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Abstract

We are interested in stability/instability of the zero steady state of the superlinear parabolic
equation ut +∆2u = |u|p−1u in R

n× [0,∞), where the exponent is considered in the “super-Fujita”
range p > 1 + 4/n. We determine the corresponding limiting growth at infinity for the initial
data giving rise to global bounded solutions. In the supercritical case p > (n + 4)/(n − 4) this
is related to the asymptotic behaviour of positive steady states, which the authors have recently
studied. Moreover, it is shown that the solutions found for the parabolic problem decay to 0 at
rate t−1/(p−1).

1 Introduction

In the present paper we study existence and quantitative properties of global solutions of the following
Cauchy problem for superlinear parabolic equations with the biharmonic operator as elliptic linear
part

{

ut + ∆2u = |u|p−1u in R
n+1
+ := R

n × [0,∞)
u(x, 0) = u0(x) in R

n ,
(1)

where n ≥ 2, p > 1 + 4
n and u0 is a bounded initial datum with suitable behaviour at ∞. The decay

of these solutions with respect to space |x| → ∞ and time t → ∞ is investigated.
Before entering into the details of (1), we recall that the corresponding superlinear second order

equation
{

ut − ∆u = |u|p−1u in R
n+1
+

u(x, 0) = u0(x) in R
n (2)

was intensively studied in [7, 12, 14, 15, 19]. It was discovered by Fujita [7] that the exponent p = 1+ 2
n

plays a fundamental role for the stability of the trivial solution u ≡ 0 of problem (2). It turned out
that 1 + 4

n is the biharmonic analogue of this so-called “Fujita”-exponent. For the present paper, the
following result relative to (2) is of particular relevance:

∗Financial support by the Vigoni programme of CRUI (Rome) and DAAD (Bonn) is gratefully acknowledged.
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Proposition 1. [15, Theorem 3.8]
Assume that n ≥ 2 and p > 1 + 2

n . There exists α > 0 such that if

|u0(x)| ≤
α

1 + |x|2/(p−1)

then there exists a global strong solution u of (2). Moreover, there exists A > 0 such that

|u(x, t)| ≤ A

1 + |x|2/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1
+ .

In fact, a slightly different result was stated in [15] but with the very same arguments employed
there, one also readily obtains Proposition 1. Subsequently, Wang [19] performed a more detailed
study of (2) and obtained refined stability/instability results with a more precise description of the
region of attraction of the trivial solution u ≡ 0. In this connection several “critical exponents” turned
out to be of importance, being also related to the corresponding elliptic problem. For further results
see e.g. [5, 6] and references therein.

Most of the methods employed for the proof of Proposition 1 and related subsequent results are
special for second order equations and are in particular basing upon auxiliary functions satisfying
suitable differential inequalities and the maximum principle. Such methods do not apply to (1), since
not even a comparison principle is available here. The major difficulty is the change of sign of the
kernel of the linear operator v 7→ vt + ∆2v, namely

b(x, t) =
f(η)

tn/4
, η =

x

t1/4
, f(η) = ω0|η|1−n

∫ ∞

0
e−s4

(|η|s)n/2J(n−2)/2(|η|s) ds , (3)

where Jm denotes the m-th Bessel function and ω0 a suitable constant such that
∫

Rn

f(η) dη = 1.

In order to overcome this difficulty, Galaktionov–Pohožaev [9] introduced the following self-similar
majorizing kernel associated to (1):

b̃(x, t) := ω1t
−n/4 exp

(

−µ
( |x|4

t

)1/3
)

(4)

with suitable constants µ,D > 0 and

ω1 =
1

∫

Rn exp
(

−µ|y|4/3
)

dy

such that
|b(x, t)| ≤ Db̃(x, t) . (5)

Let us now mention some results already known for the parabolic biharmonic problem (1) and the
related Cauchy problem

{

ut + ∆2u = |u|p in R
n+1
+

u(x, 0) = u0(x) in R
n .

(6)

In the “sub-Fujita” case 1 < p ≤ 1 + 4
n , Egorov et al. [3] show finite time blow up for solutions to (6)

provided the initial datum satisfies
∫

Rn

u0(x) dx ≥ 0.
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Assuming that u0 ≥ 0 and that (1) has a positive solution – which is not obvious due to the oscillatory
behaviour of the biharmonic “heat kernel” (3) – this would imply finite time blow up also in this
situation. For p > 1 + 4

n , Caristi and Mitidieri [1] obtain global solutions of (6), provided the initial
datum u0 belongs to L1(Rn) and obeys the following growth condition at infinity with some constant
c0 and the following smallness condition:

0 ≤ u0(x) ≤ min

{

α,
c0

1 + |x|β
}

, β >
4

p− 1
, α small enough in dependence of c0 and β. (7)

This result generalises and extends previous results in e.g. [2] and [3, 9, 10]. In the first work, for initial
data being small enough in an L1-sense, global existence of solutions decaying to 0 at rate t−n/4 was
proved in a more general setting basing upon linear semigroup theory. In the latter works, for small
exponentially fast decaying initial data, the same decay rate t−n/4 and, moreover, the asymptotic
profile of the solution were calculated by means of perturbation theory. In particular, the time decay
is governed by the linear principal part. By (18) below, these results also imply the existence of global
solutions to (1) being majorised by those to (6).

Caristi and Mitidieri [1] also focussed on blow-up results for the modified equation (6) in the case
p > 1 + 4

n . They proved e.g. finite time blow up for initial data u0(x) = α
1+|x|4/(p−1) with large enough

α. It does not seem to be obvious, however, to conclude blow-up also for (1) from these results.
Several questions were left open by the just mentioned results. In particular, we find most in-

teresting and challenging to find out if β in (7) can be allowed to be β = 4
p−1 . In Theorem 1 we

show that this is the case, namely if u0 satisfies (7) for β = 4
p−1 and a sufficiently small α, then the

solution to (1) is global. Our proof relies on two crucial estimates (see Propositions 2 and 3 below)
which seem to be a new unifying tool for the study of parabolic problems such as (1) whose kernel is
sign-changing. In Remark 2 we also explain how our procedure may be (easily) extended to general
higher order semilinear parabolic equations such as ut + (−∆)ku = |u|p−1u with p > 1 + 2k

n . In some
sense, we provide a unifying proof independent of the positivity of the kernel which applies for all k,
included the “easy” case k = 1. Theorem 1 also states that the global solution converges uniformly
to the (stable) stationary solution u ≡ 0 at a rate of t−1/(p−1), thereby giving the complete extension
of Proposition 1 to higher order problems. Let us recall that in [4] stability of the trivial solution was
obtained only for fast decay (exponential) initial data: here we extend it to the case of slowly decaying
u0.

In order to show that Theorem 1 is optimal with respect to the asymptotic decay of the initial
datum, one should also prove finite time blow up if this assumption is violated. Theorem 2 below does
not give the complete answer but it gives a strong hint that blow up should occur in finite time for
initial data decaying slower than |x|−4/(p−1).

The asymptotic behaviour |x|−4/(p−1) is also important in the corresponding elliptic problem

∆2u = |u|p−1u in R
n. (8)

One might observe that a suitable multiple of x 7→ |x|−4/(p−1) is a singular solution to (8) if p >
n/(n − 4) and also an entire weak solution (in H2

loc(R
n)) if p > (n + 4)/(n − 4), i.e. for supercritical

exponents. In the latter case, the authors constructed entire regular radial solutions u to (8) and proved
that |x|4/(p−1) · u(x) converges to a suitable constant as |x| → ∞, so that the asymptotic behaviour of
solutions to (8) is governed by its singular weak entire solution. See [11] and also Corollary 1 below.

