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Abstract We prove existence and uniqueness (up to rescaling) ofigmsitdial
entire solutions of supercritical semilinear biharmorgoations. The proof is per-
formed with a shooting method which uses the value of thergkderivative at
the origin as a parameter. This method also enables us to fiitd fime blow
up solutions. Finally, we study the convergence at infinftgraooth solutions to-
wards the explicitly known singular solution. It turns ohat the convergence is
different in space dimensioms< 12 andn > 13.
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1 Introduction

In the present paper we investigate existence, uniquea@gsptotic behavior and
further qualitative properties of radial solutions of thepercritical biharmonic
equation

A2u=|uPlu inR" (1)
wheren > 5 andp > 2. Let us mention that the subcritical cagec 2% is by

now well-established, see [5, Theorems 1.3, 1.4]. Thereseweral motivations
for the study of (1). Let us try to explain them in some detail.
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We first recall that the corresponding supercritical seaodédr equation (when
n>3andp > 12
—Au=uPtu inR" (2)
was intensively studied by Gidas-Spruck [7], PohoZaey §idl in particular de-

tail by Xuefeng Wang [18]. For the reader’s convenience, tagesthose of the
results obtained there, being of relevance for the prespem

Proposition 1 [18]

Let n> 3 and assume that p ﬂ%% Then, for any a> 0 the equation (2) admits
a unique radial positive solution & u(r) such that ¢0) = a and yr) — 0 as

r — oo. The solution u satisfies) < 0for all r > 0 and

. ~ 2(np—2p—n)\ ¥(P-Y
rImrc]or u(r)=L: ( (=172 .
Moreover, if n< 100rif n > 11 and

o< pf i n?—8n+4+8y/n—1
' (n—2)(n—10)

then yr) — Lr—%/(P-1 changes sign infinitely many times. Ibn11and p> p°
then Yr) < Lr=?/(P~Y for all r > 0 and the solutions are strictly ordered with
respect to the initial value & u(0) .

The main concern of the mentioned paper [18] by Wang, howavercorre-
sponding reaction-diffusion equations.

Most of the methods employed for the proof of Propositiond special for
second order equations and do not apply to (1). For instanesitative prop-
erties of solutions require a detailed analysis of a dynahggstem in the cor-
responding phase space which is two dimensional for (2)redseit is four di-
mensional for (1). And in four dimensional spaces powerfdls such as the
Poincaré-Bendixson theory are no longer available. Omeiopurposes is to find
out which of the results in [18] continue to hold and by whi@wmethods they
can be proved.

We seek solutions of (1) which only depend ofx| so that they also solve
the corresponding ordinary differential equation. Duehteithomogeneity, both
equations (1) and (2) are invariant under a suitable resgalihis means that
existence of a solution immediately implies the existerfdaefmitely many solu-
tions, each one of them being characterized by its valueeabtigin. To ensure
smoothness of the solution, one needs to requireuti@} = u”(0) = 0 for (1)
andu’(0) = 0 for (2). But contrary to (2), solutions of (1) may be detared only
by fixing a priori also the value af”’(0). In Theorem 1, which is stated in de-
tail like the other main results in Section 2, we show thaitp@sradial solutions
u=u(]x|) of (1) exist and are unique, up to rescaling. The proof isqreréd
with a shooting method which uses as a free parameter thetigigaconcavity”,
namely the initial second derivativ& (0). Clearly, (2) has no free parameter since
one has just to fix the rescaling parametgd).

Theorem 2 highlights a further striking difference betwéBrand (2). It states
that the shooting concavity’(0) enables to find both positive and negative finite
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time blow up solutions for (1). Since no free parameter islalke, no such solu-
tions exist for (2).

In Sections 3 and 6 we transform (1) into an autonomous orylidi#feren-
tial equation and, by exploiting the supercriticality asgtion, we construct an
energy functional which has the crucial feature of beingctyr decreasing on
critical points of the solution. This fact, combined wittveeal fine estimates, en-
ables us to prove Theorem 3, namely that positive radiateestlutions of (1)
behave asymptotically %] — o like the (positive) singular solutiong(x) :=
C|x|~#/(P=1) which solves (1) irR™\ {0} for a suitable value of > 0. In other
words, we show that any entire positive radial solutica u(|x|) of (1) satisfies

Il‘im [ * P Yu(|x)) =C ®3)
X|—00

for some fixedC > 0. Although this result is similar to that obtained in [18} fo
(2), its proof is completely different.

The following step is to find out whether the convergence jro(@urs mono-
tonically or with oscillations. To this end, we perform alstiy analysis for the
singular solutionus. It turns out that for dimensions> 13 a new critical exponent
pc > ﬂ%ﬁ arises. The stable manifold behaves differentlyrfet 12 andp > ﬂ%j

orn>13 andﬂ%ﬁ < p < pe on the one hand, and for> 13 andp > p¢ on the
other hand. In Section 4 we show that strong hints give thinfig¢hat oscilla-
tions occur in the former situation. On the other hand, indrm 4 we prove that
monotone convergence occurs in (3) whenever 13 andp > pc. In what fol-
lows, the notion “subcritical” and “supercritical” alwaysfers to this new critical
exponentpc. Our results still leave open some questions, which we desan
detail in Open Problems 1-3 in Section 4.

Finally, let us mention that our results may also shed sogt# bn related
problems in the unit baB c R". For both the casds= —A andL = A?, consider
the equation

Lu=A(1+uP inB (4)

whereA > 0. We complement (4) with homogeneous Dirichlet boundarydco
tions U= 0if L= —A andu= |Ou| = 0 if L = A?). WhenL = —A4, it is known
[11, Théoreme 4] that the extremal solutigh(corresponding to the largest value
of A for which (4) admits a positive solution) is bounded for mnd p which
give rise to smooth solutions of (2) oscillating around thegslar solution, see
[18, Proposition 3.7]. For the remaining valuesroénd p (when no oscillation
occurs in (2), it is known [3] that* is unbounded. Wheh = A2, similar results
are not known due to several serious obstructions whicle.afisr instance, the
singular solution of (4) cannot be explicitly determineee $1,2]. Moreover, the
link with remainder terms in Hardy inequality discovered3h seems to fail for
higher order problems [6]. Nevertheless, the results optksent paper enable us
to conjecture that, wheh = A2, extremal solutions of (4) are unbounded if and
only if n> 13 andp > pc.

This paper is organized as follows. In the next section, \@eestur main re-
sults. In Section 3 we transform equation (1) first into amaamous equation and
subsequently into an autonomous system. In Section 4 wg gtecautonomous
system in the “subcritical” casg+4)/(n—4) < p < pc. Finally, Sections 5, 6,
7 and 8 are devoted to the proofs of the results.
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2 Results

An existence result, which covers the equation (1), wasngiiret by Serrin and
Zou [16]. In Section 5, we give a different proof which is paplks simpler and
more suitable for our purposes. Moreover, we show unigueard complement
these results with some information on the qualitative bighaf the solution.

Theorem 1 Let n> 5and assume that p ﬂ%ﬁ. Then, for any a> 0 the equation
A2u=uP  inR" (5)

admits a unique radial positive solution=tiu(r) (r = |x|) such that ¢0) = a and
u(r) — 0as r— . Moreover, u satisfies:

(i) u(r) <Oforallr > 0.

