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Abstract

The Green function for the biharmonic operator on boundeadaies with zero Dirichlet
boundary conditions is in general not of fixed sign. Howebgextending an idea of Z. Nehari,
we are able to identify regions of positivity for Green funos of polyharmonic operators. In
particular, the biharmonic Green function is consideredlirspace dimensions. As a conse-
quence we see that the negative part of any such Green fanstsomehow small compared
with the singular positive part.

1 Introduction and Main Results

We are interested in positivity preserving properties @ iiharmonic Dirichlet boundary value
problem
A’u=f in 2,
1)
u=|Vul =0 ono,

i.e. in the question, which was raised by Hadamard [Hal, Hel2¢ther positive daté > 0 always
yield positive solutions: > 0. It is by now well known that the answer is affirmative e.g. all§
[B], small perturbations of the two dimensional disk [GSEZ}and even in some nonconvex two
dimensional domains [DS2]. However, in general, this priypdoes not hold true as was shown
by many counterexamples [C, CD, CG, D, Ga, O, ST]. The questientioned is closely related
to the positivity of the corresponding Green function. Letassume that the bounded domain
Q c R"is C**—smooth. Then, by [ADN], for every € C®* (Q) one has a unique classical
solutionu € C** (ﬁ) That means that the Green functioy, := Gz corresponding to the
Dirichlet problem (1) exists and that the solution is given b

u(z) = / Galx.y) F(y) dy.

Mathematics Subject ClassificatioB5J65; 35B50, 35J40.
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The question of Hadamard may now be rephrased as whetheasne h
Ga(z,y) >0 oreven Gg(x,y)> 07

As explained above, this question in general cannot be aesshvire the affirmative. However, one
observes in numerical examples that the negative pé@t,afeems to beery smalwhen compared
with its positive part. So, here we pose the question to iflestibsets

PcQxQ\{(z,2)}

such that
V(z,y) € P: Go(z,y) > 0.

If such a sefP can be identified to be relatively large, this would show thatnegative part of the
Green function is indeed relatively small. This questionasonly of interest in its own, but may
play a crucial role in treating nonlinear equations.

A first step to identify positivity set® was done by Nehari [N] in space dimensions= 2 and
n = 3. His result will be described after Theorem 1 below. Relgaeablems were treated from
different points of view by Malyshev [M] and Dall’Acqua, M&er and the second author [DMS].

We write
d(x) = dist(z, 092).

Developing Nehari’s idea, we are able to prove the followiesplt:

Theorem 1. Letn > 4. Then there exists a constait > 0, which depends only on the dimension
n, such that the following holds true:

Assume? C R™ to be aC**-smooth bounded domain and let den6tg := Ga:zq the Green
function for the biharmonic operator under Dirichlet bowargt conditions. If

|z = y| < dpmax{d(z),d(y)},

then we have
GQ(‘Ta y) > 0.

For the constand,,, one may achieve that
04 > 0.59, 6, > 0.6 forn > 5.

and that
~ (0.618.

lim §,, = V-1
2

Such a result was proved by Nehari [N] in the three dimensgioasen = 3 with a constant

03 = 4 — 2v/3 = 0.535898384 . ... For two dimensional domains, only a much more restricted

statement seems to be available, where alsotv@maldistance ofr, y to boundary points o2
is involved, see also [N].

Sinced(z) < d(y) + |x — y| one may observe that the conditioh— y| < ¢, max{d(z),d(y)}

implies that alsdz — y| < 12— min{d(z), d(y)}.




The preceding theorem shows that the negative part of thenGrenction is uniformly bounded
and henceelatively smallwhen compared with the singular positive part, as long asady stay
uniformly away from the boundar§s2.

Combining Theorem 1 with Green function estimates due tes#vakij [K] and refined by Dall’
Acqua and the second author [DS1], one obtains:

Corollary 2. Under the assumptions of Theorem 1 there exists a conétanatC'(£2) such that if
|z —y| < 0, max{d(x),d(y)}, then

|z — y[* forn > 4,
0 < Golx,y) < C
log (1 + \:Jc—iy\> forn =4.

