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Abstract

We study a boundary value problem for Willmore surfaces of revolution, where the position
and the mean curvature H = 0 are prescribed as boundary data. The latter is a natural datum
when considering critical points of the Willmore functional in classes of functions where only
the position at the boundary is fixed.

For specific boundary positions, catenoids and a suitable part of the Clifford torus are explicit
solutions. Numerical experiments, however, suggest a much richer bifurcation diagram. In
the present paper we verify analytically some properties of the expected bifurcation diagram.
Furthermore, we present a finite element method which allows the calculation of critical points
of the Willmore functional irrespective of their stability properties.

1 Introduction

Recently, the Willmore functional and the associate L2–gradient flow, the so–called Willmore flow,
have attracted a lot of attention. Given a smooth immersed surface f : M → R3, the Willmore
functional is defined by

W (f) :=
∫

f(M)
H2 dS,

where H = (κ1 + κ2)/2 denotes the mean curvature of R := f(M). Apart from being of geometric
interest, the functional W is a model for the elastic energy of thin shells or biological membranes.
In these applications one is usually concerned with minima, or more generally with critical points
of the Willmore functional. It is well–known that the corresponding surface R has to satisfy the
Willmore equation

∆RH + 2H(H2 −K) = 0 on R, (1)

where ∆R denotes the Laplace-Beltrami operator on R and K its Gauss curvature. A solution of
(1) is called a Willmore surface.

Although introduced already in the 19th century (see e.g. [P]), it was Willmore’s work [Wi]
which popularised again the investigation of the Willmore functional. For information on historical
details and modelling aspects we refer to Nitsche’s survey article [Nit], for the derivation of (1)
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as Euler-Lagrange equation of the Willmore functional cf. also [Th, p. 56]. Existence of closed
Willmore surfaces of prescribed genus was proved by Simon [Sn] and Bauer & Kuwert [BK]. Con-
strained closed Willmore surfaces of fixed conformal class were studied e.g. by Kuwert-Schätzle
and Leschke-Pedit-Pinkall [KS1, KS2, LPP]. Rivière [R] obtained a far reaching regularity result.

If one is interested in surfaces with boundaries, then appropriate boundary conditions have to
be added to (1). Since this equation is of fourth order one requires two sets of conditions and
a discussion of possible choices can be found in [Nit] along with corresponding existence results.
These results, however, are based on perturbation arguments and hence require severe smallness
conditions on the data, which are by no means explicit. Existence results which do not require a
smallness assumption on the data have been obtained for the Dirichlet problem where the position
and the tangent space of the unknown Willmore surface are prescribed on the boundary. We refer
to [DDG, DFGS] for the existence of Willmore surfaces of revolution in the case of symmetric
data. Schätzle [Sch] proved an important general result concerning existence of branched Willmore
immersions in Sn with boundary.

In the present paper we initiate the study of a different boundary value problem, the so–called
Navier boundary value problem, in which the position and the mean curvature on the boundary are
prescribed. In order to simplify the situation, we shall restrict ourselves to surfaces of revolution
which are obtained by rotating the graph of a smooth positive function u : [−1, 1] → (0,∞) around
the x–axis. For such a surface R the Willmore functional then reads (cf. Appendix A)

W (u) =
∫

R
H2 dS =

π

2

∫ 1

−1

(
1

u(x)
√

1 + u′(x)2
− u′′(x)

(1 + u′(x)2)3/2

)2

u(x)
√

1 + u′(x)2 dx. (2)

In Lemma 6 we shall show that the first variation of W in the direction of a function ϕ ∈ H2 ∩
H1

0 (−1, 1) is given by

d

dt
W (u+ tϕ)|t=0 = −2π

[
H

uϕ′

1 + (u′)2

]1

−1

− 2π
∫ 1

−1
uϕ

(
∆RH + 2H(H2 −K)

)
dx. (3)

Hence, if α > 0 is given and u ∈ C4([−1, 1], (0,∞)) is a critical point of the Willmore functional W
in {α}+

(
H2(−1, 1) ∩H1

0 (−1, 1)
)
, then u is a solution of the following boundary value problem:

{
∆RH + 2H(H2 −K) = 0 in (−1, 1),

u(±1) = α, H(±1) = 0.
(4)

Observing (5) and (6) below we see that the differential equation in (4) is a highly nonlinear
ODE of fourth order; note that the boundary condition H(±1) = 0 is nonlinear as well.

If the equation α =
cosh(b)

b
has a positive solution, then the catenoid generated by the function

ub(x) :=
1
b

cosh(bx)

satisfies H ≡ 0 and therefore yields a solution of (4). Furthermore, a discussion of the function
b 7→ cosh(b)/b shows that there exists α0 > 0 such that (4) has two catenoid solutions for α > α0,
one such solution for α = α0, while for α ∈ (0, α0) the catenoid solutions cease to exist, see Figure 1.
Here, α0 := cosh(b0)/b0 = 1.5088795 . . ., where b0 = 1.1996786 . . . is the solution of the equation
cosh(b0) = b0 sinh(b0). Moreover, it is shown in [DHKW, Chapter 6.1, Theorem 3] that (4) does
not have a connected minimal surface solution at all – whether symmetric or not – for α < 1.
However, for α = 1 there is another explicitly known solution of (4), namely the part of the Clifford
torus that is obtained by rotating the graph of the function [−1, 1] 3 x 7→ u(x) = 2−√2− x2, see
Figure 2.
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Figure 1: Catenoid solutions of the boundary value problem (4) for α = 2.
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Figure 2: Part of the Clifford torus solving (4) with α = 1.