(ii) Au(r) < Oforallr > 0.

(i ) (Au)'(r) > Oforallr > 0.

The solutions in Theorem 1 are constructed by means of aigsigomethod.
We keepu(0) fixed, sayu(0) = 1, and look for solutionsi, of the initial value
problem over0, «):

u§,4)(r) n 2(n; 1) u’)j’(r) n (n— 12£n—3) u’)j(r) ~(n— 12§n—3) u’y(r)
= |uy(r)[P~*uy(r) 6)

w0 =1, uw(0=uy/(0=0, u(0)=y<o0,

which is the radial version of equation (1). Then, one haddhewing behavior
with respect to the parametgr

Theorem 2 There exists a uniqug< 0 such that the solution of (6) (for y=7Y)
exists on the whole intervid, «), is positive everywhere and vanishes at infinity.
If y <, there exisD < Ry < Ry < o such that y(Ry) = 0 andlim,_r, uy(r) =
—oo. If y >y, there exist0 < R; < Ry < » such that {(r) < 0 for r € (0,Ry),
u,(R1) =0, Uj(r) > Oforr € (Ry,Rz) andlim;_g, uy(r) = +oo.

Theorem 2 shows that entire radial solutions of (1) are resréyg of one sign

so that, in what follows, we restrict our attention to pegtsolutions. Itis a simple
observation that a positive singular solutigyof (5) is given by

us(r) = Ko/ P~ r=#/(p-1), (7)
where

8

ARV

[ (1-2)(n-4)(p— 1%+ 2(n* ~ 100+ 20)(p— 1)?

—16(n—4)(p—1)+32| .

In contrast with the second order equation (2) discussed8h g priori the en-
tire solutions of (5) found in Theorem 1 may have faster debay the singular
solution, see the discussion in Section 6. However, by toamsng equation (6)
into an autonomous A 4 system and by means of a careful analysis of a suit-
able energy functional and of corresponding integrabpityperties, we succeed
in proving the following result:
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Theorem 3 Let n> 5and assume that p 2%2‘. Let u=u(r) be a positive smooth
radial entire solution of (5) and letdbe as in (7). Then,

1/(p-1)

u(r) < (%) i us(r) forallr >0 (8)
and ")
u(r

rmo us(r) =1 ©

We now wish to describe in which way (9) occurs. To this endSégttion 3
and 8 we perform a stability analysis of the singular sohutig It turns out that
for dimensions > 13 a new critical exponerg; > ﬂ%ﬁ becomes important:

Theorem 4 For all n > 13 there exists p> ﬂ%j such that if p> pcand ifuis a
smooth positive radial entire solution of (5), thefru— K2/ (P~Yr=4/(-1) does
not change sign infinitely many times.

The numbeip, is the unique value gb > ﬂ%j such that

—(n—4)(n®— 4% — 128+ 256)(p— 1)* +1283n—8)(n— 6)(p—1)2
+256(n? — 181+ 52)(p— 1)? — 2048n—6)(p— 1) +4096= 0.

In Proposition 2 we show that— p. is decreasing fon > 13 and tends to 1 as
n— oo,

Theorem 4 is a partial result concerning the “supercriticasep > p¢, n > 13.
Section 4 is devoted to the discussion of the “subcriticabe

3 An autonomous system

In radial coordinates = |x|, equation (5) reads

2(n—-1 n-1)(n—-3 n—-1)(n—3
u(4)(r) + ( . )Um(l‘) + ( 25 )U”(I‘) B ( 2§ )U/(I‘) (10)
= uP(r) r €[0,00) .
Our purpose here is to transform (10) first into an autononeoustion and, sub-

sequently, into an autonomous system. For some of the @sméaich follow, it

is convenient to rewrite the original assumption ﬂ%ﬁ as

(n—4)(p—1)>8. (11)
Inspired by the proof of [18, Proposition 3.7] (see also [yy& set
u(r) = r¥®Yyiogr) (r>0), vt)=eYPYyeE) (teR). (12)
Tedious calculations then show that

% _ r—4p/(p-1) {v’(t)—ilV(t)} , (13)
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= e [y - Py 4 2P S
/" 2
UT(r) = 4/ [y ) - 3(pp i 13> Vi) + 2P (; 101p) =V
AT w]
() = r—4P/(p-1) {\,(4) (t)— ww(t) “PZ(;;%’;%\//@)
~ 2(3p®+35p? + 65p+25) 8(p+1)(p+3)(3p+1)
(p—1)3 v+ (p—1)* v

Therefore, after the change (12), equation (10) may be tienras
V(1) + KoV (1) + KoV (1) + KoV (1) + Kov(t) = VP(t)  teR,  (14)

where the constant§ =K;(n,p) (i =0,...,3) are given by

8
Ko = (o=gya | ("=2(n=(p—1°+ 2" ~10+20)(p - 17
1600 4)(p-1)+32] .
K= 525 | (1-2)(n-4)(p—1)%+ 4P 10+ 20)(p— 1)?
48— 4)(p—1)+ 128 .
Ko = (g | (F = 10n+20)(p— 17~ 24(n—4)(p— 1)+ 96]
ko= o2 [(n-ap-1-8].

By using (11), it is not difficult to show th&€; = Kz =0if p= Q%j and that

4
Ko >0, K1 <0, Kzs>0 Yn>5, p>%1. (15)
On the other hand, the sign K§ depends om andp. We emphasize that the sign
of K; andK3 is due to assumption (11) and will be essentially exploitethie
proof of Theorem 3, see also the proof of Lemma 6.

Note that (14) admits the two constant solutiogs= 0 andvs = Ké/m_l)
which, by (12), correspond to the following solutions of 10

B Ké/(p—l)
us() = T

Up(r)=0,
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We now write (14) as a system &f*. By (13) we have

U =0 \/(t):pilv(t).

This fact suggests us to define

W) = V(D). (1) = V() ~ U0, () = V() - 5V (D),
walt) =V (1)~ =2 v'D)
so that (14) becomes
Wi (t) = FEpwa(t) +wo(t)
Wh(t) = wa(t) (16)
W(t) = wa(t)
W) (t) = Cowg(t) + Caws(t) + Cawa(t) +wWh(t)
where
Cn= kél (Iff“lk;k:mm form=1234 withKy=1. (17)

This gives first thaC; = 0 so that the tern€;wy(t) does not appear in the last
equation of (16). Moreover, we have the explicit formulae:

G = (pzl)s (n—2)(n—4)(p—1)*+2(n* — 10n+20)(p— 1)*
~16(n—4)(p-1)+32| = p%lKO,
c ﬁ | (1 —100+20)(p— 1)~ 16(n—4)(p—1) + 48],
Ca= pil:(nzl)(pl)e]

System (16) has the two stationary points (corresponditvg &mdvs)

o(o,o,o,o) and P(Ké/(p*”,—ilKé/(p*D,O,O).