2 Results

In Definitions 1 and 2 we distinguish between two kinds of solutions.
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Definition 1. We say that u is a strong solution of (1) over [0, T ) if u ∈ C4,1(Rn × (0, T )), if u is
bounded on R

n×[0, t] for every t ∈ (0, T ), if u solves (in the classical sense) (1) and ‖u(t)−b(t)∗u0‖∞ →
0 as t → 0 (in particular, this implies that u(xm, t) → u0(x) whenever t → 0 and xm → x for a.e.
x ∈ R

n). The supremum T ∗ of all T ’s for which u is a strong solution of (1) over [0, T ) is called life
span of the strong solution u. We say that u is a global strong solution of (1) if T ∗ = +∞.

We first show the existence of global strong solutions:

Theorem 1. Assume that n ≥ 2 and p > 1 + 4
n . There exists α > 0 such that if

|u0(x)| ≤
α

1 + |x|4/(p−1)
(9)

then there exists a global strong solution u of (1). Moreover, there exists A > 0 such that

|u(x, t)| ≤ A

1 + |x|4/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1
+ . (10)

Theorem 1 is somehow optimal. Indeed it was shown in [1] that if α is large and equality holds in
(9), then any positive solution of (1) blows up in finite time. Moreover, the asymptotic behaviour at
infinity of the estimate in (9) is critical since in the case p > (n + 4)/(n − 4), it corresponds to the
asymptotic behaviour of positive stationary radially symmetric regular and singular solutions of (1),
see [11]. Therefore, Theorem 1 has the straightforward consequence:

Corollary 1. Assume that n ≥ 5 and p > (n + 4)/(n − 4). Let u be a stationary positive radially
symmetric solution of (1). There exists β > 0 such that if

|u0(x)| ≤ βu(x)

then the solution u of (1) is global. Moreover, there exists A > 0 such that (10) holds.

The strong solution found in Theorem 1 is globally bounded. We now deal with a weaker notion
of solution:

Definition 2. We say that u is a weak solution of (1) over (0, T ) if u ∈ Lp
loc(R

n × [0, T )) and

∫ T

0

∫

Rn

|u|p−1uφ =

∫ T

0

∫

Rn

u(−φt + ∆2φ) −
∫

Rn

u0φ(0) (11)

for all φ ∈ C∞
c (Rn × [0, T )). The supremum T ∗ of all T ’s for which u is a weak solution over (0, T ) is

called the life span of the weak solution. We say that u is a global weak solution of (1) if T ∗ = +∞.

We now introduce a suitable family of test functions.

Definition 3. We say that v ∈ H if the following facts occur:
(i) there exist ψ1 ∈ C∞

c (Rn) and ψ2 ∈ C∞
c (R+) such that v(x, t) = ψ1(x)ψ2(t).

(ii) ψ1(0) = ψ2(0) = 1 and v(x, t) > 0 in the interior of spt(v), the support of v.

(iii)

∫

spt(v)
|vt|p

′ |v|1−p′ <∞ and

∫

spt(v)
|∆2v|p′ |v|1−p′ <∞ where p′ = p

p−1 .
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As pointed out in [17] (see also [1]), one has H 6= ∅.
Then, we have

Theorem 2. Assume that u0 ∈ L∞(Rn) and that

λ := lim inf
|x|→∞

|x|4/(p−1)u0(x) > 0 . (12)

There exists Λ > 0 such that if λ > Λ, then any weak solution u of (1) with initial datum u0 satisfies
one of the two following alternatives:

(i) u blows up in finite time, that is, T ∗ <∞;
(ii) for all v ∈ H and for all γ < 1 we have

lim inf
R→∞

R4p/(p−1)

∫

spt(v)

(

|u−(Ry,R4τ)|p − γ|u+(Ry,R4τ)|p
)

v(y, τ) dydτ > 0 . (13)

If (12) is replaced by lim sup|x|→∞ |x|4/(p−1)u0(x) < 0, then the same statement holds provided one
switches u+ and u− in (13).

Let us also briefly comment on Theorem 2. Under the further assumption that u0 ≥ 0 in R
n,

a byproduct of the results in [1] shows that any nonnegative solution of (1) blows up in finite time.
Unfortunately, although we believe that for nonnegative initial data any global solution of (1) is
eventually positive, as far as we are aware no condition is known which ensures this property of the
solution.

Theorem 2 states that if (12) holds and the solution u is global, then the negative part of u is
not neglectable with respect to the positive part. In some sense, the solution may be global only
if the negative and positive parts are “perfectly balanced”. We believe that under further suitable
assumptions on u0 (such as positivity) case (ii) never occurs and we have blow up in finite time.

Remark 1. By direct calculation, one can see that if there exists an entire smooth radial solution v,
decaying at infinity, of the equation

∆2v = |v|p−1v +
1

4
rvr +

1

p− 1
v in R

n

then
u(x, t) := (1 + t)−1/(p−1)v

(

|x|(1 + t)−1/4
)

, (x, t) ∈ R
n+1
+

is a (self-similar) solution of (1). These solutions were studied in some detail in [8] in order to prove
non-uniqueness results for (1) with unbounded initial data u0.

3 Proof of Theorem 1

During the proof of Theorem 1 we will need the following crucial statements whose proofs are post-
poned, respectively, to Sections 6 and 7.

Proposition 2. Assume that n ≥ 2 and p > 1 + 4/n. There exists a constant C1 = C1(n, p, µ) > 0
such that for all (x, t) ∈ R

n+1
+ , one has:

ω1

∫

Rn

exp

[

−µ
( |y|4

t

)1/3
]

dy

tn/4(1 + |x− y|4/(p−1))
≤ C1

1 + |x|4/(p−1) + t1/(p−1)
.
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Proposition 3. Assume that n ≥ 2 and p > 1 + 4/n. There exists a constant C2 = C2(n, p, µ) > 0
such that for all (x, t) ∈ R

n+1
+ , one has:

ω1

∫ t

0

∫

Rn

exp

[

−µ
( |y|4

s

)1/3
]

dy ds

sn/4
(

1 + (t− s)1/(p−1) + |x− y|4/(p−1)
)p ≤ C2

1 + |x|4/(p−1) + t1/(p−1)
.

The proof of Proposition 3 is quite lengthy and delicate. For this reason, in Section 8 we give a
much simpler proof of it under the additional constraints that n ≥ 5 and p > n+4

n−4 .

Let D be as in (5). Then, we will prove Theorem 1 by taking

α :=
1

2p/(p−1)Dp/(p−1)C1C
1/(p−1)
2

. (14)

Let b(t) = b(x, t) be the kernel defined in (3) and note that under the assumption (9) we have
u0 ∈ L∞(Rn). It is then clear that any strong solution u of (1) also satisfies the integral equation

u(t) = b(t) ∗ u0 +

∫ t

0
b(t− s) ∗ |u(s)|p−1u(s) ds . (15)

Conversely, it is well-known (see e.g. [7, Proposition A4]) that a bounded solution of the integral
equation (15) is a strong solution of (1). Uniqueness of strong solutions to (15) follows by the standard
contraction mapping principle, see e.g. [13, Section 3.3].

