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Abstract

We consider the Willmore boundary value problem for surfaces of revolution over the interval
[−1, 1] where, as Dirichlet boundary conditions, any symmetric set of position α and angle tanβ
may be prescribed. Energy minimising solutions uα,β have been previously constructed and for
fixed β ∈ R, the limit limαց0 uα,β(x) =

√
1 − x2 has been proved locally uniformly in (−1, 1),

irrespective of the boundary angle. Subject of the present note is to study the asymptotic
behaviour for fixed β ∈ R and α ց 0 in a boundary layer of width kα, k > 0 fixed, close to
±1. After rescaling x 7→ 1

α
uα,β(α(x− 1) + 1) one has convergence to a suitably chosen cosh on

[1 − k, 1].
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1 Introduction

Recently, the Willmore functional has attracted a lot of attention. For a smooth surface Γ ⊂ R
3

it is defined by

W (Γ) :=

∫

Γ
H2dS,

where H = (κ1 + κ2)/2 denotes the mean curvature of Γ. Apart from being of geometric interest
[Th, Wi], the functional W is a model for the elastic energy of thin shells [Ni] or biological mem-
branes [He, OY]. Furthermore, it is used in image processing for problems of surface restoration and
image inpainting [CDDRR]. In these applications one is usually concerned with minima, or more
generally with critical points of the Willmore functional. It is well–known that the corresponding
surface Γ has to satisfy the Willmore equation

∆ΓH + 2H(H2 − K) = 0 on Γ, (1)

where ∆Γ denotes the Laplace–Beltrami operator on Γ and K its Gauss curvature with respect
to the induced metric. A solution of (1) is called a Willmore surface. A particular difficulty
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arises from the fact that ∆Γ depends on the unknown surface so that the equation is highly
nonlinear. Moreover, it is of fourth order where many of the established techniques do not apply.
Existence of closed Willmore surfaces of prescribed genus has been proved by Simon [Si] and by
Bauer and Kuwert [BK]. Recently, Riviere [R] has developed a different approach which seems to
open opportunities to address many further questions. For more detailed information and further
references we refer to [DFGS].

If one is interested in surfaces with boundaries, then appropriate boundary conditions have to be
added to (1). Since this equation is of fourth order one requires two sets of conditions; a discussion
of possible choices can be found in [Ni]. Of particular interest is the Dirichlet problem where
at its boundary, the position and the direction of the unknown Willmore surface are prescribed.
Existence results for the Dirichlet problem, which are not subject to unnatural smallness conditions,
can be found e.g. in [DDG, DFGS, Sch]. The result by Schätzle [Sch] is put into a very general
context and so does not provide very detailed information about the topological and geometrical
shape of the solutions. In [DDG, DFGS] the authors proceed just the other way round: They
confine themselves to symmetric surfaces of revolution but at the same time they obtain rather
precise information on the geometric shape of their energy minimising solutions.

More precisely, they look at surfaces of revolution, which are obtained by rotating a graph over
the x = x1-axis in R

3 around the x1-axis. These are described by a sufficiently smooth function

u : [−1, 1] → (0,∞),

which is moreover restricted to be even about x = 0, and are parametrised as follows:

(x, ϕ) 7→ (x, u(x) cos ϕ, u(x) sinϕ), x ∈ [−1, 1], ϕ ∈ [0, 2π].

In the present article we consider the Willmore problem under Dirichlet boundary conditions,
where the height u(±1) = α > 0 and a horizontal angle u′(−1) = −u′(1) = β ∈ R are prescribed
at the boundary. The focus will be on the asymptotic behaviour of energy minimising solutions as
α ց 0. However, in order to explain this one needs to recall first a bit of the underlying existence
theory.

1.1 Some basics

We consider the Willmore energy of the surface of revolution Γ(u) generated by the graph of the
smooth positive function u : [−1, 1] → (0,∞)

W(u) =

∫

Γ(u)
H2 dS =

π

2

1
∫

−1

(

u′′(x)

(1 + u′(x)2)3/2
− 1

u(x)
√

1 + u′(x)2

)2

u(x)
√

1 + u′(x)2 dx.

