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Abstract
Pucci and Serrin [21] conjecture that certain space dimensions behave

“critically” in a semilinear polyharmonic eigenvalue problem. Up to now only
a considerably weakened version of this conjecture could be shown. We prove
that exactly in these dimensions an embedding inequality for higher order
Sobolev spaces on bounded domains with an optimal embedding constant
may be improved by adding a “linear” remainder term, thereby giving further
evidence to the conjecture of Pucci and Serrin from a functional analytic
point of view. Thanks to Brezis-Lieb [5] this result is already known for the
space H1

0 in dimension n = 3; we extend it to the spaces HK
0 (K > 1) in the

“presumably” critical dimensions. Crucial tools are positivity results and a
decomposition method with respect to dual cones.

1 Sharp higher order Sobolev inequalities and
critical dimensions

In a celebrated paper, Pucci-Serrin [21] studied the following critical growth prob-

lem for polyharmonic operators (−∆)Ku = λu + |u|K∗−2u in Ω

Dku = 0 on ∂Ω k = 0, ...,K − 1
(1)
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where K ∈ IN, Ω ⊂ IRn (n ≥ 2K + 1) is an open bounded domain with smooth

boundary and K∗ = 2n
n−2K is the critical Sobolev exponent (the largest q for which

the embedding HK
0 (Ω) ⊂ Lq(Ω) is continuous); with this notation 1∗ = 2∗ = 2n

n−2 .

Further, Dku denotes any derivative of u of order k. Pucci-Serrin were interested

in existence of nontrivial radial solutions of (1) when Ω = B1, the unit ball in

IRn; their interest was motivated by previous results from the famous paper by

Brezis-Nirenberg [6] who studied the corresponding problem in the case K = 1

and showed a striking difference between the space dimension n = 3 and the

higher dimensions n ≥ 4. More precisely, if λ1 denotes the first eigenvalue of −∆

in B1, it is shown in [6] that (1) admits a positive radial solution if and only if

λ ∈ (0, λ1) when n ≥ 4, while it admits a positive radial solution if and only

if λ ∈ (λ1/4, λ1) when n = 3. Thus, one interesting problem concerning (1) is

to determine the constant λ∗ ≥ 0 for which the relation λ > λ∗ is a necessary

condition for the existence of a nontrivial radial solution of (1) in B1. Pucci-Serrin

[21] call critical dimensions the space dimensions for which λ∗ > 0 and conjecture,

for a given K ≥ 1, that the critical dimensions are n = 2K + 1, ..., 4K − 1: by

the results in [6] this conjecture was already proved for K = 1, next it has been

proved for K = 2, 3, 4 (see [3, 8, 13, 21, 22]); moreover, it is known that for

all K ≥ 1 the dimensions n ≥ 4K are not critical, see [14]. Some time later,

Grunau [15] defined weakly critical dimensions as the space dimensions for which

a necessary condition for the existence of a positive radial solution of (1) in B1

is λ ∈ (λ∗, λ1) for some λ∗ > 0: he showed that weakly critical dimensions are

precisely n = 2K + 1, ..., 4K − 1. So, at least a weakened version of the Pucci-

Serrin conjecture could be shown, a full proof of their original conjecture will be

considerably more difficult, if possible at all. It remains to understand better the

role of these dimensions.

The semilinear eigenvalue problem (1) also has an intrinsic interest in more

general domains. By means of a generalized Pohožaev identity, Pucci-Serrin [20]

proved that (1) only admits the trivial solution u ≡ 0 whenever λ < 0 and Ω is star-

shaped. Moreover, for any bounded smooth domain Ω, it is shown in [8, 12, 14, 22]

that nontrivial solutions exist under different assumptions in the cases n ≥ 4K

and n < 4K. This shows that critical dimensions may not only be a phenomenon

of radial symmetry in balls (cf. also [6, Theorem 1.2”]); some attempts [16, 18]
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were made in order to explain this phenomenon by means of the local summability

properties of the fundamental solution of the operators involved.

Motivated by the non-existence results in [6], Brezis-Lieb [5] proved the fol-

lowing sharp Sobolev inequality in bounded open sets for the space H1
0 :

‖f‖21 ≥ S|f |21∗ + C|f |2 n
n−2 ,w ∀f ∈ H1

0 (Ω) . (2)

Here ‖f‖21 :=
∫
Ω
|∇f |2 dx is the usual H1

0 -norm, | · |q denotes the Lq(Ω)-norm,

q ∈ [1,∞],

S := inf
f∈H1

0\{0}

‖f‖21
|f |21∗

is the optimal Sobolev constant and the positive constant C = C(Ω) depends on

(the diameter of) the set Ω. Further

|f |q,w = sup
A⊆Ω
|A|>0

|A|−1/q′
∫

A

|f |

denotes the standard weak Lq-norm, where q′ is the conjugate of q ∈ (1,∞).