We study (15) by following the approach in [1, 20, 21] combined with the extremely powerful
Propositions 2 and 3. Let D be as in (5) and let

v0(x) := D|u0(x)| . (16)

Then, consider the equation

v(t) = b̃(t) ∗ v0 +D

∫ t

0
b̃(t− s) ∗ vp(s) ds . (17)

In view of (5) and the existence proof below, it is clear that as long as v(t) exists, we have a solution
u to (15)

|u(x, t)| ≤ v(x, t) . (18)

In particular, if we can show that v is globally defined, this will also prove that u is globally defined.
To this end, for all v ∈ L∞(Rn+1

+ ) we define

B̃v(x, t) := b̃(t) ∗ v0 +D

∫ t

0
b̃(t− s) ∗ vp(s) ds . (19)

For T > 0 and for

M :=
1

(2DC2)1/(p−1)
(20)

we introduce the set

ST :=

{

v ∈ C(Rn × [0, T ]); 0 ≤ v(x, t) ≤ M

1 + |x|4/(p−1) + t1/(p−1)

}

.

It is clear that

ST is a nonempty, closed and bounded convex subset of C(Rn × [0, T ]) . (21)
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We claim that
B̃(ST ) ⊂ ST . (22)

In order to prove (22), take v ∈ ST and consider B̃v as defined in (19). Clearly, B̃v(x, t) ≥ 0.
Moreover, by (9), (16) and Proposition 2 we have

[b̃(t) ∗ v0](x) ≤
DC1α

1 + |x|4/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1
+ . (23)

Furthermore, for v ∈ ST we get

∫ t

0
b̃(t− s) ∗ vp(s) ds = ω1

∫ t

0

∫

Rn

exp

[

−µ
( |y|4

s

)1/3
]

vp(x− y, t− s)

sn/4
dy ds ≤

≤ ω1M
p

∫ t

0

∫

Rn

exp

[

−µ
( |y|4

s

)1/3
]

dy ds

sn/4
(

1 + (t− s)1/(p−1) + |x− y|4/(p−1)
)p .

Using Proposition 3 we then obtain

∫ t

0
b̃(t− s) ∗ vp(s) ds ≤ C2M

p

1 + |x|4/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1
+ . (24)

Inserting (23)-(24) into (19) and recalling (14)-(20), we finally obtain

B̃v(x, t) ≤ M

1 + |x|4/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1
+ ,

which proves (22).

Arguing as in [21, Lemma 3.1] (see also [1, Theorem 2.1]), we can also prove the two following
facts:

B̃ST is a compact subset (with respect to the L∞-norm) of ST , (25)

B̃ is continuous . (26)

In view of (21)-(22)-(25)-(26), we may apply Schauder’s fixed point Theorem and infer that B̃ has a
fixed point vT ∈ ST . For any T > 0, we now define

VT (x, t) =

{

vT (x, t) if t ≤ T
vT (x, T ) if t > T .

By applying a local version of Ascoli-Arzelà’s Theorem as in [1, p.718] (see also [21, p.61]) we infer
that, up to a subsequence, VT converges uniformly on compact subsets of R

n+1
+ to a (global) solution

of (17). This completes the proof of Theorem 1. �

Remark 2. The technique developed here may also serve to treat Cauchy problems with polyharmonic
elliptic principal part

{

ut + (−∆)k u = |u|p−1u in R
n+1
+

u(x, 0) = u0(x) in R
n .

(27)

As in the biharmonic case one may consider a majorising kernel associated to (27)

b̃k(x, t) := ω1,kt
−n/2k exp

(

−µk

( |x|2k

t

)1/(2k−1)
)

.
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Propositions 2 and 3 continue to hold true provided one assumes p > 1+ 2k/n and provided
(

|y|4
t

)1/3

is replaced by
(

|y|2k

t

)1/(2k−1)
, the exponent n/4 by n/2k and the exponent 4/(p − 1) by 2k/(p − 1).

The proofs of these generalised propositions require almost only straightforward changes except for
the end of the proof of Lemma 5 in the case k = 1, n = 2. In this special case one splits the last
integral at 3T 4/3 instead.

So, one may prove for (27) the same result as in Theorem 1 by changing 1 + 4/n into 1 + 2k/n
and 4/(p− 1) into 2k/(p− 1). This general result contains also Proposition 1 as a special case thereby
providing a unified proof independent of the maximum principle.

4 Proof of Theorem 2

Our proof is obtained by adapting the arguments in [1] to the case of sign-changing solutions. Let
v(x, t) = ψ1(x)ψ2(t) ∈ H and let K = spt(ψ1) and [0, T ] = spt(ψ2). For all R > 0 take

φR(x, t) := v

(

x

R
,
t

R4

)

= ψ1

( x

R

)

ψ2

(

t

R4

)

as test function in (11). Then, we obtain

∫ R4T

0

∫

RK
|u(x, t)|p−1u(x, t)v

(

x

R
,
t

R4

)

dxdt +

∫

RK
u0(x)ψ1

( x

R

)

dx =

= R−4

∫ R4T

0

∫

RK
u(x, t)

[

−vt

(

x

R
,
t

R4

)

+ ∆2v

(

x

R
,
t

R4

)]

dxdt =: I . (28)

In the sequel the c’s denote positive constants which may have different values also when they appear
in the same formula. We estimate the right hand side I of (28) as follows. Fix γ < 1 and take δ := 1−γ

1+γ ;
by Young’s inequality we know that there exists Cδ > 0 such that

I = R−4

∫ R4T

0

∫

RK
u(x, t) v1/p

(

x

R
,
t

R4

) −vt

(

x
R ,

t
R4

)

+ ∆2v
(

x
R ,

t
R4

)

v1/p
(

x
R ,

t
R4

) dxdt ≤

≤ δ

∫ R4T

0

∫

RK
|u(x, t)|p v

(

x

R
,
t

R4

)

dxdt+
Cδ

R4p′

∫ R4T

0

∫

RK

∣

∣vt

(

x
R ,

t
R4

)
∣

∣

p′
+
∣

∣∆2v
(

x
R ,

t
R4

)
∣

∣

p′

vp′−1
(

x
R ,

t
R4

) dxdt.

With the change of variables
x = Ry , t = R4τ , (29)

we finally obtain

I ≤ δ

∫ R4T

0

∫

RK
|u(x, t)|p v

(

x

R
,
t

R4

)

dxdt + CδR
n−4/(p−1)

∫ T

0

∫

K

|vt(y, τ)|p
′

+
∣

∣∆2v(y, τ)
∣

∣

p′

vp′−1(y, τ)
dydτ ≤

≤ δ

∫ R4T

0

∫

RK
|u(x, t)|p v

(

x

R
,
t

R4

)

dxdt + cRn−4/(p−1) . (30)

Next, by (12) we know that there exists C, ρ > 0 such that

|x|4/(p−1)u0(x) ≥
λ

2
if |x| ≥ ρ .
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Let R be sufficiently large so that Bρ ⊂ RK. For such R we have

∫

RK
u0(x)ψ1

( x

R

)

dx ≥ −‖ψ1‖∞
∫

Bρ

|u0(x)| dx +
λ

2

∫

RK\Bρ

ψ1

( x

R

) dx

|x|4/(p−1)
.

Clearly, there exist 0 < α < β such that if R is sufficiently large then XR := {x ∈ R
n; αR < |x| <

βR} ⊂ RK \Bρ. Therefore, the last inequality becomes

∫

RK
u0(x)ψ1

( x

R

)

dx ≥ −c+
λ

2
min

α≤|y|≤β
ψ1(y)

∫

XR

dx

|x|4/(p−1)
≥ −c+ cλRn−4/(p−1) . (31)

Summarizing, by using (30) and (31) into (28), we arrive at

(1 − δ)

∫ R4T

0

∫

RK
|u+(x, t)|pv

(

x

R
,
t

R4

)

dxdt− (1 + δ)

∫ R4T

0

∫

RK
|u−(x, t)|pv

(

x

R
,
t

R4

)

dxdt ≤

≤ cRn−4/(p−1) − cλRn−4/(p−1) + c .

