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Equations of fourth order

◮ Rough approximation for bending energy of a thin elastic plate
under orthogonal load f

∫

Ω

(

(∆u)2 − f u
)

dx

−→ Linear plate equation
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under orthogonal load f
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Ω

(

(∆u)2 − f u
)

dx

−→ Linear plate equation
◮ Differential geometry: Looking for conformal metrics with

certain curvature properties
Q-curvature −→ Paneitz equation
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Equations of fourth order

◮ Rough approximation for bending energy of a thin elastic plate
under orthogonal load f

∫

Ω

(

(∆u)2 − f u
)

dx

−→ Linear plate equation
◮ Differential geometry: Looking for conformal metrics with

certain curvature properties
Q-curvature −→ Paneitz equation

◮ More realistic measure for bending energy of a thin elastic
plate under orthogonal load f

∫

graph [u]

(

(H[u])2 −
f u

√

1 + |∇u|2

)

dS

−→ Willmore equation
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Linear plate equation

Given Ω ⊂ R
n, f : Ω → R

look for u : Ω → R as solution of the
Differential equation:

∆2u = f in Ω.
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Linear plate equation

Given Ω ⊂ R
n, f : Ω → R

look for u : Ω → R as solution of the
Differential equation:

∆2u = f in Ω.

plus boundary conditions:
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Linear plate equation

Given Ω ⊂ R
n, f : Ω → R

look for u : Ω → R as solution of the
Differential equation:

∆2u = f in Ω.

plus boundary conditions: Dirichlet. Clamped plate.

u = |∇u| = 0 on ∂Ω.

Example: f ≡ 1.
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Linear plate equation

Given Ω ⊂ R
n, f : Ω → R

look for u : Ω → R as solution of the
Differential equation:

∆2u = f in Ω.

plus boundary conditions: Navier.
”
Hinged“ plate.

u = ∆u = 0 on ∂Ω.

Example: f ≡ 1
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Problems: Positivity preserving??

Essential tool in second order

elliptic differential inequalities:
Maximum principles, comparison principles, positivity preserving.
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Problems: Positivity preserving??

Essential tool in second order

elliptic differential inequalities:
Maximum principles, comparison principles, positivity preserving.

What about the plate equation
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Problems: Positivity preserving??

Essential tool in second order

elliptic differential inequalities:
Maximum principles, comparison principles, positivity preserving.

What about the plate equation
Does upwards pushing
yield upwards bending?

f ≥ 0 ⇒ u ≥ 0 ???

Fundamental for nonlinear problems.
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Problems: Positivity preserving??

Essential tool in second order

elliptic differential inequalities:
Maximum principles, comparison principles, positivity preserving.

What about the plate equation
Does upwards pushing
yield upwards bending?

f ≥ 0 ⇒ u ≥ 0 ???

Fundamental for nonlinear problems.

Remark.
Linear existence and regularity theory: o.k. since 1959.
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Conformal covariant differential operator of fourth order

(M, g) n–dimensional Riemannian manifold (n ≥ 5).

Hans-Christoph Grunau Differential equations of fourth order



The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Linear plate equation
Paneitz equation
Willmore functional / equation

Conformal covariant differential operator of fourth order

(M, g) n–dimensional Riemannian manifold (n ≥ 5).

Conformal covariance: for gu := u
4

n−4 g one has

(Pn
4 )u(ϕ) = u

− n+4
n−4 (Pn

4 )(uϕ) ∀ϕ ∈ C∞(M)
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Conformal covariant differential operator of fourth order

(M, g) n–dimensional Riemannian manifold (n ≥ 5).

Conformal covariance: for gu := u
4

n−4 g one has

(Pn
4 )u(ϕ) = u

− n+4
n−4 (Pn

4 )(uϕ) ∀ϕ ∈ C∞(M)

where

Pn
4 := ∆2 +

n
∑

i ,j=1

∇i

(

anRδij − bnRij

)

∇j +
n − 4

2
Qn

4

and

Qn
4 := −cn|(Rij)|

2 + dnR
2 −

1

2(n − 1)
∆R .
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Conformal covariant differential operator of fourth order

(M, g) n–dimensional Riemannian manifold (n ≥ 5).