Definition 1. For α > 0 and β ∈ R we introduce the function space

Nα,β :=
{

u ∈ C1,1([−1, 1], (0,∞)) : u positive, symmetric, u(1) = α and u′(−1) = β
}

as well as
Mα,β := inf

{

W(u) : u ∈ Nα,β

}

.

This notation here should not be mixed with that in [DFGS]. We also need the following
number

α∗ = min

{

cosh(b)

b
: b > 0

}

= 1.5088795 . . . .
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For α below α∗ there is no catenary satisfying this boundary condition, irrespective of the pre-
scribed slope at the boundary. In this regime – for β < 0 – the existence proof and also the
qualitative properties of solutions are different.

We recall as a special case from [DFGS] the following existence result: For each α ∈ (0, α∗)
and each β ∈ R we find uα,β ∈ Nα,β satisfying

W(uα,β) = Mα,β .

The corresponding surface of revolution Γ(uα,β) ⊂ R
3 solves the Dirichlet problem for the Willmore

equation
{

△ΓH + 2H(H2 − K) = 0 in (−1, 1),

uα,β(−1) = uα,β(+1) = α, u′
α,β(−1) = −u′

α,β(+1) = β.

In [DDG, DFGS] the authors took advantage of looking at the Willmore energy of surfaces
of revolution from a different point of view. It was observed by Bryant, Griffiths, and Pinkall
(see [Br, BG, HJP]) and intensively exploited among others by Langer and Singer [LS1, LS2] that
the Willmore energy and the elastic energy of the profile curve considered in the hyperbolic half
plane coincide up to a factor and a boundary term. The half-plane R

2
+ := {(x, y) ∈ R

2 : y > 0}
is equipped with the hyperbolic metric ds2

h := 1
y2 (dx2 + dy2). As explained in detail in [DFGS,

Section 2.2] one finds for the hyperbolic curvature of the curve x 7→ (x, u(x))

κh(x) = −u(x)2

u′(x)

d

dx

(

1

u(x)
√

1 + u′(x)2

)

=
u(x)u′′(x)

(1 + u′(x)2)3/2
+

1
√

1 + u′(x)2
.

The hyperbolic Willmore energy is defined in the following natural way and one observes the
following simple relation with the original energy:

Wh(u) :=

∫

γ

κ2
h dsh :=

1
∫

−1

κ2
h

√
1 + u′2

u
dx =

2

π
W(u) + 4

[

u′

√
1 + u′2

]1

−1

. (2)

1.2 The asymptotic result

The previous work [DFGS] also contains some asymptotic considerations. It should be mentioned
that the numerically calculated pictures displayed there give the clear idea that for α ց 0, the
central part of any Willmore minimiser uα,β looks pretty much like a sphere while close to the
boundary the graph resembles a catenary. Combinations of these prototype functions were not only
empoyed as initial data for the numerical flow method but were also used as comparison function for
precise estimates of the optimal Willmore energy, see [DFGS, Section 5.1, Theorem 5.4]. Moreover,
in [DFGS, Theorem 5.8] it was proved for fixed β ∈ R and α ց 0 that uα,β(x) →

√
1 − x2 in

Cm([−1 + δ, 1 − δ]) for any m ∈ N0 and δ > 0.

It remains to study the asymptotic bahviour in boundary layers close to x = ±1. To this end
it will be crucial to have the following comparison function which generates a minimal surface of
revolution:

vα,β(x) :=
α

√

1 + β2
cosh

(

√

1 + β2

α
(1 − x) + arsinh(β)

)

.

We prove the following result:
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Theorem 1. Fix some β ∈ R and k > 0. For α > 0 small enough let uα,β ∈ Nα,β minimise the

Willmore energy in this class, i.e. W(uα,β) = Mα,β. Then we have uniform smooth convergence

lim
αց0

1

α
uα,β(α(x − 1) + 1) = v1,β(x).

on [1 − k, 1].