If we divide by 1 + δ and we take λ sufficiently large (say λ ≥ Λ), the previous inequality becomes

∫ R4T

0

∫

RK
|u−(x, t)|pv

(

x

R
,
t

R4

)

dxdt − γ

∫ R4T

0

∫

RK
|u+(x, t)|pv

(

x

R
,
t

R4

)

dxdt ≥ cRn−4/(p−1)

for sufficiently large R. Finally, performing the change of variables (29) and letting R → ∞, proves
(13).

Assume now that (12) is replaced by lim sup|x|→∞ |x|4/(p−1)u0(x) < 0 and consider again (28). In
this case, instead of (31) we obtain

∫

RK
u0(x)ψ1

( x

R

)

dx ≤ c− cλRn−4/(p−1) .

Moreover, we may replace (30) with

I ≥ −δ
∫ R4T

0

∫

RK
|u(x, t)|p v

(

x

R
,
t

R4

)

dxdt− cRn−4/(p−1) .

The proof may now be completed as in the case where (12) holds.

5 Some technical results

Here and in all the remaining of the paper, with c we denote positive constants which may have
different values also within the same line. Moreover, in order to avoid heavy notations, when we write
1/αβ, we mean 1

αβ .
For both the proofs of Propositions 2 and 3 we will make use of the following trivial facts:

min

{

1

a
,
1

b

}

≤ 2

a+ b
for all a, b > 0 , (32)

and for all (m, q) ∈ [N \ {0}] × (0,+∞) there exist γ1, γ2 > 0 such that

γ1

(

m
∑

i=1

αi

)q

≤
m
∑

i=1

αq
i ≤ γ2

(

m
∑

i=1

αi

)q

for all αi ≥ 0 . (33)
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We now prove five technical statements (uniform bounds for 3-dimensional integrals depending on
a parameter T > 0) which are needed for the proof of Proposition 3. Most delicate are Lemmas 3 and
4, where the essential idea consists in a suitable splitting of the domain of integration. The integrals
Γi (i = 1, ..., 5) below depend on T but, for simplicity, we omit to emphasize this dependence.

Lemma 1. Assume that n ≥ 2 and p > 1 + 4/n. Then, there exists c > 0 such that

Γ1 :=

∫ ∞

0

1

(1 + w2)n/2

∫ 1/2T

0
ρn−5e−µρ4/3

∫ Tρ

0

σ3 dσ dρ dw
(

T 3

ρ (Tρ− σ) + (σ − 1)4 + σ2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.

Proof. First, we note that for the integral considered we have σ ≤ Tρ ≤ 1
2 . Hence, |σ − 1| ≥ 1

2 and

Γ1 ≤
∫ ∞

0

dw

(1 + w2)n/2
·
∫ 1/2T

0
ρn−5e−µρ4/3

∫ Tρ

0

T 3ρ3 dσ dρ
(

T 3

ρ (Tρ− σ) + 1
16

)p/(p−1)
≤

≤ c

∫ 1/2T

0
ρn−1e−µρ4/3







1
(

T 3

ρ (Tρ− σ) + 1
16

)1/(p−1)







Tρ

0

dρ ≤ c

∫ ∞

0
ρn−1e−µρ4/3

dρ = c

and the uniform upper bound follows. 2

Lemma 2. Assume that n ≥ 2 and p > 1 + 4/n. Then, there exists c > 0 such that

Γ2 :=

∫ ∞

0

1

(1 + w2)n/2

∫ 3/T

1/2T
ρn−5e−µρ4/3

∫ Tρ/2

0

σ3 dσ dρ dw
(

T 3

ρ (Tρ− σ) + (σ − 1)4 + σ2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.

Proof. As long as Γ2 is involved, we have σ3 ≤ T 3ρ3

8 . Then,

Γ2 ≤ c T 3

∫ ∞

0

dw

(1 +w2)n/2
·
∫ 3/T

1/2T
ρn−2e−µρ4/3

∫ Tρ/2

0

dσ dρ
[

T 3

ρ (Tρ− σ)
]p/(p−1)

≤

≤ c

∫ 3/T

1/2T
ρn−1e−µρ4/3







1
(

T 3

ρ (Tρ− σ)
)1/(p−1)







Tρ/2

0

dρ ≤ c

T 4/(p−1)

∫ 3/T

1/2T
ρn−1e−µρ4/3

dρ =

[τ = Tρ] =
c

T n+4/(p−1)

∫ 3

1/2
τn−1 exp

[

−µ
( τ

T

)4/3
]

dτ =: f(T ).

It is clear that f(T ) is well-defined (finite) for all T ∈ (0,∞). Moreover, f(T ) → 0 for both T → 0
and T → ∞ so that the uniform upper bound for Γ2 follows. 2
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Lemma 3. Assume that n ≥ 2 and p > 1 + 4/n. Then, there exists c > 0 such that

Γ3 :=

∫ ∞

0

1

(1 + w2)n/2

∫ 1/T

1/2T
ρn−5e−µρ4/3

∫ Tρ

Tρ/2

σ3 dσ dρ dw
(

T 3

ρ (Tρ− σ) + (σ − 1)4 + σ2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.

Proof. Since σ ≥ Tρ
2 ≥ 1

4 and T 3

ρ ≥ 1
8ρ4 , Γ3 converges uniformly in T whenever the integral

∫ ∞

0

1

(1 +w2)n/2

∫ 1/T

1/2T
ρn−5e−µρ4/3

∫ Tρ

Tρ/2

σ3 dσ dρ dw
[

Tρ−σ
8ρ4 + (σ − 1)4 + 1

16(1+w2)2

]p/(p−1)

does so. Moreover, we remark that

∫ 1

0

1

(1 + w2)n/2

∫ 1/T

1/2T
ρn−5e−µρ4/3

∫ Tρ

Tρ/2

σ3 dσ dρ dw
[

Tρ−σ
8ρ4 + (σ − 1)4 + 1

16(1+w2)2

]p/(p−1)
≤ c

∫ ∞

0
ρn−5e−µρ4/3

dρ

so that the statement follows if there exists c > 0 (independent of T ) such that

Γ′
3 :=

∫ ∞

1

1

wn

∫ 1/T

1/2T
ρn−5e−µρ4/3

∫ Tρ

Tρ/2

dσ dρ dw
[

Tρ−σ
8ρ4 + (σ − 1)4 + 1

64w4

]p/(p−1)
≤ c for all T > 0. (34)

Consider the map
h(ρ) := min{1, ρ4} · (1 − Tρ)4 . (35)

If ρ ∈ [ 1
2T ,

1
T ], then Tρ− h(ρ) ≥ Tρ− (1 − Tρ)4 > Tρ

2 . Hence, we can split the inner integral in (34)
as follows

∫ Tρ

Tρ/2
=

∫ Tρ−h(ρ)

Tρ/2
+

∫ Tρ

Tρ−h(ρ)
=: L1 + L2 (36)

and we estimate L1 and L2. This splitting is the essential idea in this proof in order to cover the full
super-Fujita range p > 1 + 4/n.