Let us consider first the “regular poin®. The linearized matrix & is

and the characteristic polynomial is

A l—)/\4+K3/\3+K2}\2+K1)\ +Kp .
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Then, according to MAPLE, the eigenvalues are given by

p+1 4 4p p+1
M=2——, Ado=——, A3= —n, A3=2
1=207 le=gTy AEgTg o M —
4 2
Since we assume that> T2 > 1 > M2 we have

A1 > A2 > 0> A3 > A4

This means thaD is a hyperbolic point and that both the stable and the urestabl
manifolds are two-dimensional. This is the same situat®imahe exponential
case (see [1]) and except fas it seems as if one could perform a formal limit
p —> 00,

Around the “singular pointP the linearized matrix of the system (16) is given
by

4
" 01 0
-~ 1
Me=190 001 (18)
pKo C2 C3 Cy

The corresponding characteristic polynomial is
Vi Vi Kz v+ Kav2 + Ky + (1— p)Kg
and the eigenvalues are given by

by — N1+ /N2 +4/N3 vy — N1 — /N2 +4y/Ng

2(p-1) 2(p-1)

N1+ /N2 — 4/ N3 Ni— vNo—4/Ng

V3 = 5 Vg = )
2(p—1) 2(p—1)

where
Nii=—(-4)(p-1)+8,  Npi=("—4n+8)(p— 17

N3 := (9n—34)(n—2)(p—1)*+8(3n—8)(n—6) (p—1)°
+(16n? — 288+ 832) (p—1)>— 128 n—6)(p— 1) 4 256
The stability of the stationary poiftis described by the following

Proposition 2 Assume that p- ¢ ”+4
(i) For any n> 5 we havevy, v, € R andv, <0< vy,
(i) For any5 < n < 12we havevs, v, ¢ R andRev; =Rev, < 0.
(iii ) For any n> 13 there exists p> o ”*4 such that:
—if p < pe, thenvs,v4 ¢ R and ReV3 =Revs < 0.
—if p= pc, thenvz,v4 € Randv, = v3 < 0.
—ifp> pc, thenvs,vs € R and v4 < vz < 0. The number pis the unique
value of p> 2 such that

—(n—4)(n3—4n2— 128n+256)(p—1)* +1283n—8)(n—6)(p—1)3
+256(n? — 181+ 52)(p— 1)? — 2048n—6)(p— 1) +4096= 0.

The function n— pc is strictly decreasing and approach&sis n— co.
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Proof See Section 8. a
According to Proposition 2, in any case we have
v >0, V2 <0, Revsz = Rev, < 0.

This means tha® has a three dimensional stable manifold and a one dimersiona
unstable manifold (as in the exponential case, see [1, $44}.

Remark 1Consider the function
O(X) := x* + Kax® 4 Kox? + Ky .. (19)

We havep(0) = 0 and¢'(0) = Ky < O for everyn andp. Moreover, by the previous
analysis around the poi@, we know that the equatiop(x) = —Kg always has 4
real solutions, 2 positive and 2 negative. By these factsedeice that the graphic
of ¢ has the shape of W with two local minima (one positive, oneatieg) at level
below —Kp and the unique local maximum (negative) at strictly positavel. In
particular, for any-Kp < y < 0, the equatiop(x) = y has 4 real solutions. Finally,
note that the level of the local maximum @fcoincides with(p— 1)K if and only

if p=pe.

4 Observations on the stable manifold o and open problems

Let u denote a smooth positive entire radial solution of (5)viee defined ac-
cording to (12) so that it solves (14), andeft) = (wa(t),wa(t), wa(t), wa(t)) be
the vector solution of the corresponding first order syste@). (

We first state a general result which holds for any entire $msolution:

Proposition 3 We assume that u is an entire smooth positive radial solui@s)
and thatw = (w1, Wy, W3, Wy) is the corresponding solution of system (16). Then,

limw(t) =P

t—oo

In particular, the trajectoryw is on the stable manifold of P.
Proof See Section 8. O

By Proposition 3 we know thaw is on the stable manifold of the singular
point P while Theorem 4 gives information on the non-oscillatorjwé@éor of u
around the singular solutiam in the “supercritical” case. In this section, we refer
to the new critical exponerq, arising in Proposition 2. Here, we are interested in
the (presumably) oscillatory behavior in the “subcriticadse, i.e. in what follows
we assume:

n<12 or (n >13 and:%j <p< pc>. (20)

We study the relative position of the hyperplane

Hi={weR*: w=KYP Yy
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with respect to the tangential plane of the oscillatory comgnt of the stable
manifold

OS:={x+ty: steR}.

Herex + iy denotes eigenvectors of the mathit defined in (18) corresponding
to the nonreal eigenvalues, v.

Proposition 4 The hyperplane H and the plane4POS intersect transversally,
ie.
P+0OSZH.

Proof See Section 8. O

Open Problem 1 Since we have that, < Revz = Rev, < 0 we know that all
trajectories of system (16) which are in the stable manitdlé are eventually
tangential toOS except the trajectory being tangential to the eigenvemore-
sponding tov,. By Proposition 4 we may conclude that all these trajecsdnave
infinitely many intersections with the hyperplahe If the trajectoryw corre-
sponding to the solution is among these, then we would have shown:

For t — oo, the first component(t) = wy(t) attains infinitely many times

the value %/(p—l) so that for r nearco, u(r) oscillates infinitely often
around the singular solutiongy provided that the subcriticality assump-
tion (20) is satisfied.

In order to complete the proof of this statement, it “onlyfn&ins to show that
atoo, t — wW(t) is nottangential to an eigenvector correspondingfoFor this it
would suffice to identify the trajectories having this prageand to see that they
are different fromw.

Open Problem 2 Our proof of Theorem 4 relies on a result by Elias [4] which no
longer applies whep = p.. Nevertheless, we believe that the statement of Theo-
rem 4 also holds true in this limit situation. If one could shbat for allp > p. the
solutionsu of (10) are approaching the singular solutigyfrom below then the
same result would presumably also follow foe= p; by continuous dependence.

Open Problem 3 With the same proof of Theorem 4, one can also show that if
Ug andug are positive radial entire solutions of (5) with shootingdisu, (0) =

a andug(0) = B, then (under the assumptions of Theoremug)- ug is non-
oscillatory, i.e. it has at most a finite number of zeros. Auratquestion arises
whether all these solutions (including the singular one)campletely ordered

i.e. they have no crossing at all, and not only eventually.

5 Proof of Theorems 1 and 2

If u=u(r) is a radial positive solution of (5) such tha{0) = 1 andu(r) — 0 as
r — oo, then

Ug(T) ::au(a%‘lr) (a>0)
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is a radial positive solution of (5) such that(0) = a andu,(r) — 0 asr — oo.
Therefore, Theorem 1 follows if we prove existence and ugngss of a solution
u satisfyingu(0) = 1.

Existence.In order to prove existence, we apply a shooting method with i
tial second derivative as parameter. We remark thé{0) = Au(0) and that by
I'Hospital’s rule

(AU)/(O) _ u///(o) + (ni 1) '!I_n:g) ru’ (r)rz_ ul(r) _ n—iz_ 1U///(0).

This means that the initial conditions in (6) also read as
u(0)=1, u'(0) = (Au)'(0) =0, Au(0)=ny<0. (21)

Forally <0, (10)-(21) admits a unique local smooth solutigrdefined on some
right neighborhood of = 0. Let

Ro_{T® if uy(r)_u’y(r) <0 Vr>0
Y min{r > 0; uy(r)u,(r) =0}  otherwise.