This means that in this sense

uα,β(x) ≈ vα,β(x) for x ∈ [1 − kα, 1]

for α ց 0 while a careful analysis of the proof in [DFGS] shows that for any ε > 0

uα,β(x) ≈
√

1 − x2 for |x| ∈ [0, 1 − α1−ε].

2 Rescaled convergence to a suitable cosh for α ց 0

In this section, we choose any β ∈ R, keep it fixed and study the singular limit α ց 0, where the
“holes” {±1} × Bα(0) in the cylindrical surfaces of revolution disappear.

2.1 Known properties of minimisers

We first recall for α small from [DFGS, Section 5] the following properties of any minimiser
uα,β ∈ Nα,β of W, i.e. W(uα,β) = Mα,β .

Lemma 1. We assume that α < min{α∗, 1/|β|}. Let u ∈ Nα,β be such that W(u) = Mα,β. Then,

u ∈ C∞([−1, 1], (0,∞)) and u has the following additional properties:

1. If β ≥ 0, then u′ < 0 in (0, 1) and

α ≤ u(x) ≤
√

1 + α2 − x2 in [−1, 1], x + u(x)u′(x) > 0 in (0, 1).

2. If β < 0, then u has at most one critical point in (0, 1), i.e. there exists x0 ∈ [0, 1) such that

u′ > 0 in (x0, 1], u′(x0) = 0 and u′ < 0 in (0, x0). Moreover,

x + u(x)u′(x) > 0 in (0, 1], u′(x) ≤ γ := max{−β, α∗} in [x0, 1]

and u(x) ≥ min

{

α

2
√

1 + β2
,

γ

2(eC − 1)

}

in [−1, 1],

with C = 6γ
√

1 + γ2 > 0. Moreover,

lim
αց0

x0 = lim
αց0

x0(α) = 1.
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Lemma 2. Keep some β ∈ R fixed. For α > 0 small enough let δα > 0 be such that −u′
α,β(1− δα)

is maximal. Then we know that

lim
αց0

δα = 0, (3)

lim
αց0

(−u′
α,β(1 − δα)) = ∞, (4)

lim
αց0

Mα,β = lim
αց0

W(uα,β) = 4π, (5)

lim
αց0

1−δα
∫

0

κh[uα,β ]2 dsh[uα,β ] = 0. (6)

Proof. Statements (3) and (4) follow from [DFGS, Lemma 5.3, Theorem 5.8]. For (6), see the
proof of [DFGS, Corollary 5.5]. According to [DFGS, Theorem 5.4] and (2) we finally have for
α ց 0

8 − 8β
√

1 + β2
+ o(1) = Wh(uα,β) =

2

π
W(uα,β) − 8β

√

1 + β2
;

statement (5) follows.

2.2 Further comparison results

In order to guarantee compactness in our limit process we need some further uniform bounds.
We study first the simpler case β ≥ 0.

Lemma 3. Fix some β ≥ 0. For 0 < α < min{α∗, 1/|β|} we have for any Willmore minimiser

uα,β ∈ Nα,β that

uα,β(x) < vα,β(x) for x ∈ [0, 1).

Proof. Since both uα,β and vα,β are strictly decreasing on [0, 1] they may be considered as graphs
over the angular variable. This means that for each x ∈ [0, 1] we find uniquely determined ϕ, ψ ∈
[0, π/2] and r1(ϕ), r2(ψ) such that

(x, uα,β(x)) = r1(ϕ)(cos ϕ, sinϕ), (x, vα,β(x)) = r2(ψ)(cos ψ, sinψ).

Considering the curves ϕ 7→ r1(ϕ)(cos ϕ, sinϕ) let Tj(ϕ) = (t1j (ϕ), t2j (ϕ)) denote the corresponding

unit tangent vectors with t2j (ϕ) ≤ 0.
Let us assume by contradiction that uα,β > vα,β on some subinterval of [0, 1]. The case where

the graphs touch tangentially in some point is simpler and can be treated similarly. Then we find
0 < ϕ1 < ϕ2 such that

0 >
t22(ϕ1)

t12(ϕ1)
>

t21(ϕ1)

t11(ϕ1)
and 0 >

t21(ϕ2)

t11(ϕ2)
>

t22(ϕ2)

t12(ϕ2)
.

