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Abstract

In this work we study the behaviour of the Green function for a linear higher-order elliptic
problem. More precisely, we consider the Dirichlet boundary value problem in a bounded
C?™Y-smooth domain in R, n > 2, for a linear symmetric coercive differential operator of
order 2m, m > 2. The polyharmonic operator (—A)™ builds the main part of the differ-
ential operator and the sufficiently smooth coefficient functions of the lower-order partial
derivatives are assumed to be uniformly bounded. The Green function associated to this
problem may be sign changing, even if the right-hand side or source term in the differential
equation is positive. The focus of this thesis is to show that the negative part of the Green

function is small compared with the dominant positive part.

For second-order differential equations this positivity preserving property can be shown by
the maximum principle. By positivity preserving property we mean that a positive right-
hand side gives rise to a positive solution. Certainly, the maximum principle is in general no
longer true for higher-order equations. As a goal of this work, we prove two-sided estimates

for the Green function, from which the dominance of the positive part can be seen.

The estimates from above for the Green function are due to Krasovskir [43], 44], cf.[16], where
higher smoothness of the boundary of the domain is assumed. In this work we present a
proof for the estimates from above in C?™7-smooth domains, similar to that in [23, Sec.

4.4] for the biharmonic Green function.

To prove the estimates from below, we use a blow-up argument developed in [27] and [29]
in the case of the biharmonic problem (m = 2). We extend this procedure to higher order
differential operators and generalise it, in the sense that we allow lower-order perturbations

of the differential operator.

Since the coefficient functions of the lower-order perturbations are assumed to be uniformly
bounded, they vanish during the blow-up. Therefore, the behaviour of the Green function
is determined by the main part of the operator, that is (—A)"™. Subsequently, the estimates
from below can be shown with the help of Boggio’s explicit formula of the polyharmonic
Green function in the ball from [9, p. 126].






Zusammenfassung

In dieser Arbeit studieren wir das Verhalten der Greenschen Funktion eines linearen el-
liptischen Problems héherer Ordnung. Genauer gesagt betrachten wir das Dirichletsche
Randwertproblem in einem beschriankten C?™7V-glatten Gebiet in R™, n > 2, fiir einen
linearen symmetrischen koerzitiven Differentialoperator der Ordnung 2m, m > 2. Der poly-
harmonische Operator (—A)™ bildet den Hauptteil des Differentialoperators und die hinrei-
chend glatten Koeffizientenfunktionen der partiellen Ableitungen niederer Ordnung werden
als gleichméfig beschrinkt vorausgesetzt. Selbst wenn die rechte Seite bzw. der Quellterm
in der Differentialgleichung positiv ist, kann die zugehorige Greensche Funktion ihr Vorzei-
chen wechseln. Der Fokus der Arbeit richtet sich darauf zu zeigen, dass der negative Teil

der Greenschen Funktion klein im Vergleich zum dominanten positiven Teil ist.

Fiir Differentialgleichungen zweiter Ordnung kann diese positivitdtserhaltende Eigenschaft
mit Hilfe des Maximumprinzips gezeigt werden. Fiir uns bedeutet die positivitdtserhaltende
Eigenschaft, dass eine positive rechte Seite zu einer positiven Losung fithrt. Allerdings gilt,
im Allgemeinen, das Maximumprinzip nicht mehr fiir Gleichungen héherer Ordnung. Als
Ziel dieser Arbeit beweisen wir zweiseitige Abschéatzungen der Greenschen Funktion, die die

Dominanz des positiven Teils zeigen.

Die Abschétzungen von oben fiir die Greensche Funktion gehen zuriick auf Krasovskii [43]
44), vgl. [16], wobei hier hohere Glattheit des Randes des Gebiets vorausgesetzt wurde. In
dieser Arbeit prisentieren wir einen Beweis fiir die Abschitzungen von oben in C?™7-glatten

Gebieten, dhnlich dem in [23, Sec. 4.4] fiir die biharmonische Greensche Funktion.

Um die Abschétzungen von unten zu beweisen, benutzen wir ein in [27] und [29] fir das bihar-
monische Problem (m = 2) entwickelte Blow-up-Argument. Wir erweitern dieses Vorgehen
auf Differentialoperatoren héherer Ordnung und verallgemeinern es in dem Sinne, dass wir

Storungen niederer Ordnung fiir den Differentialoperator zulassen.

Da die Koeffizientenfunktionen der Stérungen niederer Ordnung als gleichméfig beschrankt
vorausgesetzt wurden, verschwinden sie wahrend des Blow-ups. Daher bestimmt der Haupt-
teil des Operators, das heift (—A)™, das Verhalten der Greenschen Funktion. Mit Hilfe
Boggios expliziter Formel fiir die polyharmonische Greensche Funktion in der Kugel aus [9]

S. 126] konnen dann die Abschétzungen von unten gezeigt werden.






Contents

Introduction dl
1 Preliminaries and Auxiliary Results ird
1.1 A Polyharmonic Fundamental Solution . . . . . . ... ... ... ... .... [

1.2 A Polyharmonic Green Function and Green’s Second Identity . . . . ... .. i)

1.3 Convergence of Domains . . . . . . . .. . .. ... 14

2 A Perturbed Polyharmonic Operator o7
2.1 Assumptions and Definitions . . . . . . . ... ... Lo I
2.2 Construction of the Green Function . . . . . . . ... .. ... ... ...... 18]
2.3 Estimates for the Green Function . . . . . . . ... ... ... ... ......
2.4 The Rescaled Green’s Function . . . . .. ... ... ... .. ... ...... 36]

3 Pointwise Estimates for Polyharmonic Green Functions 47
3.1 Large Dimensions n >2m —1 . . . . . . . .. . . . o0 49
3.1.1 Some Auxiliary Results forn >2m —1. . .. ... ... .. ... ... 49

3.1.2 Proof of the Main Result forn >2m—-1. . . ... ... .. ... ... 153

3.2 Small Dimensions n <2m —1 . . . . . . . . ... ... 60l
3.2.1 Some Auxiliary Results forn <2m —1. . . . .. ... ... ... ... 60

3.2.2 Proof of the Main Result forn<2m—1. .. ... ... ... ..... 1

4 Pointwise Estimates for the Green Function of the Perturbed Problem [73
4.1 Large Dimensions m > 2m . . . . . . . .. ... 74
4.2 Small Dimensions n < 2m . . . . . . . ... 7
4.3 Dimension m =2m . . . . . . ... 8

A Appendix B3]
Bibliography [B7]
List of Symbols

Index 95|






Introduction

In the year 1905 the Italian mathematician Tommaso Boggio answered the following question

in the affirmative [9]:

If a clamped plate of circular shape will be pushed upwards, will the clamped

(Q)

plate bend upwards everywhere, too?

More precisely, he found an explicit formula for the Green function G(_aym g, of the following

Dirichlet boundary value problem:

(=A)™u = f in By,
Py (0.1)

ﬁuzo ondBy,j=0,...,m—1,

where f denotes a suitable datum, By = B1(0) C R” the unit ball, v the exterior unit normal
at the boundary 0B; and m,n are integers greater or equal than two. If the dimension n
and the power of the operator m are equal two the Dirichlet problem can be seen as
a model for a clamped plate of circular shape, where f denotes the pushing force and the
function u : By — R describes the deflection of the plate, see Gazzola et al. |23, p. 5 ff.]
and the references therein. To give a better understanding, why an explicit formula of the

Green function helps to answer the question (Q) let us look at the following formula for the
solution of (0.1)):

U(I‘) = 5 G(—A)’",Bl (x’y)f(y)dyv

where 0 # f > 0. Therefore, G(_aym g, > 0 will imply a positive answer of question (Q).
This implication holds true for the ball since the formula given by Boggio reads for example

ifn=m=2as

/\x—yl

2
2 (v* —1)
51T~ Yl »

_ .z
’\x|y ]

G_aye,p, (T,y) = dv,

which is strictly positive.
Going a step further it is quite natural to ask if this positivity preserving property, i.e.

0£f>0=u>0,
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is true even in more general domains €2, where u is a solution of

(=A)™u = f in Q,
Y (0.2)

ﬁu:0 on 0, j=0,...,m—1.
v

It goes back to the so called Boggio-Hadamard conjecture [8), [0l 36, [37], where Boggio and
Hadamard conjectured, that the Green’s function G(_ay2 o for the clamped plate boundary
value problem, i.e. m = 2, in convex two-dimensional domains is positive. This is in general

not the case, since many counterexamples exist.

Garabedian showed sign-changing of the Green’s function for an ellipse [21], [22] p. 275],
which is a counterexample in the class of smooth convex domains. For a long rectangle
the conjecture is disproven by an example of Duffin [19, 20]. In domains with corners sign-
changing of G(_a)2 q is proven by Coffmann and Duffin [12]. Moreover, the conjecture for

G(—p)2,0 1s not true in higher dimensions [48].

For m > 2 and n > 2, Kozlov et al. [42] constructed a strictly convex smooth domain with
large curvature of the boundary where G(_a)m o changes its sign. More precisely, they have
smoothed the boundary of a strictly convex domain with a corner, the angle of which is

small, on which they have proved that G(_a)m o changes its sign.

Even if the right-hand side of ([0.2)) is a constant, e.g. f = 1, Grunau and Sweers constructed
in |33, B4] domains such that the solution of (0.2]) for m = 2 changes sign. For a deeper

discussion of the Boggio-Hadamard conjecture, see |23, p. 9 ff| and the references therein.

Within the precision of measurement, an engineer would expect that the positivity preserving
property for the clamped plate holds in smooth domains or, if not, the negative deflection
of the plate is very small. If we consider the corresponding second-order problem, i.e.
m = 1, for the deflection of a membrane, i.e. a soap film, this expectation coincides with
mathematical observations because the positivity preserving property follows directly from
the maximum principle. However, this powerful tool is no longer available for fourth- or

higher-order problems, which can be seen by the biharmonic functions z + +|z|?.

As mentioned before, in general one cannot expect positivity of the polyharmonic Green
function G(_a)m o in domains other than the ball. Therefore much work has been done to
find families of domains, where positivity is still true. This was done for two-dimensional
domains which are close to the ball in the C?™-sense by Grunau and Sweers [30] and relaxed
to C"™7-closeness by Sassone [53]. For non-convex two-dimensional domains an example,
precisely the Limagon de Pascal, was given by Dall’Acqua and Sweers [17] in the biharmonic
case. An extension to higher dimensional domains C*-close to the ball were proven by
Grunau and Robert [27] for the biharmonic Green function. The authors mentioned that

their result should hold true for higher-order problems in dimensions n > 2m — 1.



In order to identify regions of positivity Grunau and Sweers [32] generalised the result and
the methods of Nehari [49] to find a constant ,,,, independent of the domain €, such that
for all z,y € Q with

|z = y| < Ompnmax{d(z),d(y)},

where here and in the following d(x) := dist(x, 0Q) = inf «coq | — =¥, it yields

G aymalz,y) > 0.

This was proven for n > 2m and extended by Kockritz [41] to the case n = 2m. Therefore,

a uniform bound of the negative part of the Green function is obtained, as long as x and y
stay uniformly away from the boundary 9€2. In the biharmonic case and if the pole of the
Green function approaches the boundary, a minimal distance 6 = 6(£2) can be found such
that for any z,y € Q with x # y:

|z —y| < implies that G(_ayo(z,y) > 0. (LP)

This local positivity result goes back to Grunau and Robert [27] for n > 3 and to Dall’Acqua
et al. [I5] for n = 2, see also [23, Theorem 6.24].

After these results we want to go a step further and look for bounds of the negative part
of the polyharmonic Green function. For a generalisation of the situation we will look for

the Green function G of the following Dirichlet boundary value problem with lower-order

terms
m—1
(—A)"u(x) + D" (aﬁé,ﬁ(x)Dau(:n)) = f(z) in Q,
£=0 |a|=|B|=¢
o9
%u(as):() forx e dQ,j=0,...,m—1,
(0.3)
where the datum f is in a suitable function space, and the coefficient functions aiﬁ are

assumed to be sufficiently smooth, i.e. af;”g € C™ 17(Q) and symmetric, i.e. aﬁyﬁ = aé,a.

In addition we assume uniform boundedness, i.e. we find a K > 0, such that for all ¢ we
have that

¢ < K.

HaaﬁHCmflﬁ(ﬁ) =

Moreover, we assume that the bilinear form associated to the differential operator in (0.3)

is coercive on W("2(Q).

Let us now state the main result of this work.



4 Introduction

Theorem 0.1. Let @ C R*, n > 2, be a bounded C*™7-smooth domain, m > 2. Let
G denote the Green function in 0 for (0.3)). Then there exist constants ¢; > 0, ca > 0
and c3 > 0, depending on the domain ), m and K, such that we have the following Green

function estimate:
¢y ' Ha(x,y) < G(2,y) + e1l{jp—y|>e;) (2, y)d(2)"d(y)™ < c2Hal(z,y)

for all x,y € Q, where

| =y min{l,W} if n > 2m,
|z — y[>™
d(z)"d(y)™ :
Ho(z,y) == { log (1 - o —gPm if n=2m,
n/2 n/2
d(‘r)m_n/Qd(y)m_n/Q min {L M} an < 2ma
T —y

and
1 Zf |x - y| > c3,
Ljo—y/>es} (@, 4) = .
0 if |z —y| <ecs,

is the indicator function.

Since a blow-up argument will be used to prove Theorem [0.1] uniform boundedness of the
coefficients will be crucial. Note that the Green function for (—A)™ + a is always sign-

changing whenever a is large enough [13], cf. |23 Corollary 5.5].

We give a short overview of what is done for characterisations of Green’s functions like in
Theorem

As from Boggio’s formula the polyharmonic Green’s function G(_aym g, in a ball is explicitly

known, Grunau and Sweers gave the following optimal two-sided estimates

¢y ' Hp, (z,y) < Gaym g, (2,y) < caHp, (z,y), (0.4)

see [31, Proposition 2.3]. In general domains, the absolute value of the polyharmonic Green
function G(_aym o of a Dirichlet boundary value problem could be estimated from above by
the function Hgq, as shown by Dall’Acqua and Sweers [16]. The authors stated, that their
estimates hold for general uniformly elliptic differential operators of order 2m. As a starting
point, they used estimates without boundary terms of Green’s functions for general higher

order elliptic operators, which are due to Krasovskii [43], 44].

A goal of further research was the improvement of the estimates from below, since the
estimates from above from [16] seem to be optimal for G(_aym o, see (0.4). As a first step

in this direction in the biharmonic case, the following bound from below

Gapalr,y) = —c(Q)d(z)*d(y)



was proven by Grunau and Robert [27] for n > 3 and by Dall’Acqua et al. [15] for n =
2. Recently, Grunau et al. extended this result in [29] and proved Theorem in the
biharmonic case. The proof uses a blow-up procedure developed in [27]. Their ideas serve

as the foundation of this work.

Therefore, our result Theorem continues this process and gives a characterisation for the
Green’s function G of ((0.3]) by two-sided estimates, where the estimates from below are the

main result.

Moreover, with the help of Theorem a local positivity result as (LP) directly follows, i.e.
for any x,y € Q with = # y:

|z —y| <c3 implies that G(x,y) > c; "Ha(z,y) > 0.

For second-order differential operators, i.e. m = 1, two-sided estimates as for the
Green’s function for general, sufficiently smooth domains are known. In dimensions higher
than two, Griiter and Widman [56], [35] found estimates from above for the Green’s function
by Hq. Two-sided estimates for the Green’s function of the Laplace operator were proven by
Zhao [57, [58], see also [11]. For more general second-order differential operators, estimates
like in general, sufficiently smooth domains are due to Ancona [5], Hueber and Sieveking
[39], and Cranston et al. [14], see also [55].

For estimates for the polyharmonic Green function in non-smooth domains we refer to
Mayboroda and Maz'ya [46].

Now, let us briefly describe the idea of the proof for the estimates from below, since the
estimates from above can be proven as in [23] Chapter 4], see also [16]. The main work
has to be done for points near the boundary 92. Here we will use a proof by contradiction
and a blow-up or rescaling argument, such that the rescaled Green functions will converge
locally uniformly to the polyharmonic Green function G\_aym 3 of the half space H := {x €
R™ : 21 < 0}, while the domain of the functions will converge locally uniformly to H itself.
Using known estimates from below for the polyharmonic Green function G(_a)m 3, which

goes back to Boggio’s formula previously mentioned, leads to the desired contradiction.
We will briefly outline the parts of this work.

The first chapter is dedicated to some preliminary facts about the fundamental solution of
(—A)™ in R™ and some useful estimates for the fundamental solution itself. Some facts about
polyharmonic functions, which can be seen as the regular part of the polyharmonic Green
function G(_aym o will be given. Moreover, we will state the polyharmonic Green function
for the half space and since we will use a rescaling argument, convergence of domains will

be explained.
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The second part is devoted to the perturbed Dirichlet boundary value problem. We will
construct the Green function for the perturbed operator and find estimates for the Green
function and it’s derivatives proceeding as in [23, Chapter 4]. At the end, we will show the

uniform convergence of the Green function to G(_aym 3.

Since the coefficients of the perturbed operator are uniformly bounded, the main part (—A)™
of the differential operator plays an important role for the behaviour of the Green function.
Therefore, we will prove in chapter 3 our main theorem in the polyharmonic case. For
large dimensions a Nehari-type result together with the blow-up argument will be used. For
the small dimensions we will first prove the uniqueness of G(_aym 3 under some growth

conditions at infinity. Then, a blow-up argument leads to the desired result.

Finally, in chapter 4 we will prove the main theorem for the perturbed operator. Since in

many cases this can be done like the polyharmonic case, we will describe the changes.

Notation: Here we follow mostly the notations as in the book of Gazzola et al. [23]. In
particular €2 denotes a domain, an open and connected subset of R™, n > 2. The posi-
tive constants C, ¢ may change from term to term and depend on the parameters given in

brackets. For further notations look at the list of symbols.
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and ideas gave me the opportunity to write this thesis under his supervision. Being his

student since my first semester, he introduced and educated me in doing analysis.
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1 Preliminaries and Auxiliary Results

In order to understand this work we need good knowledge about the polyharmonic fun-
damental solution and Green’s Function. Therefore, we will state some basic facts in the
following two sections. The last section of this chapter is devoted to a precise explanation
to our understanding of the convergence of domains. This will be needed for a blow-up

argument in the next chapters.