Numerical experiments carried out by Fröhlich [F] and Kastsian [Ka] suggest that this solution is
not isolated but rather belongs to a branch of solutions. This branch seems to comprise solutions
of (4) for positive values of α beyond α0 that are not minimal surfaces unless α = α0. Hence it is
natural to expect that this branch bifurcates in α0 from the branch of minimal surfaces described
above, see Figure 3. In the current work we attempt to rigorously verify at least part of this
diagram. Our first main result shows that the Clifford torus is not an isolated solution of (4) but
belongs to a branch of solutions.

Theorem 1. There exists ε0 > 0 such that for α ∈ (1− ε0, 1+ ε0), the boundary value problem (4)
has a solution u ∈ C∞([−1, 1], (0,∞)).

Remark 1. Numerical evidence suggests that this solution branch can be extended towards α↘ 0
and that the solutions converge to the unit sphere as α ↘ 0. For Dirichlet boundary conditions
the analogous result is rigorously proved in [DFGS].

Our second main result concerns the existence of the expected bifurcation point on the branch
of catenoid solutions. For technical reasons it is more suitable to choose the central value u(0) as
bifurcation parameter λ.

Theorem 2. For λ > 0 let uλ(x) = λ cosh(x
λ) denote the minimal surface solutions of (4) with

α = α(λ) = λ cosh( 1
λ). Let b0 = 1.1996786 . . . be the unique positive solution of the equation
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cosh(b) = b sinh(b), λ0 = 1/b0 = 0.83355 . . .. The parameter λ0 corresponds to α0 = cosh(b0)/b0 =
1.5088795 . . .. Then (α0, uλ0) is the unique bifurcation point for (4) on the branch λ 7→ (α(λ), uλ).

Our paper is organised as follows: In Section 2 we give the proof of Theorem 1 via an implicit
function theorem, while Theorem 2 is proved in Section 3. Section 4 describes a numerical method in
order to find approximate solutions of (4). In Appendices A and B we present detailed calculations
concerning the first and second variation of the Willmore functional and the solution space of the
linearisation of the Willmore equation around the Clifford torus, respectively.

Figure 3: Numerically calculated branches of solutions to (4): We display the central value u(0)
over the boundary datum α = u(±1).

2 Linearisation around the Clifford torus

Let us consider a surface of revolution generated by the graph of a sufficiently smooth function
u : [−1, 1] → (0,∞) as follows:

R : (x, ϕ) 7→ (x, u(x) cosϕ, u(x) sinϕ), x ∈ [−1, 1], ϕ ∈ [0, 2π].

It is not difficult to verify that the first and second fundamental forms are given by

(gij) =
(

1 + u′(x)2 0
0 u(x)2

)
, (Lij) =

1√
1 + u′(x)2

(−u′′(x) 0
0 u(x)

)
,

while we have for the mean curvature H and the Gauss curvature K the formulae

H = − u′′(x)

2 (1 + u′(x)2)3/2
+

1
2u(x)

√
1 + u′(x)2

, K = − u′′(x)
u(x) (1 + u′(x)2)2

. (5)
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Here we use the sign convention that H is positive if the surface is mean convex with respect to
the inner normal. Furthermore,

∆RH =
1

u(x)
√

1 + u′(x)2
· ∂x

(
u(x)√

1 + u′(x)2
∂x

(
1

2u(x)
√

1 + u′(x)2
− u′′(x)

2 (1 + u′(x)2)3/2

))
. (6)

As a consequence, the value of the Willmore functional for a surface of revolution is given by

W̃ (u) :=
1
π
W (u) =

1
2

∫ 1

−1

(
1

u(x)
√

1 + u′(x)2
− u′′(x)

(1 + u′(x)2)3/2

)2

u(x)
√

1 + u′(x)2 dx.

In this section we always consider the part of the Clifford torus u(x) = 2−√2− x2, solving (4)
with α = 1. Clearly,

u′(x) = x(2− x2)−1/2, u′′(x)(1 + u′(x)2)−3/2 = 1/
√

2, (7)

so that it is straightforward to verify that u is a solution of (4). In order to show that (4) has also
solutions for α close to 1 we use the implicit function theorem which requires the analysis of the
the linearisation of (4) in u.

Lemma 1. The second variation of W̃ in u(x) = 2−√2− x2 is given by

W̃ ′′(u)(ϕ, η) =
∫ 1

−1

u(x)ϕ′′(x)η′′(x)
(1 + u′(x)2)5/2

dx

+
∫ 1

−1

ϕ′(x)η′(x)
u(x)(1 + u′(x)2)5/2

(
6− 20

(2− x2)1/2
+

6
2− x2

+
12

(2− x2)3/2

)
dx

+
∫ 1

−1

√
2ϕ(x)η(x)
u(x)2

dx+
[
3u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)5/2

− 5u′(x)ϕ′(x)η′(x)√
2(1 + u′(x)2)2

]1

−1

,

where ϕ, η ∈ H2 ∩H1
0 (−1, 1).