From now on we understand thatis continued ori0,Ry). Let
I ={y<0; R, <o, u,(Ry) =0}, 1" ={y<0; Ry <, uy(Ry) =0} .
We prove the following statement:

Lemma 1 Assume p> ﬂ%ﬁ. If both I and I~ are nonempty then there exists

y < 0 such that g = 0. Moreover, y is defined orj0, ) andlim;_.e uy(r) = 0.

Proof Sincep > ﬂ%ﬁ, PohoZaev's identity (see e.g. [13, Corollary 1]) tellghest
for anyR > 0 the problem

A%w = wP if X <R
w=|Ow| =0 if X =R

admits no positive solution. In our setting, this reads
I*NI—=0. (22)

Moreover, by continuous dependence with respect to thalarinitial datumy,
we have that

ITandl~ are open in—,0) . (23)

Combining (22)-(23) with the assumption, we infer that éhexistsy ¢ 1T U~
Then,R, = +o0 and lim_.. Uy(r) exists (recalls, < 0). Finally, this limit is nec-
essarily 0, sincel, solves (10). O

Remark 2A well-known crucial difference arises wherdlp < Q%i. In such case,

by standard critical point theory and rescaling one haslthatl ~ # 0.
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Consider now the Euler equation for Sobolev minimizers é&sge[17]):

V(4>(r)+ Z(nr_ :I-)\///(r)+ (n— 12£n_3)\//(l‘) o (n— 12:§n_3)\/(l‘)
:v%i(r), r>0, (24)

v(0)=1, V(0) = (Av)(0)=0, Av(0)=nd,
whered < 0 is chosen in such a way that the unique solution of (24) isrghy

n(r? - 4)(n—4)] "%
(Vn(nZ—a)(n—4)+r2)*z*

v(r) = (25)

This explicit solution will serve as a comparison functiar the initial value
problem (10)-(21). For this purpose we quote a comparisortipte, which has
been observed by McKenna-Reichel [10] and which will turbtolbe useful also
in the proof of uniqueness below:

Lemma 2 Assume that fR — R is locally Lipschitzian and strictly increasing.
Letuv e C*([0,R)) be such that
Vre[O,R):  A%v(r)— f(v(r)) > A%u(r) — f(u(r)),
v(0) > u(0), V(0)=U(0)=0, Av(0)>Au(0), (26)
(4v)'(0) = (Au)’(0) =0.
Then we have for all £ [0,R):
v(r)>u(r), V(r)>Uu(r), Av(r)>Au(r), (Av)(r)>(Au)(r). (27)

Moreover,

(i) the initial point0 can be replaced by any initial poimt > 0 if all four initial
data are weakly ordered.

(i) a strict inequality in one of the initial data g > O or in the differential
inequality on(p, R) implies a strict ordering of W', Av,Av and uu’,Au,Au’ on
(P,R).

With the aid of this lemma we obtain

Lemma 3 Letd < 0be asin (24) and let v be as in (25). Liek J and let y, be
the local solution of (10)-(21). Then, one of the two follogvfacts holds true:

(iyyelt.
(i) O < uy(r) <v(r)forallr > 0.

Proof Since 0< v < 1 we have
AP — VP > A%y — (M A/(0=4) — 0 = A2y — |uP 1y,

as long asu exists. Hencey(r) > u(r) and 0> V/(r) > u/(r) for theser > 0.
Assume thay ¢ 1. Then itis immediate from Lemma 2 that alternatfii¢ holds
true. O
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If the alternative(ii) in Lemma 3 holds true, then the corresponding solution
uy satisfies the requirements of Theorem 1 and existence fllow

If the alternative(i) in Lemma 3 holds true, in view of Lemma 1, existence is
proved once we show that

I~ #£0. (28)

To this end, we consider the following Dirichlet problem
A’w=A(1+w)P inB
w>0 inB

ow
_%_0 onodB

(29)

whereA > 0 andB c R" is the unit ball. Arguing as in the proof of [2, Theorem
2.3] (see also [15]) and taking into account both Lemma 6 drebiem 1 in [1] we

infer that there exista > 0 such that for alh € (0,A] problem (29) admits a radial
smooth solutionv, = w; (r). So, fix one suciA and putw(r) = A T (14w (r)).
Then,w satisfies

A’w=wP inB

w> A = inB

w=A = ondB

=0 ondB.

Finally, the functionuy(r) := ap_iiw(ar) with o = w'z" (0) satisfiesuy(0) =1
and

A?u,=up ) in By/q

Uy > aPIAPL  inBy,

uy:ap_ii)\p_ii 0N dBy/q

n=0 ondBy/q -

Take y = uj(0) < 0. Then,R, = a~* anduj(Ry) = 0. This proves thay € |~
and, in turn, that (28) holds true. And this proves the eristeof a positive radial
solution of (5) satisfyingi(0) = 1 andu(x) — 0 as|x| — co.

Qualitative behavior. Letu = u(r) be a radial solution of (5) such that0) = 1
andu(r) — 0 asr — co. Statementiii ) follows by integrating

{r"aun)]} = tuP(r) (30)

over[O,r] forr > 0.

In order to provei), we assume for contradiction that there exi®ts> 0, the
first solution ofu’(Ry) = 0. Then,Au(R;) = u”(Ry) > 0. By using the just proved
statementi{i ) for r > Ry we deduce thadu(r) > 0 for allr > R; and that/(r) > 0
for all r > Ry, against the assumption ofr) vanishing att+. This contradiction
proves(i).

Next we shall provéii). For contradiction, assume now that there extsts-
0, the first solution ofAu(R;) = 0. Then, by i ), we know that there exi®, > Ry
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ande > 0 such thatiu(r) > ¢ for all r > R,. Multiplying by r"~* this inequality
yields
M) >e™t  forallr>Ry.

Integrating this last inequality ovéRy,r] for anyr > R, and dividing byr"?
gives
e RWR) &R

ur)>=r+

> s Tl forallr >Ry .

Letting r — c we then obtainu/(r) — +o, contradiction. Hence, alsai) is
proved.

UniquenessBy means of the comparison principle Lemma 2, it is immedisaé
the family in Lemma 3 is ordered:

Lemma 4 Lety; < y» and lety, be the corresponding local solution of (10)-(21).
As long as both solutions exist, we have for 0 that

Uy, () < Uy (r). (31)
Since we already proved existence, the following statemmekies sense:

Lemma5 Lett denote a positive entire radially decreasing solution®)fguch
thatT(0) = 1 andT(r) — O as r— o and lety =0"(0). For anyy < y let u, be
the local solution of (10)-(21). Then, for¥ 0, as long as y exists:

uy(r) <d(r). (32)

Again, the proof follows directly from Lemma 2. In particulaemma 5 tells
us that for anyy <y, uy(r) vanishes in finite time. This proves uniqueness and
completes the proof of Theorem 1. ad

Proof of Theorem ZThe existence of precisely one sugfollows from the proof
of Theorem 1.