1.1 A Polyharmonic Fundamental Solution

We recall a fundamental solution for the polyharmonic operator (—A)™ on R", cf. [40] p.
43 f]:

2I'(n/2 —
(n/2 — m) || if n > 2m or n is odd,
ne,4mI'(n/2)(m — 1)!
Fm,n(x) = (_1)m—n/2

e T (n)2)(m — n/2) (m — 1)1 |z|*™"(—log |z|) if n < 2m is even,

(1.1)

where e, := fB1 ) dx, such that
(_A)m m,n — 50

in the distributional sense. If we assume

lim Fy,pn(z) =0, (1.2)

|z| =00
the fundamental solution is unique for n > 2m. For n < 2m condition (|1.2)) is not satisfied
by a fundamental solution and it seems, that there exists no natural condition to achieve

uniqueness in this dimensions, cf. [23], p. 50 f.].

From [6, Proposition 3.3] we get some basic estimates for the derivatives of the fundamental

solution:

) 1 if n > 2m or n is odd,
D Fy ()] < Cm, m, Ja]) 221l (13)
1+ |log|x|| if n < 2m is even.
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Remark 1.1. Observe that for all 4" € (0,1) it holds
1 /
L+ [loglel] < 5™ + . (1.4)

Moreover, if € is a bounded domain, there exists a constant C' = C(€2) > 0 such that for all
x,y € Q) with  # y we can show that

1
1+|log\a:—y\|§010g<1+ ) (1.5)
[z =yl

We give a short proof of (1.5). If |z — y| < 1, we use Bernoulli’s inequality and e = exp(1)

to see
e e 1
1+ |log |z —y|| = log Tyl < log l—i—m < elog l—i-m .
If |z — y| > 1, we have

1
_ < i < Tiar (O)
1+ |log |z — yl| < 1+ log (diam(2)) < C(2) log (1 + diam(Q)>

< C(Q2)log <1+ ! >,
|z =yl

where diam(Q2) := sup{|z —y| : z,y € Q}.
From Lemma in the Appendix we derive a stronger estimate if n is even and |a| >

2m — n:

D ()] = [D* (eim,nlz™ " log |2]) | < C(m,n, |af )"~ (1.6)

1.2 A Polyharmonic Green Function and Green’s Second
Identity

We cite some facts about the polyharmonic Green function from [23], Section 2.6]. Here let
Q2 C R" be a bounded smooth domain and f be in a suitable function space. Then we have
the following definition, cf. [23] Definition 2.26].

Definition 1.2. A Green function for the Dirichlet problem

{ (=A)™u = f inQ,

(1.7)
D% =0 ondQ, |al<m-—1,

is a function (z,y) = G(_aym o(®,¥) Q x Q — RU {oo} satisfying:

Lz Gaymo(@,y)—Fun(z—y) € C*(Q)NC™ Q) for all y € Q if defined suitably

for x = y;
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2. (=)™ (Gaymo(,y) — Fun(z —y)) = 0 for all (z,y) € Q2 if defined suitably for

T =y;

3. DEG_aym o(w,y) =0 for all (z,y) € 92 x Q and |a| <m — 1.

The Green function for the Dirichlet problem with Q = B;(0) = B; C R" was explicitly
calculated by Boggio [9 p. 126], see also [23] Lemma 2.27|, and reads as follows:

/Ix—y\

G _aym 5, () = Fmm|z — y2" / (02 — 1)Lyl gy, (1.8)

J
‘|$|y ]

where
kmn == 1 .
’ ne, 4m=1((m — 1)!)2

Applying the Cayley transform to (1.8)) for z,y € H := {x € R™ : 1 < 0} we have that

|z*—y|/|z—y|
_ 2m—n 2 m—1 1—n
Gy gi(@,y) = bl — 4] / (v — 1) Lol ", (1.9)
1

where z* = (—x1,z9,...,x,), see [23, Remark 2.28|.
Like in the case m = 1 we have Green’s second identity.

Proposition 1.3 (Green’s second identity). Let Q be a domain for which the divergence
theorem holds and let u,v € C?™(Q). Then it holds

m—1

9 . 9 .
> m%(—A)Eu(—A) ! %—%(—A) o (=A)ou do
£=0

+/ v(—=A) "y —u(—A)"v dr =0, (1.10)
Q
where v denotes the exterior unit normal at the boundary 0S2.

Proof. We insert (—A)fu and (—A)™ =%y for £ = 0,...,m — 1 in the usual second Green’s

identity. Summing up shows the result. O

As an easy consequence of Proposition we have the following corollary.

Corollary 1.4. Let Q a domain for which the divergence theorem holds and u,v € C?™ ().
Let 867]11 =0o0n0Q for j=0,...,m—1. Then the following holds for k € Ny.

J
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1. If m = 2k:

0
El Amfﬁ _7_Am7€ _Affl
Zmay u(=A)" — (A~ A) M do

+ /Qv(—A)mu —u(=A)"w dx =0. (1.11)

2. If m=2k+1:

> oy A ) = A (- A) o
=1

/ —(=A)*v(=A)*u do + / v(=A) "y —u(—=A)"vdr =0. (1.12)
89 Q

Let us make the following definitions to abbreviate the boundary integrals.

1. If m = 2k:
0
1 ALy A"y — (A y(~A)Y  y do. (1,13
o0(u,v) Z aﬂay u(—A) v 8V( ) v(=A)""udo. )
2. Ifm=2k+1:
Too(w0) =32 [ S Ay tu-aymto - LAy to-a) o

1 o0 v
/ —(=A)ru(=A)u do. (1.14)
89

The polyharmonic Green function is given by G(_aym o(#,y) = Fnn(r —y) +u(z,y), where
u(z, .) = uy(.) is a solution of the Dirichlet problem stated in the following Lemmal[l.5 Since
we want to show estimates for the Green function in the next chapter, a good knowledge of
the behaviour of the regular part u, of the Green function is needed. Therefore we need the

following Lemma.

Lemma 1.5. Let Q C R™ be a bounded C*™7-smooth domain, x € Q and u, a solution of

the following Dirichlet problem:

(—Ay)"uy =0 in Q,
J J 1.15
iuw(y) :—a—l“o(x y) foryeodQandj=0,...,m—1, (1.15)
Iy, vy,

where U'o(z,y) := Fnn(x —y). Then we have the following estimate:

d(x)™ "M ifn > m,
HUchmfw@) < C(Q,m,n) - _ (1.16)
1 ifn <m,

where d(zx) := dist(x,0Q) = inf«cpq | — .
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Proof. Since 09 is C?™7Y-smooth, there exists for small enough ¢ > 0 a finite number of
points y; € 90,4 =1,..., N, such that 9Q C Uf\;l B.(y;) and 022N Ba(y;) is the graph of a
C?™7 function. Let z € Q be fixed, so d(z) > 0. Let us first collect some facts for different
locations of 3/, y” € 0Q and y; € 99 fixed.

Case y' € 00N B(y;) and |y — y”| < e. With the mean value theorem we see

|D§‘F0(.’E,y,) - D?F()(:L',y”” <C HvyDgFO(xa . )HCO(aﬂﬁBzg(yi)) L(ylay”)
v =y N Y =y

<CHVDFO

! 11—
HCO((QQQB%( i) ‘y -y ‘ ’y7

where L(y',y") denotes the length of a path from ¢’ to y” in 9Q. If ¢ < d(x) or &€ > d(x) >

/

1y —o"| we get

|D?F0(«T, y/) - D;P()(Z', y”)’
ly =y

< C||VyDyTo(z d(z)'=. (1.17)

Hco (99N Bac (v1))

If e > |y — | > d(z) we see
|D3F0(x’y,) - D?FO(SC,?J”N
ly' —y"|

Case y' € 00N B(y;) and |y —y"| > e. For e < d(z) and |y — y"| > d(x) we get

< 2||DgTo(z d(z)™". (1.18)

) - )HCO(QQQB%(%))

[DyTo(x,y") — DyTo(x,y")]

a—T < 2{|DyTo(@, )| goaq A=), (1.19)
and for € < |y — ¢”| < d(z) we see
|DyTo(z,y") — DyTo(z,y")| diam(€2)
= -
T <2( == HD To(@, )l eopn d@) 7 (1.20)
If £ > d(z) we have
[DyTo(x,y') — DyTo(z,y")] -
T < 2{|DyTo(x, )| go(aq) A=) (1.21)
Now, we are ready to show for any n > 2 that
d(z)™ "I i o> m,
ITo(@, - Mem-1700) < C . (1.22)
1 ifn <m.

Note that |z — y| > d(z) for all y € 9.

Case n > 2m. The estimate (1.3]) shows that

DT (2, )| < Cd(z)™ !
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for all y € 02 if |a] <m —1 and
[VyDyTo(z,y)| < Cd(z)™™"

for all y € 00 if |a| = m — 1. Hence, with (1.17)—(1.21) we get (1.22)).

Case 2m > mn > m and n is odd. The same estimate as in the previous case, see ([1.3)), leads

to
1 if 2m —n —|a| >0,
DSTo(,y)| < C- o] <m—1;
d(z)™ " if 2m —n — |a| < 0,
|VyD§T0(:C, y)| < Cd(x)™™™, la] =m — 1.

Again, using (1.17)—(1.21) we obtain (1.22]).

Case 2m > n > m+ 1 and n is even. Let |a] < m — 2. Then, the estimate (1.3)) shows that

N 1 if 2m—n—|a|—1>0,
|DSTo(,9)| < C- 1
d(z)™ "7 i 2m—n—|a| -1 <0,

since |a| < m —2++. Using (1.6) for [a| > m —1 we can see Dy To(x, y)| < Cd(z)¥m—n=lal,
Thus, using ((1.17)—(1.21)) we can show ((1.22)).
Case n < m and n is odd. For |a| < m we see with (1.3) that |[DyTo(z,y)| < C. Therefore,

if |a| = m — 1, we obtain

1— . / i
|DgTo(x,y") — DyTo(z,y")| . [V, Dy To(a, ')HCO((’)Qﬁng(yi))s Tty —yl <,
ly' —y"[v - | DyTo(z,

')HCO(BQ) g if |y —y"| > ¢,

<C.

Case n =m + 1 and n is even. Let || < m — 2. Then, shows that
|DgTo(x,y)| < Clz —y|™ 7l < C.
For |a| = m — 1 we use and with 7/ = 7 to end up with
IDSTo(ay)] < Cda)™.
Since |a| + 1 =m > 2m —n =m — 1, using (L.6), we get that
1V, DETo(e,y)] < Cd(z) .
Similar as for f we have:
e Let y € 90N B:(y;) and |y’ — 3| > €. Then, for |a| =m — 1, we get

|DyTo(z,y") — DyTo(z,y")|
Iy —y"]

<C HDSFO(% < Cd(x)™7.

: )HCO(aQ)



1.2 A Polyharmonic Green Function and Green’s Second Identity 13

e Let |y — 4| < e and |a]| = m — 1. Then, by the mean value theorem, if ¢ < d(z) or
ly —y"| < d(z) < e, it holds
|DSTo(,y') — DSTo(x,y")]
ly' —y"|7

< C||VyDyTo(x, d(z)'™7 < Cd(z)7.

')HCO(E)Q) =

e Let e > |y’ — y”| > d(z) and |a| = m — 1. Using Lemma [A.1] we get

|DyTo(z,y') — DyTo(z,y")| < cMogle —y'| —log |z — "]

Iy =y - ly' —y"|
N 1P =y )|w — o/ |7 = PP (@ =y | — g
ly — o[ ’

where PQm_1 is a homogeneous polynomial of degree m — 1. Using the inequality
’ " L, "y 1= " —~
Iloglx—y\—loglx—yHS;!y—y\ (lz =9I + |z = y"177),

cf. 5, p. 225], we can see

‘D;{F()(.T, yl) - D;[FO('%'? y”)’
ly =yl

<Ol - y“y—v(n/ Sy (= 4 e — o) 1)
<SC(le—y 77+l =977+ 1y —y"77)
< Cd(z)™.

Case n =m_and n_is even. The estimate (|1.3)) shows

for all y € 99 if || < m — 1. Moreover, for |a| = m — 1 by using Lemma [A.1] we see
DyTo(x,y) = (P~ (z — y)loglae — y| + P~z —y)) | —y| 7™,

where as before lefl and P2”“1 are homogeneous polynomials of degree m — 1. Since
x — |z|log|z| is Holder continuous on compact sets for all v € (0,1), we get (1.22)) in this

case.

Case n < m_and n _is even. The estimate (|1.3]) shows that

for all y € 092, |a| < m. Hence, (1.22) follows.

After collecting all the cases, we use for all x € © and y € 0f) that

&jyum(y) = _8uyl—‘0(xa y) = _VyFO(xa y) : I/(y)
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to estimate for all j =0,...,m — 1:

: d(z)™ " i o> m,
107, wallom-1-5() < C(09) - . (1.23)
1 ifn<m.
Note that 9§ is C?™7Y-smooth and (—A)™ is coercive, see [23, p. 40]. Then, a-priori

estimates for boundary value problems from [3] or [23] Theorem 2.19| prove the claim. [

1.3 Convergence of Domains

Suppose that n > 2 and that Q C R” is a bounded C?™7-smooth domain with 0 € 9§ such
that the first unit vector e; is the exterior unit normal to 9 at 0. Let (zx)ken, (Yi)ren C
with xr — 0,y — 0 for kK — o0o. Since 0f2 is smooth enough, we can find for k large enough
a uniquely determined Zj, € 9 such that d(zy) = |xx — Tx|, cf. |24, Sect. 14.6]. We want

to study the rescaled and translated domains

1

Qp = ——
lzk — Ykl

(=7 + Q).

Let H := {z € R" : 2; < 0}. Since Q is a C*™7-smooth bounded domain, we can find a
local C*™7-smooth coordinate chart ® : V' — U, where U,V C R" are open neighbourhoods
of 0 € 012, such that

QVNH)=UNQ, PVNOH)=UNIN
and

(&) =+ O(I¢P),
D®(&) =" +0([¢]),

for £ € V. For a fixed k € N, i.e. a fixed domain {2, we define

1

Vpi=m ———
Tk — Ykl

(—q)fl@k) +V).

This allows us to define for all £ € V},

_ 1
Tk — yil

Dp(8) : (—ik + @ (27" (&k) + |z — ykl€))

as a local coordinate chart for €.

Let us take a fixed »r > 0. Since |z — yx| — 0 and Zx — 0, which implies that also
&1 (%) — 0, we can find a kg € N such that B,.(0) NH C V}, for all k£ > ky. We prove, as
in [23, p. 220], that ®;, — Id in C?™7(B,.(0) NH).
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For all ¢ in B,.(0) NH we get with a Taylor expansion for k — oo
(D71 (@) + |k — ykl€) = (@7 (@) + |21 — yr| DR(® T (Z1))E + Ol — wi*[€[°).
Since D® is continuous and ®~! (&) — 0 we get
DO~} (i4))¢ = DR(0)E + o(1)[¢] = & + o(1) €]
where o(1) — 0 as k — oo. Therefore, it follows
(@ (k) + |zx — yrl€) = &n + [z — ykl€ + o(1) |z — yrll€] + Olzx — yrl?[€]%).

This shows for k& > kg large enough and for all £ in B,.(0) N H:

k(&) — €] = [o(1)[€] + O(lzx, — yxll€[?)

)

SO
klg)(r)lo 15, — Idll o, (o)) = O-

Applying the chain rule we get
DO®y, = |z, — yi|| ¥ T DD o By,

for o] =1,2,...,2m, where hj(§) := &1 (Zx) + |zp — yxlé.

Now, we can find a M > 0, such that \|<I>||CQM,V(BT(O)QQ) < M. Then, since hy — 0 uniformly
and D®(0) = I"*", we have that

klggo | D@y, — InanC’O(BT(O)ﬂﬁ) =0.
Moreover, for |a] =2,3,...,2m we find that:
1D @kl o, 0y < Mlwk — el = 0.

For |a| = 2m we get

|DY®y () — DYPy(E)] laj—1 [ DY@ 0 hi(§) — D@ o hy(£')]

|§_§/|7 :’a:k_yk’ |£_§/’7
al— h f _h 5' v
<M |z), — e 1] k(lg—g’k|$ )|

=M |zy — |17 = 0,

where &,¢ € B,(0) NH with ¢ # ¢'. Therefore, ®; — Id in C?*™7(B,.(0)NH), i.e. O — H

locally uniformly.
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2 A Perturbed Polyharmonic Operator

This chapter is devoted to the perturbed polyharmonic Dirichlet boundary value problem
. In the first section, we state our assumptions which ensure existence, uniqueness and
regularity for a solution of . We construct a Green function for and show numerous
estimates for it in the subsequent sections. In the last section we show the convergence of a
rescaled Green function to the polyharmonic Green function G(_aym 3, which is needed for

the blow-up procedure.

2.1 Assumptions and Definitions

Let Q C R™, n > 2, be a bounded C?™7-smooth domain with exterior unit normal v, m > 2

and v € (0,1). We consider the following Dirichlet boundary value problem

Ay Y D7 (af (@) Du(@)) = f(z) in©,

=0 |a|=|8|=¢

o’ .
%u(:n):() forz € 9Q,7=0,...,m— 1.

(2.1)
In the following we use Y as an abbreviation of 37" 2 lal=|8|=t-

To the Dirichlet boundary value problem we associate for all u,v € W(" 2 the following

bilinear form
Blu,v) = qumz—l—Z lﬂl/ w(w) DPo()dz,

where
/ AFuAFy dx if m = 2k,
(u,v sz >
/VM ko) de if m =2k + 1,

is a scalar product on W," 2 which induces a norm equivalent to (XL, 1D ||%2)1/ 2, cf.
[23, Theorem 2.2.

For the coefficient functions of the operator in ({2.1)) we make the following assumptions.
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(A1) Symmetry: af;”B = ag’a, forall£=0,...,m — 1.
(A2) Regularity: afxﬁ e Cm Q) forall £ =0,...,m—1.

(A3) Boundedness: There is a K > 0, such that for all ¢ it holds Hag,BHC"”*LV(ﬁ) <K.

For the bilinear form we assume coercivity:
(A4) There exists a A > 0 such that for all v € WOm’Q(Q) we have

B(v,v) > Al|v]| (2.2)

‘,[rm 2.
0

Thanks to elliptic Schauder theory, see [23, Theorem 2.19|, cf. [3], the Dirichlet boundary
value problem (2.1)) admits together with the assumptions (A2) and (A4) for f € C%7(Q) a

unique solution u € C?™7(Q).

