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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

Equations of fourth order

» Rough approximation for bending energy of a thin elastic plate
under orthogonal load f

/Q ((Au)2 —f u) dx

— Linear plate equation
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The equations

Willmore functional / equation

Equations of fourth order

» Rough approximation for bending energy of a thin elastic plate
under orthogonal load f

/Q ((Au)2 —f u) dx

— Linear plate equation

» Differential geometry: Looking for conformal metrics with
certain curvature properties
Q-curvature — Paneitz equation
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The equations

Linear plate

Willmore functional / equation

Equations of fourth order

» Rough approximation for bending energy of a thin elastic plate
under orthogonal load f

/Q ((Au)2 —f u) dx

— Linear plate equation

» Differential geometry: Looking for conformal metrics with
certain curvature properties
Q-curvature — Paneitz equation

» More realistic measure for bending energy of a thin elastic
plate under orthogonal load f

fu

Hlu])? — ——
/graph w \ " e

— Willmore equation
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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

Linear plate equation

Given QCR", f:Q—>R
look for u: Q — R as solution of the
Differential equation:

A%u="finQ.
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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

Linear plate equation

Given QCR", f:Q—>R
look for u: Q — R as solution of the
Differential equation:

A%u="finQ.

plus boundary conditions:
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The equations

Linear plate equation
Paneitz equation
Willmore functional / equation

Linear plate equation

Given QCR", f:Q—>R
look for u: Q — R as solution of the

Differential equation:
A%u=finQ.

plus boundary conditions:  Dirichlet. Clamped plate.
u=|Vu| =0on 0.

Example: f = 1.
0.03 -
0.02 -
0.01- N
08 -04 O 0.4x 08
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The equations

Linear plate equation

Paneitz equation
Willmore functional / equation

Linear plate equation

Given QCR", f:Q—>R
look for u: Q — R as solution of the
Differential equation:

A%u="finQ.
plus boundary conditions: Navier. ,, Hinged" plate.

u=Au=0on 0f.

Example: f =1
0.15 -
0.1- A
0.05 -
08 -04 O 0.4x 08
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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

Problems: Positivity preserving??

Essential tool in second order
elliptic differential inequalities:
Maximum principles, comparison principles, positivity preserving.
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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

Problems: Positivity preserving??

Essential tool in second order
elliptic differential inequalities:
Maximum principles, comparison principles, positivity preserving.

What about the plate equation
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The equations

Linear plate equation

Paneitz equation
Willmore functional / equation

Problems: Positivity preserving??

Essential tool in second order
elliptic differential inequalities:
Maximum principles, comparison principles, positivity preserving.

What about the plate equation
Does upwards pushing
yield upwards bending?

F>0 =u>07?7?

Fundamental for nonlinear problems.
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The equations

Linear plate equation

Paneitz equation
Willmore functional / equation

Problems: Positivity preserving??

Essential tool in second order
elliptic differential inequalities:
Maximum principles, comparison principles, positivity preserving.

What about the plate equation
Does upwards pushing
yield upwards bending?

f>0 =u>077?
Fundamental for nonlinear problems.

Remark.
Linear existence and regularity theory: o.k. since 1959.
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The equations

Linear plate equation

Willmore functional / equation

Conformal covariant differential operator of fourth order

(M, g) n—dimensional Riemannian manifold (n > 5).
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The equations

Linear plate equation

Willmore functional / equation

Conformal covariant differential operator of fourth order

(M, g) n—dimensional Riemannian manifold (n > 5).

4
Conformal covariance: for := un—4g one has
u

(PD)u(e) = u™m5(P)(up) Ve € C®(M)
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The equations

Linear plate equation
Paneitz equa

Willmore fun E equation

Conformal covariant differential operator of fourth order

(M, g) n—dimensional Riemannian manifold (n > 5).