Conformal covariance: for gu := u
4

n−4 g one has

(Pn
4 )u(ϕ) = u

− n+4
n−4 (Pn

4 )(uϕ) ∀ϕ ∈ C∞(M)

where

Pn
4 := ∆2 +

n
∑

i ,j=1

∇i

(

anRδij − bnRij

)

∇j +
n − 4

2
Qn

4

and

Qn
4 := −cn|(Rij)|

2 + dnR
2 −

1

2(n − 1)
∆R .

Paneitz equation: Pn
4 u =

n − 4

2
Qu

n+4
n−4 .
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Q curvature

Consider here four dimensional manifold.
Gauß–Bonnet–formula:

∫

M

(

Q +
1

8
|W |2

)

dS = 4π2χ(M).
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Q curvature

Consider here four dimensional manifold.
Gauß–Bonnet–formula:

∫

M

(

Q +
1

8
|W |2

)

dS = 4π2χ(M).

Since χ(M) topological and |W |2dS pointwise conformal invariant:

∫

M
Q dS conformal invariant.

Governs e.g. existence of conformal Ricci-positive metrics.
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dS = 4π2χ(M).

Since χ(M) topological and |W |2dS pointwise conformal invariant:
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M
Q dS conformal invariant.

Governs e.g. existence of conformal Ricci-positive metrics.

Questions:
Existence of conformal metrics with constant Q–curvature.
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Q curvature

Consider here four dimensional manifold.
Gauß–Bonnet–formula:

∫

M

(

Q +
1

8
|W |2

)

dS = 4π2χ(M).

Since χ(M) topological and |W |2dS pointwise conformal invariant:

∫

M
Q dS conformal invariant.

Governs e.g. existence of conformal Ricci-positive metrics.

Questions:
Existence of conformal metrics with constant Q–curvature.
Existence of conformal metrics with prescribed Q–curvature.

Hans-Christoph Grunau Differential equations of fourth order



The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Linear plate equation
Paneitz equation
Willmore functional / equation

Willmore equation

Two dimensional

∆MH + 2H(H2 − K ) = 0 on M.

Quasilinear; of fourth order; elliptic, non uniformly.
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Two dimensional

∆MH + 2H(H2 − K ) = 0 on M.

Quasilinear; of fourth order; elliptic, non uniformly.

Previous results:
Existence of closed Willmore surfaces of prescribed genus.
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Willmore equation

Two dimensional

∆MH + 2H(H2 − K ) = 0 on M.

Quasilinear; of fourth order; elliptic, non uniformly.

Previous results:
Existence of closed Willmore surfaces of prescribed genus.
Stability of the sphere under the Willmore flow.
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Willmore equation

Two dimensional

∆MH + 2H(H2 − K ) = 0 on M.

Quasilinear; of fourth order; elliptic, non uniformly.

Previous results:
Existence of closed Willmore surfaces of prescribed genus.
Stability of the sphere under the Willmore flow.

Boundary value problems???
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One dimensional, in what follows:

Look for u : [0, 1] → R, solution of

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),
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One dimensional, in what follows:

Look for u : [0, 1] → R, solution of

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

here κ curvature of the unknown graph of u:

κ(x) =
d

dx

(

u′(x)
√

1 + u′(x)2

)

=
u′′(x)

(1 + u′(x)2)3/2
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One dimensional, in what follows:

Look for u : [0, 1] → R, solution of

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

here κ curvature of the unknown graph of u:

κ(x) =
d

dx

(

u′(x)
√

1 + u′(x)2

)

=
u′′(x)

(1 + u′(x)2)3/2

Boundary value problems:
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One dimensional, in what follows:

Look for u : [0, 1] → R, solution of

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

here κ curvature of the unknown graph of u:

κ(x) =
d

dx

(

u′(x)
√

1 + u′(x)2

)

=
u′′(x)

(1 + u′(x)2)3/2

Boundary value problems: Navier.

u(0) = u(1) = 0, κ(0) = −α0, κ(1) = −α1.
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One dimensional, in what follows:

Look for u : [0, 1] → R, solution of

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

here κ curvature of the unknown graph of u:

κ(x) =
d

dx

(

u′(x)
√

1 + u′(x)2

)

=
u′′(x)

(1 + u′(x)2)3/2

Boundary value problems: Dirichlet.

u(0) = u(1) = 0, u′(0) = β0, u′(1) = −β1,
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Positivity
Decomposition with respect to pairs of dual cones

Comparison principles?

Dirichlet problem

{

∆2u = f in Ω,
u = |∇u| = 0 on ∂Ω.