2.2 Construction of the Green Function

In this section, we want to construct a Green function for the Dirichlet boundary value
problem ([2.1)):

Proposition 2.1. Let Q C R™, n > 2, be a bounded C*™7-smooth domain. Let the assump-
tions (A1)-(A4) of Section hold. Then for every x € ), there exists a unique function
G, € LY(Q) N C?™7(Q\ {z}) with the following properties:

1. 9Gulon =0, j=0,...,m - 1;

2. for all p € C*™(Q) with 8590|3Q =0,57=0,...,m—1, we have for all x € Q) the

representation formula

o) = [(Ae)Calw) dy+ Y [ D (alsD o) Gule) d (23)

3. Gy(y) = Gy(x), x #y.
4. If R > 0 is such that Q C Br(0) then the following estimate holds:
|z — y[" " + max {d(z), d(y)}*™ " if n > 2m,
Goy) < C - tog (14 o~y + max{d(x),d(y)} ") ifn=2m,  (24)
1 ifn < 2m,

where C' = C(m,n, R, K,\,00). For n < 2m also the following gradient estimate
holds:
o — | ™" + max {d(z),d(y)} " if n=2m,

|V(x,y)Gx(y)} < C(m,n,R,K,\,00) -
1 if n < 2m.

(2.5)
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For the proof of Proposition we need the following fundamental Lemma of Giraud [25]
p. 150], cf. [7, Proposition 4.12].

Lemma 2.2 (Giraud). Let Q be a bounded open set of R™ and let 'y, T € CO(QxQ\{(z,y) :
x =y}) with
T1(z,y)| < el —y[*™"

and
Lo, y)| < el —y|"™"
for a,b e (0,n). Then
Ly(ey) = [ Do )alz,0) ds
Q

is continuous for x # y and satisfies:

|z — gy|eto ifa+b<n,

Ps(z,y)| <c- 9 1+ [loglz —yl| ifat+b=n,
1 ifa+b>n;

in the last case I's is continuous on € x €.

For the proof of Proposition we adopt the the ideas from [27, Proposition 1], cf. [23
Lemma 4.18].

Proof of Proposition[2.1. Case n > 2m. For x € Q we define

k

Galy) = To(z,y) + Y Tj(w,y) + ua(y), (2.6)
j=1

where
2m—n
Yl

P()(:Il,y) = Fm,n(x - y) = Cmn|T —

is a fundamental solution of the polyharmonic operator (—A)™ in R", T'y € C° (ﬁ x Q\
{(z,y) : ¥ = y}). The function u, and k € N are specified later. For j > 0 we define:

m—1
Fjvi(z,y) = — Z Z /QDg (a;u(z)Dgfj(:c,z)) To(z,y) d=.

5=0 |o|=|ul=s

Due to the definition of I'; we have y — I'j(z,y) € C?™7(Q\ {x}) for j > 1. Moreover, by
induction and with the help of Giraud’s lemma and (|1.3) we get for |a| + [5] < 2m — 2
and j > 1:
Cjlx — y|Pmr@=lel=Bl=n i om 4+ 25 — |a| — |8] < n,
Dy L@, y)| < 4 Cj (1 +[logla —y)) if 2m +2j — |af = [B] = n, (2.7)
C; if 2m +2j — |a| — |B] > n,
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where C; = Cj(m,n, R, K). For all |a| + |3] < 2m — 2 we have that
2m+2(k — 1) — |a| — |B] > 2k.

Now, we fix k > 0 such that 2k > n.

For ¢ € C?™(Q) with 317;90|8Q =0,7=0,...,m—1 we define

balp ) 1= [ AV G dy+ SV [ s DGRDDGC ) . 2
Q
Inserting in and using Corollary we see that:
k—1
ba(, G) = (@) + Toa (Lo(z, y), 0(y)) + ZA(—A)m¢(y)Fj+1(x,y) dy
j:O

*

DICIL / 5(0) Dii0) DS () dy.

+/Q(—A) dy+z (Z '/B'/Q (W) Dye(y) DyTy(,y) dy>

Then, Fubini’s theorem leads us to

bz (p, G) = @(x) + Iaa (To(z,y), ©(y))

_Ig <Z/QD5 (a5..(2)DITj(x, 2)) </Q(—A)m50(y)1“o(z,y) dy) dz>
+/Q(—A) dy+z ( 'm/ (y)DST (2, y) dy>

*

DYCI / (v) D2ua(y) dy,

where we use Z as an abbreviation of Z > . Now, it follows from Corollary that
5=0 |o|=|ul=s

k-1
be(p, G) = p(x) = ) (Z/QD? (a5, (2)DIT (2, 2)) ¢(2) dZ>

j_

+/Q(A) dy+z< lﬁl/a (1) DPo(y)DET (2, y) dy>

*

+Z lﬁl/a 5@ DEo(y) DS s (y) dy + Iog (To(z, 1), 0 (y))

_Z (Z / DY (a3 ,,(2)DITj(z, 2)) Ioa (To(z, 1), ¢(y)) dZ) '
j=0 \ o 79
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Since ¢ has zero boundary conditions, integrating by parts shows:

k—1
ba (0, G) = () — (Z(—l)“/Qai,u(Z)D,‘ZTj(%Z)Dé‘w(Z) d2>

[e)

+/Q(—A)m<ﬁ(y)ux(y) dy+z ( 5/ w(y)DyTj(x,y) dy)

+Z Bl/ (y) Do (y) DS ua(y) dy + Ioq (To(z, 1), 0 (y))

- i (Z/QDQ (a5, () DIT (2, 2)) Tog (To(2, y), ¢(y)) d2> :
=0 \'o

Using Corollary [I.4] once more, we finally find that

b, @) = o)+ 3 [ oD} (sDiTate) dy+ [ o)A ualo) dy
Y /Q oy)D; a£,5<y>D5ux<y>) dy + oo (ua(y), ()

k
+> oo (Tj(x,y), 0(y)) - (2.9)
=0

Therefore, if u; solves the Dirichlet boundary value problem

(—A )+ Z Dy ( o, 5(y) Dy uz(y ) ZDB ( (y)DOTy(a, y)> in Q,
i i Ly _
a—%ux(y):—a% z:: 1=0,....,m—1, on 0f2,
(2.10)

G has zero boundary values, i.e. satisfies claim 1. From elliptic theory, see [23, Theorem
2.19], and the coercivity (2.2)), we derive the existence of a unique solution u, € C*™7 (1)
for . Then, after integrating by parts in , we have claim 2. Moreover, we have
G, € C?™(Q\ {z}).

Let us now justify the symmetry, i.e. G.(y) = Gy(z),  # y, from which we get claim 3.
Let ¢, ¢ € W2™2(Q) N Wén’2(Q). Using the zero boundary values of ¥ and ¢, Corollary

the symmetry a’, ; = aj , and || = |8| we see by partial integration that
/(A) dy+z/Dﬁ o, 5(9)D°0(y) ) ¥(y)dy
= [, 28" dy+ STENH [ 6D (a0 d
= [ o2yt v+ > | oD (dhanD?0t0) o (2.11)
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Therefore, the linear differential operator L is self-adjoint on W?2™2(Q) N W(" (), where

we define

L:=(-A)"+ Z D (aﬂﬁDa) .

Let f,g € C°(Q) and ¢, € C?™(Q) such that

Lo=f in Q, Ly =g in Q,
6‘7 and a]
%gb:() ondf,j=0,....,m—1 %@Z}:() ondf,j=0,...,m—1.

Using the representation formula (2.3) we get that

b(z) = /Q Go)f(y)dy and (z) = /Q Gy (v)dy. (2.12)

The symmetry of G follows by applying (2.11)) to (2.12).

It is left to show the estimates, i.e. claim 4. With the help of local Schauder estimates, the
uniform Holder continuous right hand side of (2.10) and the coercivity of the differential

operators in x € ), we see that
||uchm,1,7(§) < C(m,n, R, K, \,0Q)d(z)™ "7, (2.13)

The estimate (2.13)) can be proven like Lemmasince I'p has the strongest singularity and

we are in the case n > 2m.

Let d(y) < d(x) and y' € 9Q such that d(y) = |y — y/|. We perform a Taylor expansion to

obtain
m—1
ua(®) < ()] < € [ 3 105 e ooy d(w)*! + 107 ualy®) — D~ ualo))d()™
jal=0
m—1
< C | X IDFusloo@ayd®) + lluallgmoia@ 4™ |
jal=0

where y* is on the line segment between y and 3. Then, by using (1.3)), (2.7) and (2.13]),

we have

uz(y) < |lug(y)] < C(myn, R, K, A,@Q,C’o)d(x)Zm*". (2.14)

Since G (y) = To(z,y) + E?Zl I'j(z,y) + ug(y), this shows
|Ga(y)] < C (Jz —y" " +d(x)* ). (2.15)
Let d(y) > d(x). We use the symmetry of the Green function to get

G2 (y)| = 1Gy(@)] < C (lx =yl ™" +d(y)*"™"). (2.16)



2.2 Construction of the Green Function 23

Combining inequalities (2.15) and (2.16) we finally get the estimate and G, € L'(Q) for
n > 2m.

Case n = 2m. Here we define

To(z,y) := Fun(z —y) = —cmnlog |z —yl.

As before, cf. (1.3), we derive some basic estimate for the derivatives of the fundamental
solution if |a| > 1:
| Dy Fonn(x —y)| < Clmyn, [al)] —y| 7.

We define the iterated kernels I'; as above and for |a| + [3] < 2m — 2 and j > 1 we get

Cilw =y~ it 95 — Ja| — 18] <0,
DY (z,y)| < { Cj (1 + log |z —y||) if 25 — |a| — 8] =0, (2.17)
C; if 25 — |a| — 8] > 0,

where C; = Cj(m,n, R, K). For all |a| + [3| < 2m — 2 we have that
2(k—1) —|a| =8| = 2k —2m = 2(k — m).
We fix k£ > 0 such that k > m. Proceeding as above, we now see that
[zl gm0 @) < Cmym, R KA, o) d(z) ™, (2.18)

Performing a Taylor expansion we obtain

m—2

Vi)l < C( > 1DV yuallcoomd(y)*! + Hum\Icm_l,w(md(y)m”“).
|a|=0
As the estimates of the fundamental solution show for d(y) < d(z) that

Vyuz(y)| < C(89) d(z)~,

we get

VyGa(y)l < C(09Q) (Jo -y~ +d(x) 7). (2.19)
For d(x) < d(y) we get from the symmetry of the Green function
VaGa(y)| < C(09) (Jz — y™" +d(y)™). (2.20)

A similar estimate for |V,G;(y)| follows by differentiating (2.10) with respect to = as a
parameter. Note that y — DLO‘H‘B'V,EI‘;C(Q:, y) is still Holder continuous for all |a| + |8] <

2m — 2, since k > m. Proceeding as before leads to

VaGa(y)| < C(09Q) (lz — y| ™" +d(2) ™), (2.21)
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if d(y) < d(x). As before, using the symmetry of the Green function for d(z) < d(y), we

obtain
IVyGaly)| < COQ) (Jz =yl +d(y) ™). (2.22)

This shows the estimate for the derivatives and integration finally proves the claim for G,

in the case n = 2m.

Case m < n < 2m. We define

Cmnlz — y)>m " if n is odd,
Lo(x,y) = Fnl(z —y) = { "

Cmnl|z — y)*™ " (—log |z —y|) if n is even.

Although the fundamental solution is bounded on bounded domains, its derivatives could
become singular. For this reason, we have to work with iterated kernels to overcome this
difficulty.

If n is odd we proceed as in the case n > 2m and choose k = koqq > 5.

If n is even we obtain the estimate, cf. ([1.3)),
DS Fr (|2 — y])| < Clm,m, |a])@ — y|?mnlei=1
from which we get

Cjlz — y|2m+(j,1),|a‘,‘5|,n if 2m+ (5 — 1) — |o = |8] < n,
DY (,y)| < { O (1+ [log |2 — yl|) if 2m+ (G —1) = ol = |8/ =n, (2:23)
C; if 2m + (j = 1) — |a = 8] > n,

where C; = Cj(m,n, R, K). For all |a| + |3] < 2m — 2 we have that
2m + ((keven - 1) - 1) - |O[| - |ﬁ’ 2 keven-
Here, we choose k = keyen, > 1.

We start by estimating |V,G.(y)|. Using the estimates (1.3) for the fundamental solution
we get with a Taylor expansion and ({1.16]):

m—2
V()] < 0( S 1DV yalloogooyd)e! + ||Ux||0m1w(ﬂ)d(y)m_2+7> <c
|ae|=0

Note that for even n the case n = 2m — 1 does not occur. Arguing as above we get
VyGa(y)| < C.

Proceeding as in the case n = 2m the claims for m < n < 2m are proved.
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Case m > n > 2. As before, we define

k

Go(y) = Tolz,y) + Z Tj(2,y) + us(y), (2.24)

where we set I'yg as the polyharmonic fundamental solution from (1.1)). For n is odd we
choose k = kyqq as in the case n > 2m and if n is even, k is chosen as in the previous case,
i.e. k = keyen. Moreover, we have the estimate if n is odd and if n is even
for the iterated kernels. Since n < m, using Lemma , we can see that [|uz|om-1. @) <
C(m,n, R, K,\,08)). Combining these estimates, using and the symmetry of G the
claims

follow. This finishes the proof. O

From now on, we denote by G the Green function constructed in Proposition 2.1}

As in [27, Proposition 3|, cf. [23| Proposition 4.17|, the regularity of the Green function

with respect to both variables follows:

Proposition 2.3. Under the assumptions of Proposition|2.1] we have in addition that

Ge ™™ (QAxQ\{(z,y):x#£y}).

The proof can be done by a duality argument. As in |27, Proposition 3] we can use that
the derivatives of G(z, .) = G4( . ) with respect to the z-variable satisfy in the
distributional sense. Note that the coefficient functions depend only on the y-variable.
Since G4( . ) has only derivatives up to the order 2m with respect to the y-variable, this

restricts the order of derivatives with respect to the x-variable due to the symmetry of G.

2.3 Estimates for the Green Function

Let us now show some estimates for the Green function G itself and for their partial deriva-
tives. Note that this was already done by Krasovskil in [43, [44], see also [16, Theorem
3]. Since this was done in a very general context, higher regularity on the boundary was
assumed. Since we only assume 9 € C?™7, we adopt the ideas from the proofs of [23)
Theorem 4.20] and [23, Theorem 4.28|.

The following theorem gives global estimates for the Green function G without boundary

terms. For the corresponding result in the biharmonic setting see [23, Theorem 4.20].
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Theorem 2.4. Let Q C R™, n > 2, be a bounded C*™"-smooth domain and let G be the
Green function in 0 for the Dirichlet boundary value problem (2.1). Then there exists a
constant C = C(Q, K), such that for all o, B € Nj with |o] + 8] < 2m:

o If|a|+ B8] +n>2m:

‘DngG(x,y)‘ < Cla — y|>m=n=1el=I81 for aill 2,y € Q.

o If|lal+|8|+n=2m and n is even:

‘DgDyBG(x,y)’ < Clog (1+|z— y|_1) for all x,y € Q.

o If|a| + |B] +n =2m and n is odd, or if |a| +|8| +n < 2m:

‘Dg‘DgG(:c, y)‘ < C for all z,y € Q.

To prove Theorem we proceed as in [23], Section 4.5.1|. For that reason, we divide the

proof in several steps and show the following lemmas and propositions.

Lemma 2.5. Let Q C R®, n > 2m, be a bounded C*™7-smooth domain. For any q €
<L u ), there ezists a constant C(q,Q, K) > 0 such that for all x € Q we have

n—2m+1’ n—2m

IG(2, pagy < Cla)d(x)™ " ., (2.25)
The proof is done as for |23, Lemma 4.21].

Proof. Let ¢ € C2°(Q) and ¥ € C?™7(Q) such that

m—1
e+ Y pf <a§,5Da\1}) —p mQ,
(=0 |a|=|g|=¢
o 00 and j 1
507 =0 on and j =0,...,m — 1.
From [3, Theorem 15.2]|, cf. [23] Theorem 2.20], and Sobolev’s embeddings, cf. [I, Chapter

V], for all ¢’ := % € <%, m%) and all yo:=2m — & € (0,1) we get
H\I]HCOM(Q) <C ||‘I’||W2m,q’(g) <c H‘P”Lq’(g)~
Let z € Q and 2/ € 9. Then we obtain
@) = [9(x) — V)] < 1@l ol — 21 < C Il ey I — 27

From Proposition we have the representation formula ¥(z) = [, ¢(y)G(x,y) dy and we

can see that

_ : / _
[ Gl o] = 19 < C ol jnf b = ' = C el 0y o)
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Therefore, by duality, cf. [4, Folgerung 4.13|, we have y — G(z,y) € L4(2) and
1G(@, oy < Cla)d(@)"
O

Proposition 2.6. Let Q@ C R®, n > 2, be a bounded C*™7-smooth domain. Then there
exists a constant C' = C(Q, K) > 0 such that for all z,y € Q with x # y one has that

|z — gy if n > 2m,
G(z,y)| <C- ¢ log (L+ |z —y|™") ifn=2m, (2.26)
1 if n < 2m.

For n < 2m the following gradient estimates also hold:

lx—y[™" ifn=2m,
Vi@ G(z,y)| <C- | (2.27)
1 if n < 2m.

The proof is done as for |23 Proposition 4.22].

Proof. Since we have Proposition [2.1] the case n < 2m is proved.

Case n > 2m. We prove the claim by contradiction. Let (zg)ken, (Yk)ken C € such that
xx # yp for all kK € N and

Jim |z, — k"2 G (wk, yr) | = oo (2.28)
Using Proposition [2.1] we get
2= "2 G, )| < © (14 Jox — il max {d(ag), d(yp) ") -

Since () is bounded, we see, after passing to a further subsequence, that

d(zy)

Too €0 and lim ———— = 0. (2.29)
k—oo [T} — Y|
Let us now show by contradiction that limy_, . |zp — yx| = 0. After passing to a further

subsequence, there exists a 6 > 0 such that for all £ we have z; € Bjs(zs) and yi €

0\ Bss(roo). Let y € Q\ Bss(zso). Local elliptic estimates show that

1G @k, llwemp@nbs) < C NG @k, )L @nBasw)) -

Since (2N Bs(y)) C (Q \ 325(5600)), we use Sobolev’s embedding theorem with p > 5~ in
0\ Bas(rso) to see that

1G (ks M oe@n ) < C NG @k - )llwemr@nssy)) -
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Moreover, Lemma shows that

1G (@, - )HLq(Q) < C(q).
Combining these inequalities and using the Hélder inequality we obtain that

|G ) < Cla.5),

Mo (2 Brsm)

which gives us in particular
|Gk, yp)| < C(g,0)  and oy, — yg[" 2™ |G (@, 1) < C(g,0).