4
Conformal covariance: for := un—4g one has
u

(PD)u(e) = u™m5(P)(up) Ve € C®(M)

where
Py = A%+ z": V,-(a,,Ré,-- — b,,R,--)V- + n—= 4QA’
— J J 2
I,_j:
and 1
"= —c,|(Ri)|? + d,R? — ———AR.
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The equations

Linear plate equation
Paneitz equa

Willmore fun E equation

Conformal covariant differential operator of fourth order

(M, g) n—dimensional Riemannian manifold (n > 5).

4
Conformal covariance: for := un—4g one has
u

(PD)u(e) = u™m5(P)(up) Ve € C®(M)

where
Py = A%+ z": V,-(a,,Ré,-- — b,,R,--)V- + n—= 4QA’
— J J 2
I,_j:
and 1
"= —c,|(Ri)|? + d,R? — ———AR.

. . n—4 _ nts
Paneitz equation: Pju = TQunf‘l.
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The equations

Linear plate equation
Paneitz equation

Willmore functional / equation

@ curvature

Consider here four dimensional manifold.
GauB-Bonnet—formula:

/M (Q 4 %|W|2> dS = 4x2x(M).
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The equations

Linear plate equation
Paneitz equation

Willmore functional / equation

@ curvature

Consider here four dimensional manifold.
GauB-Bonnet—formula:

/M (Q 4 %|W|2> dS = 4x2x(M).

Since (M) topological and |W|2dS pointwise conformal invariant:
/ QdS conformal invariant.
M

Governs e.g. existence of conformal Ricci-positive metrics.
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The equations

Linear plate equation
Paneitz equation

Willmore functional / equation

@ curvature

Consider here four dimensional manifold.
GauB-Bonnet—formula:

1
/ (Q + —|W|2> dS = 4n?x(M).
M 8
Since (M) topological and |W|2dS pointwise conformal invariant:
/ Q@ dS  conformal invariant.
M

Governs e.g. existence of conformal Ricci-positive metrics.

Questions:
Existence of conformal metrics with constant Q—curvature.
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The equations

Linear plate equation
Paneitz equation

Willmore functional / equation

@ curvature

Consider here four dimensional manifold.
GauB-Bonnet—formula:

/M (Q 4 %|W|2> dS = 4x2x(M).

Since (M) topological and |W|2dS pointwise conformal invariant:
/ QdS conformal invariant.
M

Governs e.g. existence of conformal Ricci-positive metrics.

Questions:
Existence of conformal metrics with constant Q—curvature.
Existence of conformal metrics with prescribed Q—curvature.
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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

Willmore equation

Two dimensional
ApH+2H(H> —=K)=0 on M.

Quasilinear; of fourth order; elliptic, non uniformly.
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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

Willmore equation

Two dimensional
ApH+2H(H> —=K)=0 on M.

Quasilinear; of fourth order; elliptic, non uniformly.

Previous results:
Existence of closed Willmore surfaces of prescribed genus.
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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

Willmore equation

Two dimensional
ApH+2H(H> —=K)=0 on M.
Quasilinear; of fourth order; elliptic, non uniformly.

Previous results:
Existence of closed Willmore surfaces of prescribed genus.
Stability of the sphere under the Willmore flow.
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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

Willmore equation

Two dimensional
ApH+2H(H> —=K)=0 on M.

Quasilinear; of fourth order; elliptic, non uniformly.
Previous results:
Existence of closed Willmore surfaces of prescribed genus.

Stability of the sphere under the Willmore flow.

Boundary value problems??7?
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The equations Linear plate equation

Paneitz equation

Willmore functional / equation

One dimensional, in what follows:

Look for u : [0,1] — R, solution of

+ =k =0, xe€(0,1),

1 d{ WX L
VI ooy o \ Vv uep) 2T
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The equations Lfincer s

Paneitz

ati
Willmore functional / equation

One dimensional, in what follows:

Look for u : [0,1] — R, solution of

V14 u’(x)2& V1+u(x)?

here k curvature of the unknown graph of u:

() = d u'(x) _ . u"(x)
dx \ \/1T+ o/(x)? (1+ u/(x)?2)%/?
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The equations Lfincer s

Paneitz

ati
Willmore functional / equation

One dimensional, in what follows:

Look for u : [0,1] — R, solution of

V14 u’(x)2& V1+u(x)?

here k curvature of the unknown graph of u:

() = d u'(x) _ . u"(x)
dx \ \/1T+ o/(x)? (1+ u/(x)?2)%/?