By the intermediate value theorem there exists a ϕ0 ∈ (ϕ1, ϕ2) satisfying

t22(ϕ0)

t12(ϕ0)
=

t21(ϕ0)

t11(ϕ0)
.

Hence T1(ϕ0) = T2(ϕ0), the tangents on the ray with angle ϕ0 from the x-axis coincide.
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We may now construct a new even function ûα,β ∈ Nα,β which coincides with the catenary vα,β

on [r2(ϕ0) cos ϕ0, 1] and with

x 7→ r2(ϕ0)

r1(ϕ0)
uα,β

(

r1(ϕ0)

r2(ϕ0)
x

)

on [0, r2(ϕ0) cos ϕ0]. We emphasise that the Willmore energy is scaling invariant. Since uα,β is
nowhere locally equal to a cosh, we would end up with W(ûα,β) < W(uα,β), a contradiction.

See Figure 1.

Figure 1: Left: Assume that the minimiser is somewhere above the cosh. Right: Rescale minimiser
inside the wedge and fit it into the cosh. This results in a decrease of Willmore energy.

Lemma 4. Fix some β ≥ 0, k ∈ N. For 0 < α < min{α∗, 1/|β|, 1/k} we have for any Willmore

minimiser uα,β ∈ Nα,β that

|u′
α,β(x)| ≤ sinh

(

k
√

1 + β2 + arsinh(β)
)

for x ∈ [1 − kα, 1].

Proof. We proceed similarly as in the proof of Lemma 3 and consider rays which intersect [0, 1] ∋
x 7→ (x, uα,β(x)) and [0, 1] ∋ x 7→ (x, vα,β(x)). Using the same argument as before – cf. Figure 2 –
we see that on each ray, the slope of uα,β is less negative than the slope of vα,β . Since vα,β(x) ≥
uα,β(x), we find that the rays, which cover (x, uα,β(x)) for x ∈ [1 − kα, 1], cover (x, vα,β(x)) with
x in a subinterval of [1 − kα, 1]:

max
x∈[1−kα,1]

|u′
α,β(x)| ≤ max

x∈[1−kα,1]
|v′α,β(x)| ≤ sinh

(

k
√

1 + β2 + arsinh(β)
)

Combining the previous results with the statements from Lemma 1 we can also treat the case
β < 0.

Lemma 5. Fix some β < 0, then there exists a constant C = C(β) > 0 such that for all 0 < α <
min{α∗, 1/|β|} we have for any Willmore minimiser uα,β ∈ Nα,β that

α

C
≤ uα,β(x) < α cosh

(

C

α
(1 − x)

)

for x ∈ [0, 1).
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Figure 2: Left: Assume that the minimiser is on some ray steeper than the cosh. Right: Rescale
minimiser inside the wedge and fit it into the cosh. This results in a decrease of Willmore energy.

Proof. Let x0 ∈ [0, 1) be as mentioned in Lemma 1 i.e. uα,β(x0) = min{uα,β(x) : x ∈ [−1, 1]} =:
umin,α. We take further from this lemma that there exists a constant C = C(β) > 0 such that for
all 0 < α < min{α∗, 1/|β|}

umin,α ≥ α

C

Then, according to Lemma 3 we have for x ∈ [0, x0):

uα,β(x) < umin,α cosh

(

1

umin,α
(x0 − x)

)

≤ α cosh

(

1

umin,α
(1 − x)

)

≤ α cosh

(

C

α
(1 − x)

)

.

Since uα,β(x) < α ≤ α cosh
(

C
α (1 − x)

)

on [x0, 1), the proof is complete.

Lemma 6. Fix some β < 0, k ∈ N. There exists a bound C = C(k, β) such that for all α > 0
small enough we have for any Willmore minimiser uα,β ∈ Nα,β that

|u′
α,β(x)| ≤ C for x ∈ [1 − kα, 1].