This contradicts (2.28). Therefore, |x; — yx| — 0 and we can use a fixed coordinate chart
®: U — R" for Q around x4, such that ®(0) = z,

SUN{zr1 <0})=2(U)NQ and O(U N{x1 =0}) =d(U) NN

From ([2.29) we see
=0, (2.30)

:L'/
. . k,1
lim :1:;€ =0 and lim ———
k—ro0 k—o0 |.I'k — yk|

where z, = ®(z},) and y; = ®(y,.). For R > 0 and k large enough the function

Gr(2) = [a), — yi" 2" G (D(a}), B(x} + |2k — yil (= — pren))

x/ . . .
kg,’“f’;,' and ej is the first unit vector. Since
k k

is well defined on Br(0)N{z; < 0}, where p, :=

m—1
(~2)"Gz, )+ > Y D’ (agﬁDaG(x, .)) =0 inQ\ {z},
(=0 |a|=|8|=¢ (2.31)

Gz, )=08,G(z, .)=...=0 VG(z, .)=0 on dQ,
we have that
(=8g)" G+ > e =yl 7aED Gy =0 in (Br(0)N {z1 < 0N\ {prer},
0<|o|<2m—1
ék = 81@k =...= Gim_l)ék =0 on {21 = 0},

(2.32)

where gi(z) = ®*(&) (®(x), + |z}, — v;.|(2 — pre1)), € = d;; the Euclidean metric and Ay,

denotes the Laplace-Beltrami operator with respect to this scaled and translated pull back of

f;c,ﬁHC’mflw(ﬁ) < K,

we have that the suitable coefficients a¥ are Holder continuous functions on Br(0)N{z; < 0}

the Euclidean metric under ®. Since @ is a fixed diffeomorphism and Ha

with uniformly bounded Hélder norm.

As above, we use Sobolev embeddings, elliptic estimates and Holder’s inequality to see for
z € (Bg2(0) \ B2-(0)) N {z1 < 0} that

G (2)] < ClGk La((Br(0)\ B, (0)n {21 <0}
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where ¢ is chosen as in Lemma T is suitably small and C = C(R, ¢, 7). From Lemma
since the Jacobian of ® is bounded, we obtain

/ G (=) |7
Br(0)n{z1<0}

= |2 — yp 7™ /B O 0) |G (P(at), (af + [2h — Ykl (= — prer)) |7dz
R z1<

< Ol — g [a0m—2m)=n /Q G (20, y) |9dy

< C‘l’; _ y;g’q(n—Zm)—nd(xk)@m—n)q-i-n

s < d(a:k) >(2m—n)q+n |

|2}, — i
Hence, (2.29)) shows HékHLQ((BR(O)\BT(O))m{zKO}) — 0, so we have

Jim. Gr =0 in C°((Bpr/2(0)\ B2, (0)) N{z1 < 0}). (2.33)

=1 and limy_, o, pr = 0, we get with (2.33)) that

. [
Since |4k
‘yk—fck|

/ /
— m O Ype — Tk _ 1 -2
0 —khj(f)lo Gy, <M + Pk€1> = klgrolo ‘x;c - yllﬂ‘n "G (@(x%), q)(y;c))
= lim |2}, — y;€|"72mG (Tk, Yk) -
k—o0
Moreover, since ® is a diffeomorphism, we get
0= lim |.Tk- - yk|n72mG (xlm yk) )
k—o0
which contradicts (2.28)) and the claim is proved for n > 2m.

Case n = 2m. Since the Green’s function is symmetric, we perform the same proof as in the
case n > 2m for V,G, cf. [23, proof of Prop. 4.22|. Integration proves the estimate for
G. O

Proposition 2.7. Let Q@ C R®, n > 2m — 1, be a bounded C*™7-smooth domain. Then
there exists a constant C = C(Q, K) > 0 such that for all o, § € Ny with 1 < |a|+|B| < 2m,
and all x,y € Q with x # y one has that

DgDy)G(x,y)| < Clo —y[>m - lo=1A,
The proof is done as for [23] Proposition 4.23|, cf. [28, Theorem 2].

Proof. Let Br and Byg be two concentric balls with Br C Bag. For |af < 2m we show the

following estimate

o C
| D%ul| oo (Brno) < WHUHLW(BQROQ)a (2.34)
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where u is a solution of the homogeneous Dirichlet boundary value problem (2.1). We

perform a scaling argument.
Let us define v(z) := u(Rx). Then we have that D*v(z) = (D%u) (Rz) - RI*l. Using local
Schauder estimates (for fixed radii) we get for zp € Q and |a| < 2m
I Dul| Lo (B (o)) - BRI = 1D%0 oo (3, (20)r0) < IVl 2mn (8, (20)q)
< Ol sy (5g)n0) < © vl (B2 0D [0l o (5, (580
< Cllull Lo (Bap(wo)n0)-

Casen>2m. Let z € Q, y € Q\ {z} and R = |‘le|. For |a|] = 0 we find with the help of
Proposition [2.6] and (2.34)) in Br(y) C B2gr(y) that

C
IDSG(x, )|z (Br(yn) < WIIG(% Mz Barwne)
C 2m—n
< 7,@, —y[IA H‘x - HLoo(B2R(y)mQ)

< C‘l. - y’2m7n7|6|7
where we used for z € Bagr(y) that
1
v =2l 2|z —yl = |y —2[ = Slz —yl.

If || = 0 and |a| > 0 since the Green function is symmetric, the analogue statement holds
true. Moreover, since y — DSG(z,y) solves the homogeneous Dirichlet boundary value

problem, we can proceed as before for the mixed derivatives.

Case n = 2m,n = 2m — 1. For |a| + |f| = 1 the claim is already proven in Proposition

We follow the lines of the proof for the case n > 2m starting with the first order derivative

estimate from Proposition to prove the higher derivative estimates. O

Lemma 2.8. Let Q C R, 2 < n < 2m — 1, be a bounded C*™"-smooth domain and
d > 0. Then there ezists a constant C = C(3,Q,K) > 0 such that for all o, 8 € Ny with
la] + 8] +n < 2m and z,y € Q with max{d(x),d(y)} > 0 we have:

o If|a|+ B8] +n < 2m and n is even, or if |a| + |B] + n < 2m:

’D?DgG(x,y)‘ <c.

o If|lal+ |8+ n=2m and n is even:

|DED]G(a,y)| < Clog (14 |z — 4] ™").

The proof is inspired by the proof of [23] Lemma 4.24].
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Proof. In Proposition 2.T] we have constructed the Green function in the following way:

k

G(CC, y) = Fo(a:,y) + er(xvy) + u(m,y)
=1

For odd n and |a| =0, i.e. |3] < 2m —n, using (1.3 and the estimates (2.17)) and (2.23)) we
get

DG (z,y)| < Cla =y Pl Juz, )l ie ) -

If d(z) > ¢ from Schauder estimates or from Lemma [1.5 we get for all x € Q with d(x) > 0
that

Ju(z, . )Hc\ﬁ\(ﬁ) <C.

From which ]DgG(:n,y)| < C follows.

If n is even, proceeding in a similar way, we get the same estimate for |3| < 2m —n. For
|B| = 2m — n we see with (1.3]) that

IDyG(z,y)| < Cle —y| ™ + C(9),
and integration shows the estimate for |a| = 0.

If |a] > 0, i.e. |B] < 2m — n, we start with the function D{u(z, . ) and follow a similar

argumentation as before.

Since the Green function is symmetric, we can show the same result for d(y) > . O

Lemma 2.9. Let @ C R", 2 < n < 2m — 1, be a bounded C*™7-smooth domain. For

q € (%mﬂ, ﬁ) if n>m orq>n ifn <m, there exists a constant C = C(q,Q,K) >0
such that

VG, )| o) < Cdl@)™ ", (2.35)

V2V Gla, )| gy < Cdl)™ e, (2.36)

where V'™ means any m-th derivative.
The proof is done as for [23] Lemma 4.26].

Proof. We first prove (2.35)). Let ¢ € W™ () be the solution of

m—1
)"+ Y S Df (an,BD%) — VMY in Q,
=0 |a|=|B|=¢
7
wgpzo on Q2 and j =0,...,m—1,
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where ¥ € LY, ¢ = %E (%,ﬁ) ifn>mandq’:q% € (1,%) if n <m. Then, [3|
Theorem 15.3’] shows
H()DHWWMI'(Q) <cC H\IIHLQ'(Q) :

Let n > m. Since we have zero boundary values for ¢ and m — ﬂ, € (0,1), using Sobolev’s

embedding theorem, we get for d(z) = |z — Z| with Z € 992 that

p(@)] = (@) — o(@)] < C ll@llymar gy dla)™ (2.37)

For n < m we have that m — % € (m —n,m —n+ 1) and Sobolev’s embedding theorem
shows W™ (Q) ¢ C™~""/4(Q). Using Taylor’s formula, the zero boundary values for ¢

and its derivatives up to the order m — 1 we obtain that
+q -
(@) < C 1@l omnagy @)™ 5 < Cllpllymar o d@)™ 7. (238)
The estimates and (| - ) lead us to
[o(@)] < CIP| Ly (g dl)™ 9

From Proposmon E we have the representation formula ¢(x fQ x,y) Vm\I/( ) dy.
After integration by parts we see together with the zero boundary values of ¢ that

o(x) = (~1)™ /Q VTG, y)U(y) dy.

Therefore, by duality, cf. [4, Folgerung 4.13|, and m — & =m —n +

V3G, )| gy < Cdl)™ 5,
which is ([2.35)).
To prove ([2.36) we consider the following Dirichlet boundary value problem

m—1
"o+ > D7 (ahaD%) =V i@,

(=0 |a|=|8|=¢
7

ﬁwzo ondQand j=0,...,m— 1.

Again, [3, Theorem 15.3’] shows

||SDHWm+1,q/(Q) <C ||‘I’||Lq’(g)

We use now the zero boundary values of V¢ and its derivatives up to the order m — 2 to

get with Sobolev’s embedding theorem and Taylor’s formula
V()] < Cllgllymira @) d@)™ 7 < ClP]| Ly gy dl2)™ 7
Then,
Volo) = [ V.G Ty ) dy = (<) [ 99576 ) g

By duality, we have (2.36]). O
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Proposition 2.10. Let Q C R"?, 2 < n < 2m—1, be a bounded C*™" -smooth domain. Then
there exists a constant C = C(Q, K) > 0 such that for all o, 8 € N§ with |a| + |B] < 2m,
and all x,y € £ we have

o [f|a|+|8]+n>2m:

|DEDIG )| < Cla — 2l

o If|al+|8] +n=2m and n is odd:

‘D?DfG@;@‘gCl
The proof is done as for |23 Proposition 4.25].

Proof. We prove first the estimates for |a| + || +n > 2m.

Let us start with || = 0 and |3| = 2m —n+1. We assume by contradiction that there exist

(r)kens (Yr)ken C Q, 2k # Y, such that
lim |z — kaDgG(ﬂ?ka Yk)| = oo.
k—o0

As in the proof of Proposition we get limy o0 |71 — yr| = 0. Since § is compact, there

exists a oo, € Q such that, after choosing a suitable subsequence,

lim zp = lim yp = To.
k—o0 k—o00

Thus, for k large enough, xy, yi are in a fixed neighbourhood of z.,, where we can use local

rescaled elliptic estimates which hold with uniform constants.

Case d(xg) < 2|z — yi|. Here, we have

(B4\:vk—yk|(xk) \ B|zk—yk\/2(xk)) N o2 ?é 0.

Since we have zero boundary values for G(xg, . ), we can use local rescaled elliptic estimates,
as in the proof of Proposition and a localised Poincaré inequality, cf. [47, Theorem 3.2.1]
and [10, 1.6 Bemerkung|, to estimate
B o | — BT
’DyG(xk’yk)‘ = C‘xk yk‘ ! HG(xk’ ' )"LQ(B4\wk—yk\(xk)\B\zk—yk\/Q(xk))

B i om
< C‘xk yk‘ Hvy G(l‘k; . )HLq(B4\:vk—yk\(rk)\B\xk—ykl/Q(mk))

< Clag — yi| ™ v d ()

< Olay —y| ™,

where we choose ¢ as in Lemma In this way, we have a contradiction.
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Case d(zy) > 2|z, — yi|. In this case we have

1
d(xr) < |2k —yel +dlyr) < 5d(zx) + d(y),
from which it follows that d(zx) < 2d(yk).

As in the proof of Proposition cf. , we now look on ¥ as a parameter and consider
the boundary value problem for D5 G(.,yr). By using and the derivatives of the
iterated kernels in (2.6 can be estimated by C|zy — yx|~!. Note that |3| =2m —n +1 >
2m — n. Performing a Taylor expansion we have

m—1
Dyl < O ( > 105Dy, lloogon () ! + 1D uy, \Cm_mm)duk)m—lﬂ).
|a|=0
Similar as in Lemma but looking at the polyharmonic boundary value problem for

ng_nﬂuyk( . ), We can prove
1Dty | 1.y < Cdln)™ ™7 = Cd(yp) ™.

Note that |§| = 2m —n+ 1 > m — n, and therefore we have this estimate also for the case

n <m.
Since d(xy) < 2d(yx), the estimates (1.3|) of the fundamental solution show again

d(xk)mfl+7

B -1
Do)l < € (e + A

) < Cd(w) .

Then,
DS Gk, yi)| < C (Jaw — gl ™"+ d(ar) 1) < Clag — yel 7,

which is a contradiction.

Proceeding as before, we prove the claim for || =1 and || = 2m — n in a similar way. For
more details look at |23, Proposition 4.25]. To get the estimate for higher mixed derivatives

we can proceed as in the proof of Proposition [2.7]

It is left to prove the estimate for |a| + || + n = 2m and odd n. Here we can proceed as
for the case |a| + |8] +n > 2m. Note that for odd n all derivatives of the iterated kernels
in (2.6 are bounded. O

Proposition 2.11. Let Q C R", 2 < n < 2m—1, be a bounded C*™"-smooth domain. Then
there exists a constant C = C(2, K) > 0 such that for all o, B € N§ with ||+ |B]+n < 2m,
and oll x,y €  we have

o If|a|+ B8] +n < 2m:
DEDIG(z,y)| < C.
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o If|al+|8] +n=2m and n is even:

DngG(x,y)‘ <Clog(1+z—yl™").
The proof is inspired by the proof of [23] Proposition 4.27].

Proof. Let § > 0 small enough and yy € Q with d(yo) > 2J. Since the claim follows from
Lemma 2.8 if max{d(z),d(y)} > &, we consider d(z) < § and d(y) < 6. Moreover, let r¢ be
small enough such that '\ Ba,,(2) is connected for all z € Q. Let w C 2\ B, (x) be a path

from yo to y, where r = min{ro, |z — y|}. Then,
DSD}G ()| < [DS DG 0)| + / D3V, DJG i, 0(9))| deo(s).

In the following we use Lemma [2.8] Proposition |z —yo| > 6 and |z — w(s)| > r for all
s to see that

o If o] + |B] + n < 2m and n is odd: ‘D%DgG(a:,y)‘ <C.

o If || + || +n = 2m and n is even:

o@
D%DfG(w,y)‘ <C (1 +/ ! dt) < Clog (1+|z—y|™").

o If || + [B] +n < 2m and n is even:

c@Q)
‘Dg‘DﬁG(a:,y)’ <C <1 —I—/ |log t| dt) <C.
T
Hence, the claims are proved. O

Proof of Theorem[24 For 2 < n < 2m — 1 we use the estimates from Proposition and
Proposition If n>2m —1 and |o| + |5] +n > 2m the result follows from Proposition
and Proposition For even n, the case |a| + |8] +n = 2m and n > 2m — 1 occurs
only if n = 2m and is covered by Proposition 2.6, If n > 2m — 1 and |a| + || + n < 2m
or |a| + || +n = 2m for odd n, only the case n = 2m — 1 is possible, and here we have
Proposition [2.6 O

By the same integration process as in the proof of [16l Theorem 3|, cf. [23, Theorem 4.28],

the following corollary is given.
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Corollary 2.12. Let Q C R®, n > 2, be a bounded C*™7-smooth domain. There exists a
constant C' = C(Q, K) > 0 such that for all x,y € Q with x # y the following estimates
hold:

Iﬂc—yIQm”min{l,W} if n > 2m,
d(x)™d(y)™ _
Gl < o (1+ 2000 ifn=2m
n/2 n/2
d($)m—n/2d(y)m—n/2 min {1, W} if n < 2m.

2.4 The Rescaled Green’s Function

As explained in the introduction, the locally uniform convergence of a rescaled Green func-
tion to the polyharmonic Green function G(_aym 3 of the half space H := {z € R" : 1 < 0}
is needed for a blow-up argument, which we will use later in this work. The following propo-
sition explains this convergence exemplary for the dimensions n > 2m — 1. The ideas are
taken from [27].

Proposition 2.13. Let Q@ C R, n > 2m — 1, be a bounded C*™7-smooth domain with
0 € 09 such that the first unit vector ey is the exterior unit normal to 02 at 0. Let
(1) ken, (Yr)ken C Q with o, — 0,y — 0 for k — co. For k large enough let T € O be
the uniquely determined point, such that d(xy) = |xx — Tx|. Let us define

1

A —
|2k — vkl

(—.i'k + Q) .
For &,n € Q. we define

Gr(&,m) = |z — Yk 2" G (Fk + |z — YklE, Th + |78 — yiln)-

Then it holds
|€*=nl/1&=nl
Gr(€,n) = Geaym 1(&,m) = kmnlé — ™" / (v? — 1) Ty
1
in CIm (H x H\{(§,€) : £ € H}), where & = (=61, &, ..., &) and
kmn = 1 .
’ ne,4m=1((m — 1)!)?2

As a first step to prove the proposition, uniform bounds of Gy, are needed. Since we start
in dimensions n = 2m and n = 2m — 1 with the derivatives of Gg, some integration along
paths constructed in the following lemma has to be done. The following lemma is due to
[16, Lemma 7|, cf. [23, p. 136].
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Lemma 2.14 (|16, Lemma 7]). Let {,n € Q2. There exists a piecewise smooth curve we :
[0,1] = Q with we(0) = £, € := we(1) € IQ such that for every t € [0,1] we have that

1
jwe(t) = nl = 51€ .