Boundary value problems:
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The equations Lfincer s

Paneitz

ati
Willmore functional / equation

One dimensional, in what follows:

Look for u : [0,1] — R, solution of

1 d ( K‘/(X) ) + l/{?’(X) =0, x¢€ (07 1)7

VIt u(x)2dx \ 1+ d(x)?

here k curvature of the unknown graph of u:

ST 5 N W
dx 1+ u/(x)2 (1+ u/(X)2)3/2

Boundary value problems: Navier.

Hans-Christoph Grunau Differential equations of fourth order



The equations Lfincer s

Paneitz

ati
Willmore functional / equation

One dimensional, in what follows:

Look for u : [0,1] — R, solution of

1 d ( K‘/(X) ) + l/{?’(X) =0, x¢€ (07 1)7

VIt u(x)2dx \ 1+ d(x)?

here k curvature of the unknown graph of u:

ST 5 N W
dx 1+ u/(x)2 (1+ u/(X)2)3/2

Boundary value problems:  Dirichlet.

u(0) =u(l) =0, J(0) =B, (1) =—p4,
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Comparison principles?

Dirichlet problem

A%u=f in Q,
u=|Vul=0 on 0.

Question: f > 0= u > 07
Boggio—Hadamard—conjecture.

Hans-Christoph Grunau Differential equations of fourth order



Linear plate equation

t to pairs of dual cones

Comparison principles?

Dirichlet problem

A%u=f in Q,
u=|Vul=0 on 0.

Question: f > 0= u > 07
Boggio—Hadamard—conjecture.

Equivalent: Positivity of the Green function
Boggio, 1905, (unit-) ball B = B;(0) C R”

A=1x2)(a-1y1?) MQ

Gp a2 (x y)—c,,/ o (v2 —1)vi™"dv > 0.
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Linear plate equation

t to pairs of dual cones

Comparison principles?

Dirichlet problem

A%u=f in Q,
u=|Vul=0 on 0.

Question: f > 0= u > 07
Boggio—Hadamard—conjecture.

Equivalent: Positivity of the Green function
Boggio, 1905, (unit-) ball B = B;(0) C R”

A=1x2)(a-1y1?) MQ

Gp a2 (x y)—c,,/ o (v2 —1)vi™"dv > 0.

General domains: Numerous counterexamples, 1949 ...2000
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Positivity for optimal solutions

Typical question: Is first eigenfunction

A1 = M1 in B,
w1 =|Vp1|=0 ondB

of fixed sign, say positive?,
the first eigenvalue A1 hence simple?
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Linear plate equation

ion with respect to pairs of dual cones

Positivity for optimal solutions

Typical question: Is first eigenfunction

A1 = M1 in B,
w1 =|Vp1|=0 ondB

of fixed sign, say positive?,
the first eigenvalue A1 hence simple?
Variational principle

Av)* d
A1 = min 7f5( \;) X
veH(B)\{0}  [gVv2dx
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Positivity for optimal solutions
Typical question: Is first eigenfunction

A1 = M1 in B,
w1 =|Vp1|=0 ondB

of fixed sign, say positive?,
the first eigenvalue A1 hence simple?
Variational principle

Av)* d
A1 = min 7f5( \;) X
veH(B)\{0}  [gVv2dx

Problem:
v € H3(B) % |v| € H3(B)!
Way out?