In what follows we prove an inequality similar to (2) for the higher order

hilbertian Sobolev spaces HK
0 (K ≥ 1).

We endow HK
0 (Ω) with the scalar product

(f, g)K =


∫

Ω

(∆Mf)(∆Mg) if K = 2M∫
Ω

(∇∆Mf)(∇∆Mg) if K = 2M + 1

and we denote by ‖ · ‖K the corresponding norm. Consider the best constant

of the Sobolev embedding inequality, namely

Sn,K = inf
f∈HK

0 \{0}

‖f‖2K
|f |2K∗

see e.g. [22, 23]; of course S depends on n and on K: however, since no confusion

arises, we will simply denote it by S. It is well-known that S is only attained when

Ω is (almost) the entire space IRn.

We have the following generalization of the Brezis-Lieb inequality (2) to the

spaces HK
0 :
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Theorem 1 Let Ω ⊂ IRn be a bounded open set and let K ≥ 1; then, there exists

a constant C = C(Ω,K) > 0 such that

‖f‖2K ≥ S|f |2K∗
+ C|f |2 n

n−2K ,w ∀f ∈ HK
0 (Ω) . (3)

This inequality is closely related to critical dimensions by means of the fol-

lowing principle: on bounded open sets, the Sobolev inequality for the embedding

HK
0 ⊂ LK∗ with optimal constant S may be improved by adding an L2-norm if and

only if the space dimension is weakly critical. As this theorem does not require any

positivity assumption on f , we think that it gives further support to the conjecture

of Pucci and Serrin, according to which the dimensions n = 2K + 1, . . . , 4K − 1

are critical for (1) not only in the weak sense.

The proof of (3) for positive functions f may be obtained by adjusting the

proof in [5], see Section 2; the difficulty arises when we wish to prove it for any f

(possibly changing sign) because we can no longer replace f with |f |. Instead, we

decompose f = f1 + f2 with respect to the cone of nonnegative functions K and

its dual cone K′ ⊂ HK
0 , the cone of weak subsolutions of the Dirichlet problem

for the polyharmonic operator (−∆)K : f1 ∈ K, f2 ∈ K′. In those domains where

a comparison for polyharmonic Dirichlet problems holds (e.g. in balls, which is

sufficient here), one can even conclude that f2 has a sign: f2 ≤ 0, see Lemma 2

below. This allows us to prove (3) for all f ∈ HK
0 (Ω) in Section 3 where we also

give further applications of this decomposition method, see Remark 1.

Similar phenomena appear for the quasilinear degenerate elliptic equation −∆pu = λ|u|p−2u + |u|p∗−2u in Ω

u = 0 on ∂Ω
(4)

where ∆pu =div(|∇u|p−2∇u), n > p > 1 and p∗ = np
n−p . We refer to [1] for the

variational characterization of the first generalized eigenvalue of −∆p and for the

proof that it is simple and isolated. In this case, it is known [11] that (4) admits a

positive solution for all λ ∈ (0, λ1) whenever n ≥ p2 and for any bounded smooth

domain Ω: positive solutions of (4) in B1 are necessarily radial in view of [7];

moreover, extending in an obvious way the definition of Pucci-Serrin, the critical
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dimensions are known to be p < n < p2, see [9]. For further results with more

general lower order terms see also [2].

In [10] one can find the following result: for any bounded open set Ω ⊂ IRn

and for all q ∈ [1, n(p−1)
n−p ) there exists a constant Cq = Cq(n, q,Ω) > 0 such that

‖f‖p

W 1,p
0

≥ S|f |pp∗ + Cq|f |pq ∀f ∈ W 1,p
0 (Ω) ; (5)

moreover, Cq → 0 as q → n(p−1)
n−p . The optimal Sobolev constant here is defined

analogously by

S = Sn,p = inf
f∈W 1,p

0 \{0}

‖f‖p

W 1,p
0

|f |pp∗
.

Then again the inequality (5) is related to the critical dimensions by means of the

following principle: the remainder term in the r.h.s. of (5) contains the correspond-

ing “linear” norm Lp if and only if the dimension n is critical.