Moreover, if we parametrise we by arc length (again denoted by we ), we : [0, €] — Q, it yields
for s € [0,4]:

1. 25 < [€ —we(s)| < s;

2. |we(s) — 1l > LI — nl + Llwe(s) — €];

3. £ < (14 m)d(&);
where £ is the length of we.
Proof of Proposition[2.13 From Section [I.3] we have Qi — H locally uniformly. We divide
the proof in several steps.
Step 1. With the estimates from Proposition we observe uniformly in k, & and 7:

o Ifn>2m:

Gr(& )| = [ak — yil" "G @k + |ox — yrlé, Er + lox — yiln))|

< Clog — " 2™ |ak + ok — yl€ — (@ + |2k — vkl
= Cl¢ — ™

)|2m—n

o If n =2m:

Ve Ge(&m| = |2k — Ykl |V (2, G @k + |2k — Ykl€, Tk + |26 — yrln)|
< O |z — yk| 135 + |2k — yrl€ — (@5 + |zx — yeln)| "

=ClE -~ (2.39)

o Ifn=2m-—1:
IVienGr(&n)| < C. (2.40)

For n = 2m and n = 2m — 1 some integration has to be done. We use the path w¢ from
Lemma [2:14] From the properties of the path we can see for all s that

fwe(s) — | = =2 (1€ ] +5).
Let s — £(s) parametrise wg as above by arc length. Since Z € 0Q, i.e. 0 € 0§y, we have
£ < 3d(€) < 31¢|. Then, for &,n € Qx we have

Gr(&m) = Gr(En)+ | VeGr(&(s),n) - 7(s)ds,
=0 we
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where 7(s) is the unit tangent vector.

Let n = 2m — 1. By using (2.40) we get
¢ (3/2)l¢l
Gulenl < [ VeGulstslmlas<c [ 1as<clel

Interchanging & and n shows that

Gr(&m)] < Clnl.

Hence,

|Gx(§,m)] < Cmind[¢], [n]}- (2.41)
Let n = 2m. If [€ —n| > 1 we obtain with the help of (2.39):

¢ (3/2)1¢] (3/2)1¢]
Guenl <€ [ e —nas < [T (e—nl+ i< e [T a4
< C(1+log(1+[€])). (2.42)
Interchanging &, n shows that
Gr(&,m) < C (1+ log(1+ ). (2.43)

For | —n| < 1 it follows that

(3/2)¢l 1 5
Gulel <€ [ =l +9) s = Clog (Slel + [~ n] ) ~ € loulle ~ )
0 —— —_———

<1 <0
< C (log(1+[£]) + |log | —nl]) - (2.44)
Then, interchanging £ and n we get
|Gr(&m| < C (log(L+ [nl) + [log | —nl]) . (2.45)
Finally, we have by combining f that
Gr(&m| < C (1+ [log ¢ —nl| +log(1 + [&]) +log(1 + |n])) - (2.46)
Then we can conclude that
& — 2 if n > 2m,
|Gr(&m < C - 1+ [log|€ —nl] +log(1 + [¢]) +log(1 + [n])) if n = 2m, (247)
min{[¢], [} if n = 2m —1,

where C' does not depend on k.

Step 2. We prove the following.
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For each & € H we find a function G(&, . ) € C?™(H \ {¢}) such that Gi(&, . ) — G(&, .)
in €20 (1 {€}).

We take an arbitrary ng € H \ {{} and choose 1 > 0 such that B, (n9) C H\{{}. Since the
rescaled domains € exhaust the whole H we find a kg € N such that for all £ > kg we have
B,,(n0) C Q. Then, with the estimates we find a constant C' = C(ry,n9,&,n, m)
such that for all & > kq:

|’Gk(§7 : )HCO(W) < C(T177707§7n7m)'

In order to compute the differential equation satisfied by G}, we define for ¢ € {0,...,m—1}

and n € Q:

Lk -
%,5(77) = ag,ﬂ(mk + |2k — yxln),

from which we see that af;’ﬁa € O™ Y7(Qy). Then, since & # n implies Ty + |z — yr|€ #
T + |zk — yk|n, we have for all n € B, (no):

(—A0)"G(Em) + Dl — 1D (ol ) Dy Gt m) )

= |z — yrl" (—Ay)" G o (Zk + |k — Yrl&, T + |Tr — Yrln)
+> ok — e[ PIDS (aﬁ,/j(fk + |z — yrln) (Dy G o (T + |zx — yrlé, Tn + |zg — ykl??)))

= |ap — l/k:|n<(_Ay)m G o (T + |z — Yel&, Th + |2k — yrln)

+> D} (aﬁ,ﬁ o (T + |z — ykln) (Dy G o (T + |z — yrl€, Tn + |xp — yk|77))) )
— 0. (2.48)

As a consequence, interior Schauder estimates, cf. [3] or [23, Theorem 2.19|, show for a

positive constant C' > 0 that

1Gr(§, )||sz,w(m) < O||Gg(€, - )HCO(W)‘ (2.49)

1

Since B, /5(10) is compact, we get for all k > ko that for all n,n" € B, /2(no) and for all
lo| < 2m — 1 it holds

|D2Gk(f’77) - DgGk(f, 77/)| < ||Gk(€7 . )chm(m) ‘7] - 77/|
< C(r1,mo, & n,m)ln —1'l. (2.50)
Also for |o| = 2m the Schauder estimate (2.49) shows

D7 Gi(8,m) = DyGr(& )| < C IGr(&, )l oy In — '
< C(r1,m0,&m,m)|n —n'|". (2.51)
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As a consequence of (2.50) and (2.51)) the sequence (D7Gk(§, . ))ken is locally uniformly

bounded in C?™ and locally equicontinuous for |o| < 2m. By the Arzela-Ascoli theorem,
we can select a subsequence converging locally uniformly to a function G(¢&, . ) € C?™(H \
{&}), which satisfies (2.47). Moreover, since the coefficients afl’ 5 are uniformly bounded in
C™=17(Q) by K, we get

Lk
Haa,chmfl,w@) < K.
Then, from (2.48)), we get for k — oo since 2m — |a| — || > 0:
(—A)™"G(En) =0 inH\{E}

Thus, in the limiting process, the lower order perturbations of the polyharmonic operator

vanish.
Step 3. Let us now compute the differential equation satisfied by G near n = ¢ € H.

Let ¥ € C°(H) and 72 > 0 such that supp ¥V C B,,(§) C H. For k large enough we have
By, (&) C Qy, for all k. For x € Q and k large we define

o T — T o
V() =W <\93k — yH) , U € C°(Q).

Using the representation formula (2.3]), we have

V(&) = Wp(Tp + |2k — yrl)

- /Q (=A™ (5) G + e — el ) dy
DICI /Q at. 5 () DOV (y) DEG g + |, — il y) d
= [ (aymw) (”3) 2 — o2 GEn + |on — viles ) dy
Q |z — Ykl

+Z BI/ al, 5(y Dﬁxp> <\3?k — ‘> |z — yr| ™ |5|D°‘G(xk+ |2k — ykl€,y) dy

Changing the variables shows that

V(&) = /Q (=A™ (n) G(Zk + |k — ykl&, Ti + o6 — yi|n) |28 — | 2mdn
k

+Z ﬂl/ (n) DI (1) DIG(Fy + |, — yel€, Ex + lor — ynln) |l — ye "1 VPldn.



2.4 The Rescaled Green’s Function 41

Now, substitution and integration by parts gives

w(e) = / (=)™ (1) Gr(€, ) di
Bry (€)

F2 ] aasDTY () DRG(E ) e Pl
T2

:/ (=Ay)"™ W () Gr(&;n) d
Bry (§)

+ Z/ )Dﬁ‘l’ (n )) Gr(&,n) |zp — gm0 1Blay (2.52)

Since G (€, .) — G(&, .) locally uniformly, moreover G (&, . ) — G(&, . ) in L', and since

the coefficients are uniformly bounded, we find for k — oo:

w(E) = /H (— 2™ () C(En) di,

l.e.

Remark. Note, since we will prove in step 5 below that any limit of any converging subse-
quence has to be the unique polyharmonic Green function in H, we have convergence of the

whole sequence to the limit function of step 2.
Step 4. Let us now prove which boundary conditions are attained by G.

Let £ € H and ny € H. Let us choose § > 0 such that Bs(no) NH C H \ {¢}. Let 73 > 0
such that (Bs(no) NH) C (B, (0) NH). We use the local parametrisation ® of Q from

Section [I.3] to define a sequence of functions by

Since the domains € exhaust the whole H and ®;, — Id uniformly we have for all k large

enough

J

£y and |®p —Id HC2mW(Br O)NH) = 76

This shows
Dy, (Bsj16(m0) NH) C (Bsys(no) N %) -

Next, by choosing 1 € H such that ' € Bs /8 (n0) Ny, for all k large enough we can conclude
that Bs/g(no) C Bssa(n'). For all k we have that 1@l c2m 1y ()7 18 uniformly bounded
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by a constant C' > 0 and we find that

G (&, Mezma (s, womoyrmy < ClGRE Pe( )l c2ma (B;)16(m0)m)
< C[|Gg(§, - )||czmv(35/8(n0)mﬂk)
< CIGRE Il czma (B, o r)na)
< ClGR(& L (B o (r)ne)

<C(5,7,&mn,m), (2.53)

where the last inequalities follow by local Schauder estimates and ([2.47). Because of this
uniform bound we can apply the Arzela-Ascoli theorem and conclude the existence of a
subsequence converging locally uniformly to a function G € C?™(H \ {¢}). In fact, the

whole sequence converges, see the remark before this step.

Moreover, we have that

G(&m) =0, G(Em) = ... = VG(&m) =0
for all £ € H and all n € OH.

With the same techniques, i.e. deriving uniform bounds as in (2.53)), but now considering
Gy, o (B, Dj,) we can prove that G o (p, i) — G in C2™ (7-[ x H\{(£,¢): €€ ﬂ})

loc

In this step it is left to prove G(£,n) = G(&,n) for all £, € H.

Let &,n0 € H with & # no and let 0 < § < $min{|¢ — no|,d(&),d(no)}. We define
Y := Bs(&) U Bs(no). For k large enough we have that Bs(&y), Bs(no) C Q. Let 74 > 0
such that ' C B,,(0). Since ®; — Id uniformly in H we find for ¢ > 0 with ¢ < g for k

large enough

1k = 1d || g2map,, o)) < €

Then, for £ € Bs/4(§0) and 1 € Bj4(m0), we have

Gi(&m) — Gr(€,m))
= |Gr(§;n) — Gr(Px(§), Pr(n))|
<|Gi(&m) — G(Pr(&), )| + |G (P (§): n) — Gr(Pk(§), Pr(n))]
< ClGC mllen @, s 1€ = 1O+ CNGH(P(E), Il er(m, 50 17— Pr(1)]

< C (IGk( ller 5 0+ IGH@KE), ien i aonn) -
By using local Schauder estimates and the uniform estimates (2.47)) it follows
|G (&) — Gr(&,m)| < C(&o,m0,0)e

for all k large enough. And this shows that G(£,n) = G(&,n) for &,n € H.
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From now on we denote by G the local uniform limit of the functions G} extended up to

the boundary, i.e. with the zero boundary values.

Step 5. To finish the proof we have to show that

6(57 77) = G(_A)m}[(f, 77)
for all £&,n € H with £ # n.

In order to show this we define ¥ := ¥¢ := G(, . ) — G_aym (&, . ). Since G(¢, . ) and
G—aym (&, . ) satisfy the polyharmonic equation with the J-distribution J¢ as right hand
side and zero Dirichlet boundary conditions on {1 = 0}, we have that ¥ € C°°(H) solves

(=A™ =0 in H,
_— (2.54)
UV=0,Y=...=0"""¥=0 on{n=0}
Then it follows for all n € H that
np|2mm if n > 2m,
W) <Cq 1+ loglnl| ifn=2m, (2.55)
1+ |n| if n=2m—1,
and
=t if n = 2m,
V¥(n) <C (2.56)
1 ifn=2m-—1,

where C' = C(&). With the reflection principle for polyharmonic functions from [38] we have
with 77 := (12, ...,n,) that

S

(77) if m1 <0,
T*(n) = it 7
" z s (RO s,

Here, U* € C?™(R") is an entire polyharmonic function if ¥ /5"~ assumes 0 on {n; = 0}.
Since 87(7717%1)\1’ = 0 on {n = 0} this condition is fulfilled.

Let us consider the case n > 2m. We prove the following.

For all n € H and for all j =1,...,2m — 2 we have that
VU ()| < Clyl*m =", (2.57)

where C' = C(§).

Assume by contradiction that there exists a sequence (1;)geny C H such that

[V ()| e |27 = 00
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for £ — oo. Let n 1 be the first component of 1, and

Uy(n) = ne|™ 2™ W (ng — neaer + [neln).
Then \T/g solves

\ifg = 8,71@4 =...= 5,?71)\11@ =0 on {n =0}

{ (=A™, =0 in H,

With the assumption (2.57) we find that

. o~ ’[7271 _ . .
Vi <W|> — "2 [V ()] > oo, (2.58)
By using estimate (2.55)) we obtain
= 2 ul nea P
[We(n)] < Clne™ 2™ [0 — meper + neln)" " = C : ,

=C| 40— e
|7¢] 7]

and we find that ¥, is bounded in a neighbourhood of 77:;—’161 in H. Therefore, with local

7]

Schauder estimates, cf. [3] or [23] Theorem 2.19], it follows that

’Vj\ifg (776,1 61)
[7¢]
This contradicts (2.58)) and completes the proof of (2.57)).

Let us show that for all n € R™ we have

<C.

[T ()] < Clym. (2.59)

If ;; <0, (2.59) follows from ([2.55)). Let us take n; > 0. We use

: 5! s
ANy = g U
20 20, &
PRy S Gl L oni™ L oy

which can be seen by induction, cf. |23 p. 28|, and the general Leibniz rule for functions,

SNYOY,
()P = 3 ( k1>u<’f)v<%k>, (2.60)
k=0
to obtain
m—1 m+j
% A -,
v = e (To)
= i m
S R M N ) N . (8 <wm))
j=0 (J!)Q O+ tln=j El!"'gnlaﬁgb"ﬂnggn 877%61
m—1 20 j—
1 §2i—24 ok 9201 +k (261)

= C; m )
. Z 3k )(%ég2 e (917,%6" ony g
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where |cj ¢, (m)| < C(m). Then
2m—2 . '
(U (n)] < C(m) Y [V ()lInl (2.62)
=0

and by using (2.57) the estimate (2.59)) follows.
Moreover, (2.59) shows that ¥* is a bounded entire function. With Liouville’s theorem

for polyharmonic functions from [50, p. 19| and the boundary conditions for ¥ we have

U*(n) = 0 and the proposition for the case n > 2m is proved.
It is left to show ¥*(n) = 0 for the cases n = 2m and n = 2m — 1. We prove the following,.

For all n € H and for all j =0,...,2m — 2 we have
|D2HW ()] < Clp|Pm 2, (2.63)

where C' = C(§).

The proof for (2.63)) is similar to the case n > 2m. Assume that there exists a sequence
(1¢)een C H such that
| DX (1) | e 77727 — 00 (2.64)

for £ — oo. Let us define
Wy(n) = |ne|™ > W (ne — me1e1 + [nelm).-
Then we have that \i/g solves

{ (—A)m‘i’e =0 in H,
\i/g = 8771\ilg =...= 87(7?_1)\1/@ =0 on {771 = 0}.

With the assumption (2.64) we find that

o (350
|7¢]

= [P DU ()| — oo (2.65)

Using estimate ([2.56) shows

2m—n—1

e Ne,1
€1 3

V)| < 2" = mgen -+ Il = 0| S

and we see that V¥, is uniformly bounded outside % — Tle;. We can find a path from

[mel  Inel
a neighbourhood from ?;—;'el to the boundary OH staying outside % - %61. Using the

mean value theorem on this path and that U, vanishes on OH, we get that ¥ is bounded
in a neighbourhood of %61 in H. By local Schauder estimates we have a contradiction to

(2.65) and the claim is proved.
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Now, we prove for all n € R™ that
[D*W* ()] < C (1 + [n))*" "% (2.66)

If ;; <0, (2.66) follows from ([2.63)).

Let n; > 0. We show ({2.66) for 8,2]1,]1\11* since for any other partial derivative of second order

we can proceed in the same way. From (2.61)) we see that

82\1,* m—1 201 an—Qfl ak‘l/ 82 S
o it k(m) | 5 o onk o2 (771 )

+2

H2i—20 8k+1\1}i <n2j—2f1+k) §2i—24 8k+2\11772j—2£1+k
877%(2 . 877%" 677{‘:Jrl om \ 877%(2 . 877%" 877f+2 !

In each term there are at least two partial derivatives of W since

2 .
4 <nfﬂ—%+k) =0 if 2j -2 +k<?2

ot
and 5
2 (nfj‘%+’“) =0 if 2j—20+k<1.
om
Therefore, we find that
2m—2
D20 < Clm) Y (D (2.67)
§=0

Applying (2.63) to (2.67) and using that D?W¥ is bounded near zero the claim is proved.

Since U* is an entire polyharmonic function, also DW¥* and D?¥* are. By using Liouville’s
theorem and we have D?¥*(n) = 0. With the boundary conditions for ¥ and D¥ we
get U*(n) = 0 and in this way we finally proved the claim of the proposition for n = 2m
and n =2m — 1. O
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3 Pointwise Estimates for Polyharmonic Green

Functions

In this chapter, which can be seen as a extension of [29], we focus on proving our main result
Theorem [0.1]for the polyharmonic Green’s function of the following Dirichlet boundary value

problem
(=A)"u=f in Q,

u=0 ondQ,j=0,...,m—1,

ovi
where Q C R™ is a C?™7-smooth bounded domain with exterior unit normal v, n > 2,
m > 2 and v € (0,1). For f € C%(Q) the unique solution u € C?™7(Q) of (3.1)) is given
by

u(x) = /Q G _aymale.y)FW)dy,

where we define G(_aym o : @ x Q\ {(z,z) : € Q} — R as the Green function of (—A)™ in
the domain € with Dirichlet boundary conditions. First we recall the main result Theorem

in the polyharmonic setting which we will prove in this chapter.

Theorem 3.1. Let Q@ C R*, n > 2, be a bounded C*™7Y-smooth domain, m > 2. Let
G(—aym,q denote the polyharmonic Green function in §) for (3.1). Then there exist constants
c1 >0, cg > 0 and c3 > 0 depending on the domain 2 and m, such that we have the following

Green function estimate:

¢; 'Ho(2,y) < G ayma(@,y) + c1lijpyse (@,y)d(@)™d(y)™ < coHo(z,y) (3.2)

for all x,y € Q, where

\w—me"min{l,W} if n > 2m,
|z — y[>m
d(x)™d(y)™ .
Ho(z,y) == 108 (1 T Tz —y2m if n=2m, (3.3)
n/2 n/2
d(x)™~"/2d(y)™ ™2 min {1, W} if n < 2m,
r—y

and
1 if |z —y| > cs,
1{|w—y\203}($7y) = {

1s the indicator function.