Linear plate equation

pbsition with respect to pairs of dual cones

Moreau decomposition, abstract setting

Theorem
Let ¢ be a Hilbert space, ¥ a closed convex cone;

H*={heH, Vge X (g, h) <0}
the dual. Then: Yf € J one has precisely one pair

f1 € %, szJf/*, f=~H+h, (fl,fz)zo.
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Moreau decomposition, abstract setting

Theorem
Let ¢ be a Hilbert space, ¥ a closed convex cone;

H*={heH, Vge X (g, h) <0}
the dual. Then: Yf € J one has precisely one pair

f1 € %, szJ‘i/*, f=~H+h, (fl,fz)zo.

Proof. As in the classical projection theorem

f—f)* = min ||If —g]°.
I = A" = min |If - gll

Variational principle, parallelogram identity. O
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Linear plate equation

pbsition with respect to pairs of dual cones

Moreau decomposition, concrete setting in H>(B)
Scalar product: (g,h) = [g AgAhdx
Cone: H ={geAH: g>0}
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Moreau decomposition, concrete setting in H>(B)
Scalar product: (g,h) = [g AgAhdx
Cone: H ={geAH: g>0}

What does h € Z* mean? Formally
Vg>0: /gthxgo.
B

According to Boggio: h <0 or h=0.
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Moreau decomposition, concrete setting in H>(B)
Scalar product: (g,h) = [g AgAhdx
Cone: H ={geAH: g>0}

What does h € Z* mean? Formally
Vg>0: /gthxgo.
B

According to Boggio: h <0 or h=0.
Example (T. Briu):
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Moreau decomposition, concrete setting in H>(B)
Scalar product: (g,h) = [g AgAhdx
Cone: H ={geAH: g>0}

What does h € Z* mean? Formally
Vg>0: /gthxgo.
B

According to Boggio: h <0 or h=0.
Example (T. Briu): :

62 -2 1 1 2
04 x

o6 -05

-08
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Eigenvalue problem for the clamped plate

Lemma
Let o eigenfunction w.r.t. eigenvalue \1 of clamped plate over B:

- Jg (Av)* dx Js (Ap)? dx
A1 = min 5 = > .
veH2(B)  [gvZdx [ ©? dx

Then ¢ of fixed sign, say ¢ > 0. Hence, \1 is simple.
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Eigenvalue problem for the clamped plate

Lemma
Let o eigenfunction w.r.t. eigenvalue \1 of clamped plate over B:

- Jg (Av)* dx Js (Ap)? dx
A1 = min 5 = > .
veH2(B)  [gvZdx [ ©? dx

Then ¢ of fixed sign, say ¢ > 0. Hence, \1 is simple.

Proof. Assume, ¢ changes sign.
Moreau decomposition: ¢ = 1 + @2,

/ ASO].AQO2 dX7 0 % ¥1 > 07 P2 < 0.
B
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Consider instead
@ =1 — 2 € H3(B);
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Consider instead
@ =1 — 2 € H3(B);

one has

fB (Acp)2 dx _ fB (Apr + Acpz)2 dx
J ©? dx [5 (1 + ¢2)* dx

A1
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Consider instead
@ =1 — 2 € H3(B);

one has

fB (Acp)2 dx fB (Apr + Acpz)2 dx
Je?dx [o(o1+ @) dx
[5(Bp1)? dx +2 [z Ap1Apo dx + [5 (Ap2)? dx
[z (92 4+ 20102 + ) dx

A =
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Consider instead
@ =1 — 2 € H3(B);

one has

fB (Acp)2 dx fB (Apr + Acpz)2 dx
Jew?dx [ (o1 +¢2)? dx
[5(Bp1)? dx +2 [z Ap1Apo dx + [5 (Ap2)? dx
5 (9% + 20102 + ¢3) dx
[5(Dp1)* dx — 2 [z Ap1Dgpy dx + [ (Ap2)® dx
[ (€3 + 201902 + ¥3) dx