Proof. We make use of the expression for the second variation derived in Lemma 6 of Appendix A
and begin by rewriting the integrals involving (ϕη)′, (ϕη)′′ and (ϕ′η′)′. To do so we use (7) together
with the fact that u(±1) = 1. Integration by parts yields:

∫ 1

−1

u′(ϕη)′

u2(1 + (u′)2)3/2
dx = −

∫ 1

−1

u′′ϕη
u2(1 + (u′)2)3/2

dx

+2
∫ 1

−1

(u′)2ϕη
u3(1 + (u′)2)3/2

dx+ 3
∫ 1

−1

(u′)2u′′ϕη
u2(1 + (u′)2)5/2

dx;

= − 1√
2

∫ 1

−1

ϕη

u2
dx+ 2

∫ 1

−1

(u′)2ϕη
u3(1 + (u′)2)3/2

dx

+
3√
2

∫ 1

−1

(u′)2ϕη
u2(1 + (u′)2)

dx

∫ 1

−1

u′′(ϕη)′′

(1 + (u′)2)5/2
dx =

1√
2

∫ 1

−1

(ϕη)′′

1 + (u′)2
dx =

√
2

∫ 1

−1

u′u′′(ϕη)′

(1 + (u′)2)2
dx

=
∫ 1

−1

u′(ϕη)′

(1 + (u′)2)1/2
dx = −

∫ 1

−1

u′′ϕη
(1 + (u′)2)3/2

dx = − 1√
2

∫ 1

−1
ϕη dx;

∫ 1

−1

u′(u′′)2(ϕη)′

(1 + (u′)2)7/2
dx =

1
2

∫ 1

−1

u′(ϕη)′

(1 + (u′)2)1/2
dx = − 1

2
√

2

∫ 1

−1
ϕη dx;
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∫ 1

−1

uu′u′′(ϕ′η′)′

(1 + (u′)2)7/2
dx =

1√
2

∫ 1

−1

uu′(ϕ′η′)′

(1 + (u′)2)2
dx

= − 1√
2

∫ 1

−1

(u′)2ϕ′η′

(1 + (u′)2)2
dx− 1√

2

∫ 1

−1

uu′′ϕ′η′

(1 + (u′)2)2
dx

+2
√

2
∫ 1

−1

u(u′)2u′′ϕ′η′

(1 + (u′)2)3
dx+

1√
2

[
u′ϕ′η′

(1 + (u′)2)2

]1

−1

= − 1√
2

∫ 1

−1

(u′)2ϕ′η′

(1 + (u′)2)2
dx− 1

2

∫ 1

−1

uϕ′η′

(1 + (u′)2)1/2
dx

+2
∫ 1

−1

u(u′)2ϕ′η′

(1 + (u′)2)3/2
dx+

1√
2

[
u′ϕ′η′

(1 + (u′)2)2

]1

−1

.

Collecting terms and exploiting again (7) we conclude:

W̃ ′′(u)(ϕ, η) =
∫ 1

−1
ϕη

(
1

u3(1 + (u′)2)1/2
− 1

2
√

2u2
+

(u′)2

u3(1 + (u′)2)3/2

)
dx

+
∫ 1

−1
ϕη

(
3(u′)2

2
√

2u2(1 + (u′)2)
+
√

2
8

)
dx

+
∫ 1

−1
ϕ′η′

( −1
2u(1 + (u′)2)3/2

+
3(u′)2

2u(1 + (u′)2)5/2

)
dx

+
∫ 1

−1
ϕ′η′

(
−

√
2

1 + (u′)2
+

5(u′)2√
2(1 + (u′)2)2

+
5u

4(1 + (u′)2)3/2

)
dx

+
∫ 1

−1
ϕ′′η′′

u

(1 + (u′)2)5/2
dx+

[
3u′ϕ′η′

(1 + (u′)2)5/2
− 5u′ϕ′η′√

2(1 + (u′)2)2

]1

−1

.

Making again use of u(x) = 2−√2− x2 and (7), the claim follows by elementary calculations.

In explicit terms, the linearisation of the boundary value problem (4) for the Willmore equation
around the Clifford torus is given by





d2

dx2 (c(x)ϕ′′(x))− d
dx (b(x)ϕ′(x)) + a(x)ϕ(x) = 0 for x ∈ (−1, 1),

ϕ(1) = ϕ(−1) = 0,
ϕ′′(1)− 2ϕ′(1) = 0, ϕ′′(−1) + 2ϕ′(−1) = 0,

(8)

where the coefficients are defined as follows:

a(x) :=
8

(2−√2− x2)2
, (9)

b(x) :=
2(2− x2)

2−√2− x2

(
6 + 3(2− x2)1/2 − 10(2− x2) + 3(2− x2)3/2

)
(10)

=
−8(2− x2)
2−√2− x2

+ 10(2− x2) + 8(2− x2)3/2 − 6(2− x2)2,

c(x) := 2(2− x2)5/2 − (2− x2)3 = (2− x2)5/2(2−
√

2− x2). (11)
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Lemma 2. The general solution of the differential equation in (8) is given by the following funda-
mental system:

ϕ1(x) =
x√

2− x2
,

ϕ2(x) =
√

2− x2 − 1√
2− x2

,

ϕ3(x) =
2−√2− x2

√
2− x2

cos
(√

2 arctan
x√

2(
√

2− x2 − 1)

)
,

ϕ4(x) =
2−√2− x2

√
2− x2

sin
(√

2 arctan
x√

2(
√

2− x2 − 1)

)
.