0 if|$—y‘<63,
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After some auxiliary results we prove the estimates from below in Section[3.1.2]for n > 2m—1
and in Section formn <2m—1.

Remark 3.2. For the estimate from above it remains to show that on € x € we have
cad(z)™d(y)™ < coHa(z,y) (3.4)

since for G(_aym o the estimate follows from Corollary @

Let us prove (3.4).

Case n > 2m. Let d(z)d(y) < |x — y|?>. Then, since |z — y| < diam(Q2), we get

e [ d@)™ d@)md)"  d)m ()"
vl =

For d(x)d(y) > |z — y|> we see that

e (@O d() )"
eyl {1, Y o=y > @ty ST
d(x)™d(y)™
~ (diam(Q))""

Case n = 2m. From [23] Lemma 4.5|, which states

k@<L+M@mﬂwm>ZcbgG+—d@)>mm{Lﬂwmﬂwm}a

|z — y[2m |z — g |z — y[>m

we get with d(y)/|z —y| > 0
1%(1+“@m“wm>zcmm{L“@mﬂ”m}

|z —y[*m |z —y[*m
Examining the same cases as in n > 2m and using |z — y| < diam(f2) we get the desired
inequality.
Case n < 2m. Let d(x)d(y) < |z — y|>. Then, since |z — y| < diam(Q2), we get

) {L EETD eyt = dam(@)"

For d(z)d(y) > |& — y|? we see with d(z)d(y) < (diam(£))? that

m—n m—n : d(x)n/2d(y)n/2 _ m—n m—n d(x)md(y)m
d(z) /Qd(y) /2 min {17 \:I:—y\”} = d(x) /Qd(y) /2 > W7

which completes the proof.

Remark 3.3. With the help of Theorem a uniform local positivity result, cf. (LP) in the
introduction, follows. For any x,y € 2 with z # y we have that

|z —y| <ez implies G_aymolr,y) > cngQ(x,y) > 0,

where the constant cg is chosen as in Theorem [3.1]
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3.1 Large Dimensions n > 2m — 1

Here we want to prove Theorem [3.I] for n > 2m — 1. We proceed in several steps. First, we
prove estimates from below for the polyharmonic Green function G(_aym o(z,y) if 7,y € Q
are closer to each other compared to their boundary distances. This is due to Proposition
For the opposite case we prove Proposition After this is done, we are able to prove
Theorem B.1] in Section B.1.2]

3.1.1 Some Auxiliary Results for n > 2m — 1

We start with the following local estimate. Note that this result was already stated in [29]

Proposition 3] for the biharmonic Green function.

Proposition 3.4. Let m > 2, n > 2m —1. Then there exist constants 0y, > 0 and cq4 > 0,
which depend only on the dimension n and the order of the polyharmonic operator, such
that the following holds true. Assume Q C R™ to be a C*™7-smooth bounded domain and let
G(—aym q denote the Green function for the polyharmonic operator under Dirichlet boundary
conditions. If

2= | < b max{d(), d(y)},

then we have

calr —ymm if n > 2m,
d(x)™d(y)™ .
G—ayma(z,y) >  calog <1 + m> if n =2m, (3.5)
cad(z) 2 d(y)'/? ifn=2m—1.

Proof. The main part of the proof was done in [32] for n > 2m and in [4I] for n = 2m
developing ideas from Nehari [49] in dimension n = 3. Without loss of generality we are in

the following situation for some R > 1
By = Bl(O) CcCQCBr= BR(O).

Note that the estimate (3.5|) is invariant with respect to translation and scaling.

The Green function G(_a)ym o can be decomposed into the fundamental solution of the poly-
harmonic operator (—A)™ in R” and a polyharmonic function H(_aym o(z,y) € C’Qm77(ﬁ2)
as

Gayno(,y) = Fnn(r —y) + H_aym o(z,y)

with
|2m—n if n>2morn=2m—1,

Frn(z) = { il (3.6)

— 2¢mploglz| if n=2m,
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and o (/2 )
n —m
ifn > 2 —2m 1
nend T (n2)(m — 1)1 o Emern=ame
Cmn = 1

if n =2
Snendm—2((m — 2 T

cf. (1.1). Let us recall Boggio’s formula for the Green function of the Dirichlet problem with
Q=5

’\xly—ﬁ

y|2m—n / (U2 _ 1)m_1’01_nd’0, (37)

G—aym B, (T, Y) = kmn

where kp,n = 1/ (ne,d™ H((m — 1)!)?), see (L.8).

For n > 2m or n = 2m we have for all x,y € By with = # y that

G—pyma(z,y)
1
2 JHaym g, (2,0) = Haym gy (2,2) + Haym gy (4,9) = H-aym B (4, 9)
1
+ §(G(—A)m,31 (z,y) + G(—A)m,BR(% v)), (3.8)

see [32, Lemma 5] for n > 2m or [41] Satz 2| for n = 2m. Since the following identities hold

—n 1 1
Gaym pp(®,y) = R "G _aym b, (R‘T’ R?/) : (3.9)

2m—n

ifn>2morn=2m-—1,

1
n—2m

=P
R
:kmn' m—1 ;
s 2 J
oz (7 ‘”) = ("7 S =
— 25

(3.10)

2m=L(m —1)!
#) ifn>2morn=2m-—1,
n—2j
Cmn = km,n : jl;Il( j)
1
— if n =2m,
2

we observe from (3.8]) by letting R — oo if n > 2m that

Cmf,n 2m—n __ km,n . 2\2m—n

2

cf. [32, eq. (25)].

To prove the proposition, it is enough, by scaling and translation, to consider x = 0 and

y € Bs,, ,.(0), where we specify 6,,, € (0,1) below.
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For n > 2m we have

G—ayma(0,y)

m—n 2m72 m —1)! 1 n—2m Yy e
e m= 2t A(n — 2m) ('y’ o (1 —| \y!2) )
[T (n—2j)

j=1

-~

::f’VV‘L,‘IL(lyl)

Since fi,n is positive near 0 and monotonically decreasing in |y|, we can find a 0, such
that fy, n is positive for all |y| € (0, 6y,,n). For a further discussion how to choose 6y, ., see
[32, Theorem 3.

In the following, in addition to z = 0, y € Bs,, ,(0), we assume without loss of generality
d(0) = 1. Then we have that

d(y) < |yl +d(0) < dmn +1<2. (3.11)

Let n = 2m. Using (3.7))-(3.10]) we see that

4

m—1 m—
Ko, 2m m—1 Iy!2j :
+ §< ; ) E —1)) o~ —log y|

Jj=1 =1

m—1 i
m—1 -yl ( R)
+ _ 1) ———5+log | — ] |,
— ( j >( ) —2j R [yl

J]=

km m 2

from which we get

l{m,2m 9 ‘y’ m—1 i ‘y’m
Gaym0(0,y) > log (1 — |y|*) — log +2 (=1)7 =
—1

4 -2
j J
m—1 m—1 i
m—1 1 m—1 |yl
4 —1)) — —41 2 —1)/ ,
+ ]; ( ] >( ) 2] Og‘y| + = < j >< ) _2jR2j

For R — oo it follows that

m—1 ;
Em.om m—1\ (=17t .
G—aym(0,y) > f log (1= [yl*) —logy*+ ) ( j >(}!y\23

)

J]=
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We use the following combinatorial identity, cf. |26, No. 1.45] and Proposition in the
appendix for a proof, to see that for m —1 > 0 and |y| < 1 it holds

m—1 j— m—1
Eijlyzulw” 2311—w (312)

=\ j pt
where s(m) := > 1" ! ; Since
m—1 o0 o0 .
1 1 . (_1)]—1 .
S <Y S ==Y (PP - 1) =~ log lyl?,
i) j=17 =
we have that A .
- G—aym0(0,y) > log (W - 1> — s(m). (3.13)
For |y| < 1 we get with (3.11)) and d(z) = d(0) = 1 that
1 1
d(z)™d(y)™ \ 2~ d(y)™\ 2m 1 4 gm)1/2m
(1 | da)mdly)™ (;J) > — <1 + (yQ) > L Q2T (3.14)
|z —y[>m ly[>™ [yl

Now we choose |y| € (0,1) such that

1/2m m\1l/m
0<lyl < —(1+2) exp (s(m)) + \/1 + &exp (2s(m)) =: dm.2m,

which gives

m\1/2m
(1+2’y|) < exp(—s(m)) <1 - 1> , (3.15)

|y?

Inequalities (3.13)), (3.14) and (3.15]) show for the chosen |y| that
kmom 1 d(y)™
= _—1log (1 .
4 om e\t |y|2m

Let n = 2m — 1. Since the proof of (3.8) is independent of the dimension of the domain, we
see that

K, 2m— y|®
G(AVqﬂmy>zf;1<2—2R——wP+—">

m—1
K omm
L Fmamay (m )()
<\ J

Gayna(0,y) >

from which we get

m—1 .
b m 1 yl? m— 1\ (-t
Grapmn(0,y) > Fm2m=t (4o WP, ; CD

m—1 ; m—1 ;
— 1\ (=11 —1\ (=1)1 o
—4ly| (m ' ) ( . ) ) (m . > ( . ) R1—2J|y|21
- 7 27 —1 — 7 27 —1
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Taking R — co we obtain

G—aym a(0,y)

-1 ; m—1 ;
k., 2m—1 2 < m—1 (—1)3_1 9 m—1 (_1)]—1
>t | 4 — 2 J 4 ~ 7
22— ly[” + ;1 j %_me IME i )21

7=0
With
m—1 ;
m—1\ (=17t . m—
(") S < e - )
=\ J j
and
’”i <m - 1) (-1)=1  B(m,~1) T(m)(3)
. . - - 1\ °
= J 27 —1 2 T (m — 5)
where B( ., .) denotes the Beta function, we get
Km,2m—1 2 F(m)r (%)
Gi_ayma(0,y) > — 4+ 1-2") —dly| ——= | .
(-aym0(0,y) 1 ( lyl~( ) MFW—%

If we choose

5m,2m—1 =

we obtain with (3.11)) for |y| € (0, 6y,2m—1) that

4
kiG(—A)m,Q(an) > V2 > d(y)'/2.
m,2m—1
O
Due to Proposition [3.4) we may concentrate in the following on z,y such that
z,y €Q, x#vy, |r—y| > dn,max{d(x),d(y)} (3.16)

where the constant d,, ,, is chosen as in Proposition

Lemma 3.5. Suppose that n > 2m — 1 and that Q C R" is a bounded C*™"-smooth
domain. Then for each wg € §) there exists a radius r = ry, > 0 and a constant C = Cyy > 0
such that for all z,y € Qg = QN By, (z0) subject to condition (3.16]) one has

Gpymo(x,y) = Clo —y["d(z)™d(y)™. (3.17)

The proof is inspired by the proof of |29, Lemma 4].
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Proof. For zp € Q and z,y € By, (x0) C 2 we can choose ry, small enough such that
‘1’ - y’ < |:E - I’0| + |y - l’o’ < QTCEO < 5m,n maX{d(ﬂ:),d(y)}

Then condition (3.16]) is violated and (3.17)) always holds.

From now on let zg € I and we assume by contradiction that there exist zg, yx € Qpy 1/ =
an B i (w0) subject to condition (3.16|) such that

1 -n m m
G(_A)mvg(xk,yk) < %]xk — yk| d(l’k) d(yk) . (3.18)

For g, yr € Q415 we find

1 1
|zo — mk| < o |zo — yi| < o
1
d(zg) = inf |og —2"| < |zp —@o| + Inf lzo—a[ <, dlye) <,
—_———

=0
2
|2 — yr| < |zk — xo| + Jyp — zo| < o
which imply = — zo, yx — xo, d(zx) — 0, d(yx) — 0 and |z — yx| — 0 when & tends to
infinity.

By rotation and translation we may assume that xg = 0 and that the first unit vector e; is
the exterior unit normal to 9} at xy. Since 0f2 is smooth enough, we can find for k large

enough a uniquely determined Zj € 0%, such that d(xy) = |z — Tk

For &,n € Q := m(—ik + ) we define the rescaled polyharmonic Green function

Gr(&,m) = |z — Yk "G aym 0 (Fk + |2k — yrlé, T + 2k — ykln)
as in Proposition [2.13] Then assumption (3.18) gives
_ 1 _
Gr(&omi) = |z — " "G aym (@, i) < %|$k — yi| ()" d ()™, (3.19)

where
1 5 1
p=——(zr—2) and = —-
Tk — il |zr — il

For & and n; from condition (3.16|) follows

(Y — Tk).

Tk 1
(zs) < ;& —mel=1 and |ng| <1+ :
- yk‘ 5m,n 5m,n

|€k| =

d
7
Therefore, after passing to a further subsequence we find &4, 700 € H with &oo = limp_yo0 &1,

Moo = limy 00 Mk and s — Noo| = 1. To show a contradiction we prove the following claim:
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Claim. There exists a constant ¢ > 0 such that for k£ large enough it yields

Guléem) = odu()"dutm)™ = o (1) (LA )T

|1 — Ykl |z — Y

where dy :=d( . ,0).
We prove the claim in the following steps.

Step 1. From Sectionwe recall the local C?™7-smooth coordinate charts £ — ®(¢') = &
for ), with coordinates ¢ in bounded neighbourhoods of 0 in H. For G}, := Gy, o (Pr, Pr)
in H x H\{¢ = n'} we see as in Proposition that G, — G—aympy in C*™((HN
By4(éxc)) x (H N B1/4(Nx))). Since @ — Id, we have for k large enough that & =
@, (&) € LN Byja(€os) and 1), = 1 () € H N By ja(oo)-
Let puy € OH such that
d / — f !/ — !/
(&) = ik 1€, = pl =18 =
and
w(t) = € + (1 — Dy
for t € [0,1]. Since ®; — Id uniformly in H N B1/4(§), there exists a positive constant
o1 > 0 such that

di (&) = £zi€%fm &k = &kl < 18k — Pr(p) | < L(Pr(w)) < ”@k”cl(ﬁ031/4(goo))L(w)
€00y,

< 01|, — | = o1dyu (&), (3.20)

where L denotes the length of the path. Similarly we get

di (i) < o1dy(my,).- (3.21)

Step 2. Now we use an estimate from below of Boggio’s formula for the polyharmonic Green

function: For ¢, 1 € H there exists a constant oo > 0 such that

( d ! md n\m
& — [
dy (&)™ dae ()™ .
Gaymn(& 1) > o2 log (1 T & — /|2 if n = 2m,
1 1
1 1 . dH 5/ m_Ed’H ’f]/ m—§ )
dyu (&) 2dy(n')2 mln{l, ( ’2/77/|2r£1) if n=2m —1,
(3.22)
which can be proved like [31], Proposition 2.3].
Since &, € H N By4(€so) and 1, € H N By 4(nso) We get
! / ! / 1 1 3
1€k = 7| < 1€o0 = Mool + 1600 = &kl + [M00 =l <1+ 2+ 7 =5 (3.23)

4 4 2
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and
1 1 1

6 = 11 > Jeoo = el ~ oo — €l — oo — ] 21— 3 =7 =3, (320

Moreover, since dy(&).) and dy(n),) are uniformly bounded, we see for all k large enough
that

d (&) dw (1
(/k) /( k) < C(gooﬂ?oo)- (3.25)
&5 — |
Combining (3.22)-(3.25) and using log(1 + z) > 37 for all 2 > —1 in the case n = 2m we
obtain for all k£ large enough
G (—aym 3 (8 M) = 03da(§) ™ da(1,)™, (3.26)

where o3 is a positive constant.
Step 3. In what follows we prove the claim for the distinct possible locations of &4, Nee € H.

Case s € H, Moo € H. Since s and 7o are interior points, we have that dy (§c ), d3(M00) >
0. Let e < % (dﬂ(foo)) (dﬂ(gnoo)> . Since ék — G(,A)'m’q_‘ in CQm((ﬁﬂ Bl/4(§oo)) X (ﬁﬂ
B1/4(N))), using (3.26)) for all £k large enough, we have

Gr (ko) = Gr(&homp)

> Gpym u(&omi) — €

> oudul oy - 3 (28} (el )

2 2 2

From ®; — Id and & — &oo, Mk — Moo We get & — €ooy M), — NMoo. Then, for k possibly
larger, we have &, € By, (e..)/2(§c0) NH and 1), € By, (n..)/2(100) NH. Tt follows

1 1
du(&) = 5duléee)  and  dy () = 5du(neo)- (3.27)
Now, using (3.20]) and (3.21) we obtain

o m m o
Gl ) > 2y (&) dgy ()™ > —5
2 201

e (&)™ die (i)™ (3.28)

Case £xo € H, Moo € OH. After possibly interchanging £, and 7 this covers also the
situation &, € OH, Moo € H.

We perform a Taylor expansion and see that for a suitable § € (0,1) due to the boundary

conditions on G(_aym 3 we have that

G(_A)W,H(fl/cvn;c)
=Gaymn (‘fllw (77;%1’777“»

m—1

= 3 G ama (6 (071)) 0o’ + 208 G s e (6 (90ka. 1)) (k)"
=0
= (_ni?ma,(?T)G(—A)m,H <51’m (9771;,17777@» dp (11,)"™"
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From ([3.26) it follows
-n” m o m
UGy (€he (0010.77) ) 2 sl (3.29)

Again with a Taylor expansion for a suitable 6 € (0,1) we have

(=1

SN (& (9o ) ) drelf)™ (3.30)

Since Gj, — G aymy in C?™ locally uniformly, we have &%n)@k — aé:n)G(_A)m’H locally
uniformly. We choose ¢ < % <%)m and using (3.29) for k large enough we get

CUT o (g (nka ) ) 2 S 009Gy (e (00k1) ) - 2

m)!

> oadu ()" — % (dHf“))

> % (dae (&)™,

since &), € Ba,,(¢.0)/2() N H for k large enough. Then, using (3.30), (3.20) and (3.21]) we

obtain

C(Ghmi) = CrlEo ) > T ()™ A ()™ > 5 5 (66)™ (i)™
1

Case oo € OH, Moo € OH. From above for a suitable §; € (0,1) we have

1 -
G aym (&) = — G _aym 3 (ffw (91772,1#71@)) (Me1)™

ml m

Performing a Taylor expansion for G(_aym 3(,,m,) with respect to &) for a suitable 6y €
(0,1) we obtain

1 _m r m
G aymgu(&homh) = =Gy ((0281:6F) k) (€)™

where we used the boundary conditions of G(_aym 3
©) r _
851 G(*A)m}[ ((07§]/q;> 777) =0
for all n € H and j € {0,...,m — 1}. Then
=G e ((064,0065) » (B9k1 ) ) ()™

which shows

G—pym (&) = ()2 8§T)81(7T)G(7A)m,7{ ((%fé,pg) , <91772,17777€)) dp (&)™ day (mp,)™.
(3.31)
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Now, using (3.26)) we have

(7711!)28§T)87(7T)G(—A)M,H ((9252,17§> ) (91"72,177772)) > 03.