A =
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Consider instead
@ =1 — 2 € H3(B);

one has

fB (Acp)2 dx fB (Apr + Acpz)2 dx
Jew?dx [ (o1 +¢2)? dx
[5(Bp1)? dx +2 [z Ap1Apo dx + [5 (Ap2)? dx
5 (9% + 20102 + ¢3) dx
[5(Dp1)* dx — 2 [z Ap1Dgpy dx + [ (Ap2)® dx
[ (€3 + 201902 + ¥3) dx
Jg(Do1 — Dpo)® dx [5(AP)? dx
Jg (03— 20100+ 03) dx  [p@?dx
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Linear plate equation Positivity

Decomposition with respect to pairs of dual cones

Consider instead
@ =1 — 2 € H3(B);

one has

fB (Acp)2 dx fB (Apr + Acpz)2 dx
Jew?dx [ (o1 +¢2)? dx
[5(Bp1)? dx +2 [z Ap1Apo dx + [5 (Ap2)? dx
5 (9% + 20102 + ¢3) dx
[5(Dp1)* dx — 2 [z Ap1Dgpy dx + [ (Ap2)® dx
[ (€3 + 201902 + ¥3) dx
Jg(Do1 — Dpo)® dx [5(AP)? dx
Jg (03— 20100+ 03) dx  [p@?dx

A =

>

a contradiction! O

Hans-Christoph Grunau Differential equations of fourth order



Paneitz equation

Euclidean background metric
Let Q CR", n> 4. Look for u > 0:
A%y = |ul ("D in Q

plus suitable boundary conditions. Then:
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Paneitz equation

Euclidean background metric
Let Q CR", n> 4. Look for u > 0:
A%y = |ul ("D in Q

plus suitable boundary conditions. Then:
Conformal metric g, = u*/("=%) (§;;) constant nontrivial
Q-curvature.
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Paneitz equation

Euclidean background metric
Let Q CR", n> 4. Look for u > 0:
A%y = |ul ("D in Q
plus suitable boundary conditions. Then:
Conformal metric g, = u*/("=%) (§;;) constant nontrivial
Q-curvature.

Variational techniques: critical growth.
= functionals, partial loss of compactness.
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Paneitz equation

Euclidean background metric
Let Q CR", n> 4. Look for u > 0:
A%y = |ul ("D in Q

plus suitable boundary conditions. Then:

Conformal metric g, = u*/("=%) (§;;) constant nontrivial

Q-curvature.

Variational techniques: critical growth.

= functionals, partial loss of compactness.

Fundamental: Sobolev embedding with optimal constant,

2

2% (R") — L2"/(=H(R"); S :=inf 7”%””“ .

||u||L2n/(n74)
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Paneitz equation

Euclidean background metric
Let Q CR", n> 4. Look for u > 0:
A%y = |ul ("D in Q

plus suitable boundary conditions. Then:

Conformal metric g, = u*/("=%) (§;;) constant nontrivial

Q-curvature.

Variational techniques: critical growth.

= functionals, partial loss of compactness.

Fundamental: Sobolev embedding with optimal constant,

2

2% (R") — L2"/(=H(R"); S :=inf 7”%””“ .

||u||L2n/(n74)

Minima attained, are positive solutions of

A%y = |uffHy in R (P)



Euclide

Paneitz equation Doublin

Doubling of energy of sign changing solutions

Lemma
Let u € 22 (R") be a sign changing solution of

A%y = |u¥/ "=y in R, (P)
Then one has: )
HAUH > 24/ng.
HuHL2n/ (n—4)
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Euclidean case

Paneitz equation Doubling of energy

Doubling of energy of sign changing solutions

Lemma
Let u € 22 (R") be a sign changing solution of

A%y = |u¥/ "=y in R, (P)
Then one has: )
180 e s
HuHL2n/ (n—4)

Proof. Similar as in the linear eigenvalue problem:

H ={ge7*R"): g >0},

%*z{hé@%R"): Vge X Ag-AhdxﬁO}C—%.

