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Abstract. The linear clamped plate boundary value problem is a classical model in
mechanics. The underlying differential equation is elliptic and of fourth order. The
latter is a peculiar feature with respect to which this equation differs from numerous
equations in physics and engineering which are of second order. Concerning the clamped
plate boundary value problem, “linear questions” may be considered as well understood.
This changes completely as soon as one poses the simplest “nonlinear question”: What
can be said about positivity preserving? Does a plate bend upwards when being pushed
upwards? It is known that the answer is “no” in general. However, there are many
positivity issues as e.g. “almost positivity” to be discussed.

Boundary value problems for the “Willmore equation” are nonlinear counterparts for
the linear clamped plate equation. The corresponding energy functional involves cur-
vature integrals over the unknown surface. The Willmore equation is of interest in me-
chanics, membrane physics and, in particular, in differential geometry. Quite far reaching
results were achieved concerning closed surfaces. As for boundary value problems, by far
less is known. These will be discussed in symmetric situations.

This survey article reports upon joint work with A. Dall’Acqua, K. Deckelnick (Magde-
burg), S. Fröhlich (Free University of Berlin), F. Gazzola (Milan), F. Robert (Nice),
Friedhelm Schieweck (Magdeburg) and G. Sweers (Cologne).

1. Clamped plate models

A naive measure for the bending energy of a thin elastic plate under orthogonal load
f : Ω → R is given by ∫

Ω

(
(∆u)2 − f u

)
dx.

Here one should think of the bounded smooth domain Ω ⊂ R2 as the horizontal equilibrium
shape of the plate, while u : Ω → R describes the vertical deflection from its equilibrium.
∆u =

∑n
i=1

∂2

∂x2
i
u denotes its Laplacian. The corresponding Euler-Lagrange equation is the

linear plate equation, which is suitable only for small deflections u.
This model however is not even invariant under rotating the x1, x2, u-coordinate system

in R3. A more realistic measure for the bending energy without external force is given by
the Willmore functional ∫

graph [u]
(H[u])2 dS.

Here, H is the mean curvature of graph [u], and dS denotes its surface element. The
corresponding Euler-Lagrange equation is the Willmore equation.

Still, this model is rather special. For a more realistic modelling like e.g. the Helfrich
functional – see e.g. [He] – as well as a lot of background information concerning variational
integrals involving curvature terms we refer to the survey article by Nitsche [Nit].

Although being rather special both models give rise to a number of interesting and still
largely open mathematical problems which will be outlined in the following subsections.
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In Section 2 we shall explain some recent progress on positivity issues for the linear
clamped plate equation while in Section 3 we present an existence result for a Dirichlet
problem for the Willmore equation in a very symmetric but nevertheless interesting situation.

1.1. Linear plate equation. Throughout this article Ω ⊂ Rn, n ≥ 2, always denotes a
bounded sufficiently smooth domain. For given f : Ω → R we look for u : Ω → R as solution
of the plate equation:

(1.1) ∆2u = f in Ω.

This differential equation is elliptic, of fourth order and, hence, has to be complemented by
two boundary conditions. Simplifying a bit the physical modelling one may think of Navier
boundary conditions

(1.2) u = ∆u = 0 on ∂Ω

describing a “hinged” plate. On the other hand, a horizontally clamped plate is modelled
by means of Dirichlet boundary conditions:

(1.3) u = |∇u| = 0 on ∂Ω.

The difference between these two most frequently considered sets of boundary conditions is
illustrated in Figure 1. One may wonder whether in the simple linear plate equation (1.1),
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Figure 1. Solution of the plate equation for f(x) ≡ 1 over [−1, 1] under
Navier (left) and Dirichlet (right) boundary conditions

whether combined with Navier (1.2) or Dirichlet (1.3) boundary conditions, there still exists
any open problem.

Indeed, as far as purely linear questions like existence, uniqueness and a-priori-estimates
are concerned, a theory for general higher order elliptic equations under general boundary
conditions was developed by Agmon, Douglis and Nirenberg [ADN] about 50 years ago.

This very satisfactory situation changes completely as soon as the simplest nonlinear
question is posed:

Does the plate equation (1.1) enjoy maximum or comparison principles or,
at least, a positivity preserving property?

This question is motivated by the dominating role which the maximum principle with all
its variants and versions plays in the general theory of second order elliptic equations and
– even more important – differential inequalities. There, it does not only permit geometric
and qualitative characterisations of solutions but is also an extremely powerful technical
tool.

Having a similar tool at hand also for the fourth order prototype equation (1.1) would be
extremely helpful for precisely the same reasons. However, the simple example of x 7→ |x|2
and x 7→ −|x|2 shows that biharmonic functions may have any sort of local extremum
without being locally constant. So, if there is any sort of positivity, it cannot be a local
property but it must be a nonlocal property e.g. of the whole boundary value problem (1.1)
together with either (1.2) or (1.3). Reasonably, one may ask whether the following positivity
preserving property holds true:

Does a positive datum f imply positivity of the solution u, i.e. does f ≥ 0
always imply that u ≥ 0? Do biharmonic boundary value problems enjoy
comparison principles?
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For the Navier boundary value problem (1.1), (1.2) this question is easily answered in the
affirmative by a twofold application of the weak maximum principle for the Laplacian.
Despite this simplicity let us remark that adding lower order perturbations yields in general
the same difficulties unter Navier boundary conditions as we are going to explain now for
the Dirichlet problem (1.1), (1.3), see [SchJ, KaSw], cf. also the general approach in [CG].

So, in what follows we concentrate on the Dirichlet problem, i.e. on the clamped plate
equation:

(1.4)

{
∆2u = f in Ω,

u = |∇u| = 0 on ∂Ω.

The positivity question mentioned above may here be rephrased as follows:
Will the clamped plate bend upwards everywhere, when being pushed up-
wards?

This question is under investigation for more than 100 years. One reason is that by now
nobody succeeded in taking advantage for our question of the seeming product structure of
(1.4). Of course, one may introduce v := −∆u such that the differential equation becomes
−∆v = f . The problem, however, is that now, u is subject to two boundary conditions
while for v, we have none.

In order to explain a bit of the historical background let us mention that one may construct
a Green’s function GΩ,∆2 for the clamped plate equation (1.4). Then, for given datum f we
obtain a solution by means of the formula

(1.5) u(x) =
∫

Ω

GΩ,∆2(x, y)f(y) dy.

The positivity question in any reasonable bounded domain Ω ⊂ Rn is then equivalent to
whether

GΩ,∆2(x, y) ≥ 0?
One may also ask for domains where strict positivity holds. Such a property would have
stronger implications e.g. on positivity and in particular on simplicity of the first eigenfunc-
tion / eigenvalue.