The statement in the cage> y follows by arguing similarly as in Theorem 4.2
in [2]. More precisely, by Lemma 4, for> 0 we have < T(r) < uy(r) as long as
the latter exists. If there exists iy > 0 such that, (Ry) = 0, thenu(,(r) < 0 for
all r > 0 so thatu, would be a positive global solution of (6) such thigtr) — 0
asr — oo, against the uniqueness stated in Theorem 1. S&;let 0 be the first
solution of u(Ry) = 0. Then,Auy(R;) > 0. By integrating (30) ovefO,r] for
r > Ry we deduce thafiuy(r) > 0 for allr > Ry and that (r) > 0 for allr > Ry.
Then,uy(r) — 40 at some (finite or infiniteR; > Ry.

In order to show thaR, < « we essentially refer to a reasoning, which was
performed for the critical case in [8, Lemma 2]. Lt )= uy(r) — 1, so that it
solvesA2(i = (1+G)P. Sinceu(r) /o for r / Ry, successive integration of the
differential equation shows that for some suitalylec Ry, ro close enough t&y,
one has:

{(ro) > 0, d(ro) >0,  Al(ro) >0, (AG) (ro) > 0.
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For any value of the rescaling parameter 0,

Uoa(r) i=a (1~ (r//\o,)2>_(n_4)/2,/\a = a 29 [(n4-2)n(n—2)(n— 474,
solves

A%ugq = UtV < (14 o) ™Y < (14 uga)P forr €0, Aa).

Choosinga > 0 small enough one may achieve thgt> ro and that
{(ro) > Upa(ro),  @(ro) > Uoa(ro),  Ad(ro) > Auga(ro),

(A0)' (ro) > (Auoa)' (o).

That means thaip o is a subsolution fou dn [ro,min{R>, Ay }). Lemma 2 yields
that

G(r) > ugq(r) onfro,min{Ry,Aq}).

ConsequentlyR, < Ay < o,

The statement in the cage< y is mostly a further consequence of Lemma 5.
Indeed, fory < ywe know that necessarily, vanishes in finite time, say at= R;.
Since by (32)u;, remains negative for afl, we necessarily havey(r) — —o at
someR; > R;. By considering—u for r < R, close toR, and observing that-u
solves the same differential equation, the first part of tlesgnt proof shows that
also hereR, < . O

6 Proof of Theorem 3

In order to prove (9) we proceed in three steps. We consigecoiresponding
global positive solutiorv of (14) and show first that far — +o, v— 0 orv —

Ké/(pﬂ) or v oscillates infinitely many times neax. In a second step, we exclude
the first alternative. Finally, we study solutiom$eing oscillatory ato. For this
purpose, an energy functional is introduced, which helpdetduce suitablé?-
bounds on the solutiom. These bounds show that the solution again and again
and even faster and faster has to be in a neighbourhood afidndar pointP. By
local properties of the autonomous system (16), the trajedf v is (finally) on
the stable manifold oP. For these arguments it is crucial that the coefficiéqts
andKsz have the “good” signk; < 0 andK3z > 0.

As a first step, we prove:

Proposition 5 Let v be a global positive solution of (14) and assume thatethe
exists Le [0, 4] such that

Jim () = L.

Then, Le {0,K3/ P11,
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Proof For contradiction, assume first tHats finite andL ¢ {0, Ké/m_l)}. Then,
VP(t) — Kov(t) — a := LP — KoL # 0 and for alle > O there existy > 0 such that

a—e <V +KV' () + KV (1) + KV () <a+e  wt>T. (33)
Takee < |a| so thata — £ anda + € have the same sign and let

0 :=sup|v(t) —v(T)| < co.
t>T

Integrating (33) ovefT,t] for anyt > T yields
(a0 —€)t—T)+C—|Ky|d <V"(t) +KaV'(t) + KoV (t)
<(a+&)({t—T)+C+|Kq|0 vt>T,

whereC = C(T) is a constant containing all the termaéT ), V/(T), v'(T) and
V" (T). Repeating twice more this procedure gives

a—¢& a+é€

t—T)3+0(t?) <V(t) < t-T)2}+0(t?) ast—o.
This contradicts the assumption tivadmits a finite limit ag — +oo.
Next, we exclude the case= +o. For contradiction, assume that

JNimv(t) = e, (34)

Then, there exist$ € R such that

V(1) + Kav" (1) + KoV' (1) + KoV (t) > %(t) Vt>T.

Moreover, by integrating this inequality ovfr,t] (fort > T), we get

t
v’”(t)+K3\/’(t)+K2\/(t)+K1v(t)2%/Tvp(s)ds—l—c wt>T, (35

whereC = C(T) is a constant containing all the ternaéT ), V/(T), V'(T) and
V" (T). From (34) and (35) we deduce that there exiBts> T such thata :=
V(T + KaV'(T") + KoV (T") + Kqv(T’) > 0. Since, (14) is autonomous, we may
assume that’ = 0. Therefore, we have

VO (1) + Kav" (1) + KoV (t) + KyV/ (1) > Vp% Vt>0, (36)

~—

V" (0) + KaV'(0) + KoV (0) + Kyv(0) = o > 0. (37)

We may now apply the test function method developed by MitielPohozZaev
[12]. More precisely, fixl; > T > 0 and a nonnegative functigne C2[0, o) such

that
{1 fortel0,T]
‘P(t)—{o fort >T;.
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In particular, these properties imply thptT:) = ¢/(T1) = ¢’ (T1) = ¢”'(T1) = 0.
Hence, multiplying inequality (36) bg(t), integrating by parts and recalling (37)
yields

T T
[ 71990 - kg (1) + o0 (0) - K OO 5 [ VPOt a
0 0
(38)
We now apply Young's inequality in the following form: for pig > O there exists
C(¢g) > 0 such that

. (i) (i)|p/(p-1) I
(i) — 1/p‘p p |(P | (i) _ ¢ P
(p V(p (p < &V (p+C(€) (p1/<p_l) ) (p dtl (I 17 2a 374)
Then, provided is chosen sufficiently small, (38) becomes
& MW (t)|P/(P-D) 1 /T
B > = P
c /O TSR 4_/0 V)t +a (39)

whereC = C(g,K;) > 0. We now choosep(t) = (%), whereg € CZ([0,),
@ >0and

1 forrel0,1]
(1) = {0 fort>11>1.

As noticed in [12], there exists a functi@g in such class satisfying moreover

(i) (7y(p/(p-1)
o gy (T)[P A o
/(; Tl)(r)dr—pq<°° (|—1,2,3,4).