Proof. See Appendix B.

Lemma 3. For the boundary value problem (8) we have uniqueness, i.e. the only solution of (8)
is ϕ(x) ≡ 0.

Proof. Assume that ϕ : (−1, 1) → R is a solution of (8). According to Lemma 2, there exist
constants β1, . . . , β4 ∈ R such that ϕ(x) =

∑4
i=1 βiϕi(x), x ∈ [−1, 1]. Furthermore,

ϕ(1) = 0, ϕ(−1) = 0; ϕ′′(1)− 2ϕ′(1) = 0, ϕ′′(−1) + 2ϕ′(−1) = 0.

The calculations following (32), (33) in Appendix B imply that βi = 0 for i = 1, . . . , 4 and hence
ϕ ≡ 0.

As a consequence of the previous lemma we have that the linearisation of the Willmore equation
around the Clifford torus is boundedly invertible in suitable function spaces. Employing the implicit
function theorem, this gives rise to a local existence result for the Willmore boundary value problem
(4) for data α close to 1, which is the boundary datum of the Clifford torus. This means that we
are now able to prove Theorem 1.

Theorem 1. There exists ε0 > 0 such that for α ∈ (1− ε0, 1+ ε0), the boundary value problem (4)
has a solution u ∈ C∞([−1, 1], (0,∞)).

Proof. We apply the implicit function theorem as it can be found in [De, Theorem 15.1]. Let
X = R, U = (0,∞) ⊂ X,Y = C4([−1, 1]), V = C4([−1, 1], (0,∞)) ⊂ Y, Z = C0([−1, 1]) × R4 as
well as F : V → Z,G : U × V → Z with

F (u) :=
(
∆RH + 2H(H2 −K), u(−1), u(1),H(−1),H(1)

)
;

G(α, u) := F (u)− α(0, 1, 1, 0, 0).

We put α0 = 1, u0(x) = 2−√2− x2, x ∈ [−1, 1] and

L :=
∂G

∂u
(α0, u0) =

∂F

∂u
(u0).

It is straightforward to see that L allows for an elliptic theory. By means of the Fredholm al-
ternative we see that bounded invertibility of L follows from its injectivity. The latter is proved
in Lemma 3. Hence, the implicit function theorem yields the claim, in a first step with u ∈
C4([−1, 1], (0,∞)). Since the Willmore equation is “autonomous” and only quasilinear we con-
clude that u ∈ C∞([−1, 1]) by using standard bootstrapping arguments.
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3 The bifurcation point

The bifurcation point we want to verify in Problem (4) and Figure 3 resp. is also a turning point
on the branch of minimal surfaces. In order not to verify just the latter fact we have to take a
different point of view: Instead of (4), we consider

{
∆RH + 2H(H2 −K) = 0 in (−1, 1),

u(0) = λ, u(x) = u(−x), H(±1) = 0.
(12)

We consider λ as bifurcation parameter and the boundary values α = u(±1) as a function of λ, i.e.
we interchange the role of the axes in Figure 3. The “trivial” solution branch of (12) is given by
the minimal surfaces uλ(x) = cosh(bx)

b with b = 1
λ . Since

d

dε
H(u+ εϕ)|ε=0 = − ϕ′′

2(1 + (u′)2)3/2
− 3

u′ϕ′

1 + (u′)2
H

+
u′ϕ′

u(1 + (u′)2)3/2
− ϕ

2u2
√

1 + (u′)2
,

linearising the differential equation in (12) on minimal surfaces yields:

0 =
1

u
√

1 + (u′)2

·∂x

(
u√

1 + (u′)2
∂x

(
− ϕ′′

2(1 + (u′)2)3/2
+

u′ϕ′

u(1 + (u′)2)3/2
− ϕ

2u2
√

1 + (u′)2

))

−2K

(
− ϕ′′

2(1 + (u′)2)3/2
+

u′ϕ′

u(1 + (u′)2)3/2
− ϕ

2u2
√

1 + (u′)2

)
.

Determining the null space of the linearisation of (12) around the solution u = cosh(bx)
b leads to the

following boundary value problem for ϕ:




0 = ∂2
x

(
1

2 cosh(bx)4

(
cosh(bx)ϕ′′(x)− 2b sinh(bx)ϕ′(x) + b2 cosh(bx)ϕ(x)

))

+ b2

cosh(bx)6

(
cosh(bx)ϕ′′(x)− 2b sinh(bx)ϕ′(x) + b2 cosh(bx)ϕ(x)

)
, x ∈ [−1, 1],

ϕ(x) = ϕ(−x), x ∈ [−1, 1],
0 = ϕ(0),
0 = ϕ′′(1)− 2b sinh(b)

cosh(b) ϕ
′(1) + b2ϕ(1).

(13)

Lemma 4. The space of even solutions to the differential equation in (13) is spanned by

ϕ1(x) := cosh(bx)− bx sinh(bx)

ϕ2(x) := sinh(bx)
(5

3
cosh(bx) sinh(bx)

+
5
3
bx− 2bx cosh(bx)2 +

2
3
(bx)2 cosh(bx) sinh(bx)− 2

9
(bx)3

)

−(cosh(bx)− bx sinh(bx))
(

cosh(bx)2 − 2
3
bx sinh(bx) cosh(bx) +

1
3
(bx)2

)
.