In this direction, Boggio [Bo2] gave in 1905 a fundamental contribution. For the (unit–)
ball B = B1(0) ⊂ Rn he found an explicit formula even for any polyharmonic operator
(−∆)m. In the biharmonic case m = 2, it reads

(1.6) GB,∆2(x, y) =
1

4nen
|x− y|4−n

∫ r
1+

(1−|x|2)(1−|y|2)
|x−y|2

1

(v2 − 1)v1−n dv > 0,

where en =
∫

B
dx is the n-dimensional volume of the unit ball, and positivity is quite

immediate. A few years later, Hadamard [Ha2] commented on Boggio’s work and his con-
siderations concerning positivity of the Green’s function GΩ,∆2 . Presumably motivated by
Boggio’s beautiful formula and physical intuition, he wrote quite convincingly:

Malgré l’absence de démonstration rigoureuse, l’exactitude de cette propo-
sition ne parâıt pas douteuse pour les aires convexes.

Reformulating this in terms of Green’s functions, Boggio and Hadamard [Bo1, Bo2, Ha1,
Ha2] conjectured:

The Green’s function GΩ,∆2 for the clamped plate boundary value problem
in convex domains (n = 2) is positive.

At the same time Hadamard in [Ha2] knew that the positivity preserving property fails in
annuli wuth small inner radius.

However, also the Boggio-Hadamard conjecture was disproved after 1949 by numerous au-
thors, see e.g. [CD, D1, Ga, HJS, KKM, O, Se, ShT]. Even in arbitrarily smooth uniformly
convex like mildly eccentric ellipses one has in general change of sign, see [Ga, HJS, ShT].
The failure of the positivity conjecture is illustrated in Figure 2. While the work [KKM]
concerns a much deeper and more general problem, it provides in particular a counterex-
ample to the positivity conjecture in any space dimension. For a more detailed and precise
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Figure 2. Numerical approximation: Locally acting positive force (arrow).
Dark: {x : u(x) < 0}. (Courtesy of Guido Sweers)

exposition of the history of this conjecture we refer to [MSh] or to the forthcoming book
[GGS] and references therein.

One may wonder whether anything remains to be done concerning positivity in the
clamped plate equation (1.4). When reporting these observations to physicists or engi-
neers they usually react that they have never observed this change of sign. They propose
that perhaps the model may not be perfectly suitable or that negativity is too small to be
observed in reality. The latter is also supported by numerical examples where usually, the
negative part is by a factor 10−4 smaller than the positive part. So, a suitable reformulation
and extension of the Boggio-Hadamard conjecture towards possible applications in nonlinear
problems could be:

In arbitrary domains Ω ⊂ Rn, the negative part of the biharmonic Green’s
function GΩ,∆2 is small relative to the singular positive part. In the investi-
gation of nonlinear problems, the negative part is technically disturbing but
it does not give rise to any substantial additional assumption in order to
have existence, regularity, etc. when compared with analogous second order
problems.

The first part of this conjecture will be discussed in Section 2. The second part may by now
be viewed as a kind of programme which certainly will need some time to be made working.

1.2. Willmore functional / Willmore equation. The Willmore functional of a surface
R ⊂ R3

(1.7)
∫

R
H2 dS

was already introduced by Poisson [Poi1] and considered by many others in the early 19th
century to model thin elastic plates. The corresponding Euler-Lagrange equation is the so
called Willmore equation, where we look for a surface R ⊂ R3 solving

(1.8) ∆RH + 2H(H2 −K) = 0 on R.
Here, ∆R = 1√

g

∑
i,j ∂i(

√
ggij∂j) is the Laplace-Beltrami operator on the unknown surface

R. Not distinguishing between the surface and its parametrisation, (gij) = ((∂iR) · (∂jR))
is the metric tensor induced by the ambient space R3,

(
gij

)
its inverse and g = det(gij)

its determinant. Curvatures are defined by means of the second fundamental form Lij =
1√
g

det (∂i∂jR, ∂1R, ∂2R). The mean curvature is then given by H =
1
2

2∑

i,j=1

gijLij =

1
2g

(g22L11 − 2g12L12 + g11L22) and the Gaußian curvature by K =
det ((Lij)i,j=1,2)

g
.

This differential equation (1.8) was deduced from the Willmore functional already and
much before Willmore by S.D. Poisson [Poi2, p. 224]. Its invariant form is due to W.
Schadow, see [Th, p. 56]. For a historical information up to 1990 we refer to the survey
article by Nitsche [Nit]. However, Willmore [Wi] popularised again the mathematical study
of Willmore functional and equation, while in the context of applications, physicists use a
more general energy functional and speak of the Helfrich energy [He].

The Willmore equation (1.8) is of fourth order, quasilinear and non uniformly elliptic. One
may observe that the surface and, hence, the Laplace-Beltrami operator are unknown and
part of the problem. Fourth order equations are lacking general maximum and comparison
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principles as has become clear from the first part of this section. This means that well
established methods from the theory of the second order analogue, the minimal surface
equation, will fail in general. Together with the quasilinear character of (1.8) this causes
great technical difficulties which so far have been overcome only in parts. The lack of
uniformity in ellipticity is typical for geometric equations and occurs also in the second
order minimal surface equation. On the one hand, this requires additional technical efforts
but on the other hand, it also allows for specific geometric constructions and reflects some
geometric invariance properties.

The lack of general comparison principles results in further drawbacks in analysing non-
linear higher order equations. A reasonable space to work in is e.g. the Sobolev space H2.
One should observe that v ∈ H2 does in general not imply that |v| ∈ H2. This implies that
the DeGiorgi-Nash-Moser techniques are no longer applicable. Analogously, it is most diffi-
cult to define suitable auxiliary functions from solutions of higher order equations satisfying
nice differential equations or inequalities. As well, there is a lack of testing functions; e.g.
powers of solutions give rise to indefinite terms. The reason is that fourth order equations go
together wth a set of two boundary conditions meaning that modifying an admissible testing
function requires not only to match the values of the functions but also of their derivatives.
All these obstructions explain why the theory of nonlinear elliptic equations of fourth order
is by far less developed than of second order.

Nevertheless, concerning closed Willmore surfaces, a number of remarkable results has
been achieved in the past 15 years. Combining work of Simon [Sn] and of Bauer-Kuwert [BK]
one has existence of closed Willmore surfaces of any prescribed genus. Recently quite some
results have been obtained concerning Willmore minimisers in fixed conformal classes [KuS4,
KuS5, LP, SchM]. Riviere [R] proved a far reaching regularity result.

Also, local and global existence results for the Willmore flow of closed surfaces are avail-
able, see e.g. [KuS1, KuS2, KuS3, St]. On the other hand, Mayer and Simonett [MSt] gave
a numerical example providing evidence that the Willmore flow may, for particular initial
data, develop singularities in finite time. An analytic proof for occurence of a singularity in
finite or infinite time for the same initial data was given by Blatt [Bl]. The Willmore flow
for one dimensional closed curves was studied by [DKS, Pol].