First, we note that

L1 ≤
∫ Tρ−h(ρ)

Tρ/2

dσ
[

Tρ−σ
8ρ4 + 1

64w4

]p/(p−1)
=







8(p − 1)ρ4

[

Tρ−σ
8ρ4 + 1

64w4

]1/(p−1)







Tρ−h(ρ)

Tρ/2

≤

≤ 8(p− 1)ρ4

[

h(ρ)
8ρ4 + 1

64w4

]1/(p−1)
≤ c ρ4

[

h(ρ)
ρ4 + 1

w4

]1/(p−1)
. (37)

Next, since σ ≤ Tρ ≤ 1, by using (33) we note that

L2 ≤ c

∫ Tρ

Tρ−h(ρ)

dσ
[

1 − σ + 1
2
√

2w

]4p/(p−1)
≤ c h(ρ)
[

1 − Tρ+ 1
w

]4p/(p−1)
. (38)

11



Inserting (37) and (38) into (36), and recalling the definition of Γ′
3 in (34), entails

Γ′
3 ≤ c

∫ 1/T

1/2T
ρn−5e−µρ4/3

∫ ∞

1

1

wn







ρ4

[

h(ρ)
ρ4 + 1

w4

]1/(p−1)
+

h(ρ)
[

1 − Tρ+ 1
w

]4p/(p−1)






dwdρ (39)

and we now estimate the two inner integrals in (39). Since (1 − Tρ)−1 ≥ 2, for the first integral we
have

∫ ∞

1

ρ4

[

h(ρ)
ρ4 + 1

w4

]1/(p−1)

dw

wn
≤

≤ ρ4

(

∫ 1/(1−Tρ)

1
w4/(p−1)−n dw +

ρ4/(p−1)

h(ρ)1/(p−1)

∫ ∞

1/(1−Tρ)

dw

wn

)

≤

≤ ρ4

[

Φ1(1 − Tρ) +
c ρ4/(p−1)

min{1, ρ4/(p−1)} · (1 − Tρ)4/(p−1)−n+1

]

, (40)

where (recall that 4
p−1 < n)

Φ1(s) = c







sn−1−4/(p−1) if 4/(p − 1) − n > −1
| log s| if 4/(p − 1) − n = −1
1 if 4/(p − 1) − n < −1 .

For the second inner integral in (39) we have
∫ ∞

1

h(ρ)
[

1 − Tρ+ 1
w

]4p/(p−1)

dw

wn
≤

≤ h(ρ)

(

∫ 1/(1−Tρ)

1
w4p/(p−1)−n dw +

1

(1 − Tρ)4p/(p−1)

∫ ∞

1/(1−Tρ)

dw

wn

)

≤

≤ min{1, ρ4} ·
(

Φ2(1 − Tρ) +
c

(1 − Tρ)4/(p−1)−n+1

)

, (41)

where

Φ2(s) = c







sn−1−4/(p−1) if 4p/(p − 1) − n > −1
s4| log s| if 4p/(p − 1) − n = −1
s4 if 4p/(p − 1) − n < −1 .

Inserting (40)-(41) into (39) gives

Γ′
3 ≤ c

∫ 1/T

1/2T
ρn−1e−µρ4/3

(

Φ1(1 − Tρ) +
c ρ4/(p−1)

min{1, ρ4/(p−1)} · (1 − Tρ)4/(p−1)−n+1

)

dρ+

+c

∫ 1/T

1/2T
ρn−5e−µρ4/3 · min{1, ρ4} ·

(

Φ2(1 − Tρ) +
c

(1 − Tρ)4/(p−1)−n+1

)

dρ =: f(T ).

Since 4/(p − 1) − n+ 1 < 1 by the assumption on the exponent being “super-Fujita”, the function f
is well-defined (finite) for all T ∈ (0,∞). In order to study its behaviour as T → 0 and T → ∞, we
perform the change of variables τ = Tρ. Then, we get

f(T ) =
c

T n

∫ 1

1/2
τn−1 exp

[

−µ
( τ

T

)4/3
]

(

Φ1(1 − τ) +
c τ4/(p−1)

min{τ, T}4/(p−1) · (1 − τ)4/(p−1)−n+1

)

dτ+
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+
c

T n

∫ 1

1/2
τn−5 exp

[

−µ
( τ

T

)4/3
]

· min{T, τ}4 ·
(

Φ2(1 − τ) +
c

(1 − τ)4/(p−1)−n+1

)

dτ.

For all T ≥ 1 we have min{τ, T} = τ so that

f(T ) ≤ c

T n

∫ 1

1/2
τn−1

(

Φ1(1 − τ) + Φ2(1 − τ) +
c

(1 − τ)4/(p−1)−n+1

)

dτ

and it is clear that f(T ) → 0 as T → ∞. For all T ≤ 1/2 we have min{τ, T} = T so that

f(T ) ≤ c e−cT−4/3

T n

∫ 1

1/2
τn−1

(

Φ1(1 − τ) +
c τ4/(p−1)

T 4/(p−1) · (1 − τ)4/(p−1)−n+1

)

dτ+

+
c e−cT−4/3

T n−4

∫ 1

1/2
τn−5

(

Φ2(1 − τ) +
c

(1 − τ)4/(p−1)−n+1

)

dτ

and f(T ) → 0 as T → 0. This proves (34) and shows that Γ3 is uniformly bounded. 2

Lemma 4. Assume that n ≥ 2 and p > 1 + 4/n. Then, there exists c > 0 such that

Γ4 :=

∫ ∞

0

1

(1 + w2)n/2

∫ 3/T

1/T
ρn−5e−µρ4/3

∫ Tρ

Tρ/2

σ3 dσ dρ dw
(

T 3

ρ (Tρ− σ) + (σ − 1)4 + σ2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.

Proof. This proof follows the same lines as that of Lemma 3. Let us just briefly sketch it. As for (34),
we see that the statement is equivalent to the existence of some c > 0 such that

Γ′
4 :=

∫ ∞

1

1

wn

∫ 3/T

1/T
ρn−5e−µρ4/3

∫ Tρ

Tρ/2

dσ dρ dw
[

Tρ−σ
8ρ4 + (σ − 1)4 + 1

64w4

]p/(p−1)
≤ c for all T > 0. (42)

Consider again the map h defined in (35). Since 1 ≤ Tρ ≤ 3, the following three facts hold

Tρ− h(ρ)

32
≥ Tρ

2
, Tρ− h(ρ)

32
≥ 1 , Tρ− 1 − h(ρ)

32
≥ Tρ− 1

2
. (43)

Instead of (36), the first inequality in (43) suggests to split here the inner integral in (42) as

∫ Tρ

Tρ/2
=

∫ Tρ−h(ρ)/32

Tρ/2
+

∫ Tρ

Tρ−h(ρ)/32
=: M1 +M2.

Arguing as for (37) and (38), we obtain

M1 ≤ c ρ4

[

h(ρ)
ρ4 + 1

w4

]1/(p−1)
, M2 ≤ c h(ρ)

[

Tρ− 1 + 1
w

]4p/(p−1)
,

where we used both the second and third inequality in (43).
Finally, repeating the arguments relative to (40)-(41), we conclude that

Γ′
4 ≤ c

∫ 3/T

1/T
ρn−1e−µρ4/3

(

Φ1(Tρ− 1) +
c ρ4/(p−1)

min{1, ρ4/(p−1)} · (Tρ− 1)4/(p−1)−n+1

)

dρ+
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+c

∫ 3/T

1/T
ρn−5e−µρ4/3 · min{1, ρ4} ·

(

Φ2(Tρ− 1) +
c

(Tρ− 1)4/(p−1)−n+1

)

dρ.