Question: f ≥ 0 ⇒ u ≥ 0?
Boggio–Hadamard–conjecture.
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Positivity
Decomposition with respect to pairs of dual cones

Comparison principles?

Dirichlet problem

{

∆2u = f in Ω,
u = |∇u| = 0 on ∂Ω.

Question: f ≥ 0 ⇒ u ≥ 0?
Boggio–Hadamard–conjecture.
Equivalent: Positivity of the Green function
Boggio, 1905, (unit–) ball B = B1(0) ⊂ R

n

GB,∆2(x , y) = cn

∫

r

1+
(1−|x|2)(1−|y|2)

|x−y|2

1
(v2 − 1)v1−n dv > 0.
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Positivity
Decomposition with respect to pairs of dual cones

Comparison principles?

Dirichlet problem

{

∆2u = f in Ω,
u = |∇u| = 0 on ∂Ω.

Question: f ≥ 0 ⇒ u ≥ 0?
Boggio–Hadamard–conjecture.
Equivalent: Positivity of the Green function
Boggio, 1905, (unit–) ball B = B1(0) ⊂ R

n

GB,∆2(x , y) = cn

∫

r

1+
(1−|x|2)(1−|y|2)

|x−y|2

1
(v2 − 1)v1−n dv > 0.

General domains: Numerous counterexamples, 1949 . . . 2000
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Positivity
Decomposition with respect to pairs of dual cones

Positivity for optimal solutions

Typical question: Is first eigenfunction

{

∆2ϕ1 = λ1ϕ1 in B ,
ϕ1 = |∇ϕ1| = 0 on ∂B

of fixed sign, say positive?,
the first eigenvalue λ1 hence simple?
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The equations
Linear plate equation

Paneitz equation
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Positivity
Decomposition with respect to pairs of dual cones

Positivity for optimal solutions

Typical question: Is first eigenfunction

{

∆2ϕ1 = λ1ϕ1 in B ,
ϕ1 = |∇ϕ1| = 0 on ∂B

of fixed sign, say positive?,
the first eigenvalue λ1 hence simple?
Variational principle

λ1 = min
v∈H2

0 (B)\{0}

∫

B
(∆v)2 dx
∫

B
v2 dx
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The equations
Linear plate equation

Paneitz equation
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Positivity
Decomposition with respect to pairs of dual cones

Positivity for optimal solutions

Typical question: Is first eigenfunction

{

∆2ϕ1 = λ1ϕ1 in B ,
ϕ1 = |∇ϕ1| = 0 on ∂B

of fixed sign, say positive?,
the first eigenvalue λ1 hence simple?
Variational principle

λ1 = min
v∈H2

0 (B)\{0}

∫

B
(∆v)2 dx
∫

B
v2 dx

Problem:
v ∈ H2

0 (B) 6⇒ |v | ∈ H2
0 (B)!

Way out?
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Positivity
Decomposition with respect to pairs of dual cones

Moreau decomposition, abstract setting

Theorem
Let H be a Hilbert space, K a closed convex cone;

K
∗ := {h ∈ H ; ∀g ∈ K : (g , h) ≤ 0}

the dual. Then: ∀f ∈ H one has precisely one pair

f1 ∈ K , f2 ∈ K
∗, f = f1 + f2, (f1, f2) = 0.
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Positivity
Decomposition with respect to pairs of dual cones

Moreau decomposition, abstract setting

Theorem
Let H be a Hilbert space, K a closed convex cone;

K
∗ := {h ∈ H ; ∀g ∈ K : (g , h) ≤ 0}

the dual. Then: ∀f ∈ H one has precisely one pair

f1 ∈ K , f2 ∈ K
∗, f = f1 + f2, (f1, f2) = 0.

Proof. As in the classical projection theorem

‖f − f1‖
2 = min

g∈K
‖f − g‖2.

Variational principle, parallelogram identity. �
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Positivity
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Moreau decomposition, concrete setting in H2
0 (B)

Scalar product: (g , h) :=
∫

B
∆g∆h dx

Cone: K := {g ∈ H : g ≥ 0}
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Positivity
Decomposition with respect to pairs of dual cones

Moreau decomposition, concrete setting in H2
0 (B)

Scalar product: (g , h) :=
∫

B
∆g∆h dx

Cone: K := {g ∈ H : g ≥ 0}

What does h ∈ K ∗ mean? Formally

∀g ≥ 0 :

∫

B

g∆2h dx ≤ 0.