This nice situation changes completely when switching to boundary value problems.
Nitsche [Nit] gives some existence results which are based on perturbation arguments and,
hence, require severe smallness conditions on the data which are by no means explicit.
Schätzle [SchR] proved an important general result concerning existence of branched Will-
more immersions in Sn with boundary which satisfy Dirichlet boundary conditions. Assum-
ing the boundary data to obey some explicit geometrically motivated smallness condition
these immersions can even be shown to be embedded. By working in Sn, some compactness
problems could be overcome; on the other hand, when pulling pack these immersions to Rn

it cannot be excluded that they contain the point ∞. Moreover, in general, the existence of
branch points cannot be ruled out and, due to the generality of the approach, it seems to
us that no topological information about the solutions can be extracted from the existence
proof. We think that it is quite interesting to identify situations where it is possible to work
with a-priori-bounded minimising sequences or where solutions with additional properties
like e.g. being a graph or enjoying certain symmetry properties can be found.

In order to outline possible directions of further research and to see which kind of phe-
nomena and results concerning compact embedded solutions in R3 of fixed topological type
for boundary value problems for the Willmore equation might be expected, we think that it
is a good strategy to investigate first boundary value problems for (1.8) in specific symmetric
situations. More precisely, we look at surfaces of revolution which are obtained by rotating
a graph over the x = x1-axis in R3 around the x-axis. These are described by sufficiently
smooth functions

u : [−1, 1] → (0,∞)
and are parametrised as follows:

R : (x, ϕ) 7→ (x, u(x) cosϕ, u(x) sinϕ), x ∈ [−1, 1], ϕ ∈ [0, 2π].

The question we are going to address is as follows.
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Let α > 0 be given. Find an even function u ∈ C∞([−1, 1], (0,∞)) – i.e. u(x) = u(−x) –
such that the corresponding surface of revolution R minimises the Willmore energy in this
class and hence solves: {

∆RH + 2H(H2 −K) = 0 in (−1, 1),

u(±1) = α, u′(±1) = 0.

Thanks to the symmetry assumption, the differential equation is one-dimensional which
facilitates a lot the procedures to gain the requisite compactness. Due to the interplay of
the principal curvatures of the unknown surface of revolution becoming apparent in the term
H2−K, the geometry is already two-dimensional and requires rather sophisticated geometric
arguments. We expect these geometric constructions to give some insight in typical shapes
of solutions and to outline possible strategies how to gain compactness in studying more
general boundary value problems. Some of these are discussed in Sections 3.4 and 4.

2. Almost positivity in biharmonic Green’s functions

We now get back in some detail to the updated version and modification of the Boggio-
Hadamard conjecture as formulated on p. 4. We shall prove below in Theorems 2.5 that in
any bounded smooth domain Ω ⊂ Rn the biharmonic Green’s function GΩ,∆2 is positive in
neighbourhoods around the pole the size of which can be uniformly estimated from below
irrespective of the position of the pole, provided that n ≥ 3. As a consequence we will obtain
in Theorem 2.6 much stronger estimates for G−Ω,∆2 than for G+

Ω,∆2 and than those previously
available for |GΩ,∆2 |. As long as the pole of the Green’s function stays in compact sets
such results may be obtained from the explicit form of the fundamental solution combined
with elliptic estimates [ADN]. But the difficult part is to gain uniformity when the pole
approaches the boundary ∂Ω because here, the well established quantitative methods just
mentioned do not yield any longer the desired information. The proof is performed by means
of a rescaling and blow up technique which is sketched in [GR1] and explained in detail in
[GR2]. Both are joint works with Frédéric Robert.

We start with a precise characterisation of Boggio’s formula for the biharmonic Green’s
function in balls which serves as a basis for a perturbation theory of positivity.

2.1. Lower order perturbations and n = 2. A perturbation theory of positivity as we
shall outline it here is not just a continuous dependence on data result. In all results and
arguments which we shall explain in what follows one should observe that the “Green’s
function” is not just a single function solving a particular Dirichlet problem. In fact, it is an
infinite family of functions depending on the position of the pole. The key problem consists
in gaining uniformity when the pole approaches the boundary.

The starting point is Boggio’s formula (1.6) from which we deduce a precise characteri-
sation in terms of more elementary functions which can be used more easily in what follows
and explain precisely the boundary behaviour.

Proposition 2.1. (See [GS2, Proposition 2.3].)

GB,∆2(x, y) ∼





|x− y|4−n min
{

1,
d(x)2d(y)2

|x− y|4
}
, if n > 4;

log
(

1 +
d(x)2d(y)2

|x− y|4
)
, if n = 4;

d(x)2−
n
2 d(y)2−

n
2 min

{
1,
d(x)

n
2 d(y)

n
2

|x− y|n
}
, if n < 4.

Here, we denote d(x) = dist(x, ∂B). Moreover, ∼ means that up to suitable positive con-
stants GB,∆2 may be estimated from below and above by the same function.

This characterisation can be used to prove so called 3-G-type theorems, i.e. that iterated
Green’s functions can be estimated by the Green’s function itself. This allows for esti-
mating Neumann perturbation series and one ends up with a result concerning lower order
perturbations of Boggio’s prototype situation.
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Proposition 2.2. (See [GS2, Theorem 5.1].) There exists ε0 = ε0(n) > 0 such that the
Green’s function GB,L for the operator Lu = ∆2u+

∑
|α|≤3 aαD

αu under Dirichlet boundary
conditions is positive provided that ‖aα‖C0(B) ≤ ε0 for all |α| ≤ 3.

Restricting to two dimensions one may wonder about the interplay of conformal maps and
positivity preserving for the clamped plate boundary value problem. While the Laplacian
is conformally invariant the Bilaplacian is not. The only conformal maps which leave the
biharmonic equation invariant are Möbius transforms (see [L]). At a first glance it seems
that as for positivity preserving one is caught with balls. However, taking advantage of the
conformal invariance of the Laplacian one finds that the biharmonic operator is preserved as
the leading principal part under conformal maps. This means that pulling back the clamped
plate boundary value problem from a domain being biholomorphically close to the (unit)
disk B ⊂ R2 gives rise to small lower order perturbations as described in Proposition 2.2.
Moreover, making use of an explicit construction of biholomorphic maps by means of har-
monic Green’s functions (see [C]) translates closeness of domains in a differentiable sense
into closeness in a biholomorphic sense. We end up with the following result saying that
the positivity of the biharmonic Green’s function in the two-dimensional disk B ⊂ R2 is
preserved under small domain perturbations.

Theorem 2.3. (See [GS1, Theorem 1.5].) There exists ε0 > 0 such that the following
holds. We assume that Ω ⊂ R2 is a C4,γ-smooth domain which is ε0-close to the disk B in
a C4-sense, i.e.:

There exists a C4-diffeomorphism ψ : B → Ω such that ‖Id−ψ‖C4(B) ≤ ε0.