Proof. We proceed similarly as in the previous Lemma 5. Let x0, umin,α be as there and let
C1 = C1(β) > 0 be the constant used there. In particular we use that umin,α ≥ α

C1
From Lemma 4

we see that there exists a constant C2 = C2(k, β) > 0 such that for α > 0 small enough

|u′
α,β(x)| ≤ C2 on [x0 − kC1umin,α, x0] ⊂ [x0 − kα, x0].

One should observe that limαց0 x0(α) = 1. According to Lemma 1 we have that

0 ≤ u′
α,β(x) ≤ max{−β, α∗} in [x0, 1].

Putting all together proves the claim.

Corollary 1. For any k ∈ N we have that for α > 0 small enough

δα > kα.
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2.3 Concentration of the Willmore energy

According to Lemma 2, for α ց 0, the hyperbolic Willmore energy concentrates close to ±1. The
following lemma shows the reverse result for the original Willmore energy.

Lemma 7. Fix some β ∈ R, k ∈ N. Let uα,β ∈ Nα,β be any Willmore minimiser and let Hα,β

denote its mean curvature. Then

lim
αց0

∫ 1

1−kα
H2

α,βuα,β

√

1 + (u′
α,β)2 dx = 0

Proof. According to Lemma 2, we have for α ց 0:

4π + o(1) = W(uα,β)

= 4π

∫ 1

1−δα

H2
α,βuα,β

√

1 + (u′
α,β)2 dx + 4π

∫ 1−δα

0
H2

α,βuα,β

√

1 + (u′
α,β)2 dx

= 4π

∫ 1

1−δα

H2
α,βuα,β

√

1 + (u′
α,β)2 dx

+π

∫ 1−δα

0
κh[uα,β ]2 dsh[uα,β ] + 4π

|u′
α,β(1 − δα)|

√

1 + u′
α,β(1 − δα)2

= 4π

∫ 1

1−δα

H2
α,βuα,β

√

1 + (u′
α,β)2 dx + o(1) + 4π + o(1).

This yields
∫ 1

1−δα

H2
α,βuα,β

√

1 + (u′
α,β)2 dx = o(1)

which in view of Corollary 1 proves the claim.

2.4 Limit of the rescaled solutions, Proof of Theorem 1

We introduce the rescaled solutions

ûα,β :=
1

α
uα,β(α(x − 1) + 1)

and keep some k ∈ N fixed in what follows. Lemmas 3 to 6 show that (ûα,β)αց0 is uniformly
bounded in C1([1 − k, 1]) and uniformly bounded from below on [1 − k, 1] while Lemma 7 proves
that its mean curvature converges to 0 in L2([1−k, 1]). By standard arguments (cf. [DFGS, Proof
of Theorem 5.8]) we find a strong C1- and weak H2-limit u : [1 − k, 1] → (0,∞) satisfying

u(1) = 1, u′(1) = −β, H[u](x) ≡ 0.

By direct integration this gives

u(x) = v1,β(x) =
1

√

1 + β2
cosh

(

√

1 + β2(1 − x) + arsinh(β)
)

and so, the proof of Theorem 1. As for convergence in higher order norms one may see the proof
of [DFGS, Theorem 5.8]

Acknowledgement. I am grateful to my colleague Klaus Deckelnick for raising the question.

8



References

[BK] M. Bauer, E. Kuwert, Existence of minimizing Willmore surfaces of prescribed genus.
Int. Math. Res. Not. 2003, no. 10, 553–576, 2003.

[Br] R. Bryant, A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53, 1984.

[BG] R. Bryant, P. Griffiths, Reduction for constrained variational problems and
∫

1
2k2 ds.

Amer. J. Math. 108, 525–570, 1986.

[CDDRR] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, R. Rusu, A finite element method for
surface restoration with smooth boundary conditions, Comput. Aided Geom. Design,
21, 427–445, 2004.

[DDG] A. Dall’Acqua, K. Deckelnick, H.-Ch. Grunau, Classical solutions to the Dirichlet prob-
lem for Willmore surfaces of revolution. Adv. Calc. Var. 1, 379–397, 2008.
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