2 Proof of (3) for positive functions

Let Ω be as in the statement of Theorem 1; then there exists R > 0 such that Ω ⊆
BR where BR denotes the ball centered at the origin with radius R. If we extend

by 0 in BR \ Ω any function f ∈ HK
0 (Ω) then we see that HK

0 (Ω) ⊆ HK
0 (BR):

therefore, it suffices to prove Theorem 1 in the case where Ω = BR for some R > 0.

Consider the convex closed cone of positive functions

K = {v ∈ HK
0 (BR); v(x) ≥ 0 for a.e. x ∈ BR} ;

we first prove inequality (3) in the case of positive functions f in BR: this may be

obtained by slight modifications of the arguments in [5].

Lemma 1 There exists a constant C = C(R) > 0 such that

‖f‖2K ≥ S|f |2K∗
+ C|f |2 n

n−2K ,w ∀f ∈ K . (6)

Proof. Let g ∈ L∞(BR), g 6≡ 0 and g ≥ 0 a.e., and let u be a solution of the

problem  (−∆)Ku = g in BR

Dku = 0 on ∂BR k = 0, ...,K − 1 ;
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then, u ∈ HK
0 ∩ L∞(BR). Take f ∈ K \ {0} and consider the (entire) function

φ =

 f − u + |u|∞ in BR

|u|∞PK( R
|x| ) in Bc

R

where PK is the polynomial of degree n − K − 1 whose lowest power is n − 2K

and satisfying

PK(1) = 1 P
(k)
K (1) = 0 k = 1, ...,K − 1 ;

for instance, if K = 2, then P2(s) = (n− 3)sn−4 − (n− 4)sn−3.

Note that φ ∈ DK,2(IRn): hence we may write the Sobolev inequality for φ

on IRn and obtain (for some C = C(n, R) > 0)

‖f − u‖2K + C|u|2∞ ≥ S|f |2K∗

where we used the fact that both f ≥ 0 and −u + |u|∞ ≥ 0 a.e. in BR. Therefore,

we obtain

‖f‖2K + ‖u‖2K − 2(f, u)K + C|u|2∞ ≥ S|f |2K∗

and hence

‖f‖2K ≥ 2
∫

BR

fg − (‖u‖2K + C|u|2∞) + S|f |2K∗
;

replacing g, u with λg, λu the previous inequality remains true for all λ > 0: then,

taking into account that for all a ≥ 0 and b > 0 we have maxλ≥0(aλ− bλ2) = a2

4b ,

we obtain

‖f‖2K ≥ S|f |2K∗
+

(
∫

BR
fg)2

‖u‖2K + C|u|2∞
. (7)

Let A ⊆ BR, |A| > 0 and take g = 1A (the characteristic function of A) in (7);

then, we obviously have ∫
BR

fg =
∫

A

f . (8)

Moreover, if γ = n

√
n

ωn
|A|, ωn =

∫
∂B1

dω(x) and ΓR denotes the Green function

corresponding to (−∆)K in BR, then for a.e. x ∈ BR we have by Boggio’s explicit

formula [4, p. 126] for ΓR

|u(x)| =
∣∣∣∣∫

BR

ΓR(x, y) · 1A(y) dy

∣∣∣∣ ≤ C(n, K)
∫

A

|x− y|2K−n dy
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≤ C(n, K)
∫

Bγ(x)

|x− y|2K−n dy

≤ C(n, K)
∫ γ

0

ρn−1ρ2K−n dρ = C(n, K)|A|2K/n .

This proves that

|u|∞ ≤ C(n, K)|A|2K/n . (9)

Finally, by Hölder and Sobolev inequalities, we have

‖u‖2K = (u, u)K =
∫

A

u ≤ |u|K∗ |A|(n+2K)/2n ≤ C(n, K)‖u‖K |A|(n+2K)/2n ;

therefore,

‖u‖2K ≤ C(n, K)|A|1+2K/n . (10)

Since |A| ≤ |BR| ≤ CnRn, from (9) and (10) we get

‖u‖2K + C|u|2∞ ≤ C(n, K,R)|A|4K/n ,

which, together with (8), may be replaced into (7) to obtain (6) from the arbi-

trariness of A. 2

3 The decomposition method

Consider now the dual cone of K, namely

K′ = {w ∈ HK
0 (BR); (w, v)K ≤ 0 ∀v ∈ K} ;

in order to prove that (3) holds for any f ∈ HK
0 (BR) we first show that K′ is

contained in the cone of negative functions:

Lemma 2 If w ∈ K′, then w(x) ≤ 0 for a.e. x ∈ BR.