Then, the Green’s function GΩ,∆2 for ∆2 in Ω under Dirichlet boundary conditions is strictly
positive:

∀x, y ∈ Ω, x 6= y : GΩ,∆2(x, y) > 0.

Actually, the result in [GS1, Theorem 1.5] is more general. It covers also perturba-
tions of ∆2 as leading principal part by making use of reduction to normal form and also
perturbations of the polyharmonic operator (−∆)m under Dirichlet boundary conditions.
Subsequently, the requisite notion of domain closeness could be reduced by Sassone [Sa] to
a C2,γ-sense.

The methods for proving Theorem 2.3 are strictly two-dimensional. Nevertheless, the
blow-up techniques developed together with F. Robert permit to prove an analogous result
in any space dimension n ≥ 3, see Theorem 2.7 below.

2.2. Local positivity, n ≥ 3. In what follows we shall discuss the case n ≥ 3 and aim
not only at proving an analogue of Theorem 2.3. According to the question asked on p. 4
we would like to find a precise quantitative formulation for our feeling that in any bounded
regular domain, the negative part of the biharmonic Green’s function is much smaller than
the singular positive part.

We start with a relatively simple result concerning positivity for pairs of points being
closer to each other than to the boundary. With domain dependent constants and assuming
n > 4 such a result could have been deduced from the explicit form of the biharmonic
singular fundamental solution and elliptic Schauder estimates [ADN]. However, somehow
remarkably, the following result can be formulated with explicit universal constants, which
only depend the space dimension n. Generalising the result and the methods of Nehari [Ne],
we have the following local positivity result, which is illustrated in Figure 3. Here and in
what follows we always use the notation

d(x) := dist(x, ∂Ω).

Theorem 2.4. (For n = 3, see [Ne, p. 112]. For n ≥ 4, see [GS3, Theorem 1].) For n ≥ 3,
there exists a constant δn > 0 such that the following holds.

Let Ω ⊂ Rn be a bounded C4,γ-smooth domain. Then

|x− y| < δn max{d(x), d(y)} ⇒ GΩ,∆2(x, y) > 0.
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For δn one may achieve that

δ3 ≥ 0.53, δ4 ≥ 0.59, δn ≥ 0.6 for n ≥ 5,

lim
n→∞

δn =
√

5− 1
2

= 0.618 . . . .

For n = 2, according to [Ne, p. 112], only a much weaker result is available.

pole

Figure 3. Local positivity around the singularity (n ≥ 3)

Theorem 2.4 says that for x ∈ Ω one has that GΩ,∆2(x, . ) is positive in Bδn dist(x,∂Ω)(x).
The radius collapses when x → ∂Ω and in particular, it might still be possible to find y
between x and ∂Ω with GΩ,∆2(x, y) < 0. In such a case, one would expect the negative part
to be of order |x − y|4−n (n > 4) where at the same time, |x − y| could become arbitrarily
small. This would mean that the negative part of GΩ,∆2 were of the same order of magnitude
as its positive part and this is precisely what we want to exclude now. The most difficult and
key step is now gaining uniformity in the local positivity result when the pole approaches
the boundary. This means that we have to replace Bδn dist(x,∂Ω)(x) as a region of positivity
by a ball of uniform radius around any x intersected with Ω, see Figure 4.

Theorem 2.5. (See [GR1, Theorem 1.1].) Let Ω ⊂ Rn, n ≥ 3, be a bounded C4,γ-smooth
domain. Then, there exists a constant δ(Ω) > 0 such that

x, y ∈ Ω, x 6= y, |x− y| < δ ⇒ GΩ,∆2(x, y) > 0.

pole

pole

Figure 4. Uniform positivity around the pole, n ≥ 3.

Since Theorem 2.4 is used in the proof and not available for n = 2 we are likewise not in
the position to extend Theorem 2.5 to n ≥ 2.

Proof. We sketch the main ideas for the generic case n > 4. The cases n = 3, 4 are special
and technically more involved. For details one may see [GR2], where also more general
questions are studied.

We assume by contradiction that we find sequences xk, ỹk ∈ Ω, xk 6= ỹk which satisfy
GΩ,∆2(xk, ỹk) ≤ 0 and limk→∞ |xk − ỹk| = 0. In view on the smoothness of ∂Ω we find
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a further sequence yk ∈ Ω with xk 6= yk, GΩ,∆2(xk, yk) = 0 and limk→∞ |xk − yk| = 0.
Theorem 2.4 yields that

|xk − yk| ≥ δn max{d(xk), d(yk)},
where δn > 0 may be taken from there. After passing to a subsequence we find a limit
x∞ = limk→∞ xk = limk→∞ yk ∈ ∂Ω. By means of a rotation and translation we may
achieve that x∞ = 0 and that the first unit vector is the exterior normal in 0 at ∂Ω. By
means of a blow up or rescaling procedure we shall deduce properties of the biharmonic
Green’s function in a half space as a limit domain which will contradict the explicit formula
due to Boggio.

To this end, for k large enough, we may define x̃k ∈ ∂Ω as the closest boundary point to
xk. We introduce the rescaled biharmonic Green’s functions

Gk(ξ, η) := |xk − yk|n−4GΩ,∆2(x̃k + |xk − yk|ξ, x̃k + |xk − yk|η)
for

ξ, η ∈ Ωk :=
1

|xk − yk| (−x̃k + Ω) .

Since x̃k → 0 and so, the exterior unit normal at ∂Ω converges to the first unit vector we
conclude that

Ωk → H := {x : x1 < 0} locally uniformly for k →∞.

In order to gain compactness for (Gk)k∈N, we refer to the following estimates which were
proved first by Krasovskĭı [Kr1, Kr2] and where in the particular case of the Bilaplacian the
smoothness assumption on ∂Ω were relaxed in [GR2, Theorem 4]:

(2.1) |GΩ,∆2(x, y)| ≤ C0|x− y|4−n.

The constant C0 may be chosen uniformly for smooth families of domains. Thanks to these
estimates we see that for any ξ, η ∈ H and k large enough

|Gk(ξ, η)| ≤ C0|ξ − η|4−n uniformly in k.

Combining these pointwise bounds, elliptic estimates [ADN], biharmonic reflection principles
[D2] and biharmonic Liouville theorems [Nic], one may prove that locally uniformly in H

Gk(ξ, η) → GH,∆2(ξ, η) =
1

4nen
|ξ − η|4−n

∫ |ξ∗−η|/|ξ−η|

1

(v2 − 1)v1−n dv,

where ξ∗ = (−ξ1, ξ2, . . . , ξn). For details we refer to [GR2, Lemma 7]. The identity for
GH,∆2 is due to Boggio’s formula (1.6) transformed to the half space H by means of a
suitable Möbius transform (or verified directly). The assumption that GΩ,∆2(xk, yk) = 0
gives

Gk(ξk, ηk) = 0,

where

ξk =
1

|xk − yk| (xk − x̃k), ηk =
1

|xk − yk| (yk − x̃k),

|ξk| = d(xk)
|xk − yk| ≤

1
δn
, |ξk − ηk| = 1.