®

Then, thanks to a change of variables in the integrals, (88pines
4 . 1 /T
CZATP'P/“’*) > —/ Wt)dt+a VT >0.
4 4 Jo

Letting T — oo, the previous inequality contradicts (34). O

In order to perform the above mentioned second step, we shatvat so-
lution v of (14) vanishes at infinity only if the corresponding vecsmiution
w= (W1, Ws, W3, Wjy) of the system (16) approaches the “regular poit”

Proposition 6 Assume that v[Tp, ) — (0, o) exists for someg[ solves (14) and
satisfiedim;_.» v(t) = 0. Then for all ke N, one also has:

lim vi(t) =o0. (40)
Proof By assumption we know that fédarge enoughv(t) < KS/(pfl) so that by

the differential equation (14) eventual) (t) + Kav"” (t) + KoV'(t) + Ky (t) =
(VP71(t) — Ko) v(t) < 0. This shows that

= V(1) + KaV' (1) + KoV (t) + Kyv(t) (41)
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is eventually strictly decreasing. Using the assumptiareanore we see that there
exists
lim (V"(t) + KaV'(t) + KoV (1)) = lim (V" (t) + KaV' (t) + KoV (t) + Kav(t))

(42)

in RU{—oc}. We distinguish several cases and start by assuming

lim (V"(t) +KaV'(t) + KoV (1)) = lim (V" (t) + KaV' (t) + KoV () + Kav(t)) = 0.
(A)

In this case, since (41) is strictly decreasing, one evdigthas thatv” (t) +

KaV'(t) + KoV (t) + Kpv(t) > 0 so that byK; < 0

V" (1) + KaV'(t) + KoV (t) > O fort large enough. (43)

This shows that — V'(t) + KV (t) + Kv(t) is eventually strictly increasing so
that there exists

Jim (V'(t) + KaV/ (1) + Kov(t)) = lim (V'(t) + KV (1)) € RU {400}

If this limit were equal to+eo, then alsoto = tIim (V(t) +Kav(t)) = tIim V(t),
which contradicts the assumption. Hence

lim (V'(t) + KV (t) + Kov(t)) = lim (V'(t) +KaV (1)) € R. (44)
We distinguish three further subcases and start with désegs

fim (V'(t) +KaV' (1)) = fim (V'(t) + KaV/(t) + Kav(t)) = 0. (A1)

We want to show that lim..V/'(t) exists and assume for contradiction that
limsup_,, V(t) > liminfi_. V(t). Then we have a sequen@g)key With ty — oo
such that consecutively attains local maxima and local minimaftipso that in
particulan/’(tx) = 0. By (A1) we may conclude that lign.., V' (tc) = 0. Sincev at-
tains consecutively its local maxima and local miniméirthis would contradict
limsup_,, V(t) > liminf;_. V(t). Hence we have proved that km,V(t) € R
exists. Since linL. v(t) = 0, we get

lim v/ (t) =0. (45)

From this and assumption (A1), we directly obtain that alsg L., v'(t) = 0.
From assumption (A) we then get that alsolim v (t) = 0. Fork > 4, the dif-

ferential equation (14) finally yields lim. v(¥ (t) = 0.
Next we consider the subcase

lim (V'(t) + KV (1)) = lim (V'(t) + KaV/ (t) + Kov(t)) = 2a > 0. (A2)

In this case, one has that eventuaflyt) + KsV/(t) > a. Multiplying this inequal-
ity by exp(Kst) and integrating yields

V(t) > a +0(1) nearco.
Ks
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But this is impossible in view of our assumption Jing, v(t) = 0.
Finally we consider the subcase

lim (V'(t) +KaV' (1)) = lim (V'(t) + KaV'(t) + Kov(t)) = 2a < 0. (A3)

With precisely the same reasoning as in the previous casenve ap withv/(t) <
K% +0(1) for t — o and again, we reach a contradiction.

Now we may consider the second main case

lim (V" (t) + KaV'(t) + KoV (1)) = lim (V"(t) + KaV' (t) + KoV (t) + Kav(t))
=a#0.
(B)
Thent — V'(t) + K3V (t) + Kv(t) is monotone neaw and admits a limif3
RU{+o}. Hence, also lin.. (V'(t) + KaV/(t)) = B. If B = 0 we proceed as in
Subcase (Al) and {8 # 0 as in Subcases (A2) and (A3). a

In order to exclude the possibility=0 in Proposition 5, for any global smooth
positive solutiorv of (14) and any € R, we define the energy function

iy -0 - 2VeP SV P @)

E(t) :=Ey(t) := o1

We prove first that on consecutive extremavpfhe energy is decreasing. For the
proof of the following lemma, the sign of the coefficietts, K3 in front of the
odd order derivatives in equation (14) is absolutely crucia

Lemma 6 Assume thapt< t; and that (tp) = V/(t1) = 0. Then
E(to) > E(ta).
If v is not constant, then the inequality is strict.

Proof From the differential equation (14) we find:

E'(s) = VP(s)V(S) — Kov(S)V'(S) — KoV (S)V'(s) + V' (S)V"(S)
= (VP(s) — Kov(s) — KaV'(9)) V'(5) + V' (s)V" ()
(s)

- (v<4>(s) FKaV"(8) + Kav(8) ) V(S) +V (SV"(9).
Integrating by parts, this yields:
o 't / 1" 1 /
E(tl)—E(to)_/tO E/(s)ds— / V" (V' (5) ds— Kg/ V/(s)|? ds
+K1/ V(9)|? ds+/ V'(9)V'(s)ds (47)
fng/ V'(s) ds+K1/ [V(s) dsgo,

sinceKs > 0 andK; < 0. If vis not a constant, the inequality is strict. O

Lemma 6 enables us to prove:
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Lemma 7 Assume that VR — (0, ) solves (14) andth?tirp v(t):tlirp V(t)=
tIir11 V'(t) = 0. Then it cannot happen that aléio; .., v(t) = 0.

Proof Consider the energy functidg defined in (46). By assumption, we have
E(—o) = 0. Assume for contradiction that lim., v(t) = 0. Then, by Proposition
6 we see that alsB(+) = 0. By Lemma 6, this shows thais a constant, hence
v(t) = 0. In turn, this contradicts the assumption that 0. O

Remark 3In terms of dynamical systems, Lemma 7 states that the negaiat
O does not allow for a homoclinic orbit of system (16).

We can now exclude the possibility= 0 in Proposition 5:

Proposition 7 Let u be a smooth positive radial solution of (5) and let v bingel
according to (12). Then the first alternative in Propositdoes not occur, i.e. it
is impossible thalim;_., v(t) = 0.

Proof Sinceu is assumed to be smooth near 0 and sinisedefined according to
(12), we have that lim, e v(t) = limi_ e V/(t) = lim__ V'(t) = 0. If we also
had lim_.. v(t) = 0, thenv(t) = 0 by Lemma 7. A contradiction! O

As before, we assume in what follows tlids a smooth positive radial solution
of (5) and that is defined according to (12) so thasolves (14). livis eventually
monotonous, then the claim of Theorem 3 follows directlynfrBropositions 5
and 7. So, it remains to consider solutiansvhich oscillate infinitely many times
neart = o, i.e. have an unbounded sequence of consecutive local razeit
minima. In the sequel we always restrict to this kind of solus without explicit
mention. We first prove the following inequalities:

Lemma 8
liminf; e v(t) > 0; (48)
1/(p—1
VteR: 0<v(t) < (%1) /w )KS/(p’l); (49)
1/(p—1
MERIV() < o4 (%1) SRl (50)

Proof Sincev is defined by means of a smooth solution of (5), we have that
E(—) = 0. Letf be any local maximum fov. By Lemma 6 (withty = —c and
t; =) we immediately get (49).