Rn
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Euclidean case

Paneitz equation Doubling of energy

Moreau decomposition
u=u;+u, up € X \{0}, up € "\ {0}, [gnAuy-Aupdx =0.
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Euclidean case

Paneitz equation Doubling of energy

Moreau decomposition

u=u;+u, up € X \{0}, up € "\ {0}, [gnAuy-Aupdx =0.
For i = 1,2 one obtains

|u(x)|8/(n—4) u(x)uj(x) < |u,-(x)|2”/(”_4),
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Euclidean case

Paneitz equation Doubling of energy

Moreau decomposition

u=u;+u, up € X \{0}, up € "\ {0}, [gnAuy-Aupdx =0.
For i = 1,2 one obtains

|U(X)|8/(n_4)U(X)U,'(X) < |u,-(x)|2”/(”_4),
It follows

S||Ul||L2n/n o < |Auj||7: :/ AuAujdx = A?yu; dx =
R? R?
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Euclidean case

Paneitz equation Doubling of energy

Moreau decomposition
u=u;+u, up € X \{0}, up € "\ {0}, [gnAuy-Aupdx =0.

For i = 1,2 one obtains

|u(x)|8/(n—4) u(x)uj(x) < |u,-(x)|2”/(”_4),

It follows
Sl ooy < [1Bui]2 = / Aulujdx = [ A%uu;dx =
n Rﬂ
_ 2 4
_ g ‘U‘S/(n 4)uu,- dx < /R ‘u ‘2n/ n—4) dx = || ,HLZH//’; 4))7
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Euclidean case

Paneitz equation Doubling of energy

Moreau decomposition
u=u;+u, up € X \{0}, up € "\ {0}, [gnAuy-Aupdx =0.

For i = 1,2 one obtains

|u(x)|8/(n—4) u(x)uj(x) < |u,-(x)|2”/(”_4),

It follows
Sl ooy < [1Bui]2 = / Aulujdx = [ A%uu;dx =
n Rﬂ
_ 2 4
_ g ‘U‘S/(n 4)uu,- dx < /R ‘u ‘2n/ n—4) dx = || ,HLZH//’; 4))7

and since both u; #Z 0:

||Ui||i2n/(n_4) > g(n=4)/4
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Euclidean case

Paneitz equation Doubling of energy

Previous slide:
HuiHizﬂ/(n74) > g(n=4)/4

Combining this once more with the PDE:
A%y = |uf¥ ("= in R". (P)
yields:
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Euclidean case

Paneitz equation Doubling of energy

Previous slide:
HuiHizﬂ/(n74) > g(n=4)/4

Combining this once more with the PDE:
A%y = |uf¥ ("= in R". (P)
yields:

Aul’d n
HAqu o /]R" ‘ U‘ x _ ‘Au‘2 dx & _
ull? B CEVCIV N
[2n/(n—4) </ |u|2n/(n—4) dx> R
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Euclidean case

Paneitz equation Doubling of energy

Previous slide:
HuiHizﬂ/(n74) > g(n=4)/4

Combining this once more with the PDE:
A%y = |uf¥ ("= in R". (P)

yields:
2
||AU||2 B RH\AU\ dx - Y 4/n_
- = [, 147 e) =
120/ (n—9) < |u|2n/(n—4)dx>
Rn

4/n
_ </ \Aul\zdx—i—/ \Auz\zdx> >
Rn Rr
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Euclidean case

Paneitz equation Doubling of energy

Previous slide:
HuiHizﬂ/(n74) > g(n=4)/4

Combining this once more with the PDE:
A%y = |uf¥ ("= in R". (P)
yields:

Aul? dx
||Au||2 Ayl

e ([
= . — 7 = |Aul dx) =
Rn
4/n
= </ | Auy |2 dx—i—/ | Au ? dx> >
Rn Rn

2 2 4/n
> (Sllunllfansn-ay + Sllt2llTano-a))

v
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Euclidean case

Paneitz equation Doubling of energy

Previous slide:
HuiHizﬂ/(n74) > g(n=4)/4

Combining this once more with the PDE:
A%y = |uf¥ ("= in R". (P)

4/n

—d)jn </ | Auf? dX) =
< | |2n/(n—4) dX> R

4/n

= < | Auy |2 dx—i—/ | Au ? dx> >

)4/”

yields:

Aul? dx
A2, 14l

lull?