After passing to a further subsequence we find ξ, η ∈ H with ξ = limk→∞ ξk, η = limk→∞ ηk.
Working in local coordinate charts, using Taylor’s formula, and exploiting the convergence
properties of Gk we see that Gk(ξk, ηk) = 0 yields one of the three possibilities:

(1) ξ ∈ H, η ∈ H, GH,∆2(ξ, η) = 0;
(2) ξ ∈ H, η ∈ ∂H, ∆ηGH,∆2(ξ, η) = 0, or vice versa;
(3) ξ ∈ ∂H, η ∈ ∂H, ∆ξ∆ηGH,∆2(ξ, η) = 0.

We have achieved a contradiction because according to Boggio’s formula, none of these
possibilities may indeed occur. ¤
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2.3. Bounds for the negative part n ≥ 3. In the previous section we have proved that
close to the singularity, no sign change of the biharmonic Green’s function GΩ,∆2 may occur,
irrespective of how close the singularity is to the boundary.

This observation together with estimates due to Krasovskĭı [Kr1, Kr2] and refined by
Dall’Acqua and Sweers [DS] can now be turned into a partial answer to the question posed
on p. 4. We obtain a much stronger estimate for the negative part G−Ω,∆2 than for the
singular positive part.

Theorem 2.6. (See [DMS], [DS], [GR1, Theorem 1.1].) Let Ω ⊂ Rn, n ≥ 2, be a bounded
C4,γ-smooth domain. We abbreviate G(x, y) := GΩ,∆2(x, y). Then, there exists a constant
C = C(Ω) such that for all x, y ∈ Ω, x 6= y one has:

−Cd(x)2d(y)2 ≤ G(x, y) ≤ C





|x− y|4−n min
{

1,
d(x)2d(y)2

|x− y|4
}
, if n > 4;

log
(

1 +
d(x)2d(y)2

|x− y|4
)
, if n = 4;

(
d(x)d(y)

)2−n
2

min
{

1,
d(x)

n
2 d(y)

n
2

|x− y|n
}
, if n < 4.

For x, y closer to the boundary than to each other, the bound from below is by a factor
|x− y|n smaller than the bound from above.

Garabedian [Ga] proved change of sign for GΩ,∆2 with Ω ⊂ R2 a mildly eccentric ellipse
by finding opposite boundary points x0, y0 with ∆x∆yGΩ,∆2(x0, y0) < 0. This shows that
qualitatively, the estimate from below cannot be further improved.

Proposition 2.1 shows that also the bound from above is qualitatively optimal.

Proof. Basing upon Krasovskĭı’s work [Kr1, Kr2], it was proved in [DS] that |G(x, y)| can
be estimated from above by the term on the right hand side in the statement of the theo-
rem. Originally, due to a much more general setting, these results require more smoothness
on ∂Ω. However, as can be seen from [GR2, Theorem 4] and [GGS, Chapter 3], C4,γ-
smoothness is enough. If n ≥ 3, the estimate from below follows immediately from the
previous Theorem 2.5. If n = 2, these techniques don’t seem to work any longer, but
the statement was proved taking advantage of conformal maps by Dall’Acqua, Meister and
Sweers in [DMS]. Originally, they had to impose much stronger smoothness assumptions
on ∂Ω. However, since the Krasovskĭı-type estimates are for our special problem available
also in C4,γ-smooth domains, this smoothness is sufficient for the estimate of the Green’s
function from below ([GGS, Chapter 3], [DA]). ¤

It remains as an interesting project to prove smallness of the negative part also in different
norms or by finding explicit (small) values for the constant in the estimate from below.
Since the underlying Theorem 2.5 was proved by contradiction, here this constant cannot
be calculated explicitly, even not in principle.

2.4. Domain perturbations also in n ≥ 3. Theorem 2.5 can be proved also in smooth
families of domains while the strategy of proof remains exactly the same. As a consequence
one can describe how within a smooth family of domains, the transition from positivity to
a possible change of sign may occur. In particular, if n ≥ 3, this cannot happen via the
singularity but similarly as described at the end of the proof of Theorem 2.5. Boggio’s
formula shows that none of these possibilities may occur in a ball. Hence, one has the
following higher dimensional analogue of the perturbation result Theorem 2.3.

Theorem 2.7. (See [GR2, Theorem 2].) Let n ≥ 3. Then, there exists ε0 = ε0(n) > 0 such
that the following holds.

We assume that Ω ⊂ Rn is a C4,γ-smooth domain which is ε0-close to the ball B in the
C4,γ-sense, i.e. there exists a C4,γ-diffeomorphism ψ : B → Ω such that ‖Id− ψ‖C4,γ(B) ≤
ε0.

Then, the Green’s function GΩ,∆2 for ∆2 in Ω under Dirichlet boundary conditions is
strictly positive:

∀x, y ∈ Ω, x 6= y : GΩ,∆2(x, y) > 0.
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Analogolously as for Theorem 2.3 one may wonder whether the notion of smoothness
could be relaxed to a C2,γ-sense. We expect this to be true but also the proof to be quite
technical.

2.5. Perspectives. So far, Theorem 2.6 explains e.g. for the linear clamped plate bound-
ary value problem that the deviation from having a comparison principle or a positivity
preserving property is not too large. On the whole, the response of the solution has the
same direction as the datum.

In view of possible applications to nonlinear problems, one would need a generalisation
of Theorem 2.6 for classes of operators with lower order coefficients. As long as these coeffi-
cients are bounded, one has such uniform estimates. For unbounded families of coefficients,
uniformity breaks down which limits the applicability of Theorem 2.6 to nonlinear equa-
tions. For such purposes one should think of developing this result for different norms of
the fundamental solution (e.g. L1) and try to find “small” constants for the norms of the
negative parts of the Green’s functions.

3. The Dirichlet problem for Willmore surfaces of revolution

In order to get a first insight which sort of existence phenomena may be expected for clas-
sical bounded Willmore surfaces under Dirichlet boundary conditions we study a particularly
symmetric situation which nevertheless displays already some of the typical two-dimensional
geometric features. We are going to construct Willmore surfaces of revolution :

R : (x, ϕ) 7→ (x, u(x) cosϕ, u(x) sinϕ), x ∈ [−1, 1], ϕ ∈ [0, 2π],

with sufficiently smooth u : [−1, 1] → (0,∞), subject to Dirichlet boundary conditions. One
may think of cylindrical elastic surfaces being clamped at their ends. We explain in some
detail the result concerning horizontal clamping, i.e. u′(±1) = 0, because already here, some
basic geometric features show up. In Theorem 3.6 below, we mention a result concerning
general symmetric sets of boundary data.

