G. Sweers

Remark 1. An operator T : Lp (Ω)→ Lp (Ω) is called strongly positive iff 0 6≡ f ≥ 0
implies Tf > 0.

Lemma 6.2 Let λ < λ1,m,n and suppose that ((−∆)m − λ)inv : Lp (Ω)→W 2m,p
D (Ω) ⊂

Lp (Ω) is strongly positive. Then Φ1,m,n is unique and Φ1,m,n > 0.

Remark 2. If ((−∆)m − λ)inv can be represented by an integral operator, then this
lemma is a consequence of a theorem by Jenč (see [21, page 337]).

Lemma 6.3 Let m > 1. For λ � 0 the operator ((−∆)m − λ)inv : Lp (Ω) →
W 2m,p
D (Ω) ⊂ Lp (Ω) is not positivity preserving.

Remark 3. The result in Lemma 6.3 seems to be folklore, as we learnt from Bernis
[3], but we have not been able to locate a reference for this fact.

In the following corollary we will suppose that u ∈ W 2m,p
D (Ω) and f ∈ Lp (Ω)

are as in (52).

Corollary 6.4 Let m > 1 and suppose that Φ1,m,n > 0. Then there is −∞ < λc ≤
λ1,m,n, depending on m,n and Ω, such that for all a ∈ C

(
Ω̄
)

the following holds.

i. If a < λc, then
0 6≡ f ≥ 0⇒ u 6≤ 0,

but not positivity preserving:

∃ 0 6≡ f ≥ 0 with u ≥ 0;
∃ 0 6≡ f ≥ 0 with u 6≥ 0.

ii. If λc ≤ a < λ1,m,n, then positivity preserving:

f ≥ 0⇒ u ≥ 0.

iii. If a = λ1,m,n, then for 0 6≡ f ≥ 0 there is no solution.
iv. If a > λ1,m,n, then positivity killing:

0 6≡ f ≥ 0⇒ u 6≥ 0.

Remark 4. If m = 1 then by standard results we find that the same holds with
λc = −∞.

Remark 5. The fact that ((−∆)m − λ)inv is not positivity preserving for λ � 0
implies that the corresponding parabolic initial boundary value problem doesn’t
preserve positive initial values. See also [2].

Remark 6. By the example in [17] one finds that for m > 1 a first eigenfunction
Φ1,m,n may change sign in strictly convex, arbitrarily smooth domains. If Ω is the
unit ball then Φ1,m,n > 0. We expect Φ1,m,n to be positive on domains that are close
to a ball. Such a result holds for n = 2, see [12].
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Proof of Corollary 6.4. First we prove iv. Let a > λ1,m,n and suppose that we have
0 6≡ f ≥ 0 and 0 6≡ u ≥ 0. Then, like in the case of the Laplacian:

0 <
∫
Ω
fΦ1,m,ndx =

∫
Ω

((−∆)m u− au)Φ1,m,ndx =

=
∫
Ω
u (λ1,m,n − a)Φ1,m,ndx ≤ 0, (53)

which is a contradiction.
iii. also follows by (53).
ii. From Theorem 6.1 one finds that the set of λ in R for which the operator

((−∆)m − λ)inv : Lp (Ω) → W 2m,p
D (Ω) ⊂ Lp (Ω) is positivity preserving is an in-

terval [λc, λ1,m,n) or (λc, λ1,m,n). Lemma 6.3 yields that λc > −∞ when m > 1.
Since (

λ 7→ ((−∆)m − λ)inv
)

: R→ L
(
Lp (Ω) ;W 2m,p

D (Ω)
)

is continuous except at the eigenvalues, we find that the interval is left closed.
i. The first claim again follows by (53). From the previous argument we find

that ((−∆)m − λ)inv is not positivity preserving for any λ < λc. Now suppose
that a ≤ λ < λc. If ((−∆)m − a)inv is positivity preserving then by Theorem 6.1
((−∆)m − λ)inv would be positivity preserving, which is a contradiction. The other
claim follows by taking u = Φ1,m,n. Indeed, Φ1,m,n > 0 and ((−∆)m − a)Φ1,m,n =
(λ1,m,n − a)Φ1,m,n > 0.

Proof of Lemma 6.2. First some preliminaries that can be found in [21]. (E,≤) is
a vector lattice if f, g ∈ E implies f ∨ g, f ∧ g ∈ E. (E, ‖·‖ ,≤) is called a Banach
lattice if (E, ‖·‖) is a Banach space and if (E,≤) is a vector lattice such that |f | ≤ |g|
implies ‖f‖ ≤ ‖g‖. A subset A ⊂ E is called a lattice ideal if |f | ≤ |g| and g ∈ A
implies f ∈ A. An operator S on a Banach lattice E is called irreducible if {0} and
E are the only closed lattice ideals that are invariant under S.

One has that Lp (Ω) is a Banach lattice and that the operator

T := ((−∆)m − λ)inv : Lp (Ω)→W 2m,p
D (Ω) ⊂ Lp (Ω)

is positive, compact and irreducible. By De Pagter’s Theorem ([19]) the spectral
radius of T is positive. By the Krein-Rutman Theorem (see e.g. [21]) it follows
that the first eigenvalue of T has a unique (up to multiplication) eigenfunction Φ
and that Φ > 0. Since its first eigenvalue is (λ1,m,n − λ)−1 we find that Φ satisfies
(−∆)m Φ = λ1,m,nΦ and hence that Φ1,m,n = cΦ and Φ1,m,n > 0.