According to Boggio: h < 0 or h ≡ 0.
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Moreau decomposition, concrete setting in H2
0 (B)

Scalar product: (g , h) :=
∫

B
∆g∆h dx

Cone: K := {g ∈ H : g ≥ 0}

What does h ∈ K ∗ mean? Formally

∀g ≥ 0 :

∫

B

g∆2h dx ≤ 0.

According to Boggio: h < 0 or h ≡ 0.
Example (T. Bräu):
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Moreau decomposition, concrete setting in H2
0 (B)

Scalar product: (g , h) :=
∫

B
∆g∆h dx

Cone: K := {g ∈ H : g ≥ 0}

What does h ∈ K ∗ mean? Formally

∀g ≥ 0 :

∫

B

g∆2h dx ≤ 0.

According to Boggio: h < 0 or h ≡ 0.
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Positivity
Decomposition with respect to pairs of dual cones

Eigenvalue problem for the clamped plate

Lemma
Let ϕ eigenfunction w.r.t. eigenvalue λ1 of clamped plate over B:

λ1 = min
v∈H2

0 (B)

∫

B
(∆v)2 dx
∫

B
v2 dx

=

∫

B
(∆ϕ)2 dx
∫

B
ϕ2 dx

.

Then ϕ of fixed sign, say ϕ > 0. Hence, λ1 is simple.
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Positivity
Decomposition with respect to pairs of dual cones

Eigenvalue problem for the clamped plate

Lemma
Let ϕ eigenfunction w.r.t. eigenvalue λ1 of clamped plate over B:

λ1 = min
v∈H2

0 (B)

∫

B
(∆v)2 dx
∫

B
v2 dx

=

∫

B
(∆ϕ)2 dx
∫

B
ϕ2 dx

.

Then ϕ of fixed sign, say ϕ > 0. Hence, λ1 is simple.

Proof. Assume, ϕ changes sign.
Moreau decomposition: ϕ = ϕ1 + ϕ2,

∫

B

∆ϕ1∆ϕ2 dx , 0 6≡ ϕ1 ≥ 0, ϕ2 < 0.
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Positivity
Decomposition with respect to pairs of dual cones

Consider instead
ϕ̃ := ϕ1 − ϕ2 ∈ H2

0 (B);
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Positivity
Decomposition with respect to pairs of dual cones

Consider instead
ϕ̃ := ϕ1 − ϕ2 ∈ H2

0 (B);

one has

λ1 =

∫

B
(∆ϕ)2 dx
∫

B
ϕ2 dx

=

∫

B
(∆ϕ1 + ∆ϕ2)

2 dx
∫

B
(ϕ1 + ϕ2)

2
dx
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Positivity
Decomposition with respect to pairs of dual cones

Consider instead
ϕ̃ := ϕ1 − ϕ2 ∈ H2

0 (B);

one has

λ1 =

∫

B
(∆ϕ)2 dx
∫

B
ϕ2 dx

=

∫

B
(∆ϕ1 + ∆ϕ2)

2 dx
∫

B
(ϕ1 + ϕ2)

2
dx

=

∫

B
(∆ϕ1)

2
dx + 2

∫

B
∆ϕ1∆ϕ2 dx +

∫

B
(∆ϕ2)

2
dx

∫

B

(

ϕ2
1 + 2ϕ1ϕ2 + ϕ2

2

)

dx
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=
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dx + 2

∫

B
∆ϕ1∆ϕ2 dx +

∫

B
(∆ϕ2)

2
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∫

B

(

ϕ2
1 + 2ϕ1ϕ2 + ϕ2

2

)

dx

=

∫

B
(∆ϕ1)
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dx − 2
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Willmore equation, one dimensional

Positivity
Decomposition with respect to pairs of dual cones

Consider instead
ϕ̃ := ϕ1 − ϕ2 ∈ H2

0 (B);

one has

λ1 =

∫

B
(∆ϕ)2 dx
∫

B
ϕ2 dx

=

∫

B
(∆ϕ1 + ∆ϕ2)

2 dx
∫

B
(ϕ1 + ϕ2)

2
dx

=

∫

B
(∆ϕ1)

2
dx + 2

∫

B
∆ϕ1∆ϕ2 dx +

∫

B
(∆ϕ2)