Remark 2.1. Except for the results of Nehari and the few explicit fornsutar special domains,
the estimates that we are aware of did not identify regiorgosftivity outside the diagonal. One
knows that whem > 4 the Green function has a positive singularity, thatis(x, y) — +oo for

x — y. The estimates that have been proved before in [DS1] forrgedemains are

( 2
|2 — y|*~" min {1, (ﬂfﬂ‘;ﬁ%’) } forn > 4,
2
ot < €4 tog (1+ (129)") for n — 4 @
1,
(d(z)d(y))*"*" min {1, (W) ’ } for n < 4.
\

The estimates in (2) are of optimal order for the positive pathe Green function as can be seen
by the explicit function from [B] for the ball. See also [GS2)/e expect that for the negative part
much better estimates hold true but except for special dmnahere an explicit formula for the
Green function is known, only in 2 dimensions such a bettémese has been obtained [DMS].
For general 2-dimensional smooth domains the followingreste is of optimal order:

—C d(z)*d(y)? < Gal(z,y) < C d(z)d(y) min {1 M} .

P z—yl?

With slightly more complicated but similar techniques ashia proof of Theorem 1, one may also
cover the Green function for the Dirichlet problei_a~ o for the polyharmonic operator. By
means of the formula

uw) = [ Grsymale.) 1) dy
Q
we find solutions of the polyharmonic Dirichlet problem
(=A)"u = f in €,
w=|Vul=...=|V™lu| =0 onoQ,

3)

providedf and2 are smooth enough.

In order to avoid distinctions and too many technicaliti@s, only state and prove the result for
large dimensions. Moreover, we think that, as in the bihammoase [N], it cannot be extended to
the whole range of small dimensions.



Theorem 3. Letm € N, n > 2m. Then there exists a constant,, > 0, which depends only on
the dimensiom and the ordeR2m of the polyharmonic operator, such that the following hdlde:

Assumé C R" to be aC*™*-smooth bounded domain and let denGte )~ ¢, the polyharmonic
Green function under Dirichlet boundary conditions. If

|2 =yl < O max{d(z), d(y)},

then
Gaymo(z,y) > 0.
For the constand,,, ,,, one may achieve that

C(m)I (2 I'(m)2
2

and, for fixedmn, that

-1
lim 0y, = V5

n—oo 2

~ (0.618.

Remark 3.1. Numerical evidence indicates the following for the contap, ,,.

o0

e For eachn the sequencéd,,, . }>°, .,

is increasing to\/%.

e The sequencéd,, s, +1}.._, is decreasing to.

We emphasise that we provide boundsdgr,, the limit of which forn — oo is \/52‘1 for eachm.

2 Thebiharmonic operator

We consider the following situation
By := B1(0) € Q C Bg := Bg(0)
and write for suitablg’ : R" — R:
Gaf(e)i= [ Gale.0) (o) dy

the solutionu(z) := Gq f () to the Dirichlet problem (1).
Let us recall a fundamental solution fa® onR™:

Calz*" if n¢{2,4},

Fu(Jz]) = § —2c4log |z if n=4, (4)
2co|z|* log|z| if n =2,
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where
1

, ifn & {2 4},
- 2({1 —4)(n — 2)ne, {24} e, = / dz.
i B1(0)
— if n e {2,4},
The Green function may be decomposed into the fundamentdi@oplus a regular part
Ga(z,y) = Fulle —yl) + Halz, y), (5)

whereH, € C** (Q x Q). We will also use

Haf(@) = [ Holo)£(5)dy. ©)
Lemma4. Let f, g be smooth and supported iy. Then
[ (8Gaf) (8Gag) do= [ (F (M f = M) + 9 (Mg — Higg) d
Q By
s [ (4 Gn9+Gnue) +9(Gnf + G, ) do

B1

(7)

Proof. We consider the quadratic form

R 3 (8,7) /Q (BAGaf +AGag)? da

and show that this is non-decreasing in the dondairfror this purpose, consider smooth domains
w C €, and one gets:

/ (BAGof +7AGag)? dr — / (BAG.f +AGug)? da
Q

w

= / (BAGaf +vAGag)” dr + / (BAG. f +7AG,g)* dv
Q

w

9 / (BGuf +7Gug) (BA*GLf +~vA%G.g) dx

= / (BAGof +vAGag)? dx + / (BAG.f +vAG,g)° dv
Q

w

9 / (BGuf +7Gu9) (Bf +g) dx

_ / (BAGof +~4AGag)? dz + / (BAG,f +1AGug)® du
Q

w

_2/ (B9 f +G.9) (BA*Gaf +7A°Gag) dx

_ / (BAGaf +7AGag)? di + / (BAG.f +1AGug) de
Q

w

9 / (BAG.f +7AGug) (3AGaf + 7AGag) da

- / _(9AGaf +50Gag)" o + / (B(AGaf — AGLf) +1(AGag — AG.g)) de

w

v

0.