Theorem 3.1. (See [DDG, Theorem 1.1] and [DFGS, Theorem 3.18, Lemma 3.20].) For
each α > 0 there exists u ∈ C∞([−1, 1], (0,∞)) such that the corresponding surface of
revolution solves the following Dirichlet problem:

(3.1)

{
∆RH + 2H(H2 −K) = 0 in (−1, 1),

u(±1) = α, u′(±1) = 0.

The solution u we construct is even and satisfies for all x ∈ (0, 1) : u′(x) < 0, 0 < x +
u(x)u′(x). Moreover, we have for all x ∈ [−1, 1] the following estimates:

α ≤ u(x) ≤
√
α2 + 1− x2, |u′(x)| ≤ |x|

α
.

This result will be proved by minimising the Willmore functional in the class of all positive
even C1,1-functions on [−1, 1] satisfying the boundary conditions above. Since the derivation
of the corresponding Euler-Lagrange-equation is well established we refer for this issue e.g.
to [DDG, DG, Nit, Poi1, Poi2, Th].

So, in what follows we concentrate on minimising the Willmore functional. For this
purpose we need a formula for the mean curvature of the surface of revolution R given by
u:

H = − u′′(x)

2 (1 + u′(x)2)3/2
+

1
2u(x)

√
1 + u′(x)2

.

Hence the corresponding Willmore functional is given by

W (R) =
∫

R
H2 dS

=
π

2

∫ 1

−1

(
− u′′(x)

(1 + u′(x)2)3/2
+

1
u(x)

√
1 + u′(x)2

)2

(3.2)

·u(x)
√

1 + u′(x)2 dx.
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Although u is a function just in one variable, this functional looks most discouraging, at
least from an analytic point of view. The two terms in H compete with each other: The
first penalises large curvatures of u while the second one has a preference for large u and
almost vertical curves. Geometrically, the functional prefers minimal surfaces, i.e. catenoids.
However, there is not an obvious way to construct good admissible functions just with the
help of these. In this direction, hyperbolic geometry will offer a different point of view.

3.1. Hyperbolic geometry. It has been known since the contributions by Bryant and
Griffiths [Br, BG] that Willmore surfaces of revolution may be equivalently considered as
elastic curves in the hyperbolic half plane. This observation was also made by Pinkall (and
communicated e.g. in [HP]). The differential equation for the hyperbolic curvature takes
a relatively simple shape which was used by Langer and Singer [LS1, LS2] to classify it in
terms of elliptic functions of the hyperbolic arclength of the unknown curves. In spite of
this relatively explicit situation we did not see a way to integrate these equations in order
to solve directly the Dirichlet problem in question.

Nevertheless, we take great advantage of this reformulation of the Willmore problem
in the hyperbolic half plane since it will allow for geometric constructions which ensure
sufficient compactness on suitable minimising sequences. These constructions explain to a
good extent the shape of minimisers and are useful also in more general situations like e.g.
in the general Dirichlet problem (3.3).

In what follows we are going to explain only the main ideas; for details we refer to
[DDG, DFGS].

The hyperbolic half plane R2
+ := {(x, y) : y > 0} is equipped with the metric

ds2 =
1
y2

(dx2 + dy2).

The hyperbolic curvature of [−1, 1] 3 x 7→ (x, u(x)) ∈ R2
+ is then

κ(x) =
u(x)u′′(x)

(1 + u′(x)2)3/2
+

1√
1 + u′(x)2

.

This formula is decuced by differentiating covariantly the tangent field of the graph of u. The
curvature κ is defined as the proportionality factor of this derivative and the unit normal.
However, no geometric knowledge is required in what follows except concerning hyperbolic
line integrals and that the (hyperbolic) geodesics – i.e. curves with κ(x) ≡ 0 – are precisely
subsets of circles centered on the x-axis or of vertical straight lines. See Figure 5.

x

y

Figure 5. Hyperbolic geodesics

We introduce the hyperbolic Willmore functional as the elastic energy of the graph of u
as a curve in the hyperbolic half plane. It turns out that – up to a factor and a boundary
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term – this functional coincides with the original Willmore functional.

Ŵ (u) :=
∫ 1

−1

κ(x)2 ds(x) =
∫ 1

−1

κ(x)2
√

1 + u′(x)2

u(x)
dx

=
∫ 1

−1

(
u′′

(1 + u′2)3/2
− 1
u
√

1 + u′2

)2

u
√

1 + u′2 dx

+4
∫ 1

−1

u′′(x)
(1 + u′(x)2)3/2

dx

=
2
π

∫

R
H2 dS + 4

[
u′(x)√

1 + u′(x)2

]1

−1

,

W (R) =
π

2
Ŵ (u)− 2π

[
u′(x)√

1 + u′(x)2

]1

−1

.

This means that as long as the boundary angles are kept fixed one may work with W as well
as with Ŵ , depending on which appears to be more suitable or convenient. Since here, we
are working with the special Dirichlet boundary conditions u′(±1) = 0, for these functions
we have

Ŵ (u) =
2
π
W (R).

So, in what follows, for given α ∈ (0,∞) we shall minimise Ŵ in the following class of
admissible functions:

Nα := Nα([−1, 1])
:= {v ∈ C1,1([−1, 1]), u is even and positive, v(1) = α, v′(1) = 0},

We define the infimum we want to achieve:

Mα := inf{Ŵ (v) : v ∈ Nα}.
3.2. Properties of suitable minimising sequences. We explain the most important ba-
sic constructions how to achieve suitable minimising properties. They will satisfy strong
enough a-priori-estimates ensuring compactness and allowing to construct an optimal el-
ement in Nα for the minimal Willmore energy Mα. More precisely, one first obtains a
minimiser in the H2-closure of Nα which is then shown to be smooth. With the same tech-
niques one can also prove monotonicity of the minimal Willmore energy Mα with respect to
α.

In what follows we choose some α > 0 and keep it fixed.
In a first step we explain how to shorten a function thereby decreasing its hyperbolic

Willmore energy. In order to keep the exposition simple, here we explain this procedure
only for functions in v ∈ Nα with v′(x) < 0 on (0, 1).

Lemma 3.2. (See [DDG, Lemma 3.3].) Assume v ∈ Nα and that v′(x) < 0 for all x ∈ (0, 1).
Then, for all ρ ∈ (0, 1], there exists vρ ∈ Nα([−ρ, ρ]) such that v′ρ(x) < 0 for all x ∈ (0, ρ)
and ∫ ρ

−ρ

κ[vρ]2 ds[vρ] ≤ Ŵ (v).