2
dx

∫

B

(

ϕ2
1 + 2ϕ1ϕ2 + ϕ2

2

)

dx

=

∫

B
(∆ϕ1)

2
dx − 2

∫

B
∆ϕ1∆ϕ2 dx +

∫

B
(∆ϕ2)

2
dx

∫

B

(

ϕ2
1 + 2ϕ1ϕ2 + ϕ2

2

)

dx

>

∫

B
(∆ϕ1 − ∆ϕ2)

2
dx

∫

B

(

ϕ2
1 − 2ϕ1ϕ2 + ϕ2

2

)

dx
=

∫

B
(∆ϕ̃)2 dx
∫

B
ϕ̃2 dx

,
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Positivity
Decomposition with respect to pairs of dual cones

Consider instead
ϕ̃ := ϕ1 − ϕ2 ∈ H2

0 (B);

one has

λ1 =

∫

B
(∆ϕ)2 dx
∫

B
ϕ2 dx

=

∫

B
(∆ϕ1 + ∆ϕ2)

2 dx
∫

B
(ϕ1 + ϕ2)

2
dx

=

∫

B
(∆ϕ1)

2
dx + 2

∫

B
∆ϕ1∆ϕ2 dx +

∫

B
(∆ϕ2)

2
dx

∫

B

(

ϕ2
1 + 2ϕ1ϕ2 + ϕ2

2

)

dx

=

∫

B
(∆ϕ1)

2
dx − 2

∫

B
∆ϕ1∆ϕ2 dx +

∫

B
(∆ϕ2)

2
dx

∫

B

(

ϕ2
1 + 2ϕ1ϕ2 + ϕ2

2

)

dx

>

∫

B
(∆ϕ1 − ∆ϕ2)

2
dx

∫

B

(

ϕ2
1 − 2ϕ1ϕ2 + ϕ2

2

)

dx
=

∫

B
(∆ϕ̃)2 dx
∫

B
ϕ̃2 dx

,

a contradiction! �
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The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Euclidean case
Doubling of energy

Euclidean background metric

Let Ω ⊂ R
n, n > 4. Look for u > 0:

∆2u = |u|8/(n−4)u in Ω

plus suitable boundary conditions. Then:
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The equations
Linear plate equation
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Willmore equation, one dimensional

Euclidean case
Doubling of energy

Euclidean background metric

Let Ω ⊂ R
n, n > 4. Look for u > 0:

∆2u = |u|8/(n−4)u in Ω

plus suitable boundary conditions. Then:
Conformal metric gu = u4/(n−4) (δij) constant nontrivial
Q-curvature.
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Euclidean case
Doubling of energy

Euclidean background metric

Let Ω ⊂ R
n, n > 4. Look for u > 0:

∆2u = |u|8/(n−4)u in Ω

plus suitable boundary conditions. Then:
Conformal metric gu = u4/(n−4) (δij) constant nontrivial
Q-curvature.
Variational techniques: critical growth.
⇒ functionals, partial loss of compactness.
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The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Euclidean case
Doubling of energy

Euclidean background metric

Let Ω ⊂ R
n, n > 4. Look for u > 0:

∆2u = |u|8/(n−4)u in Ω

plus suitable boundary conditions. Then:
Conformal metric gu = u4/(n−4) (δij) constant nontrivial
Q-curvature.
Variational techniques: critical growth.
⇒ functionals, partial loss of compactness.
Fundamental: Sobolev embedding with optimal constant,

D
2 (Rn) →֒ L2n/(n−4) (Rn) ; S := inf

‖∆u‖2
L2

‖u‖2
L2n/(n−4)

.
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The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Euclidean case
Doubling of energy

Euclidean background metric

Let Ω ⊂ R
n, n > 4. Look for u > 0:

∆2u = |u|8/(n−4)u in Ω

plus suitable boundary conditions. Then:
Conformal metric gu = u4/(n−4) (δij) constant nontrivial
Q-curvature.
Variational techniques: critical growth.
⇒ functionals, partial loss of compactness.
Fundamental: Sobolev embedding with optimal constant,

D
2 (Rn) →֒ L2n/(n−4) (Rn) ; S := inf

‖∆u‖2
L2

‖u‖2
L2n/(n−4)

.