In a first step we exploit this monotonicity iB; C Q with 6 =~ = 1:
[ (@3Gaf + 8609 e > [ (AGnf +80n0 do = [ (f+0Gu ([ +9) dr @©
In a second step itis usedfhC BIR with g = —y = 1: 1

| (860~ 8600)* ds < [ (AGn,S - AGao)* ds

Bpr

- /B (f — 9 (f — g) dz = / (f = 0)Gs, (f —g) do. ©)

B

The first identity follows from an integration by parts an@ thoundary conditions fot'z,,, and
the second since the supportfoéndg is supposed to lie im;.

Substracting (9) from (8) yields
4/ (Aggf) (Aggg) dx Z f (gBlf - gBRf) dz +/ g (gB1g - gBRQ) dx
Q B: B1

+ [ f(Gpg+Gpyg) dx +/ 99 f+GB,f) dx.
B

B1
SinceGg, — G, = Hp, — Hp,, the claim follows. O

Lemmab. For x,y € By, x # y, we have the following estimate from below for the biharraoni
Green function of:

Ga(z,y) > i (Hp,(x,x) — Hp,(x,x) + Hp,(y,y) — Hp,(y,y)) + % (G, (z,y) + Gar(z,9))
(10)

Proof. The statement follows directly from Lemma 4 by taking smoafiproximations of the
Dirac delta distribution concentrated inandy resp. forf andg. One also uses the symmetry of
the Green functionGo(z,y) = Gal(y, ). O

Proof of Theorem 1We recall (see e.g. [B, p. 126], cf. also [GS2, p. 591]) thatifo- 4

B n—2 z | n—4 P
Gp(z,y) = culz—y|* "= zly — —| +—=—|lzly— =] |z—ylp.(21)
2 |z] 2 |z
. 1 1
GBR(x7y) = R4 GB1 (EZL} Ely)v (12)
n—2 z|2\* "
Hp,(z,2) = —c¢, 5 <R_f) , (13)
while forn =4
T x|
Gp (z,y) = 04{—210g|x—y\+210g \mly—m‘—1+ Ix\y—m \x—ylz}, (14)
1 1
GBR('Tuy) = GBl (Exa Ey)u (15)
Hgp,( = 2¢41 1—@ — 2¢c4log R 16
Br x7x) - Cy Og R2 C4+ Cy Og . ( )
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In order to prove Theorem 1, by scaling and translation,@nisugh to consider = 0,y € Bs, (0),
whered,, € (0,1) has to be suitably specified below.

We consider first the case> 4, where Lemma 5 and formulas (11)—(13) yield:
n—2 n-—

4 2 . =2 4em M2 |2\ "
. > _ 4—n _ _ 2 _ g
CnGQ(O,y) > 5 + 5 R 5 (1 |y ) + 5 (R I

+Hly|* "= (n—=2) + (n =4y — (n —2)R*"" + (n — 4)R*"|y|*.

Letting R — oo, we obtain

n—2
2

e B e ) A (I N )

If n = 5 one has to check whether
11
0 <4—06ly| - 4ly* + |y’ — [y

The right hand side is strictly decreasingqm € [0, 0.6] and takes on a positive value foff = 0.6.
According to MAPLEMthe above inequality is satisfied fy| € (0,0.612865. . .).

If n > 6, we drop the ternin — 4)|y|? in (17) and have to determirg such that

a2 ) S 20 (18)

Asymptotically,d,, should be chosen close to the positive régtof
§=1-10,
i.e. 100, = (v/5 —1)/2 ~ 0.618. We show that (18) is satisfied with = 0.6, i.e. that

3\""" n-2/16\"" 3
() - ) 22>
(5) 2 (25) (=220

S8 (n—2) G—Z)H ~3(n—2) (g)H >0,

The left hand side of the last expression is increasing:for 18 and attains positive values for
n =6, ..., 18, thereby showing that (18) holds true #Hy= 0.6.