In the same way for suitable 01,0, € (0,1) we have

1

With ng)&(]?) G — 8§T)8,(7T)G(_ Aym ¢ locally uniformly we choose ¢ < % and have for k

large enough

(ml!)28g1)57(ﬁn)ék <<5251,§717€> ’ (ém%’h%))
> (ﬁ!)zag)aé?)@—mmﬂ ((0:62:8). (ks 7)) —2
@

2
Then, using (3.31)), (3.20) and (3.21]) we obtain

~ (2 (2
Grl(e k) = Gr(€h k) > = dm(E) " ()™ > 55

e (&)™ dge (i)™

ot
This proves the claim, i.e. we have a positive constant o > 0 such that for k£ large enough

Gk i) Zadk(fk)mdk(nk)ng(d(xk)>m (Cl(yk))m

|z — | T — Y|
=0z — yi| 2" d(z) ™ d(yr)™

This contradicts (3.19)) and the proof of the lemma is complete. O

3.1.2 Proof of the Main Result for n > 2m — 1

Now we are in the position to prove the bounds from below in Theorem forn > 2m — 1.

This is done as for the biharmonic case in [29].
Proof of Theorem [3.1] for n > 2m — 1. Let us first assume that for z,y € Q with = # y
|2 = y| < Ompmax{d(z),d(y)} (3.32)

holds, so we are in the situation of Proposition [3.4

Without loss of generality let d(z) = max{d(x),d(y)} and d(y) = min{d(x),d(y)}, then we
get
(1= dmn)|z = y| < dmn(max{d(z),d(y)} — [z = yl) = dmn(d(z) - [z = yl)
< mn(d(y) + |z =yl — |z = y[) = dmn min{d(z), d(y)},
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and, by using , we see
(1= Gmn)la —yf* < 67, , min{d(w), d(y)} max{d(x),d(y)}
= 0 nd(@)d(y).
For n > 2m using Proposition and d(x)d(y)/|z — y|* > (1 = 6mn) /0., We get

Gaymo(®,y) > calw —y "

. d(z)™d(y)™
> eyl — y*™ mln{l,M}.

For the case n = 2m we use Proposition [3.4] to obtain

dopriyry

G—aymo(z,y) > cslog (1 + 7 = y[2m

If n = 2m — 1 we use Proposition [3.4] to get

G ayma(z,y) > cad(z)/?d(y)"/?

' d(x m71/2d m—1/2
z(:4d<x>1/2d<y>1/2mln{1, ( ),x_y,ﬁfi)_l }

Now, it is left to prove the estimates when x,y € € are subject to condition (3.16). First
we show that there exist constants c¢5 > 0,7 > 0 such that |x — y| < r yields

G—pyma(x,y) > cslz —y[ "d(z)™d(y)™.
We prove this by a compactness argument.

By Lemma there exists for all z; € Q a constant rj := rz; such that for all z,y €
Qg r; = an B, (x;) the following

Ginymo(z,y) > Cpilz —y| " d(x)"d(y)™

holds. Since € is compact, there exist z1, ...,z € Q such that Q C U§:1 Qyrij2- Fora,y €
Q with |z —y| < r, where r := min{%, ..., &}, there exists a j such that x € ﬁﬂBrj/Q(xj).

Because of |z —y| <r we get y € B,,(z;) and the claim follows.
If |x — y| > r we obtain from Corollary and log(1 + z) < z for all z > —1 that
Gaymalz,y) = —celz —y[ "d(z)d(y)™
or rather
G _aymale,y) + 2eslz — gl ~"d(@)"d(y)"™ > colw — y|~"d()" ()™,
for some constant ¢g > O.
Since |z —y|~"™ < r~" it follows for a positive constant c7
Gaym (@, y) + crd(@)™d(y)™ = colz — y| "d(z)™d(y)™,

which finishes the proof. O
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3.2 Small Dimensions n < 2m — 1

In this section we prove Theorem [3.1]for n < 2m —1. As before, we proceed in several steps.
Since we like to use a rescaling argument as in the proof of Proposition (3.5 uniqueness of
the polyharmonic Green function in the half space H is needed. This is due to Lemma [3.6]
where we assume a growth condition at infinity. After this is done, we prove local estimates
from below for G(_aym o in Corollary @ Here, we will use a compactness argument to
combine local estimates for G(_aym o near the boundary of 2, see Lemma and in the
interior of €, see Lemma [3.8] Section [3:2.2]is due to conclude the proof of Theorem [3.]] for
n<2m —1.

In this section we use the ideas of [29] Sec. 4-5].

3.2.1 Some Auxiliary Results for n < 2m — 1

Lemma 3.6. Let n,m > 2, n < 2m — 1 and let G € C?™ (ﬁxﬂ\ {(:B,x) tw Eﬁ}) be a
polyharmonic Green function with Dirichlet boundary condition, that is

o ifm=2k: HG(m,.)(—A)mgody
k
= oz 2_ m7€~x AN _2_ =1 ¢ m7€~$ o
—¢<>+€ZI/BH8V A G, (D)~ () (- A"z, ) do,
o ifm=2k+1: Hé(x, J(—A)"p dy
k
= oz ﬁ_ m7€~x AN _2_ =1 ¢ mff~x o
A+ 2 [ A Gl DA e ) 8 G )

for all p € C?™ (ﬂ) and x € H. Moreover, we assume that G(z,y) = G(y, x) for all z #y
and that a growth condition at infinity holds

|G, y)l < C (L4 |27 4 [y[*™ ") (1 + log (1 + |]) + log (1 + |y])) - (3.33)

Then G is uniquely determined and given by Boggio’s formula

|z* —yl/|z—y|

G(x,y) = G aym pu(@,y) = km |z — y[*" " / (0% — )™ ot ",

where ©* = (—x1,x2,...,2,) and
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Proof. In what follows we fix an arbitrary z € H and write G(z,y) = G_aym (7, y) +

H(x,y), where H is a regular function in H x H satisfying

(—Ay)"H(z, .)=0 in#H,
ol
—H(z,y) =0 foryy=0and j=0,...,m— 1.
Oy}

From [38] we have with y* := (—y1,92,...,yn) that

H(J:?y) if Y1 S 07
H*(z,y) == { m! y;”*j , ( H(z,y") )
— A/ 2| ifyp >0,
; G \(=yym=r) "

satisfies H*(z, . ) € C?™(R"™) and is polyharmonic on R”.

We prove the following growth behaviour for G(_aym 3. For all z,y € H we have that

‘G(,A)m}[(gj?y” <C (1 + \x|2m*” + |y’2mfn) '

This is done for even n < 2m — 1, since for odd n < 2m — 1 the proof works in a similar way.

From Boggio’s formula we get

m—1 lz*—yl/|z—y

n m—1 ) o
Gy (@) = kmale =y 3 ( - )(—1)] [t

j=0 J

Then, taking the modulus, for a constant ¢ > 0, we see that

1 1T =yl/le=yl
Gy a(@y)] < cle —yl2m S / p2mn1-2 g,

Jj=0 1
lz*—yl/|z—yl lz*—yl/|z—yl
= c|lz —y[*™ " / v ldv + Z 2122 gy,
1 jes 1

where J :={0,1,...,m — 1} \ {m — §}. Note that

1
2<n<2m-1 < §<m—g§m—1.

If n is odd we see m — 5 ¢ N and the first integral does not occur in this case. Then

|G (—aym (T, )]

2 |z* —y| 1 o —y[\*" T
<clz -yl "| log +Z , -1
v =yl 2m—n—=2j \\ |z —y|

< ‘ ’2m—n 1 x _y’_i_z 1 ‘.%'*—y| mon=2 Z
=dAr—=y & |z — y| 2m —n — 2j

jed, [z =] jed,

1

2m —n —2j

j<m—73 j>m—73

)

) |
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Since || “ > 1, it follows with log(z) < z for z > 1 that
Geamaute )l < ¢ lo = yPm 1o I =M g o = yemon)
<c(lz =y et =yl 4 ot =y
S | |2mfn

Therefore H(x,y) satisfies (3.33)). Hence,
[H (2, )| < C (1+ [y ") log (1 + [y]).

Now, from (2.62)) it follows
2m—2

[H*(z,y)| < C Y [ViH (,y)llyP
7=0

and since H(z,y) is polyharmonic and satisfies Dirichlet boundary conditions on OH, we

can use a scaling argument and local elliptic estimates to find for R > 0 that

ID*H (@, My < o I oo (pameno

cf. (2.34). Then we have for j =0,...,2m — 2 that

IVIH (z,y)] < —= (1 + |y]*" " log (1 + |y])) -

%3
[yl

Noting that for |y| < 1 the function H*(x, . ) € C*™(R") is bounded we get

(1+log (1 +y]))

2m—1 py*
H <C

(3.34)

Since VyA’y”_lH *(x, . ) is harmonic we can apply the maximum principle to obtain

< ¢, (L+ Doz Rl

m—1 rr*
[Vy AT H (2, )| co gy < TR

Thus, taking R — oo we have for a suitable function a( . ) that
VyA;”_lH*(x, )=0 and  APT'H*(z, .)=a(x).

Since
AP (VI (2, L)) = VT (AT H (2, L)) = VI a(z) = 0,

any ngle*(x, . ) is polyharmonic and, since (3.34) shows that ijmle*(x, .) — 0 as
y — 00, bounded. Furthermore, Liouville’s theorem for polyharmonic functions [50} p. 19|
shows that V2" 1H*(z, .) = 0.
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We perform a Taylor expansion in y and x using the boundary data to observe that

1 9"H* 1 mL gt
H*(z,y) =——F—(z,0) - y" + J0)cy -yt 4+
1 n 82m_2H*
B T e ,0) Yjy e Yo YT
(2m — 2)! jh”%:Fl dyj, - ..ayjm_zaygn( ) Y m=2 71
(3.35)
and
1 amH* 1 U
H* 0, 0,y) xp - x*
1 n 82m_2H*
—_— 0 el -z
- Gm 7)1 ; Dok, - D, 007 0,9) Ty + o * Thy - T
15:-sRm—2=
(3.36)
Then, by differentiating (3.36)) with respect to y;, we get with (3.35)) for H
oM. O™ H (0, 0) " 9t H(0,0)
M 1 n yi . )
H(z,y) = yi ( (m))? sy —i—Z m+1'm‘ T xl
2 2
" 8@,@8962..,%%2@ (0,0) m
.ot Z (2m_2)!m! 7 P 1 R A |
ki,...skm—2=1
0, O H (0, 0) n aﬁla;’;;l H(0,0)
—l—Zy] Y1 - Z TR L
(m+1)Im! (m+1)!)2
. n 82?;135:: ka Loy H(0,0) m)
.. T Tk, _ xq
_ | 1 m—2
b (2m 2)(m +1)!
n dFm—2 O H(0,0)
Yjy - Yim oY1
+.+ Z yjl...,.ijQ.y;n.< i E2m2—2)!m! Ll 4
jla"'vjm—Zzl
2m—2 m—+1
+ zn: 8y]1 Yim—2 07" aka H(O7O) sz Ty A+
Pt (2m — 2)!(m + 1)! !
2m—2 2m—2
- ayzl"'yLany{n amzmkm—Qr’inH(O’ 0) m
o+ Z (@m =22 Xy e T, ] (3.37)
kla-n,kme:l

Let us prove the following claim.
Claim. H(z,y) = 0.

We assume by contradiction that there exists a z(0) = (:C(O), y(o)) € R?" with H(Z(O)) # 0.
For v € R?" we consider the one-dimensional polynomial R 3 X — H (Z(O) + )\v), which is
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not the zero polynomial. The expansion (3.37) shows
deg (H(Z(O) + /\v)> € {2m,...,4m — 4},

where deg( . ) gives the degree of a polynomial. Hence, for all ¢ > 0 exists a A9 > 0 such
that for all A > Ay we have that

‘H(z(o) + )\U)’ > c’z(o) + )\v‘zm.
This contradicts (3.33)), which reads in this situation as

‘H(z(o) + )\v)

<C (1 + ‘Z(O) + )\U‘Qm_n) (1 + log (1 + ‘Z(O) + Av‘)) .
Note that n > 2.
This shows H(z,y) =0 and G = G_aymx- O

Lemma 3.7 (Estimates near the boundary). Suppose that n < 2m — 1 and that Q C R™ is
a bounded C*™7-smooth domain. Then for each wg € OS) there exist a radius r = ry, > 0
and a constant C' = Cy, > 0 such that for all x,y € Qu, ., := QN B.(xg) one has

. o . d(x n/2d n/2
G_pymo(z,y) > Cd(z)™ 2d(y)™ /2 min {1, M} . (3.38)

Proof. We prove the lemma by assuming the contradiction: there exist g, yx € Qg 1/8 =
QN By i (20) such that

(3.39)

1 - o d(a)d ()"
Gaymal@r yr) < zd(@)™ 2y )™ "2 mm{l, (zx)"“d(yr) }

Tk — yr|"
Moreover, we have x — xo,yx — xo,d(xr) — 0,d(yx) — 0, |xx — yr| — 0.

By rotation and translation we may assume zg = 0 and that the first unit vector e; is the
exterior unit normal to 02 at xy. We can pass to a subsequence to consider one of the

following two cases.

Case |y — yi| < 3 max {d(zx), d(yx)}. We collect some facts in this case.

Since

o) < fox = il + (o) < 5 mass (), d(yi)} + d(w),

we get d(xy) < 2d(yg).

With 2d(yx) < 2|zr — yx| + 2d(z) < max {d(zr), d(yr)} + 2d(wr), we see 2d(yy) < 4d(wy).
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Without loss of generality let max {d(xy),d(yx)} = d(zr) and min {d(zy),d(yx)} = d(yx).

Hence,

1\ | =| ! 1! !
—|Tr — =Tk — L
5 E— Yk kE— Yk 5 kE— Yk

< % (o (1), ()} — i — ) = () — o — )
< (@) + ok — il — fo — yel) = 5 min {d(er), ()}
Together with our assumption we have
G ayma(@r yk) < %d(mk)m_nﬂd(yk)m_"ﬂ- (3.40)

Let Zj € 09 denote the closest boundary point to xj and by

Gr(&,m) = d(xp)" "G (_aym o (Fk + d(2p)€, Tk + d(2k)n)

the scaled and translated polyharmonic Green function for

&,n e = (=T + Q).

1
d(xy)
From Section we see

Qp — H = {z : 21 < 0} locally uniformly for k& — oc.

For . .
§p = wn) (o), — Tg), M = iz )(yk — Zy),
we have J
dp(§e) =1 and  di(m) = d((z’;; <2,

where d, := d( . ,09). Thus, assumption (3.40) shows

1
Gre(&rmi) = d(z)" "G paym (@, yr) < %Cll(l’k)"de(ﬂck)mfn/QCi(yk)m*n/2

1

1

>

which implies |n| < 2, the sequences (&x)ren, (k) ken are bounded. Together with d (&) =

1 and dg(nx) = gégi; > % we can choose subsequences, such that § — &, € H and
Nk — Noo € H.

In the following we will show uniform estimates for G in k, which lead us to a convergence

result like Proposition [2.13] since we have uniqueness due to Lemma [3.6]
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From Theorem [2.4] we have uniformly in %

View™ " Culem] = @ V()" Geayma@e + d(@i)é, & + d(ai)n)

< Cd(ay)|ip + d(ap)€ — i — d(ae)n)| "

We use the boundary data to see that for all £ € 9 and all n € Q
withi+j7<2m—nandit<m—1.

For all £ € Q, and all n € 08, it follows

withi4+ 7 <2m —nand j <m — 1.

Then, if we use the path from Lemma connecting & € € with §~ € 0y, or n € Q) with
N € 08, we get

DEDJGH(Em) = DEDIGHEm) + | VeDEDIGHE(s) m) m(s)ds, (343
— w
=0, if o] <m—1 ¢

DEDEGH(E ) = DEDLGHE ) + | VuDEDIGH(EN(s)) - 7(s)ds.  (3.44)
\—— e’ [

Next, by integration, we estimate D?D?]Gk(@ n) for all 0 < |o| + |8 < 2m — n.
For n > m + 1 we observe first that |a| <m — 1 and |5] < m — 1.

If 2 <n < m+1 we have either |a|,|f| <m—1, |a] >m—1and || <m—1or |B] >m—1
and |a| < m — 1. Then, for all 0 < |a|+|5] < 2m —n, we can use (3.43) or (3.44) with zero

boundary term.

Let |a| + |B] = 2m — n. Proceeding as in step 1 of the proof of Proposition for the case
n = 2m, by using (3.42)) and (3.43) or (3.44) we have

|DEDLGR(E,m)| < C (1+|log € = nl| +log (1 + [¢]) +log (1 + [n])) , (3.45)

uniformly in k.
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Let |a| + 8] = 2m —n — 1. Using (3.45) and the properties of the path connecting £ € €y,
and € € 89, from Lemma we get

| DE Dy G (&)

¥/
<c /0 1+ Jlog [£(s) — nl| +log (1 + [&(s)]) + log (1 + ) ds
Y 3¢
§C/ |log|§(s)77||ds+0/ 1+log(1+ s+ (&) +log(1+ |n|)ds
0 0

?
gc/o llog [€(s) — ll ds + C (1 + [€]) (1 + log (1 + [£]) + log (1 + [n])) -

It remains to estimate the integral. If |¢ — | > 2, we have |£(s) — 5| > 3|¢ — | > 1 for all
s € [0, /] and therefore by integration

) Y 31¢|
/ log €(s) — nl| ds = / log [€(s) — 5| ds < / log (s + €] + [n]) ds
0 0 0

(1+ &) log (1 +£]) if €] = [nl,
(1+ n)log (1 +[nl) if [§] < nl.