With the change of variables τ = Tρ one can then show (42), namely uniform (with respect to T )
boundedness of Γ′

4. 2

Lemma 5. Assume that n ≥ 2 and p > 1 + 4/n. Then, there exists c > 0 such that

Γ5 :=

∫ ∞

0

1

(1 + w2)n/2

∫ ∞

3/T
ρn−5e−µρ4/3

∫ Tρ

0

σ3 dσ dρ dw
(

T 3

ρ (Tρ− σ) + (σ − 1)4 + σ2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.

Proof. As long as Γ5 is involved, we have Tρ ≥ 3. Hence, we may estimate:

Γ5 ≤
∫ ∞

0

dw

(1 + w2)n/2
·
∫ ∞

3/T
ρn−5e−µρ4/3

(

8ρp/(p−1)

T 3p/(p−1)

∫ 2

0

dσ

(3 − σ)p/(p−1)
+

∫ Tρ

2

σ3 dσ

(σ − 1)4p/(p−1)

)

dρ ≤

≤ c

∫ ∞

3/T
ρn−5e−µρ4/3

(

c ρp/(p−1)

T 3p/(p−1)
+

∫ ∞

2

σ3 dσ

(σ − 1)4p/(p−1)

)

dρ ≤

[τ = Tρ] ≤ c

T n−4+4p/(p−1)

∫ ∞

3
τn−5+p/(p−1) exp

[

−µ
( τ

T

)4/3
]

dτ + c

∫ ∞

0
ρn−5e−µρ4/3

dρ ≤

≤ c+
c

T n+4/(p−1)

∫ ∞

3
τn−5+p/(p−1) exp

[

−µ
( τ

T

)4/3
]

dτ .

Therefore, the statement will follow if we show that the function

g(T ) :=
1

T n+4/(p−1)

∫ ∞

3
τn−5+p/(p−1) exp

[

−µ
( τ

T

)4/3
]

dτ

remains bounded when T varies over (0,∞). Since g(T ) is finite for every T ∈ (0,∞), it suffices to
study the limits of g(T ) when T → 0 and T → ∞. We first remark that for all T < 1 we may write

g(T ) =
1

T n+4/(p−1)

∫ ∞

3
τn−5+p/(p−1) exp

[

−µ
2

( τ

T

)4/3
]

· exp

[

−µ
2

( τ

T

)4/3
]

dτ ≤

≤
exp

[

−µ
2

(

3
T

)4/3
]

T n+4/(p−1)

∫ ∞

3
τn−5+p/(p−1) · exp

[

− µ

2
τ4/3

]

dτ =
c

T n+4/(p−1)
· exp

[

−µ
2

( 3

T

)4/3
]

and the last term tends to 0 as T → 0. Next, for all T > 1 we write

g(T ) =
1

T n+4/(p−1)

(

∫ 3T n/(n−1)

3
+

∫ ∞

3T n/(n−1)

)

.

Then, by using the two following facts

τ ≤ 3T n/(n−1) =⇒ 1

T
≤ c

τ (n−1)/n
, τ ≥ 3T n/(n−1) =⇒ τ

T
≥ cτ1/n ,
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we may estimate g(T ) also when T > 1:

g(T ) ≤ c

∫ 3T n/(n−1)

3

τn−5+p/(p−1)

τn−1+4(n−1)/n(p−1)
dτ +

c

T n+4/(p−1)

∫ ∞

3T n/(n−1)
τn−5+p/(p−1) exp[−cτ4/3n] dτ ≤

≤ c

∫ ∞

3

dτ

τ (3np−4)/n(p−1)
+

c

T n+4/(p−1)

∫ ∞

3
τn−5+p/(p−1) exp[−cτ4/3n] dτ.

Since 3np − 4 > n(p − 1), the above term remains bounded as T → ∞. This completes the proof of
the lemma. 2

6 Proof of Proposition 2

In order to prove Proposition 2 we introduce the function

G1(x, t) :=

∫

Rn

exp

[

−µ
( |y|4

t

)1/3
]

dy

tn/4(1 + |x− y|4/(p−1))
, (x, t) ∈ R

n+1
+ .

With the change of variables y = s1/4z, we may also rewrite G1 as

G1(x, t) =

∫

Rn

exp
[

−µ|z|4/3
] dz

(1 + |x− t1/4z|4/(p−1))
, (x, t) ∈ R

n+1
+ .

We first estimate G1 for small values of |x|:
Lemma 6. Assume that n ≥ 2 and p > 1 + 4/n. There exists a constant K1 = K1(n, p, µ) > 0 such
that

G1(x, t) ≤
K1

1 + |x|4/(p−1) + t1/(p−1)
for all |x| ≤ 1 , t ≥ 0 .

Proof. For |x| ≤ 1, we have

G1(x, t) ≤
∫

Rn

exp
[

−µ|z|4/3
]

dz = c ≤ A1

1 + |x|4/(p−1)
for all |x| ≤ 1 , t ≥ 0 , (44)

for some A1 > 0. Moreover, with the change of variables w = z − t−1/4x we obtain

G1(x, t) ≤
1

t1/(p−1)

[

∫

|z−t−1/4x|<1

dz

|z − t−1/4x|4/(p−1)
+

∫

|z−t−1/4x|>1
exp

[

−µ|z|4/3
]

dz

]

≤

≤ 1

t1/(p−1)

[

∫

|w|<1

dw

|w|4/(p−1)
+

∫

Rn

exp
[

−µ|z|4/3
]

dz

]

=
A2

t1/(p−1)
for all (x, t) ∈ R

n+1
+ , (45)

with A2 being finite because 4
p−1 < n. Clearly, A2 is independent of x and t.

By combining (44) and (45), for all |x| ≤ 1 and t ≥ 0 we obtain

G1(x, t) ≤ min

{

A1

1 + |x|4/(p−1)
,

A2

t1/(p−1)

}

≤ max{A1, A2} · min

{

1

1 + |x|4/(p−1)
,

1

t1/(p−1)

}

.

By (32), this yields

G1(x, t) ≤
2 · max{A1, A2}

1 + |x|4/(p−1) + t1/(p−1)
for all |x| ≤ 1 , t ≥ 0 ,

which proves the statement with K1 = 2 · max{A1, A2}. 2

Assume now that |x| > 1. Then, we prove
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Lemma 7. Assume that n ≥ 2 and p > 1 + 4/n. There exists a constant K2 = K2(n, p, µ) > 0 such
that

G1(x, t) ≤
K2

1 + |x|4/(p−1) + t1/(p−1)
for all |x| > 1 , t ≥ 0 .

Proof. Put F (x, t) := (1 + |x|4/(p−1) + t1/(p−1)) ·G1(x, t). Then, the statement follows if we show that
F (x, t) ≤ K2 for all |x| > 1 and t ≥ 0. When |x| > 1, we have

F (x, t) ≤ c

∫

Rn

exp
[

−µ|z|4/3
] |x|4/(p−1) + t1/(p−1)

|x− t1/4z|4/(p−1)
dz .

Therefore, simplifying by |x|4/(p−1) and putting T := t1/4|x|−1, we obtain

F (x, t) ≤ c(1 + T 4/(p−1)) ·
∫

Rn

exp
[

−µ|z|4/3
] dz
∣

∣

∣

x
|x| − Tz

∣

∣

∣

4/(p−1)
.

At this stage, only the direction x
|x| of x is involved. Hence, with no loss of generality, we may assume

that x
|x| = e1 = (1, 0, ..., 0), the first unit vector of the canonical basis of R

n. In this case, the above
estimate reads

F (x, t) ≤ c(1 + T 4/(p−1)) ·
∫

Rn

exp
[

−µ|z|4/3
] dz

|e1 − Tz|4/(p−1)
=: cΦ(T ) .