Proof. In order to determine the general even solution of the differential equation, we solve in a
first step for Φ(x) := cosh(bx)ϕ′′(x) − 2b sinh(bx)ϕ′(x) + b2 cosh(bx)ϕ(x). The general solution of
∂2

x

(
1

2 cosh(bx)4
Φ(x)

)
+ b2

cosh(bx)6
Φ(x) = 0, irrespective of whether it is even or not, is given by

Φ(x) = β1 cosh(bx)3 sinh(bx) + β2 cosh(bx)3(cosh(bx)− bx sinh(bx)), β1, β2 ∈ R.
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Since the differential equation

cosh(bx)ϕ′′(x)− 2b sinh(bx)ϕ′(x) + b2 cosh(bx)ϕ(x) = cosh(bx)3 sinh(bx)

has no even solution, we only need to consider:

cosh(bx)ϕ′′(x)− 2b sinh(bx)ϕ′(x) + b2 cosh(bx)ϕ(x) = β2 cosh(bx)3(cosh(bx)− bx sinh(bx)). (14)

As for ϕ2 we calculate:

ϕ2(x) =
5
3

cosh(bx) sinh(bx)2 +
5
3
bx sinh(bx)− 1

3
bx cosh(bx)2 sinh(bx)

+
1
9
(bx)3 sinh(bx)− cosh(bx)3 − 1

3
(bx)2 cosh(bx),

ϕ′2(x) =
5
3
b cosh(bx)2 sinh(bx)− b2x cosh(bx)3 +

1
9
b4x3 cosh(bx) +

5
3
b2x cosh(bx),

ϕ′′2(x) =
10
3
b2 cosh(bx) sinh(bx)2 +

2
3
b2 cosh(bx)3 − 3b3x cosh(bx)2 sinh(bx)

+
1
3
b4x2 cosh(bx) +

1
9
b5x3 sinh(bx) +

5
3
b2 cosh(bx) +

5
3
b3x sinh(bx),

hence

cosh(bx)ϕ′′2(x)− 2b sinh(bx)ϕ′2(x) + b2 cosh(bx)ϕ2(x) =
4
3
b2 cosh(bx)3(cosh(bx)− bx sinh(bx)).

Because ϕ1 and x 7→ sinh(bx) solve the homogeneous equation, i.e. (14) with β2 = 0, its general
solution is given by

x 7→ 3β2

4b2
ϕ2(x) + β3ϕ1(x) + β4 sinh(bx),

where β3, β4 ∈ R. Since we only need to consider even functions we may put β4 = 0. So, the space
of even solutions to the differential equation in (13) is spanned by ϕ1 and ϕ2.

Lemma 5. Let b0 = 1.1996786 . . . be the unique positive solution of the equation cosh(b) = b sinh(b).
If b ∈ (0,∞) \ {b0}, the only solution of (13) is ϕ(x) ≡ 0. If b = b0, then the null space of (13) is
one-dimensional and spanned by

ϕ(x) = ϕ1(x) + ϕ2(x)

= cosh(b0x)− b0x sinh(b0x) + sinh(b0x)
(5

3
cosh(b0x) sinh(b0x)

+
5
3
b0x− 2b0x cosh(b0x)2 +

2
3
(b0x)2 cosh(b0x) sinh(b0x)− 2

9
(b0x)3

)

−(cosh(b0x)− b0x sinh(b0x))
(

cosh(b0x)2 − 2
3
b0x sinh(b0x) cosh(b0x) +

1
3
(b0x)2

)
.

Proof. The calculations in the proof of Lemma 4 show that

ϕ1(0) = −ϕ2(0) = 1,

ϕ′′1(1)− 2b sinh(b)
cosh(b)

ϕ′1(1) + b2ϕ1(1) = 0,

ϕ′′2(1)− 2b sinh(b)
cosh(b)

ϕ′2(1) + b2ϕ2(1) =
4
3
b2 cosh(b)2(cosh(b)− b sinh(b)).

According to Lemma 4, the only even solution to the differential equation in (13) satisfying ϕ(0) = 0
is given by

ϕ(x) = β(ϕ1(x) + ϕ2(x)), β ∈ R.

9



As for the second boundary datum of ϕ we have

ϕ′′(1)− 2b sinh(b)
cosh(b)

ϕ′(1) + b2ϕ(1) = β · 4
3
b2 cosh(b)2(cosh(b)− b sinh(b)).

Now, the claim follows immediately.

Lemma 5 now allows us to prove Theorem 2, i.e. we verify the existence of precisely one
bifurcation point of (12) on the branch of catenoidal minimal surface solutions.

Theorem 2. For λ > 0 let uλ(x) = λ cosh(x
λ) denote the minimal surface solutions of (12). Let

b0 = 1.1996786 . . . be the unique positive solution of the equation cosh(b) = b sinh(b), λ0 = 1/b0.
Then (λ0, uλ0) is the unique bifurcation point for (12) on the branch λ 7→ (λ, uλ).