Proof. Let w ∈ K′; take an arbitrary function h ∈ C∞
0 (BR) ∩ K and consider the

problem  (−∆)Kv = h in BR

Dkv = 0 on ∂BR k = 0, ...,K − 1 ;
(11)
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by the comparison principle (positivity of Green’s function for the Dirichlet prob-

lem (11) in balls, cf. [4, p. 126]) we know that v ∈ K and therefore

0 ≥ (w, v)K =
∫

BR

w · (−∆)Kv =
∫

BR

wh .

We have so proved that
∫

wh ≤ 0 for all h ∈ C∞
0 (BR) ∩ K; by density we obtain

that
∫

wh ≤ 0 for all h ∈ L2(BR) such that h(x) ≥ 0 a.e. and this yields w(x) ≤ 0

a.e. 2

Now take any function f ∈ HK
0 (BR); by the Proposition in [19] we infer

that there exists a unique couple (f1, f2) ∈ K × K′ such that f = f1 + f2 and

(f1, f2)K = 0: then

‖f‖2K = ‖f1‖2K + ‖f2‖2K . (12)

Since f1(x) ≥ 0 and f2(x) ≤ 0 (by Lemma 2) for a.e. x ∈ BR we have |f1(x) +

f2(x)| ≤ max{|f1(x)|, |f2(x)|} and

|f1(x) + f2(x)|r ≤ max{|f1(x)|r, |f2(x)|r} ≤ |f1(x)|r + |f2(x)|r

for all r > 0; furthermore, if r ≥ 2 we obtain

|f |2r =
(∫

BR

|f1 + f2|r
)2/r

≤
(∫

BR

|f1|r +
∫

BR

|f2|r
)2/r

≤ |f1|2r + |f2|2r . (13)

By Lemma 1 we know that (6) holds for f1 and f2: therefore, by (12) and (13),

we get

‖f‖2K = ‖f1‖2K + ‖f2‖2K ≥ S(|f1|2K∗
+ |f2|2K∗

) + C(|f1|2 n
n−2K ,w + |f2|2 n

n−2K ,w)

≥ S|f |2K∗
+ C|f |2 n

n−2K ,w

with C = C/2. This proves (3) for all f ∈ HK
0 (BR). 2

Remark 1 When dealing with weak solutions of second order elliptic equations

one has to work in H1
0 . Here one usually decomposes f = f+ +f−, |f | = f+−f−,

and f+, f−, |f | are again functions in H1
0 . This simple trick and its refinements

(truncation on level sets) may be viewed as basis for the Stampacchia maximum

principle and even for the de Giorgi-Nash-Moser theory. As mentioned above this

decomposition is no longer admissible in higher order Sobolev spaces HK
0 , K ≥ 2.
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In our opinion this is the reason that only little is known about nonlinear higher

order equations compared with second order equations.

The decomposition method of Moreau together with the comparison principle

of Boggio may in some situations in HK
0 (K ≥ 2) substitute the decomposition

in positive and negative part just mentioned. A first application to a fourth order

eigenvalue problem can e.g. be found in [17].

Here we want to present another example. In the previous paper [14], Grunau

constructs a positive solution to the semilinear Dirichlet problem (1) in balls B,

but he leaves open the question whether this solution may be found (up to scaling)

as minimizer of the variational problem

Sλ = min
v∈HK

0 (B)\{0}

‖v‖2K − λ|v|22
|v|2K∗

where λ ∈ (0, λ1). Now it is easy to show that, at least in a ball, any minimizer (for

existence see also [14]) of this problem must be positive. Indeed, assume that u is

a minimizer and u 6≥ 0: then we decompose as above u = u1 +u2, u1 ∈ K, u2 ∈ K′.

Again by Lemma 2 we conclude u2 ≤ 0, u2 6≡ 0. So replacing u with the positive

function u1−u2 would strictly increase the L2-norm in the numerator and the LK∗ -

norm in the denominator. By orthogonality we have ‖u1 + u2‖2K = ‖u1 − u2‖2K .

As λ > 0 the fraction would strictly decrease, a contradiction!

An even simpler reasoning gives besides the positivity of the first eigenfunc-

tion also the simplicity of the first Dirichlet eigenvalue of (−∆)K in balls without

referring to Krein-Rutman’s or Jentzsch’s theorem.

Acknowledgement. The authors are grateful to Patrizia Pucci for her useful sug-

gestions on a preliminary version of the manuscript.
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