Minima attained, are positive solutions of

∆2u = |u|8/(n−4)u in R
n (P)
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Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Euclidean case
Doubling of energy

Doubling of energy of sign changing solutions

Lemma
Let u ∈ D2 (Rn) be a sign changing solution of

∆2u = |u|8/(n−4)u in R
n. (P)

Then one has:
‖∆u‖2

L2

‖u‖2
L2n/(n−4)

≥ 24/n S .
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Euclidean case
Doubling of energy

Doubling of energy of sign changing solutions

Lemma
Let u ∈ D2 (Rn) be a sign changing solution of

∆2u = |u|8/(n−4)u in R
n. (P)

Then one has:
‖∆u‖2

L2

‖u‖2
L2n/(n−4)

≥ 24/n S .

Proof. Similar as in the linear eigenvalue problem:

K =
{

g ∈ D
2(Rn) : g ≥ 0

}

,

K
∗ =

{

h ∈ D
2(Rn) : ∀g ∈ K :

∫

Rn

∆g · ∆h dx ≤ 0

}

⊂ −K .
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The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Euclidean case
Doubling of energy

Moreau decomposition

u = u1 + u2, u1 ∈ K \ {0}, u2 ∈ K ∗ \ {0},
∫

Rn ∆u1 ·∆u2 dx = 0.
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The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Euclidean case
Doubling of energy

Moreau decomposition

u = u1 + u2, u1 ∈ K \ {0}, u2 ∈ K ∗ \ {0},
∫

Rn ∆u1 ·∆u2 dx = 0.
For i = 1, 2 one obtains

|u(x)|8/(n−4)u(x)ui (x) ≤ |ui (x)|2n/(n−4) .
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The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Euclidean case
Doubling of energy

Moreau decomposition

u = u1 + u2, u1 ∈ K \ {0}, u2 ∈ K ∗ \ {0},
∫

Rn ∆u1 ·∆u2 dx = 0.
For i = 1, 2 one obtains

|u(x)|8/(n−4)u(x)ui (x) ≤ |ui (x)|2n/(n−4) .

It follows

S‖ui‖
2
L2n/(n−4) ≤ ‖∆ui‖

2
L2 =

∫

Rn

∆u∆ui dx =

∫

Rn

∆2uui dx =
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Linear plate equation
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Willmore equation, one dimensional

Euclidean case
Doubling of energy

Moreau decomposition

u = u1 + u2, u1 ∈ K \ {0}, u2 ∈ K ∗ \ {0},
∫

Rn ∆u1 ·∆u2 dx = 0.
For i = 1, 2 one obtains

|u(x)|8/(n−4)u(x)ui (x) ≤ |ui (x)|2n/(n−4) .

It follows

S‖ui‖
2
L2n/(n−4) ≤ ‖∆ui‖

2
L2 =

∫

Rn

∆u∆ui dx =

∫

Rn

∆2uui dx =

=

∫

Rn

|u|8/(n−4)uui dx ≤

∫

Rn

|ui |
2n/(n−4) dx = ‖ui‖

2n/(n−4)

L2n/(n−4) ,
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Euclidean case
Doubling of energy

Moreau decomposition

u = u1 + u2, u1 ∈ K \ {0}, u2 ∈ K ∗ \ {0},
∫

Rn ∆u1 ·∆u2 dx = 0.
For i = 1, 2 one obtains

|u(x)|8/(n−4)u(x)ui (x) ≤ |ui (x)|2n/(n−4) .

It follows

S‖ui‖
2
L2n/(n−4) ≤ ‖∆ui‖

2
L2 =

∫

Rn

∆u∆ui dx =

∫

Rn

∆2uui dx =

=

∫

Rn

|u|8/(n−4)uui dx ≤

∫

Rn

|ui |
2n/(n−4) dx = ‖ui‖

2n/(n−4)

L2n/(n−4) ,

and since both ui 6≡ 0:

‖ui‖
2
L2n/(n−4) ≥ S (n−4)/4.
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Paneitz equation
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Euclidean case
Doubling of energy

Previous slide:
‖ui‖

2
L2n/(n−4) ≥ S (n−4)/4.

Combining this once more with the PDE:

∆2u = |u|8/(n−4)u in R
n. (P)

yields:
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Euclidean case
Doubling of energy

Previous slide:
‖ui‖

2
L2n/(n−4) ≥ S (n−4)/4.

Combining this once more with the PDE:

∆2u = |u|8/(n−4)u in R
n. (P)

yields:

‖∆u‖2
L2

‖u‖2
L2n/(n−4)