Proof. For r ∈ [0, 1] we consider the geodesic circle tangent to the graph of u in (r, u(r))
and centered in the point (r+u′(r)u(r), 0). We build a new function v with lower Willmore
energy. On [r+u′(r)u(r), r) we take the previously mentioned geodesic arc not contributing
at all to the hyperbolic Willmore energy, while on [r, 1] we keep u. We shift this function
such that r + u′(r)u(r) is moved to the origin and extending it by symmetry, we obtain
a symmetric C1,1-function with lower Willmore energy. Depending on the parameter r,
this new function is defined on the interval [−1 + r + u′(r)u(r), 1 − r − u′(r)u(r)]. By the
mean value theorem we find a suitable r such that 1− r − u′(r)u(r) = ρ. The procedure is
illustrated in Figure 6. ¤
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x
−1 10

y

Figure 6. How to shorten a function in Nα while decreasing its hyperbolic
Willmore energy.

In [DDG, Lemma 3.5] we explain how to shorten a general function in Nα with at most
finitely many critical points while decreasing its Willmore energy. Not only in this respect
it is most important to know that it is most suitable for functions in Nα to decrease on
[0, 1]. We emphasise that obvious attempts like reflecting graphs about horizontal lines do
not yield any conclusion: The two terms in κ2 ds act against each other and it is not obvious
in which term the change is larger.

Instead, a refined geometric construction is needed to get the desired result. In the
following lemma, we explain how to change the bad situation displayed in Figure 7 into a
nice one.

x

y

−1 10

Figure 7. Too high Willmore energy.

Lemma 3.3. (See [DDG, Lemma 3.4].) Assume u ∈ Nα and that u′(x) > 0 for all x ∈ (0, 1).
Then, there exists v ∈ Nα such that v′(x) < 0 for all x ∈ (0, 1) and

Ŵ (v) ≤ Ŵ (u).

Proof. In a first step we interchange the left and right part of u. Thanks to the boundary
condition u′(±1) = 0 we obtain a function v1 ∈ Nu(0) with v′1 < 0 on (0, 1). We apply the
shortening procedure of Lemma 3.2 to v1 with ρ = u(0)/u(1) = v1(1)/v1(0). We obtain v2 ∈
Nu(0)([−u(0)/u(1), u(0)/u(1)]) with v′2 < 0 on (0, u(0)/u(1)) and lower Willmore energy than
u. We come up with the desired v by rescaling and define v(x) = u(1)/u(0)v2(u(0)/u(1)x).
We emphasise that the Willmore functional Ŵ is invariant under Möbius transforms of R3.
In particular, Ŵ is scaling invariant. This procedure is illustrated in Figure 8. ¤

In [DDG, Theorem 3.8], we explain the procedure how to change a general function in Nα

with at most finitely many critical points into a function in Nα with lower Willmore energy
and decreasing on [0, 1]. This requires a number of iterative applications of Lemmas 3.2 and
3.3.

This means that on elements v ∈ Nα of a suitable minimising sequence we may assume
that v′ ≤ 0 on [0, 1]. Finally we explain that it is suitable for v to satisfy also the condition
0 ≤ x + v(x)v′(x) on [0, 1]. For x = 1, one has 1 + v(1)v′(1) = 1 > 0. Assuming that
1 + v v′ < 0 somewhere in (0, 1), one finds a largest point x0 with 0 = x0 + v(x0)v′(x0).
This means that the geodesic circle centered at the origin and going through (x0, v(x0)) is
tangential to the graph of v. So, on [−x0, x0] one may replace the original function v by
this geodesic arc thereby decreasing the Willmore energy of v, see Figure 9.
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x

y

2. Interchange left and right part

1. Bad initial function

3. Shorten, decrease energy

4. Rescale

0 a−a

Figure 8. How to change a profile bending downwards into a profile bend-
ing upwards with lower Willmore energy.

x

y

−1 0 1

Figure 9. Elements v of suitable minimising sequences obey 0 ≤ x +
v(x)v′(x) on [0, 1].

With these techniques one may prove the following two results, which are the key steps in
proving existence of Willmore surfaces of revolution satisfying Dirichlet boundary conditions.

Theorem 3.4. (See [DDG, Theorem 3.7].) The optimal Willmore energies (0,∞) 3 α 7→
Mα ∈ [0,∞) are decreasing in α.

For fixed α, we consider a minimising sequence

(vα,k)k∈N ⊂ Nα

such that each vα,k has only finitely many critical points.

Theorem 3.5. (See [DDG, Theorem 3.8 and Condition (3.6)].) One may achieve a min-
imising sequence (vα,k)k∈N satisfying

∀x ∈ [0, 1] : v′α,k(x) ≤ 0, x+ vα,k(x)v′α,k(x) ≥ 0.

Hence, one has for all x ∈ [−1, 1]:

α ≤ vα,k(x) ≤
√

1 + α2 − x2, |vα,k(x)| ≤ |x|
α
.

These a priori estimates on suitably modified minimising sequences are strong enough to
yield strong C1- and weak H2-compactness. Then, it is straightforward to prove existence of
a minimum u in the H2-closure of Nα for Mα. For the proof that u is indeed a C∞-smooth
solution of (3.1) we refer to [DDG, Step 2 of the proof of Theorem 3.9].

We remark that it is proved in [DFGS] that the inequalities for our solution u in Theo-
rem 3.1 are all strict on the open intervals. Analogously, also (0,∞) 3 α 7→ Mα ∈ [0,∞) is
strictly decreasing.



16 HANS-CHRISTOPH GRUNAU

3.3. Numerically calculated solutions. We display a couple of numerically calculated
solutions, see Figures 10 and 11. These calculations are based on the corresponding parabolic
flow equation and were performed by Friedhelm Schieweck using C1-finite elements, see
[DFGS, Chapter 7].

Figure 10. α = 0.5 (left) and α = 0.2 (right). (Courtesy of Friedhelm Schieweck)

Figure 11. α = 0.0001 (Courtesy of Friedhelm Schieweck)

3.4. General Dirichlet boundary conditions. Concerning general symmetric sets of
Dirichlet boundary data one has the following existence result.

Theorem 3.6. (See [DFGS, Theorem 1.1].) For each α > 0 and each β ∈ R there exists
u ∈ C∞([−1, 1], (0,∞)) such that the corresponding surface of revolution solves the Dirichlet
problem for the Willmore equation:

(3.3)

{
∆RH + 2H(H2 −K) = 0 in (−1, 1),

u(±1) = α, ∓u′(±1) = β.