<C

For |£ — n| < 2 one of the following situations for the path constructed as in Lemma
could happen

1. For all s € [0, /] we have |{(s) —n| > 1.

2. There exist 0 < 51 < s < ¢, such that |£(s) —n| < 1if s € [s1,s2] and |{(s) —n| > 1
if s ¢ [81,82].

For situation 1, we have

y) ) 31¢
/ llog [£(s) — ] ds < / log (|€(s) — €] + | — nl) ds < / log (s + 2) ds
0 0 0

<O +1¢) (1 +log (1 +[£])) -

For situation 2, we get

/
/ llog |(s) — || ds = —/ log [£(s) —n\d8+/ log [£(s) — n| ds.
0 s€[s1,52] s¢[s1,s2]

Now, it is enough to consider the first integral since the second one is as in situation 1.
Since [£(s) —n| > &5 (|€ — 0| +5) > 3 it follows

12
[ ol —mias< [ o () ds < C (11 Je) (1 + log (1 + [€]),
S€[s1,52] €[s1,s2] s

and we finally have

|DgDLGR(E M| < C (1+]1og (1+[€]) +log (1 + [n])) (1 + €] + [n])
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uniformly in k.

Performing integration in the variable n and estimating in the same way, we see that for the
full derivative it holds

IV GR(Em)| < O (1 +log (1+ [€]) +1log (1 + [n])) (1 + [€] + [nl)
uniformly in k. Proceeding as before we have
V2SI G(Em)| < € (14 log (1+ Ig]) + log (1 + ) (1 + I¢7 + nP)

for j € {1,2,...,2m — n} and uniformly in k, which is for j = 2m — n the desired estimate
for Gk.

Note that we have local uniform bounds, even if £ = 7. Then, the convergence result from

Proposition works also in this case, which is important since £, = 7 is possible.
Thus, our convergence result together with (3.41]) shows that G(_aym 7;(§ocs 7100) < 0.

We conclude the proof by using Boggio’s formula that shows G(_aym 3(§,7) > 0 for all
&,n € ‘H, which gives us the desired contradiction.

If € # n, it follows directly from the formula since &, are interior points.

For { =n, nis even and J := {0,1,...,m — 1} \ {m — 5} we first see that
&= =nl/|€=n|

m—1
G(_A)M’H(f, 77) _ km,n|£ . n,Zm—n Z (m]_ 1) (_1)j / q)Qm—n—l—deU
=0
-1 *—
= nale (s ()
2
2m—n (_1)j m—1 ‘f* — 77‘ e
+ kmnl€ — 1l ]GZJQm_n_zj< j >((|€—n> _1>'

Since m — 5 # 0, we have 0 € J, and with £ — 7 we get

K (2lm])*™ "
2m —n

Gaymp(n,m) = >0,

which also holds for odd n.

Case |z), — yk| > 5 max {d(zy), d(yy)}. This can be proved like Lemma using the same

estimates for Gy, as in the previous case. O

Lemma 3.8 (Estimates in the interior). Suppose that n < 2m — 1 and that Q C R"™ is a
bounded C*™"-smooth domain. Then for each xo € Q there exist a radius r = rzo > 0 and

a constant C = Cyy > 0 such that for all z,y € Quy . = QN By(x0) one has

n/2 n/2
G pymo(z,y) > Cd(z)™ ™ 2d(y)™ ™2 min {1, W} : (3.46)
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Proof. The proof is inspired by [49] and is based on results from [32] and [41].

Since xg is in the interior of 2 we can assume by scaling and translation without loss of
generality that for some R > 1: xg =0, d(xo) = d(0) =1 and

By = Bl(O) CcCQCBr= BR(O).

We recall Boggio’s formula for the Green function for the Dirichlet problem with 2 = Bj:

/lz—y|
G—aym,B, (7, Y) = kmnlr — y[2mr / (v? — 1)l d, (3.47)
1

_Zz
‘lmly [z]

where ki, = 1/ (nepd™ ((m — 1)!1)?). In what follows n < 2m — 1 is even, since for odd

n the proof can be done in the same way.

From the identity

. 11
G(_aym (2, y) = R*""G(_aym ( >

R R’
we get
G-y By (2,y)
R| 3 laly— 2| /le—y]
= kmn|z — ymn (v? — )™yl dy
1
o R| Jglaly— %/ lo—yl
= kmale =y Y | (1) (m]_ 1) / V212 g
=0 /
Since n is even with J := {0,1,...,m — 1} \ {m — 5} we obtain

G—pym Bp(T,y)

R‘ilw!y— =

_ _ m—1 R2 []

_ km,n’w _ y’2m n(_l)m n/2 (m B n) log ‘x - x
2 yl

2m—n—2j

-1

. 1 _x
o
’ 2m —n — 2j i | — v

jeJ
- Fm,n(x - y) + H(fA)m,BR(wv y)

where

m—1 .
n)\xﬁm "(~ log Ja])

Fn() := e 27 (~og [2]) = ki (—1)" 2(
2

m —
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is a fundamental solution of the polyharmonic operator (—A)™ in R™ and
H_pym Bg(2,9)

m—n 1 m—n
(2 et (s )

n
2
T 2m—n—2j )
k RI— o 127 _2m—n .
+ b szn2]< D((Rlgelet=5) sl le

je

From m — 5 # 0, we have 0 € J, and we get

kmn SL’Z 2m—n
H(,A)WL’BR(:L‘,SC) = — <R - ’R|> .

2m —n

Again, we use [32, Lemma 5|, which states

G—pyma(z,y)
1
> 7 (Haym b, (2:2) = H_aym g (@,2) + Haym 5, (4,9) = Haym 5, (4,9))
1
t 5 (Gaym b, (@.9) + Gy e (2.1))

for all z,y € By with x # y. This is also valid for n < 2m — 1 and we see

G—ayma(0,v)

S (1R (AT RN
> — + — R— —
4 2m—-—n 2m-—n 2m —n 2m —n R
kmn _ _ m—1 R
e (017 ) (s () +100 (55))
2 ( m - vl vl

m—1 2 2m-—n—2j\ _ 9|, |2m—n
F X g () o s ey )

Jje€J

Moreover, we obtain

G—nym.0(0,y)
m—n 2m—n 2m—n
Y O S A s W O
- 4 2m—n  2m-—n 2m —n 2m —n R
- —1 - lyl\ 4y
2(—1)™ n/2+1( M 2m—n (] 1 -
+2(=1) m_%|m ogly| +log 7 | — 5 ——

1)j m—1 2j 2m—n—2j\ 2m—n
r2 Y o E () (1 R i ).

JEJ,
7>0

Then, if y — 0,

K n
G( )mQ(OO)_Qm_n>O.
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From which we get G(_aym (70, 20) > 0 for all o € Q. From the continuity of G(_aym o
we find 7, ¢ > 0 such that B;(z9) C Q and G(_aym o(x,y) > cfor all z,y € B,(xg). Since Q

is bounded we get

c

d(x)">d(y)"/?
(diam Q)2m—n

d(z)™ " 2d(y)™"™/? min{ 1,
()" 2d(y) pe—

} <e<Graymalz,y),

which proves the lemma. ]

Corollary 3.9. Suppose that n < 2m — 1 and that Q C R" is a bounded C*™"-smooth
domain. Then there exist a radius r > 0 and a constant C' > 0 such that for all xo € Q and
for all x,y € Quyr := QN By(x0) one has

n/2 n/2
G(_ayma(z,y) > Cd(z)™ "/2d(y)™"/? min {1, W} . (3.48)

Proof. Combining Lemmas and We find for each zp € Qary = Tz, > 0 and a constant
C = Cy, > 0 such that for all 2,y € Quy ., = QN By, (w0) one has that

- B ) d(z n/2d n/2
Gy (e y) = Cd(a)™ " d(y) /2 m“{l(y)x—y(yy)}

We apply a compactness argument to {2 = Uxoeﬁ tho/g to find z1,...,z, € Q such that
e} k
Q C Ujz1 Qajry2-

For z,y € Q with |z — y| < r where r := min{%},..., "} exists a j such that = € Qg iri/2-
Then y € Q2 .. /2 and the claim follows. O

3.2.2 Proof of the Main Result for n < 2m — 1

Now we are able to prove the bounds from below in Theorem forn < 2m — 1.

Proof of Theorem[3.1] for n < 2m — 1. We fix r > 0 as in Corollary 3.9} If |z — y| < r there

is nothing left to prove.

Let | — y| > r. Then, with the help of Corollary we have that there exist a constant
cg > 0 such that

Gpymo(z,y) > —cslr — y|"d(z)™d(y)™.
Then,

Gaymo(@,y) + 2cslr —y["d(z)"d(y)™

n/2 n/2
z@;d(m)m””d(y)m”/Qmin{Ld(x,)x W }
-y
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Taking cg := 2cgr™"™ it follows

B B ) d(z n/2d n/2
G apm e, ) + cod(x) ()™ > exd(a)™ " ()" mn{l(,)x_y(f’)}

and the claim is proved. O
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4 Pointwise Estimates for the Green Function of the
Perturbed Problem

In this section, we will prove our main result Theorem for the perturbed polyharmonic
operator. As before, let G be the Green function in Q from Proposition i.e. G is the

Green function for the following Dirichlet boundary value problem

m—1
(~A)"u(z) + Y S D° (agﬁ(x)pau(x)):f(x) in Q,

(=0 |a|=|5|=t
o9

ﬁu(:ﬂ):() forx e 0Q,57=0,...,m—1.

(4.1)
Note that we assume boundedness for the coefficient functions: there is a K > 0, such that

for all ¢ it holds Hae ,5H0m—1w/(§) < K, see (A3) in Section

o

We recall our main result.

Theorem 4.1. Let Q C R™, n > 2, be a bounded C*™7-smooth domain, m > 2. Then there
exist constants c1 > 0, co > 0 and c3 > 0, depending on the domain ), m and K, such that

we have the following Green function estimate:

¢y Ho(a,y) < G(2,y) + el yj>e;) (2, y)d(x)"d(y)™ < c2Ho(x,y) (4.2)

for all x,y € Q, where

\fv—ym‘”min{l,W} if n > 2m,
|z —y[*™
d(z)™d(y)™ :
Ho(x,y) = { 108 (1 T e if n = 2m, (4.3)
n/2 n/2
d(x)™ "/ 2d(y)™ "/ min {1, d(m‘)x _dy(iyn) } if n < 2m,

and
1 if |z —y| > es,

1 z—y|>c (m,y) =
emvizel 0 if |z~ <ecs

1s the indicator function.
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Similar as for the polyharmonic case in the preceding Chapter 3] many of the following proofs

are done by rescaling the Green function G as in Section For example, if n > 2m — 1

we define
Grl(&n) = |ze — yu" 2" G (Ek + |k — YklS, Tr + |2k — ykln),
for £,n € QO = m (—Z + Q), see Section Since the coefficient functions in (4.1))

are uniformly bounded we have the convergence result from Proposition [2.13] i.e.

Gk(fv 77) — G(*A)m,ﬂ(§7 77)

in 2™ (H x H\ {(€,€) : € € H}). This convergence was crucial to prove the estimates from

loc

below for the polyharmonic case. Thanks to the convergence result for the perturbed dif-
ferential operator from Proposition the following sections are devoted to demonstrate

which changes and extensions compared to the polyharmonic case have to be made.
Remark 4.2. With the help of Theorem a uniform local positivity result, cf. (LP) in the
introduction, follows. For any x,y € 2 with x # y we have that

|r —y| <c3 implies G(z,y) > cQ_IHQ(x,y) >0,

where the constant c3 is chosen as in Theorem [£.1]

4.1 Large Dimensions n > 2m

We prove Theorem [I.1] for n > 2m after some auxiliary results.

Lemma 4.3 (Estimates in the interior). Suppose that n > 2m and that Q C R™ is a bounded
C?™7 _smooth domain. Then for each zq € ) there exist a radius r = Tz, > 0 and a constant
C = Cyy > 0 such that for all z,y € Qyy == QN By(x0) one has
n d(x)™d(y)™
2

G(z,y) > Clz —y[*™ nmln{17|x—y|2m . (44)
Proof. We prove the lemma by assuming the contradiction: there exist g, yx € Qpg1/x =
QN By i (20) such that

d(zg)™d(yk)™ } ‘

4.5
P (4.5)

1 —_ .
G (g, yi) < E|$k — P ”mm{l,

We have z — xo,yx — zo and |z — yx| — 0. Moreover, since xg € €, i.e. d(xg) > ¢ > 0,
we have for k large enough that €,/ C €. Therefore, d(zy) and d(yx) are bounded from
below and the case |y — yx| > & max{d(zy),d(y)} cannot occur.

Now, we can pass to a subsequence to consider the following;:

ok — ] < 5 mas{ ) dle)}
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Then, as in the proof of Lemma % is uniformly bounded from below, and
(4.5) becomes
1 _
G(wg, yr) < E|xk o (4.6)

Let € > 0 such that Ba.(z¢) C Q. Then for k large enough we have that |z —zol, |y —x0| < €
and if €], |n] < m the following function is certainly defined

Gr(&n) = log — yp|" 2" G @y + ok — yrl€ zp + |2k — yrln)-
Using Theorem 2.4, we have uniform bounds for G, and since the sets B, |, _,,|(0) exhaust
the whole R™, we can prove exactly as in Proposition that

Gy = Fon  in Cht (R* x R*\ {(£,€) : £ €R™Y),

loc

where Fyy, 5,(€) = cmam|€]*™™ is a fundamental solution for (—A)™ on R™.

Let e < 2™ and 7y := % Then, for k large enough we have
Gr(0,7k) > Frn (7)) — € = Cmamnel2™ " — e > 2 5
On the other hand, shows the contradicting statement
Gr(0,mk) = |z — yi" "Gz, i) < %,
and we have finished the proof. O

Lemma 4.4 (Estimates near the boundary). Suppose that n > 2m and that Q@ C R™ is a
bounded C?™7-smooth domain. Then for each xg € O there exist a radius r = ry, > 0 and
a constant C = Cy, > 0 such that for all z,y € Quyr := QN B(x0) one has

s d(z)™d(y)™

2

Proof. We prove the lemma by assuming the contradiction: there exist zg,yr € Qpy 1/ =
QN By (o) such that

1
G TryYk) < —|Tk — Yk anmin{l,
(on) < o~ 2

We have z, — xo, Yy — xo,d(xg) — 0,d(yx) — 0 and |z — yx| — 0.

By rotation and translation we may assume zp = 0 and that the first unit vector e; is the
exterior unit normal to 02 at xg. Then, we can pass to a subsequence to consider one of

the following two cases.
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Case 1. For all ¢ € (0,%) there exists a ly, such that for all £ > ly : |xg — yo| <
emax {d(x¢),d(ye)}

Moreover we have |z, — y,| < 3max{d(z¢),d(y,)} and as in the proof of Lemma
d)™d(y)™ 5 uniformly bounded from below. Therefore, (4.8) becomes

[o—ye|?™

1 _
G(xe,ye) < EW — P

In Proposition [2.1] we have constructed the Green function in the following way

k

G(z,y) = To(z,y) + Y Tj(x,y) + ua(y), (4.9)
j=1

where

T — y|2mfn‘

110(-737 y) = Cmm,Fm,n(:U - y) = Cm,n
Using (2.14) and (2.7) we get
Jue (y)| < cmax {d(x),d(y)}*" "

and '
Cjlx — y[>mr2-n if 2m 4 2j < n,

ITj(z,y)| < § Cj(1+ loglz —y|]) if 2m+2j =n, (4.10)
C; if 2m + 25 > n.
Our assumption together with and shows for € small enough and all ¢ > ¢, large
enough that

1 _
= > |z — ye|" PG (2, ye)

4
) 53 oo —yel N
Zcm,n_|$€_yf‘ni i ’Fj(xuy)‘_c< )
= max {d(z¢), d(ye) }
> Cm,n’
- 2

where ¢, , > 0. And this is a contradiction. Thus, we have proved the claim in this case.

Case 2. There exists an € € (0,3), such that |z, — ye| > e max {d(z(),d(ye)}. Here, ({3)
becomes

1 —n m m
G(xg,y0) < ZW —ye| " d(2g) " d(ye)™.

Now we can proceed exactly as in the proof of Lemma to show the claim in this case.

Since we have proved the claim in both cases, the lemma is proved. O

Corollary 4.5. Suppose that n > 2m and that Q C R" is a bounded C*™"-smooth domain.
Then there exist a radius r > 0 and a constant C' > 0 such that for all xg € Q and for all
2,y € Quor = QN By(z0) one has

Glep) 2 Clo -y min f1, WA @)



4.2 Small Dimensions n < 2m it

Proof. Combining Lemmas and we find for every zp € Qarg = ry;, > 0 and a
constant C' = Cy, > 0 such that for all z,y € Quy o 1= QN By (70)

dopdr )

one has

G@w>zcu—y”*“mm{L

|z —y[>m
Applying a compactness argument to () = Uxoeﬁ on,rIO/Q we find z1,..., 2, € Q such that
Qc U?Zl Qp;r;/2- Forz,y € Q with |z —y| <7 where r :=min{%,..., %} exists a j such
that € Q.. /0. Then y € Q. ;. /5 and the claim follows. O

Proof of Theorem[[.]] for n > 2m. Only the bound from below has to be proven, since the
bound from above follows from Corollary [2.12] see also Remark

We fix r > 0 as in Corollary If |x — y| < r there is nothing left to prove.

Let |z — y| > r. With the help of Corollary we have a constant c;g > 0 such that
G(z,y) = —ciolz —y|"d(x)"d(y)™.
Then

G(z,y) + 2c10|z — y| "d(2)"d(y)™ > ciolz — y[*™ " min {1,

derigr),

|z —y[*™
With ¢17 := 2¢197™™ it follows

G(z,y) + cnd(x)™d(y)™ > ciolz — y[*" " min {1, W} .

|z —y[>m

and the theorem for n > 2m is proved. O

4.2 Small Dimensions n < 2m

We prove Theorem for n < 2m after some auxiliary results.

Lemma 4.6 (Estimates in the interior). Suppose that n < 2m and that Q@ C R™ is a bounded
C?™Y_smooth domain. Then for each xo € Q there exist a radius r = rzo > 0 and a constant
C = Cyy > 0 such that for all z,y € Qyy == QN By(z0) one has

e 2 Gty [ ST

Proof. From Propositionwe have that G is continuous on 2 x 2. Let us show G(zg, zg) >

0 for zp € Q. Assuming this is true we can use

n/2 n/2
d(x)m—n/Zd(y)m—n/Q min {17 d(CC|)x _d;i?i) } < diam(Q)zm—n
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to show the lemma, since by the continuity of G there exist 14, ¢z, such that G(z,y) > ¢z,
for all z,y € B,, (z9) C .

It is left to prove G(xg,xo) > 0. Using the representation formula (2.3)) for G(xp, . ) and
the uniform coercivity, see (2.2)), after integration by parts we get

G(.CE(],Q?()) = <G(.ﬁ[)0, . ),