Let {tx}keny denote the sequence of consecutive positive critical paift,
starting with the first local maximum in [0, ) of v. In particular we have that
V(tx) = 0 and{tx }ken is a strictly increasing sequence, divergingte®. Since
{E(tk) }ken is bounded from below, by Lemma 6 we see that

llim E(ty) =:-0<0
exists. Therefore, fok large enough we have

o 1 K
_9 s = ptlgy DO
2 i1 (t) — 5 VA(t)
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which proves (48).
Finally, note that in view of (12), stateme(i} of Theorem 1 becomes

4
V(t) < mv(t) forallteR.

This inequality, combined with (49), proves (50). ad

By (12), we see that (49) proves (8).

In the next four lemmas we prove some summability propeaiesR of v and of
its derivatives:

Lemma 9

/|\/(s)|2ds+/ V/(5)2ds < oo.
JR JR

Proof We take the same sequenfig}ken as in the proof of Lemma 8. Since
E(—o) =0, we obtain from (47) that for arly:

ng/_ti|\/’(s)|2 ds+ Kl/_t;{\/(s){2 ds

1 K
—E(t) > min [ ——vP1_292) 5 o
() = ve[0,0) (p+ 1 2 *

The statement follows by letting— o and using again tha€s > 0 andK; < 0.
O

Lemma 10
/ V" (9)]2ds < co.
R

Proof Here the sequendé }ken from the previous lemmas is no longer adequate.
Instead, we choose a monotonically increasing divergingeece({ Ty }ken Of flex
points ofv such that is there increasing. By Lemma 8 we may achieve:

1/(p-1)
150, T/, 0<V(T) < —— <&1> kYO gy o,

p—1 2
(51)
We multiply the differential equation (14) by and integrate ovef—o, 1¢):

[ (V99) +KaV"(9) + KV (5) + K () + KoW(9)) V/(9)ds
- /_Tk VP(s)V'(s)ds

We show that all the lower order terms remain bounded, vkhenco:

‘ /::vp(s) \/’(s)ds‘ _

(52)

gV -p [ e V(9P <o) (63

—00
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by (49), (51) and Lemma 9. With the same argument, one also get

/ *Ws)V/(s)ds < O(1). (54)

Holder’s inequality and Lemma 9 imply

/jk\/(s) V/(s)ds < O(1). (55)

By our choice oft (recall thatv’(1i) = 0), we obtain:

/_ T:\/”(s)\/’(s)ds: E|\/'(s)|2] "o (56)

—00

Finally, integrating by parts and again by our choicegfwe find:

/Tk VA (9V'(s)ds= [V"(s)V'(9)] ™, — /Tk (V"(s))? ds= —/Tk (V"(s))% ds
Lettingk — oo, the statement follows directly from Lemma 9 and (52)—(57)0

Lemma 1l

/ V@ (s)2ds < c.
Proof In view of Lemmas 8-10 we may find a sequeRsg: such that
lim sc= 0, V(s = O(1), lim V'(s¢) = lim v'(s¢) = lim v"(s) = 0.
We multiply the equation (14) byl¥) and integrate ovef—,s]:
) 2
/ (v<4) (s)) ds
—o00 (58)
= / (VP(s) — Kov(s) — K1V (8) — KaV'(s) — Kav"(s)) vI¥(s) ds

By using Lemmas 8-10 and arguing as in the previous proofsbiagro

/'S‘ (9v'gds=[FveF] " =ow

—00

/ —o(1)~ [ V(9P ds=0(1)
[

s)ds — o(1) — [ V' ()V'(s)ds= o(L);
/j‘v<4>() v(s)ds = o(1) — / V' (S)V(s) ds= o(1)+/j‘ V/(s)[2ds= O(1);
|/S( vt - p/ﬁS4< \/”(s)vpl(s)\/(s)dg‘

<o(1)+C (/_S; |\/”(s)|2ds> " </j‘o |v'(s)|2ds> " o).

Inserting all these estimates into (58), the claim follows. ad
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Lemma 12

/ VA(s) (VP (s) — Ko)2 ds< .
R
Proof From the differential equation (14), we conclude
2
(VI9(9) + Kav"(8) + KoV (8) +KaV(8) )" = V() (V(9) ~ Ko) ™.
The statement follows now immediately from Lemmas 9-11. a

The proof of Theorem 3 will be completed by showing:

Proposition 8 We assume that u is an entire smooth positive radial solutifon
(5), that v is defined according to (12) and that= (wy, W, Ws, wy) is the corre-
sponding solution of system (16). We assume further thatvhas an unbounded
sequence of consecutive local maxima and minima neavt Then it follows that

tIim w(t) =P (59)
where P is the “singular” steady solution of system (16). artjcular, tIim v(t) =
Ké/(P—l)_

Proof By Lemmas 8-12, we can find a sequeficR}ken such that

Okt1> Ok, im (Oct1—0i) =0, lim o= oo, lim w(oi) = P.
If (59) were not true, then there would exist a subsequdhkgpcy with the fol-
lowing properties: for ang > 0 there exist¥, such that for alll > ¢, one has

that
lw(ay,) —P| <e, Ok, +1— Ok, < €°

and moreover that there exifsc (0o, , 0i,+1) with
|w(s) —P| <2e Vse(ok,6) and |w(6)—P|=2¢.
The triangle inequality shows thaw(6,) —w(o,)| > €, hence

1
6@ - O—k[

w(6) ~wloi)| >

By the mean value Theorem we conclude that

1 < 1
& Qg—O'k/

/ w'(s)ds <
o, 6, — ok,

-6,

/ IW'(s)| ds

O'k[
so that there existg € [0y, , 6] with

1

/ p—

W (17)| > =

Sincee is arbitrarily small|w(ay,) — P| < €, [w(T;) — P| < 2¢ and sincev solves
system (16), this is impossible for large enoughA contradiction is achieved,
thereby proving (59). ad
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7 Proof of Theorem 4

We start this section by recalling the

Definition 1 An m-th order ordinary linear differential equation is sdabe non-
oscillatory on an interval kZ R if every nontrivial solution has only a finite hnum-
ber of zeros in 1. It is called disconjugate on I, if every nornal solution has at
most(m— 1) zeros in | (counting multiplicities).

Let v be defined by (12) and lep be as in (19). Assume that> 13 and
p > pc. Then, by Proposition 2, there exigs> 0 such that the equatiap(x) =
(p— 1)Ko + € admits four real solutions for all € (0, &). From now on, we fix
€ = &/2 so that the equation

W () +KaW" (8) + Koy (t) + K (1) + Ko(t) — (PKo+ ) (t) =0 teR,
is non-oscillatory inR. In other words it has four linearly independent solutions

of “exponential type”y; (t) = eHt (i = 1,...,4) for somey;’s being small pertur-
bations of they;’s which are all real numbers. Moreover, the differentiagigior

d\* d\? d\? d
Lo = <a> +Ks (&) +Ks (E> +Ki <a>+KO

is disconjugate, since this is the biharmonic operatonsfimed by means of
(12). By differentiating (14), we obtain

Low(t) — pW 1(t)Y(t) = Loy (t) + pt)y(t) =0  teR,  (60)

where@(t) := V(t) and p(t) := —pvP~(t). According to Theorem 3 we know
that
IT>0 Wvt>T: —(pKo+¢€) < p(t) <O

Therefore, the equation (60) is between a disconjugate and-@scillatory equa-
tion so that it is also non-oscillatory in view of [4, Corajal]. This shows
that vV (t) = (t) cannot change sign infinitely many times, and therefore that

v(t) — Ké/(pﬂ) does not change sign infinitely many times. O

8 Proof of Propositions 2, 3, 4

Proof of Proposition 2We first observe that (11) is equivalent to
N; <O (61)
and that (11) implies

N2 —NZ=4(n—2)(p—1)2+16(n—4)(p—1) — 64> 4(n—2)(p—1)>+64> 0.
(62)

Next, we show that

(N2 —N2)?