Proof. For the abstract bifurcation result to be applied here, we refer to [CR], see also [De, Theorem
28.6]. We put

X := {u ∈ C4([−1, 1]), u(x) = u(−x)},
Y := {u ∈ C0([−1, 1]), u(x) = u(−x)} × (0,∞)× R,

endowed with the obviously corresponding norms. Moreover, let

Ω := {u ∈ X,u(x) > 0}.
For v ∈ Ω we define

L(v) : X → Y,

L(v)u :=

(
− 1
v(x)

√
1 + v′(x)2

∂x

(
v(x)√

1 + v′(x)2
∂x

(
u′′(x)

2 (1 + v′(x)2)3/2

))
,

u(0),− u′′(1)

2 (1 + v′(1)2)3/2

)

M : Ω → Y,

M(v) :=

(
1

v(x)
√

1 + v′(x)2
∂x

(
v(x)√

1 + v′(x)2
∂x

(
1

2v(x)
√

1 + v′(x)2

))

+2H(v)
(
H(v)2 −K(v)

)
, 0,

1
2v(1)

√
1 + v′(1)2

)
.

We remark that it is a straightforward exercise to show that for v ∈ Ω, L(v) : X → Y is bijective,
bounded and boundedly invertible. Moreover L(v)−1 maps Y ∩(C1([−1, 1])×(0,∞)×R) boundedly
into X ∩ C5([−1, 1]). Making use of this notation, the bifurcation equation (12) becomes

0 = L(u)u+M(u)− (0, λ, 0)
⇔ 0 = u+ L(u)−1(M(u))− λ =: G(λ, u)

with G : (0,∞)×Ω → X. In the latter formulation, thanks to the regularising properties of L(u)−1,
we gain the required compactness. Lemma 5 shows that (λ0, uλ0) is the only point on the minimal
surfaces branch, where the necessary null space condition for bifurcation is satisfied.

It remains to check the transversality condition to prove that we have indeed a bifurcation point
in (λ0, uλ0). Let ϕ(x) = ϕ1(x) + ϕ2(x) be as in Lemma 5, uλ(x) = λ cosh(x/λ). Then we have to
show that the equation

DuG(λ0, uλ0)ψ =
∂

∂λ
(DuG(λ, uλ)ϕ) |λ=λ0 (15)
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has no solution ψ ∈ X. To verify this we refer to the linearisation (13) of our differential equation
around uλ as Lλ. To this end we define

Lλ : X → Y,

Lλψ(x) :=

(
∂2

x

(
1

2 cosh(x/λ)4

(
cosh(x/λ)ψ′′(x)− 2

sinh(x/λ)
λ

ψ′(x) +
cosh(x/λ)

λ2
ψ(x)

))

+
1

λ2 cosh(x/λ)6

(
cosh(x/λ)ψ′′(x)− 2

sinh(x/λ)
λ

ψ′(x) +
cosh(x/λ)

λ2
ψ(x)

)
,

ψ(0), ψ′′(1)− 2 sinh(1/λ)
λ cosh(1/λ)

ψ′(1) +
1
λ2
ψ(1)

)
.

To prove that (15) has no solution ψ ∈ X we prove that

Lλ0ψ =
∂

∂λ
Lλϕ|λ=λ0

or, equivalently, in terms of b = 1
λ , b0 = 1

λ0

L1/b0ψ = −b2 ∂
∂b
L1/bϕ|b=b0 (16)

has no solution ψ ∈ X.
We assume by contradiction that a solution ψ ∈ X to (16) does indeed exist. Using that

cosh(b0) = b0 sinh(b0) and the abbreviations

A(x) :=
1

2 cosh(b0x)4
(
cosh(b0x)ϕ′′(x)− 2b0 sinh(b0x)ϕ′(x) + b20 cosh(b0x)ϕ(x)

)

=
2b20

3 cosh(b0x)
(cosh(b0x)− b0x sinh(b0x)),

B(x) :=
1

2 cosh(b0x)4
(
cosh(b0x)ψ′′(x)− 2b0 sinh(b0x)ψ′(x) + b20 cosh(b0x)ψ(x)

)
,

C :=
(
−2

sinh(b0)
cosh(b0)

+ 2b0
sinh(b0)2

cosh(b0)2
− 2b0

)
ϕ′(1) + 2b0ϕ(1) = −2b0ϕ′(1) + 2b0ϕ(1),

this means that ψ is even and solves




B′′(x) + 2b20
cosh(b0x)2

B(x) = −b20
(

∂
∂bL1/bϕ(x)

)
1
|b=b0 , x ∈ [0, 1],

ψ(0) = 0,
B(1) = − b20C

2 cosh(b0)3
.

(17)

Here
(

∂
∂bL1/bϕ(x)

)
1

denotes the first component of the triplet of ∂
∂bL1/bϕ(x), i.e. the differential

operator component applied to ϕ. We multiply the differential equation by A(x) and integrate by
parts:

−b20
∫ 1

0
A(x)

(
∂

∂b
L1/bϕ(x)

)

1

|b=b0 dx

=
∫ 1

0

(
B′′(x) +

2b20
cosh(b0x)2

B(x)
)
A(x) dx

=
[
B′(x)A(x)

]1

0
− [

B(x)A′(x)
]1

0
+

∫ 1

0
B(x)

(
A′′(x) +

2b20
cosh(b0x)2

A(x)
)

= −B(1)A′(1) =
b20C

2 cosh(b0)3
A′(1).
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In the last step we used that A(1) = 0 and that A and B are even so that A′(0) = B′(0) = 0. To
sum up: Assuming that ψ is an even solution to (17) yields the necessary condition:

∫ 1

0
A(x)

(
∂

∂b
L1/bϕ(x)

)