Finally we consider the case = 4 and choos&? > 1, where Lemma 5 and formulas (14)—(16)
yield:

4 ly|®
C—4GQ(0,y) > —2log <1 ) +2log (1 — |y*) —4log R
2 ‘9‘2
—8log ly| + 4log R — 4 + 2|y| +2ﬁ
= 21 1—|;y|—2 + 21 (1—||2)—81||—4+2||2+2|—yE
= 0og R? 0og Yy og |y Y R?
Letting R — oo, we conclude:
4
5, Gal0y) = —8logly| +2log (1~ [yl*) — 4+ 2ly/" (19)

The right hand side is certainly decreasing|ih € [0,0.6] and takes on a positive value for
ly| = 6, = 0.59. With the help of MAPLEMwe see that it is positive fdy| € (0,0.594160...).
[



3 Thepolyharmonic operator

Here, the arguments are very similar to Section 2 and we masehebrief and focus mainly on
what is different. Throughout this section, according tedtem 3, we confine ourselves to the
case

n > 2m.

We consider
Bl = Bl(O) C Q C BR - BR(O)

and the Green functiot_a)»~ o corresponding to (3) ifi2. Again, this Green function may be
decomposed into a singular and a regular part

Geaym (@, y) = cmplz — y["™ " + H_aym o(2,y), (20)

where H_aymq € C*™° (Q X ﬁ) denotes the regular part amgl ,, > 0 is a suitable positive
constant. Lemma 5 directly generalises to the polyharmsitu@ation and we may perform the

Proof of Theorem 3According to [B, p. 126] (see also [GS2, p. 591]) we have witkudable
positive constant;,, .,

|lely— % | /12—yl .
Gayp (1,y) = Kmnlr — ylzm_"/ (v* =1)" o' " dv, (21)
1
2m—n 1 1
Giaympp(r,y) = R Gaym,B =T RY ) (22)
B km,n |ZIZ'|2 2m—n
H(_A)m7BR(.Z’,LU) = —n — 2m <R — ?> . (23)

The constants’,, ,, andk,, ,, are related by

mn kmn 2_1m ' 1 " dv —kmn m
Cm, ’ /1 (U ) e 2j+2—n

2m=1(m —1)! (24)

m Y

[ —25)

J=1

- km,n

the proof of which is a calculus exercise.

By the generalisation of Lemma 5, formulas (21)—(23) aniihigtR — oo, we obtain

m—n ]Cmm m—n - m—=1_1_p
Gaya0,y) > cnalyl ™" = =52 [y/? / (v =1)" o' do

2 11yl
km,n 2\ 2m—n
“4(n—2m) (H(l_'y” )
Cm,n 2m—n km,n 2\ 2m—n
= 5yl T dn—2m) (1 + (1= 1[y) ) (25)



so that

206 ga(0.y) > A e o) (@e)
m,n n .
IT(5-)
J=1

Certainly, one finds,,,, > 0 such that the right hand side is positive fof < §,,,. Form fixed
andn — oo, the power2m — n dominate all the other terms aidg, ,, may be chosen such that
they approach the positive zefg of

§=1-6%

which is presicely@. In the casex = 2m + 1, (26) reads

4 rm)I (3) 1 1
Giamo(0,y) > 2—— 2/ = 1 _ 27
e GOV vy e s S 1Y R gy @7)
I'(m)l (2
> obm) %)-1 I (28)
T'(m+13) lyl 1—ly|
The right hand side (28) is positive if and only if
T'(m)T (2 I(m)2T (2)?
<1420 (f)— 1+L(122' (29)
e 5\ e

One might wonder whether dropping a positive term in (25ggivise to a very rough estimate.
The previous estimate (29) would still allow for choosiiyg = 0.46, while the right hand side
of (27) is positive forjy| < d25 = 0.54. On the other hand, according to Theorend,l;, = 0.59

is admissible. This shows that one hasn’t lost much in (25)arly case, our proof shows that we
cannot do better than a constapt,, with

lim 5m,2m+1 =0,
m—o0

even if one had kept the second term in (25). OJ
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