=

∫

Rn

|∆u|2 dx

(
∫

Rn

|u|2n/(n−4) dx

)(n−4)/n
=

(
∫

Rn

|∆u|2 dx

)4/n

=
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Previous slide:
‖ui‖

2
L2n/(n−4) ≥ S (n−4)/4.

Combining this once more with the PDE:

∆2u = |u|8/(n−4)u in R
n. (P)

yields:

‖∆u‖2
L2

‖u‖2
L2n/(n−4)

=

∫

Rn

|∆u|2 dx

(
∫

Rn

|u|2n/(n−4) dx

)(n−4)/n
=

(
∫

Rn

|∆u|2 dx

)4/n

=

=

(
∫

Rn

|∆u1|
2 dx +

∫

Rn

|∆u2|
2 dx

)4/n

≥
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Doubling of energy

Previous slide:
‖ui‖

2
L2n/(n−4) ≥ S (n−4)/4.

Combining this once more with the PDE:

∆2u = |u|8/(n−4)u in R
n. (P)

yields:

‖∆u‖2
L2

‖u‖2
L2n/(n−4)

=

∫

Rn

|∆u|2 dx

(
∫

Rn

|u|2n/(n−4) dx

)(n−4)/n
=

(
∫

Rn

|∆u|2 dx

)4/n

=

=

(
∫

Rn

|∆u1|
2 dx +

∫

Rn

|∆u2|
2 dx

)4/n

≥

≥
(

S‖u1‖
2
L2n/(n−4) + S‖u2‖

2
L2n/(n−4)

)4/n
≥
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Previous slide:
‖ui‖

2
L2n/(n−4) ≥ S (n−4)/4.

Combining this once more with the PDE:

∆2u = |u|8/(n−4)u in R
n. (P)

yields:

‖∆u‖2
L2

‖u‖2
L2n/(n−4)

=

∫

Rn

|∆u|2 dx

(
∫

Rn

|u|2n/(n−4) dx

)(n−4)/n
=

(
∫

Rn

|∆u|2 dx

)4/n

=

=

(
∫

Rn

|∆u1|
2 dx +

∫

Rn

|∆u2|
2 dx

)4/n

≥

≥
(

S‖u1‖
2
L2n/(n−4) + S‖u2‖

2
L2n/(n−4)

)4/n
≥

≥
(

Sn/4 + Sn/4
)4/n

≥ 24/nS . �
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The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Symmetric boundary data
Nonsymmetric boundary data

Navier boundary value problem

Differential equation:

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

Navier boundary data:

u(0) = u(1) = 0, κ(0) = −α, κ(1) = −α.
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Symmetric boundary data
Nonsymmetric boundary data

Navier boundary value problem

Differential equation:

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

Navier boundary data:

u(0) = u(1) = 0, κ(0) = −α, κ(1) = −α.

Observation, cf. also Euler:

v(x) := κ(x)
(

1 + u′(x)2
)1/4

solves ODE of second order without term of order zero::

−
(

a(x)v ′(x)
)′

+ b(x)v ′(x) = 0.
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Linear plate equation
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Willmore equation, one dimensional

Symmetric boundary data
Nonsymmetric boundary data

Symmetric solutions

Then κ(x)
(

1 + u′(x)2
)1/4

≡ −c .
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Symmetric solutions

Then κ(x)
(

1 + u′(x)2
)1/4

≡ −c . For solving explicitly, consider

G : R →
(

−
c0

2
,

c0

2

)

, G (s) :=

∫ s

0

1

(1 + τ2)5/4
dτ

inverse function G−1 :
(

− c0
2 , c0

2

)

→ R.
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Symmetric solutions

Then κ(x)
(

1 + u′(x)2
)1/4

≡ −c . For solving explicitly, consider

G : R →
(

−
c0

2
,

c0

2

)

, G (s) :=

∫ s

0

1

(1 + τ2)5/4
dτ

inverse function G−1 :
(

− c0
2 , c0

2

)

→ R.
For smooth symmetric solutions there exists c ∈ (−c0, c0):

∀x ∈ [0, 1] : u′(x) = G−1
(c

2
− cx

)

.

κ(x) = −
c

4

√

1 + G−1
(

c
2 − cx

)2
.