1

|b=b0 dx = − C

2 cosh(b0)3
A′(1),

equivalently ∫ 1

0

(
1− b0x sinh(b0x)

cosh(b0x)

)(
∂

∂b
L1/bϕ(x)

)

1

|b=b0 dx =
Cb20

2 cosh(b0)3
. (18)

According to mapleTM we have that

∂

∂b
L1/bϕ|b=b0 =

(
− 2b30

9 cosh(b0x)6
(
− 6(b0x)2 cosh(b0x)4 + 8(b0x)4 cosh(b0x)2

+42(b0x)2 cosh(b0x)2 + 69 cosh(b0x)2 − 18 cosh(b0x)6 − 27 cosh(b0x)4

−9(b0x)4 − 54(b0x)2 − 123b0x sinh(b0x) cosh(b0x) + 6b0x cosh(b0x)3 sinh(b0x)

−16(b0x)3 cosh(b0x) sinh(b0x)
)
,

0, 2b0(−2b0 sinh(b0) cosh(b0)2 +
1
9
b30 sinh(b0)− 1

9
b40 cosh(b0)

−5
3
b20 cosh(b0) +

5
3
b20 cosh(b0)3)

)
;

∫ 1

0

(
1− b0x sinh(b0x)

cosh(b0x)

) (
∂

∂b
L1/bϕ(x)

)

1

|b=b0 dx = 1.0441 . . . ;

Cb20
2 cosh(b0)3

= −0.6125 . . .

With these calculations we finally obtain a contradiction with (18), so that (17) has indeed no even
solution ψ.

Further very precise local information on the bifurcating branch is available. In the following
result we calculate explicitly its full tangent vector, which can be directly compared with numerical
approximations explained below in Section 4.

Theorem 3. Let t 7→ (λ(t), uλ(t) + v(t)) for t close to 0 be the branch of non-minimal-surface-
solutions to (12) bifurcating from λ 7→ (λ, uλ) in λ0 = 1/b0 according to Theorem 2 such that v′(0) =
ϕ, where ϕ is defined in Lemma 5. Moreover, let A(x) = 2b20

3 cosh(b0x)(cosh(b0x) − b0x sinh(b0x)) be
as in the preceding proof. Then,

λ′(0) =
2
9

∫ 1
0 A

3 cosh(b0x)2 dx+ 5
9

∫ 1
0 A

3 dx− 2
3b

2
0

∫ 1
0

ϕA2

cosh(b0x)3
dx

∫ 1
0

A3

cosh(b0x)2
dx

= 0.8077 . . . (19)

For the curve t 7→ (α(t), λ(t)) = ((uλ(t) + v(t))|x=1, λ(t)) as displayed in the bifurcation diagram
Figure 3, in the bifurcation point we get the tangent vector

(α′(0), λ′(0)) = (ϕ(1), λ′(0)) = (1.398 . . . , 0.8077 . . .) = 1.398 . . . · (1, 0.5776 . . .).

For the profile of the bifurcating direction we find

d

dt
(λ(t), uλ(t) + v(t))|t=0 = (λ′(0), x 7→ λ′(0)(cosh(b0x)− b0x sinh(b0x)) + ϕ(x)).
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Proof. We denote by t 7→ (λ(t), u(t)) := (λ(t), uλ(t) + v(t)) the bifurcating branch of non-minimal-
surface-solutions to (12), where

u(t) = uλ(t) + tϕ+ o(t) = uλ0 + tη + o(t), η := λ′(0)ϕ1 + ϕ

and ϕ1(x) = cosh(b0x) − b0x sinh(b0x) is as in Lemma 5. The starting point is the differential
equation satisfied by u(t),

∂x

(
u(t)√

1 + u2
x(t)

∂xH(u(t))

)
+2u(t)

√
1 + u2

x(t)H(u(t))
(
H(u(t))2 −K(u(t))

)
= 0 on [−1, 1]. (20)

This equation is differentiated twice with respect to t in t = 0. Writing

H1 :=
∂

∂t
H(u(t))|t=0, H2 :=

∂2

∂t2
H(u(t))|t=0, K1 :=

∂

∂t
K(u(t))|t=0,

we find

0 = 2∂x

((
η

cosh(b0x)
− sinh(b0x)
b0 cosh(b0x)2

η′
)
H ′

1

)
+

1
b0
H ′′

2 +
2b0

cosh(b0x)2
H2

− 4
b0

cosh(b0x)2K1H1 +
4b20

cosh(b0x)4

(
η cosh(b0x) +

1
b0
η′ sinh(b0x)

)
H1.

One calculates

H1 = DuH(uλ0)η = DuH(uλ0)ϕ = −A,

K1 = − b0
cosh(b0x)5

η′′ + 4
b20 sinh(b0x)
cosh(b0x)6

η′ +
b30

cosh(b0x)5
η.

Observing that η = λ′(0)ϕ1 +ϕ, after some lengthy and tedious calculations and making use of the
differential equation (14) satisfied by ϕ and of A′′ + 2b20

cosh(b0x)2
A = 0, we come up with

0 =
4
b0

sinh(b0x) cosh(b0x)AA′ +
1
b0

(
H ′′

2 +
2b20

cosh(b0x)2
H2

)

+12
A2

cosh(b0x)2
λ′(0) + 8

b20
cosh(b0x)3

ϕA− 8A2.