Proof of Lemma 6.3. We have to show that ((−∆)m − λ)inv is not positivity pre-
serving for λ� 0. We use different arguments than Bernis in [3].

If ((−∆)m)inv is not positivity preserving we are done. Hence we may assume
that ((−∆)m)inv does preserve positivity. We construct a function a ∈ C

(
Ω̄
)
, with

a ≤ 0 such that ((−∆)m − a)inv is not positivity preserving.
Set u = ((−∆)m)inv 1, which is hence positive by assumption. Since u ∈W 2m,n

D (Ω) ⊂
C
(
Ω̄
)

there will be some Bρ (x0) ⊂ Ω such that u ≥ ε > 0 in Bρ (x0). Let
χ ∈ C∞ (R) be such that 0 ≤ χ ≤ 1, χ (r) = 0 for r > 1 and χ = 1 in r < 1

2 .
We define

ũ (x) = χ

(
|x− x0|

ρ

)(
16 ρ−2 |x− x0|2 − 1

)
+
(

1− χ
(
|x− x0|

ρ

))
u (x) .
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Then the following holds: there exists some δ ∈ R+ such that

(−∆)m ũ


= 0 for |x− x0| ≤ 1

2ρ,

≥ −δ−1 for 1
2ρ ≤ |x− x0| < ρ,

= 1 elsewhere in Ω,

and

ũ


< 0 for |x− x0| < 1

4ρ,

≥ 0 for 1
4ρ ≤ |x− x0| < 1

2ρ,

≥ δ for 1
2ρ ≤ |x− x0| < ρ,

≥ 0 elsewhere in Ω.

Next we define

a (x) = −δ−2

(
1− χ

(
2
|x− x0|

ρ

))
,

and we find that

((−∆)m − a) ũ


= 0 for |x− x0| < 1

4ρ,

≥ 0 for 1
4ρ ≤ |x− x0| < 1

2ρ,

≥ −δ−1 + δ−2δ for 1
2ρ ≤ |x− x0| < ρ,

≥ 1 elsewhere in Ω.

We constructed a sign-changing function ũ with ((−∆)m − a) ũ ≥ 0 in Ω and Dmũ =
0 on ∂Ω. Hence Theorem 6.1 yields that ((−∆)m − λ)inv is not positivity preserving
for λ ≤ −δ−2 = min a.

Proof of Theorem 6.1. First assume that p ≥ 2. Suppose that u ∈W 2m,p
D satisfies

(−∆)m u− bu = f in Ω, (54)

and we find that u solves

(−∆)m u− au = f + (b− a)u in Ω,

where (b− a) ≥ 0.
We will show that the nonlinear problem{

((−∆)m − a)u = f + (b− a) |u| in Ω,
Dmu = 0 on ∂Ω,

(55)

has a solution u0. If a solution u0 exists we will find that f + (b− a) |u0| ≥ 0 implies

u0 = ((−∆)m − a)inv (f + (b− a) |u0|) ≥ 0.

The existence of u0 is established by minimizing the functional F on Wm,2
0 (Ω)

defined by

F (u) =
1
2

∫
Ω

(
|Ψu|2 − au2 − 2fu− (b− a) |u|u

)
dx,

where

Ψu =

{
∆

m
2 u if m is even,

∇∆
m−1

2 u if m is odd.
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We prove that F is coercive on Wm,2
0 (Ω). Set

ε = 2λ1,m,n ∧ min
x∈Ω̄

(λ1,m,n − b (x)) .

Then
F (u) ≥ 1

2

∫
Ω

(
|Ψu|2 − au2 − 2fu− (b− a)u2

)
dx ≥

≥ 1
2

∫
Ω

((
1
2ε

λ1,m,n
+
λ1,m,n − 1

2ε

λ1,m,n

)
|Ψu|2 − bu2 − 2fu

)
dx ≥

≥ 1
2

∫
Ω

(
ε

2λ1,m,n
|Ψu|2 +

(
λ1,m,n −

1
2
ε− b

)
u2 − 2fu

)
dx ≥

≥ 1
2

∫
Ω

(
ε

2λ1,m,n
|Ψu|2 +

1
2
εu2 − 2fu

)
dx ≥

≥ ε

4λ1,m,n

∫
Ω
|Ψu|2 dx− 1

ε

∫
Ω
f2dx.

Now let {uν}∞ν=1 be a minimizing sequence in Wm,2
0 (Ω). Since F (·) is sequentially

weakly lower semicontinuous and coercive in Wm,2
0 (Ω) there exists a weak limit

in Wm,2
0 (Ω), say u0, and F (u0) ≤ lim infν→∞ F (uν). Since uν ⇀ u0 in Wm,2

0 (Ω)
we find uν → u0 in L2 (Ω) . Using regularity theory and appropriate imbeddings
a bootstrapping argument shows that u0 ∈ W 2m,p

D (Ω) . As we remarked before we
find that u0 ≥ 0 and hence that u0 solves (52) with b instead of a. For p ∈ (1, 2) the
claim follows by approximating f ∈ Lp (Ω) by fk ∈ L2 (Ω) and using [1].
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Çinlar e.a. (eds.), Seminar on Stochastic Processes, 1987, pp. 283-294, Boston Basel Berlin:
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