N
T

(63)
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Indeed, by exploiting again (11), we have:

(N2 —N§)?
16
=8(n—2)(n—4)(p—1)*+16(n* — 10n+20)(p—1)3
—128(n—4)(p—1)%+256p— 1)
> 16(n° —6n+12)(p—1)% — 128n—4)(p—1)2+256(p—1)
=64(p—1)3+16(n—2)(n—4)(p—1)3— 128n—4)(p—1)? + 256 p— 1)
> 64(p—1)%+128n—2)(p—1)2—128n—4)(p— 1)+ 256 p— 1)
= 64(p—1)°+256(p—1)>+256(p—1) = 64(p+1)%(p—1) > 0.
In particular, (63) implies thatls > 0. In turn, together with the fact thib > N2,
this shows that/N; +4,/N3 > |N;| which proves statemefit) in Proposition 2.

In order to discuss the stability properties of the eigemesals and v, we
introduce the function

Ny := 16N3 — N2 = —(n—4)(n® — 4n? — 1280+ 256)(p— 1)*
4+1283n—8)(n—6)(p—1)3+256n% — 18n+52)(p—1)>  (64)
—2048n—6)(p— 1) + 4096

For 1939447811.. < n< 1256534446. ., the first coefficient in (64) is positive,
so that assuming

N3 —

5<n<12
we obtain by means of (11):

Ny = —(n—4)(n®—4n? — 1280+ 256)(p— 1)* +1283n—8)(n—6)(p—1)°

+256(n* — 18n+4-52)(p— 1) — 2048n— 6)(p— 1) + 4096

> —8(n®—4n? — 1280+ 256)(p— 1)3 4+ 1283n—8)(n—6)(p—1)3
+256(n? — 180+ 52)(p— 1)? — 2048n—6)(p— 1) + 4096

= 64n’(p—1)°>—8(n—4)(n*>— 40n+128)(p—1)3
+256(n” — 180+ 52)(p—1)% — 2048 n— 6)(p— 1) + 4096

> 64n(n—4)(p— 1) — 64(n* — 40n+128)(p— 1)?
+256(n> — 181+ 52)(p— 1)2 — 2048n—6)(p— 1) + 4096

> 512n(p— 1) 4 64(n— 4)(3n— 20)(p— 1)> — 2048 n— 6)(p— 1) + 4096

= 2048 p—1)2+192n—4)?(p—1)2—2048n—6)(p— 1) + 4096

> 2048 p—1)241536n—4)(p— 1) — 2048n—6)(p— 1) + 4096

= 2048 p—1)2—-512(n—12)(p— 1) +4096> 0,

sincen < 12. This, together with (61), proves statem@ntin Proposition 2.

In order to prove statemetfiti ), we assume that

n>13
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and we studyNs = Ng(n, p) as a function ofp. We compute its second derivative
with respect tqp:
2
aﬁ—pN;‘ = 12(n—4)(n°® — 4n? — 1280+ 256)(p— 1)2
—7683n—8)(n—6)(p—1) —512(n*> — 18n+52).
This is a quadratic function gb which tends tot+o asp — +oo. Its minimum is
smaller than the Sobolev exponéntt-4)/(n—4) if and only if

0 < (n®—4n? — 1280+ 256) — 4(3n—8)(n— 6) = (n— 18)(n* 4 2n+12) + 280

This is certainly true fon > 18, while forn=13,...,17, we havei;T'\i“(n, 'r}%j{) <
0. Summarizing, fop > (n+4)/(n—4), ‘;2[’)\‘4 has at most one zero. Therefore,

for p> 2, either
p— Na(n, p) is always concave or it is first convex and then concave.  (65)

Moreover, since the first coefficient in (64) is now negativeqausea > 13), we
have
lim Ng(n, p) = —o0 vn> 13 (66)

p—>00

Finally, note that

2 2
N4< n+4>_327681 -0 and (9N4( n—|—4>_20480’1

" (n—4)3 dp \ 'n—4) (n—4)7? > 0. (67)

By (65)-(66)-(67) there exists a unique > (n+4)/(n—4) such that

Ng(n,p) >0forallp<pc:, Na(n,pc)=0, Ng(n,p)<O0Oforallp> pc.

In order to prove thanh — p; is strictly decreasing we calcula?# by means of
implicit differentiation and note first that the previoussening gives

INg

(9—p(n’ pc) <O. (68)
We proceed by calculating
‘9(9—':'14 = — (4n® - 24n® - 2240+ 768) (p— 1)* +256(3n— 13)(p— 1)°
+512(n—9)(p—1)2—2048p—1),
02
0—24 = —(12n* — 480 —224)(p—1)* + 768 p—1)° +512Ap—1)?,
N,

8 —24(n—2)(p—1)*;

the latter being always negative far> 2. Keepingp > 1 fixed, we consider
now n — Ng(n, p). First we calculaten > 4 such thatp = (n+4)/(n—4), i.e.
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n =4+ 8. Negativity of%“; shows that beyond = 4+ 5&; this function is
either always concave or convex first and then always con€avéhe mentioned
particular value we have by (67) that

8
N4<4+ﬁ,p> >0

and moreover, we find that

Ny 8 B 8 8 s

SinceNg(n, pc) = 0, this shows that also

ONy
W(nv Pc) <O. (69)

By implicit differentiation we conclude from (68) and (6%t

Finally one reads directly from the form b§ that for anypo > 1, Na(n, po)
becomes negative, provideds chosen large enough. This shows tﬁ@ < Ppc <
po for n large enough, i.e.

lim pc = 1.

n—oo

The proof of statemertii ) in Proposition 2 is so complete. a

Proof of Proposition 3This proof is an extension of the one of Proposition 8.
It is enough to consider a solutionwhich converges eventually monotoni-

cally to K3/™V. The differential equation (14) shows thaf) (t) + Kav" (t) +
KoV’ (t) + K1V (t) eventually has a fixed sign. Let us now considg) ™= v(t) —

K/ Then
lim ¥(t) = 0

t—oo

and Vi (t) 4 Ka@" (t) + Ko (t) + K1 (t) is also eventually of fixed sign. This
shows that

lim (9 (t) 4 K" (1) + K (8) + Ke®(t)) = fim (9(t) +Ka'(t) + Ko 1))

exists inR U {+e}. Now we may proceed precisely as in Proposition 6. O
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Proof of Proposition 4lt is enough to show thadlp has no eigenvectors with first
component equal to 0. Assume for contradiction that astzti® some eigen-
valuev, there existga, b, c) # (0,0,0) such that

s4-v 1 0 0 0 0
0 -v1 0 al_ |0
0 0 -v 1 b 0
pKo C; C3 C4—v c 0
This is clearly impossible. ad
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