Since 4
p−1 < n, the function Φ(T ) is well-defined (finite) for all T ∈ (0,∞). In order to prove the

uniform boundedness of F , we have to show that Φ(T ) remains bounded in both the cases T → 0 and
T → ∞. When T → ∞, we have

Φ(T ) =
1 + T 4/(p−1)

T 4/(p−1)
·
[

∫

|z− e1
T |<1

exp
[

−µ|z|4/3
]

dz
∣

∣z − e1
T

∣

∣

4/(p−1)
+

∫

|z− e1
T |>1

exp
[

−µ|z|4/3
]

dz
∣

∣z − e1
T

∣

∣

4/(p−1)

]

≤

[

w = z − e1
T

]

≤ 1 + T 4/(p−1)

T 4/(p−1)
·
[

∫

|w|<1

dw

|w|4/(p−1)
+

∫

Rn

e−µ|z|4/3
dz

]

= O(1),

because (once more!) 4
p−1 < n. When T → 0, we have

Φ(T ) ≤ O(1)

[

∫

|e1−Tz|<1/2

exp
[

−µ|z|4/3
]

dz

|e1 − Tz|4/(p−1)
+

∫

|e1−Tz|>1/2

exp
[

−µ|z|4/3
]

dz

|e1 − Tz|4/(p−1)

]

≤

[w = e1 − Tz] ≤ O(1)

[

exp[−cT−4/3]

T n

∫

|w|<1/2

dw

|w|4/(p−1)
+ c

∫

Rn

e−µ|z|4/3
dz

]

= O(1),

where we also used the fact that |z| > 1
2T whenever |e1 − Tz| < 1/2. Therefore, Φ(T ) is uniformly

bounded on (0,∞) and the proof of the lemma follows. 2

Recalling the definition of G1, Proposition 2 follows at once from Lemmas 6-7 by taking C1 =
ω1 · max{K1,K2}.
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7 Proof of Proposition 3

Our proof of Proposition 3 requires several lemmas. We define the function

G2(x, t) :=

∫ t

0

∫

Rn

exp

[

−µ
( |y|4

s

)1/3
]

dy ds

sn/4
(

1 + (t− s)1/(p−1) + |x− y|4/(p−1)
)p , (x, t) ∈ R

n+1
+ .

With the change of variables y = t1/4z, we may also rewrite G2 as

G2(x, t) =

∫ t

0

∫

Rn

exp
(

−µ|z|4/3
)

[

1 + (t− s)1/(p−1) + |x− s1/4z|4/(p−1)
]p dz ds , (x, t) ∈ R

n+1
+ .

We first obtain an upper bound for G2 in terms of the time variable:

Lemma 8. Assume that n ≥ 2 and p > 1 + 4/n. There exists a constant B1 = B1(n, p, µ) > 0 such
that

G2(x, t) ≤
B1

t1/(p−1)
for all (x, t) ∈ R

n+1
+ .

Proof. We split the integral as follows:

G2(x, t) =

∫ t

0

∫

|z−s−1/4x|<1/2
+

∫ t

0

∫

|z−s−1/4x|>1/2
=: I1 + I2 (46)

and we estimate separately I1 and I2. First, note that

I1 ≤
∫ t

0

∫

|z−s−1/4x|<1/2

exp
(

−µ|z|4/3
)

[

(t− s)1/(p−1) + |x− s1/4z|4/(p−1)
]p dz ds ≤

[w = z − s−1/4x] ≤
∫ t

0

∫

|w|<1/2

dw ds
[

(t− s)1/(p−1) + s1/(p−1)|w|4/(p−1)
]p ≤ (47)

[by (33)] ≤ c

∫

|w|<1/2

∫ t

0

ds dw

[t− s+ s|w|4]p/(p−1)
≤ c

t1/(p−1)

∫

|w|<1/2

dw

(1 − |w|4)|w|4/(p−1)
≤ c

t1/(p−1)

since 4
p−1 < n in view of the assumption p > 1 + 4

n . Next, we have

I2 ≤
∫ t

0

∫

|z−s−1/4x|>1/2

exp
(

−µ|z|4/3
)

[

(t− s)1/(p−1) + s1/(p−1)|xs−1/4 − z|4/(p−1)
]p dz ds ≤

≤
∫ t

0

∫

|z−s−1/4x|>1/2

exp
(

−µ|z|4/3
)

[

(t− s)1/(p−1) + ( s
16 )1/(p−1)

]p dz ds ≤ (48)

[by (33)] ≤ c

∫

Rn

exp
(

−µ|z|4/3
)

dz ·
∫ t

0

ds

[16t− 15s]p/(p−1)
≤ c

t1/(p−1)
.

Combining (46)-(47)-(48) proves the statement. 2

Next, we prove an upper bound for G2 for small values of |x|:

Lemma 9. Assume that n ≥ 2 and p > 1 + 4/n. There exists a constant B2 = B2(n, p, µ) > 0 such
that

G2(x, t) ≤
B2

1 + |x|4/(p−1)
for all |x| ≤ 1 , t ≥ 0 .
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Proof. Since |x| ≤ 1, it suffices to show that G2(x, t) ≤ B2/2 for some B2 > 0. This follows by
performing the change of variables σ = t− s and the following trivial estimate

G2(x, t) ≤
∫

Rn

e−µ|z|4/3
dz ·

∫ ∞

0

ds

[1 + σ1/(p−1)]p
:=

B2

2
,

the constant B2 being independent of x and t. 2

We now come to the most delicate estimate, an upper bound for G2 for large values of |x|:

Lemma 10. Assume that n ≥ 2 and p > 1 + 4/n. There exists a constant B3 = B3(n, p, µ) > 0 such
that

G2(x, t) ≤
B3

1 + |x|4/(p−1)
for all |x| > 1 , t ≥ 0 .

Proof. We will show that F (x, t) := (1 + |x|4/(p−1))G2(x, t) ≤ B3 for all (x, t) in their ranges. With

the change of variables σ = |z|
|x| s

1/4 and by simplifying by |x|4/(p−1) we obtain

F (x, t) = 4

∫

Rn

exp[−µ|z|4/3]

|z|4
∫

|z|
|x|

t1/4

0

(1 + |x|−4/(p−1))σ3

[

|x|−4/(p−1) +
(

t
|x|4 − σ4

|z|4
)1/(p−1)

+
∣

∣

∣

x
|x| − z

|z|σ
∣

∣

∣

4/(p−1)]p
dσ dz.

Put y := x/|x| so that |y| = 1 and y defines the direction of x; with no loss of generality we may take

y = e1 = (1, 0, ..., 0), the first unit vector of the canonical basis. Let also T := t1/4

|x| . Then, recalling

|x| > 1, we obtain

F (x, t) ≤ c

∫

Rn

exp[−µ|z|4/3]

|z|4
∫ |z|T

0

σ3 dσ dz
(

T 4 − σ4

|z|4
)p/(p−1)

+ (σ − 1)4p/(p−1) +
[(

1 − z1
|z|

)

2σ
]2p/(p−1)

where we used (33) and the following fact:

∣

∣

∣

∣

e1 −
z

|z|σ
∣

∣

∣

∣

4/(p−1)

=

(

1 − 2
z1
|z|σ + σ2

)2/(p−1)

=

[

(σ − 1)2 +
(

1 − z1
|z|
)

2σ

]2/(p−1)

, z = (z1, ..., zn).