The geometric constructions developed in the proof of Theorem 3.1 also play a role here.
However, in particular for β < 0, the proof is much more involved. Here, also the catenoids
as minimal surface solutions to the Willmore equation come into play. It is enough to
consider comparison functions v where for some x0 ∈ [0, 1) one has v′ < 0 on (0, x0) –
possibly, this interval may also be void – and v′ > 0 on (x0, 1). Roughly speaking, catenoids
are crucial on [−1,−x0] ∪ [x0, 1] while the ideas of Theorem 3.1 apply on [−x0, x0]. For
general boundary data, the technical difficulties consist in finding an appropriate balance in
suitable minimising sequences between these two prototype optima – catenoids and spheres.
A numerically calculated Willmore surface of revolution for the particular Dirichlet data
α = 0.5, β = −10 is displayed in Figure 12.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

dt = 2.00e−08,  NEL =  120,  n =   2864,  t
n
 = 4.683e−01,  W = 9.258e+00

Figure 12. Numerically calculated Willmore surface, α = 0.5, β = −10.
Dotted line: Initial datum used for the flow method. (Courtesy of Friedhelm
Schieweck, see [DFGS, Figure 15])

The results in Theorem 3.6 may be combined with some observations concerning the
conformal invariance of Willmore surfaces. Inverting the solutions found for small α and
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negative β yields parametric Willmore surfaces of revolution, which approach the boundary
on the left hand side from the left and at the right hand side from the right. In particular
they are not generated by graphs.

Concerning nonsymmetric sets of boundary data for u(−1), u(1), u′(−1), u′(1), existence
or nonexistence of solutions to the Dirichlet problem for the Willmore equation are still
widely open. Numerical and analytical experiments suggest that such surfaces, which are
generated by graphs, may only be found for data which deviate not too much from a sym-
metric situation. When enlarging the class to parametric surfaces of revolution one may
expect a general existence result. Such questions will be subject of future research.

4. Perspectives: Natural boundary conditions for Willmore surfaces of
revolution

Again, we consider surfaces of revolution

R : [−1, 1]× [0, 2π] 3 (x, ϕ) 7→ (x, u(x) cosϕ, u(x) sinϕ) ∈ R3

generated by graphs of positive smooth functions u : [−1, 1] → (0,∞). For given α > 0
we prescribe the boundary position u(±1) = α, but not the boundary slope. Calculating
the Euler-Lagrange-equation for the Willmore energy (3.2) within this class of admissible
functions now yields an additional boundary term and we find the second condition

H(±1) = 0

as a natural boundary condition, see [DG, Lemma A.1]. This means that this setting leads
to looking for surfaces of revolution generated by u solving the following Navier boundary
value problem:

(4.1)

{
∆RH + 2H(H2 −K) = 0 in (−1, 1),

u(±1) = α, H(±1) = 0.

An obvious idea is to look for minimal surfaces and indeed, for large enough α, one has
catenoids as solutions.

Remark 4.1. Let b0 = 1.199 . . . be the positive solution of cosh(b0) = b0 sinh(b0) and α0 =
cosh(b0)/b0 = 1.508 . . .. Then, for α > α0, (4.1) has two minimal surface solutions, and for
α = α0, there is one such solution. These solutions are symmetric with respect to x = 0.

For small α > 0, connected minimal surface solutions to (4.1) do not exist, see [DHKW,
Chapter 6.1, Theorem 3]. Numerical experiments ([De, Kast]), however, provide evidence
that for each α ∈ (0,∞) \ {α0} one may have at least one further Willmore surface of
revolution solving (4.1), which is not a minimal surface. The expected bifurcation diagram
is displayed in Figure 13. Apparently, the additional solutions are stable for α ∈ (0, α0) and
unstable for α > α0. The branch of the latter could be tracked numerically until α ≈ 3.

Figure 13. Expected bifurcation diagram (Courtesy of Klaus Deckelnick,
see [DG, Figure 1.3])
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More details concerning (4.1) are discussed in [DG]. A numerical algorithm is proposed
and also some analytical facts are proved there. The verification of the full bifurcation
diagram (Figure 13) is, however, still open and subject of current research. A possible
strategy to find an additional solution could be to show that the solutions for the Dirichlet
problem constructed in Theorem 3.6 are unique as minimisers in suitable classes of admissible
functions and depend continuously on the data α, β. Then one could try to find the sign of
H(±1) of specific such solutions and try to apply the mean value theorem. Although this
strategy looks quite natural it appears to be rather difficult to make it working, at least for
α > α0.

Boundary value problems for graphs over two-dimensional domains. An important
goal will be to understand general boundary value problems for Willmore graphs over two-
dimensional domains, without imposing symmetry assumptions on the domain and the data.
In view of the lack of any general form of comparison principle and the highly nonlinear
character of the fourth order Willmore equation, this seems to be a quite difficult task.
The previous considerations may be considered as a first step towards developing techniques
for future attempts to solve this general problems or at least, significant aspects of it. We
hope that the restricted forms of “almost positivity” as discussed in Section 2 may prove
to become useful in this respect or may at least explain some features of a possible future
theory.
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[DHKW] U. Dierkes, S. Hildebrandt, A. Küster, O. Wohlrab, Minimal Surfaces I, Grundlehren der mathe-
matischen Wissenschaften 295, Springer–Verlag: Berlin etc., 1992.

[D1] R.J. Duffin, On a question of Hadamard concerning super-biharmonic functions, J. Math. Phys.
27 (1949), 253–258.

[D2] R.J. Duffin, Continuation of biharmonic functions by reflection, Duke Math. J. 22 (1955), 313–324.
[DKS] G. Dziuk, E. Kuwert, R. Schätzle, Evolution of elastic curves in Rn : Existence and computation,

SIAM J. Math. Anal. 33 (2002), 1228–1245.
[Ga] P.R. Garabedian, A partial differential equation arising in conformal mapping, Pacific J. Math. 1

(1951), 485–524.
[GGS] F. Gazzola, H.-Ch. Grunau, G. Sweers, Polyharmonic boundary value problems, Positivity pre-

serving and nonlinear elliptic equations in bounded domains, in preparation.
[GR1] H.-Ch. Grunau, F. Robert, Boundedness of the negative part of biharmonic Green’s functions

under Dirichlet boundary conditions in general domains, C. R. Math. Acad. Sci. Paris, to appear.
[GR2] H.-Ch. Grunau, F. Robert, Positivity and almost positivity of biharmonic Green’s functions under

Dirichlet boundary conditions, submitted.
[GS1] H.-Ch. Grunau, G. Sweers, Positivity for perturbations of polyharmonic operators with Dirichlet

boundary conditions in two dimensions, Math. Nachr. 179 (1996), 89–102.
[GS2] H.-Ch. Grunau, G. Sweers, Positivity for equations involving polyharmonic operators with Dirich-

let boundary conditions, Math. Ann. 307 (1997), 589–626.
[GS3] H.-Ch. Grunau, G. Sweers, Regions of positivity for polyharmonic Green functions in arbitrary

domains, Proc. Amer. Math. Society 135 (2007), 3537–3546.
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