And u(0) = u(1) = 0 gives:

u(x) =
2

c
4

√

1 + G−1
(

c
2 − cx

)2
−

2

c
4

√

1 + G−1
(

c
2

)2
(c 6= 0).
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Symmetric boundary data
Nonsymmetric boundary data

Attaining the boundary data

To solve:

α
!
= −κc(0) =

c

4

√

1 + G−1
(

c
2

)2
=: h(c).

Image of h = set of admissible boundary data for α.
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Symmetric boundary data
Nonsymmetric boundary data

Attaining the boundary data

To solve:

α
!
= −κc(0) =

c

4

√

1 + G−1
(

c
2

)2
=: h(c).

Image of h = set of admissible boundary data for α. Calculus

–1

–0.5

0.5

1

–2 –1 1 2

Figure: Admissible boundary data α, depending on the parameter c
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Attaining the boundary data

To solve:

α
!
= −κc(0) =

c

4

√

1 + G−1
(

c
2

)2
=: h(c).

Image of h = set of admissible boundary data for α.

Theorem
One has αmax = 1.343799725 . . . such that for 0 < |α| < αmax the

Navier boundary value problem has precisely two solutions among

all smooth symmetric graphs.

For |α| = αmax: precisely one such solution.

For α = 0 only the trivial solution.

For |α| > αmax: no such solution.
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Attaining the boundary data

To solve:

α
!
= −κc(0) =

c

4

√

1 + G−1
(

c
2

)2
=: h(c).

Image of h = set of admissible boundary data for α.
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Attaining the boundary data

To solve:

α
!
= −κc(0) =

c

4

√

1 + G−1
(

c
2

)2
=: h(c).

Image of h = set of admissible boundary data for α.

–0.8
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Figure: Bifurcation diagrams for the Navier problem
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The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Symmetric boundary data
Nonsymmetric boundary data

Navier boundary value problem

Differential equation:

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

Navier boundary data:

u(0) = u(1) = 0, κ(0) = −α1, κ(1) = −α2.
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The equations
Linear plate equation

Paneitz equation
Willmore equation, one dimensional

Symmetric boundary data
Nonsymmetric boundary data

Navier boundary value problem

Differential equation:

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

Navier boundary data:

u(0) = u(1) = 0, κ(0) = −α1, κ(1) = −α2.

Idea: Reduce to symmetric case!
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Willmore equation, one dimensional

Symmetric boundary data
Nonsymmetric boundary data

Navier boundary value problem

Differential equation:

1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

Navier boundary data:

u(0) = u(1) = 0, κ(0) = −α1, κ(1) = −α2.

Idea: Reduce to symmetric case!
Take large solution U0 for α = 0,
extend oddly,
consider suitable parts, rotate, rescale.
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Linear plate equation
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Willmore equation, one dimensional

Symmetric boundary data
Nonsymmetric boundary data

Construction of nonsymmetric solutions

κ0 curvature function of U0,
choose intersection points −1 < x0 < x1 < 1
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Construction of nonsymmetric solutions

κ0 curvature function of U0,
choose intersection points −1 < x0 < x1 < 1
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Paneitz equation
Willmore equation, one dimensional

Symmetric boundary data
Nonsymmetric boundary data

Construction of nonsymmetric solutions

κ0 curvature function of U0,
choose intersection points −1 < x0 < x1 < 1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1 –0.5 0.5 1

Consider U0 as graph (check!!)
over line through (x0,U0(x0)) and x1,U0(x1)).
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Construction of nonsymmetric solutions

κ0 curvature function of U0,
choose intersection points −1 < x0 < x1 < 1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1 –0.5 0.5 1

Length of connecting line:

L(x0, x1) :=
√

(x1 − x0)2 + (U0(x1) − U0(x0))2,
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Construction of nonsymmetric solutions

κ0 curvature function of U0,
choose intersection points −1 < x0 < x1 < 1
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After rotation and rescaling: boundary curvature to be attained on
[0, 1]:

L(x0, x1)κ0(x0), L(x0, x1)κ0(x1).
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Existence theorem

Theorem
Let C ⊂ R

2:
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4

4
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2

Then, for any (α0, α1) ∈ C there is a smooth graph solution of the

Navier boundary value problem:















1
√

1 + u′(x)2
d

dx

(

κ′(x)
√

1 + u′(x)2

)

+
1

2
κ3(x) = 0, x ∈ (0, 1),

u(0) = 0, u(1) = 0, κ(0) = −α0, κ(1) = −α1.
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