Now put z′ = (z2, ..., zn) ∈ R
n−1 so that z = (z1, z

′) and |z|2 = z2
1 + |z′|2. Passing to radial coordinates

r := |z′| in R
n−1 we obtain

F (x, t) ≤ c

∫ ∞

0
rn−2

∫ ∞

−∞

exp[−µ(z2
1 + r2)2/3]

(z2
1 + r2)2

∫ T
√

z2
1+r2

0

σ3 dσ dz1 dr
(

T 4 − σ4

(z2
1+r2)2

)p/(p−1)
+ (σ − 1)4p/(p−1) +

[(

1 − z1√
z2
1+r2

)

2σ
]2p/(p−1)

.

With the change of variables z1 = rw the previous estimate becomes

F (x, t) ≤ c

∫ ∞

0
rn−5

∫ ∞

−∞

exp[−µr4/3(1 + w2)2/3]

(1 + w2)2

∫ Tr
√

1+w2

0

σ3 dσ dw dr
(

T 4 − σ4

r4(1+w2)2

)p/(p−1)
+ (σ − 1)4p/(p−1) +

[(

1 − w√
1+w2

)

2σ
]2p/(p−1)

.

18



Making use of the two inequalities

1 − w√
1 + w2

=

(√
1 + w2 + w

)(√
1 + w2 − w

)

(√
1 + w2 + w

)√
1 + w2

≥ 1

2(1 + w2)
for all w ∈ R

and

T 4 − σ4

r4(1 + w2)2
=

1

r4(1 +w2)2

(

Tr
√

1 + w2 − σ
)(

Tr
√

1 + w2 + σ
)(

T 2r2[1 + w2] + σ2
)

≥

≥ T 3

r
√

1 +w2

(

Tr
√

1 + w2 − σ
)

for all σ ∈ [0, T r
√

1 + w2],

we may estimate further the above expression by

F (x, t) ≤ c

∫ ∞

0
rn−5

∫ ∞

0

exp[−µr4/3(1 + w2)2/3]

(1 + w2)2

∫ Tr
√

1+w2

0

σ3 dσ dw dr
(

T 3

r
√

1+w2

)p/(p−1)(

Tr
√

1 + w2 − σ
)p/(p−1)

+ (σ − 1)4p/(p−1) +
(

σ
1+w2

)2p/(p−1)
,

where the integration with respect to w is now just over (0,∞) since the integrand is even with respect
to w. We now use (33) and we make the further change of variables r = ρ/

√
1 + w2 to obtain

F (x, t) ≤ c

∫ ∞

0

1

(1 + w2)n/2

∫ ∞

0
ρn−5e−µρ4/3

∫ Tρ

0

σ3 dσ dρ dw
(

T 3

ρ (Tρ− σ) + (σ − 1)4 + σ2

(1+w2)2

)p/(p−1)
. (49)

We split the integral on the right hand side of (49) as follows:

∫ ∞

0

∫ 1/2T

0

∫ Tρ

0
+

∫ ∞

0

∫ 3/T

1/2T

∫ Tρ/2

0
+

∫ ∞

0

∫ 1/T

1/2T

∫ Tρ

Tρ/2
+

∫ ∞

0

∫ 3/T

1/T

∫ Tρ

Tρ/2
+

∫ ∞

0

∫ ∞

3/T

∫ Tρ

0
.

Then, thanks to Lemmas 1-2-3-4-5 we know that there exists B3 > 0 such that F (x, t) ≤ B3 for all
(x, t) in their ranges. This completes the proof of the lemma. 2

We may now give the proof of Proposition 3. By Lemmas 8-9-10, for all (x, t) ∈ R
n+1
+ we obtain

G2(x, t) ≤ min

{

B1

t1/(p−1)
,

max{B2, B3}
1 + |x|4/(p−1)

}

≤ max{B1, B2, B3} · min

{

1

t1/(p−1)
,

1

1 + |x|4/(p−1)

}

.

Using (32), the last inequality yields

G2(x, t) ≤
2 · max{B1, B2, B3}

1 + |x|4/(p−1) + t1/(p−1)
.

Recalling the definition of G2, this proves Proposition 3 with C2 = 2ω1 · max{B1, B2, B3}.
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8 A simple proof of Proposition 3 when p >
n+4
n−4

In this section we assume that n ≥ 5, that p > n+4
n−4 , and we give a proof of Proposition 3 which is

simpler (and shorter) than the one in the previous section. This proof bases upon the idea that in a
certain sense – for time independent right hand sides – the limiting operator for the majorising kernel
b̃ for t→ ∞ is just a multiple of the Green operator for the bi-Laplacian in R

n.
We denote by U0 an entire smooth positive radial (and radially decreasing) solution of

∆2U0 = Up
0 in R

n, (50)

which have been constructed in [11, Theorem 1]. According to [11, Theorem 3], there exists C0 > 0
such that

C−1
0

1 + |x|4/(p−1)
≤ U0(x) ≤

C0

1 + |x|4/(p−1)
for all x ∈ R

n . (51)

In particular, the convolution of the fundamental solution of ∆2 with Up
0 is well-defined (the integral

exists). Therefore, we may rewrite (50) as an integral equation

U0(x) =
1

2n(n− 2)(n − 4)en

∫

Rn

|x− y|4−nUp
0 (y) dy (52)

where en = |B1|, the measure of the unit ball. Let G2 = G2(x, t) denote the function defined in Section

7. Then, by making use of the coordinate transformation σ :=
(

|x−y|4
s

)1/3
, we may estimate

G2(x, t) ≤
∫ ∞

0

∫

Rn

s−n/4 exp

[

−µ
( |x− y|4

s

)1/3
]

dy ds
(

1 + |y|4/(p−1)
)p

≤ Cp
0

∫

Rn

∫ ∞

0
s−n/4 exp

[

−µ
( |x− y|4

s

)1/3
]

Up
0 (y) ds dy

= 3Cp
0

∫ ∞

0
exp(−µσ)σ

3
4
n−4 dσ ·

∫

Rn

|x− y|4−nUp
0 (y) dy.

We denote

Ĉ = Ĉ(n, µ) =

∫ ∞

0
exp(−µσ)σ

3
4
n−4 dσ <∞,

which is finite since n > 4. We now proceed by means of (52):

G2(x, t) ≤
(

6n(n − 2)(n− 4)enĈC
p
0

) 1

2n(n − 2)(n− 4)en

∫

Rn

|x− y|4−nUp
0 (y) dy

=
(

6n(n − 2)(n− 4)enĈC
p
0

)

U0(x)

≤ K0

1 + |x|4/(p−1)
for all (x, t) ∈ R

n+1
+

with K0 := 6n(n− 2)(n − 4)enĈC
p+1
0 . The just proved inequality, combined with Lemma 8 and (32)

concludes the proof of Proposition 3 when p > n+4
n−4 . �

Remark 3. 1)When p < n+4
n−4 the arguments of the present section do not apply since (50) admits no

positive solutions, see [16, Theorem 1.4]. On the other hand, if p = n+4
n−4 positive entire radial solutions

U0 = U0(x) of (50) do exist: however, they behave at infinity as (1 + |x|n−4)−1 (see [18]) so that they
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do not satisfy the decay estimate (51). For this reason, also in the critical Sobolev case p = n+4
n−4 , one

cannot argue as in this section.
2) Under the assumption p > (n+ 4)/(n − 4), the above proof replaces Lemmas 9 and 10. The proof
simplifies because the term (t− s)1/(p−1) in the denominator of G2 is dropped. This does not seem to
be possible when trying to cover the full range p > 1 + 4/n.
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