[2n/(n—4)

v

2 (5||u1||L2n/n 4) +5||u2||L2n/n 4)
> (S"/4—|—S"/4) 4/n > 24/n5' O
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boundary data
tric boundary data

Willmore equation, one dimensional

Navier boundary value problem
Differential equation:
1 d K (x) 13
- +-xk°(x) =0, xe€(0,1),
1+ u/(x)2 dx ( 1—|—u’(x)2> 2 CJ 1)
Navier boundary data:

u(0) =u(1l) =0, £(0)=—a, s(1) = —a.

Hans-Christoph Grunau Differential equations of fourth order



boundary data
tric boundary data

Willmore equation, one dimensional

Navier boundary value problem
Differential equation:
1 d K (x) 13
- +-xk°(x) =0, xe€(0,1),
1+ u/(x)2 dx ( 1—|—u’(x)2> 2 CJ 1)
Navier boundary data:

u(0) =u(1l) =0, £(0)=—a, s(1) = —a.

Observation, cf. also Euler:
v(x) := K(x) (1 + u'(x)?)
solves ODE of second order without term of order zero::

- (a(x)v’(x)), + b(x)v'(x) = 0.

1/4
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Symmetric boundary data

Nonsymmetric boundary data
Willmore equation, one dimensional

Symmetric solutions
Then r(x) (1+ u’(x)z)l/4 = —c.
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Symmetric boundary data

Nonsymmetric boundary data
Willmore equation, one dimensional

Symmetric solutions

Then r(x) (1+ u’(x)2)1/4 = —c. For solving explicitly, consider

. G L s 1

inverse function G™1 : (—%, %) — R.
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Symmetric boundary data

Nonsymmetric boundary data

Willmore equation, one dimensional

Symmetric solutions

Then r(x) (1+ u’(x)2)1/4 = —c. For solving explicitly, consider

. G L s 1

inverse function G™1 : (—%, %) — R.

For smooth symmetric solutions there exists ¢ € (—¢p, ¢p):

Vx € [0,1] : v'(x)= Gt (— — cx) :

(c #0).

Hans-Christoph Grunau Differential equations of fourth order



Symmetric boundary data

Nonsymmetric boundary data
Willmore equation, one dimensional

Attaining the boundary data

To solve:
a= —kc(0) = < =: h(c).
16 ()
Image of h = set of admissible boundary data for «.
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ic boundary data

ric boundary data
Willmore equation, one dimensional

Attaining the boundary data

To solve:
a= —kc(0) = < =: h(c).
16 ()
Image of h = set of admissible boundary data for . Calculus

Figure: Admissible boundary data «, depending on the parameter ¢
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ic boundary data

ric boundary data
Willmore equation, one dimensional

Attaining the boundary data

To solve:
a= —kc(0) = < =: h(c).
16 ()
Image of h = set of admissible boundary data for «.
Theorem

One has amax = 1.343799725 . .. such that for 0 < || < amax the
Navier boundary value problem has precisely two solutions among
all smooth symmetric graphs.

For || = aumax: precisely one such solution.

For o = 0 only the trivial solution.

For |at| > aumax: no such solution.
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Symmetric boundary data

Nonsymmetric boundary data
Willmore equation, one dimensional

Attaining the boundary data

To solve:
a= —kc(0) = < = = h(c).
16 ()
Image of h = set of admissible boundary data for «.
. - :
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Symmetric boundary data

Nonsymmetric boundary data

Willmore equation, one dimensional

Attaining the boundary data

To solve:
! c
a = —r(0) = = = h(c).
16 ()
Image of h = set of admissible boundary data for «.
0z //)

Figure: Bifurcation diagrams for the Navier problem
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Symmetric boundary data
Nonsymmetric boundary data

Willmore equation, one dimensional

Navier boundary value problem

Differential equation:

1 d K (x) 1
\/m$< 1+u()2> K(x) =0, x€(01),

Navier boundary data:

u(0) =u(1) =0, k(0)=—a1, k(1) =—as.
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Symmetric boundary
Nonsymmetric boun:

Willmore equation, one dimensional

Navier boundary value problem

Differential equation:

L i( F) ) 13(x)—0 x€(0,1),

Vim0 & \ V1T o

Navier boundary data:

u(0) =u(1) =0, k(0)=—a1, k(1) =—as.

Idea: Reduce to symmetric case!
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Symmetric boundary data
Nonsymmetric boundary data

Willmore equation, one dimensional

Navier boundary value problem

Differential equation:

1 d K (x) 1
\/m$< 1+u()2> K(x) =0, x€(01),

Navier boundary data:

u(0) =u(1) =0, k(0)=—a1, k(1) =—as.

Idea: Reduce to symmetric case!

Take large solution Uy for a = 0,
extend oddly,

consider suitable parts, rotate, rescale.
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Symmetric boundary data
Nonsymmetric boundary data

Willmore equation, one dimensional

Construction of nonsymmetric solutions

kg curvature function of Uj,
choose intersection points —1 < xp < x3 < 1
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Symmetric boundary data
Nonsymmetric boundary data

Willmore equation, one dimensional

Construction of nonsymmetric solutions

kg curvature function of Uj,
choose intersection points —1 < xp < x3 < 1

VAN

I 05 05 1
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Symmetric boundary data
Nonsymmetric boundary data

Willmore equation, one dimensional

Construction of nonsymmetric solutions

kg curvature function of Uj,
choose intersection points —1 < xp < x3 < 1

08 /"' ™~
06 / \\
/ \

I 05 05

/

\
\\ -0.4)
\ //
S~ . 08

Consider Uy as graph (check!!)
over line through (xo, Uo(x0)) and x1, Up(x1))-
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Symmetric boundary data
Nonsymmetric boundary data

Willmore equation, one dimensional

Construction of nonsymmetric solutions

kg curvature function of Uj,
choose intersection points —1 < xp < x3 < 1

VAN

I 05 05 1
/

‘\
\ —-0.4f
N /
S~ . 08

Length of connecting line:

L(xo0,x1) :== \/(Xl —x0)% + (Uo(x1) — Uo(x0))?,
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Symmetric boundary data
Nonsymmetric boundary data

Willmore equation, one dimensional

Construction of nonsymmetric solutions

kg curvature function of Uj,
choose intersection points —1 < xp < x3 < 1

VAN

I -5 05 1

/

\
\\ 0.4/
\ //
S~ . 08

After rotation and rescaling: boundary curvature to be attained on
[0, 1]:

L(Xo,Xl)lio(Xo), L(Xo,Xl)Fco(Xl).
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Symmetric boundary data

Nonsymmetric boundary data
Willmore equation, one dimensional

Examples

Intersection points xp =
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Symmetric boundary data

Nonsymmetric boundary data
Willmore equation, one dimensional

Examples

Intersection points xg = —1/2,xp = 1/2:
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Symmetric boundary data

Nonsymmetric boundary data
Willmore equation, one dimensional

Existence theorem

Theorem
Let C C R?:

~

4 2 0 2 4

Then, for any (g, 1) € C there is a smooth graph solution of the
Navier boundary value problem:

1 d K'(x) 1
\/m&< 1+u’(x)2>+2“3() 0. xe(0.1),

u(0) =0, u(l) =0, k(0) = —ay, k(1) = —ag.
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