This identity is now multiplied by A and integrated on (0, 1). The term containing H2 is shown to
vanish by integrating by parts. Since H2 and A are even in x, we have H ′

2(0) = A′(0) = 0. Since
H(u(t))(1) = 1, we also have H2(1) = 0 as well as A(1) = 0. Exploiting A′′ + 2b20

cosh(b0x)2
A = 0 again

then yields formula (19). The proof of the remaining claims is then straightforward.

Remark 2. For α close to α0 we can think of the branch of non–minimal surface solutions as being
parametrised by α, say α 7→ uα, |α− α0| < ε. It then follows from Theorem 3 that ∂uα

∂α |α=α0
= w,

where

w(x) =
1

ϕ(1)
(
λ′(0)(cosh(b0x)− b0x sinh(b0x)) + ϕ(x)

)
. (21)

This profile as well as its numerically calculated counterpart, which is obtained from the numerical
approximations on the branch of “nontrivial” solutions, is displayed in Figure 5.
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4 Numerical approximation

In this section we present a numerical method which allows the calculation of approximate solutions
of (4) irrespective of whether the solution corresponds to a local minimum or a saddle point of the
Willmore functional. As we shall use a finite element approach, the first step consists in deriving a
suitable variational form of the differential equation in (4). To begin, we introduce the new variable

w(x) := H(x)
√

1 + u′(x)2. (22)

Let us express the operator ∆RH + 2H(H2 −K) in terms u and w. Note that

H ′ =
w′√

1 + (u′)2
− u′u′′H

1 + (u′)2
.

Recalling (6) and that H = − u′′

2(1 + (u′)2)3/2
+

1
2u

√
1 + (u′)2

we have

u∆RH =
1√

1 + (u′)2
∂x

( u√
1 + (u′)2

H ′
)

= ∂x

( u

1 + (u′)2
H ′

)
+

uu′u′′H ′

(1 + (u′)2)2
(23)

= ∂x

( uw′

(1 + (u′)2)3/2

)
− ∂x

( uu′u′′H
(1 + (u′)2)2

)
+

uu′u′′H ′

(1 + (u′)2)2

= ∂x

( uw′

(1 + (u′)2)3/2

)
−H ∂x

( uu′u′′

(1 + (u′)2)2
)

= ∂x

( uw′

(1 + (u′)2)3/2

)
+ 2H ∂x

( uu′H√
1 + (u′)2

)
−H ∂x

( u′

1 + (u′)2
)

We calculate for the second term

2H ∂x

( uu′H√
1 + (u′)2

)
= 2HH ′ uu′√

1 + (u′)2
+ 2H2∂x

( uu′√
1 + (u′)2

)

= ∂x

( uu′H2

√
1 + (u′)2

)
+H2 ∂x

( uu′√
1 + (u′)2

)

= ∂x

( uu′w2

(1 + (u′)2)3/2

)
+H2

( (u′)2√
1 + (u′)2

+ u
u′′

(1 + (u′)2)3/2

)

= ∂x

( uu′w2

(1 + (u′)2)3/2

)
+H2

{ (u′)2√
1 + (u′)2

+ u
(
−2H +

1
u
√

1 + (u′)2

)}

= ∂x

( uu′w2

(1 + (u′)2)3/2

)
+H2

√
1 + (u′)2 − 2uH3.

On the other hand, using (5)

∂x

( u′

1 + (u′)2
)

= − u′′

1 + (u′)2
+ 2

u′′

(1 + (u′)2)2
= 2H

√
1 + (u′)2 − 1

u
− 2uK.

Inserting the two identities into (23) above we obtain

u
(
∆RH + 2H(H2 −K)

)

= ∂x

( uw′

(1 + (u′)2)3/2

)
+ ∂x

( uu′w2

(1 + (u′)2)3/2

)
+

w√
1 + (u′)2

(1
u
− w

)
.
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Thus, the equation ∆RH + 2H(H2 −K) = 0 translates into

∂x

( uw′

(1 + (u′)2)3/2

)
+ ∂x

( uu′w2

(1 + (u′)2)3/2

)
+

w√
1 + (u′)2

(1
u
− w

)
= 0, in (−1, 1),

which can be written in variational form as

∫ 1

−1

uw′φ′

(1 + (u′)2)3/2
+

∫ 1

−1

uu′w2φ′

(1 + (u′)2)3/2
−

∫ 1

−1

wφ√
1 + (u′)2

(1
u
− w

)
= 0 (24)

for all φ ∈ H1
0 (−1, 1). In order to establish the relation between u and w we observe that

∂x

( uu′√
1 + (u′)2

)
=

(u′)2√
1 + (u′)2

+
uu′′

(1 + (u′)2)3/2

=
(u′)2√

1 + (u′)2
+ u

(−2H +
1

u
√

1 + (u′)2
)

= −2uH +
√

1 + (u′)2 = −2
uw√

1 + (u′)2
+

√
1 + (u′)2,

which, in variational form, reads

2
∫ 1

−1

uwη√
1 + (u′)2

−
∫ 1

−1

uu′η′√
1 + (u′)2

−
∫ 1

−1

√
1 + (u′)2 η = 0 ∀η ∈ H1

0 (−1, 1). (25)

In addition to (24) and (25) we impose the boundary conditions

u(±1) = α, w(±1) = 0.

Since (24), (25) only contains first order derivatives it is natural to approximate u and w by
piecewise linear continuous functions. Thus, let xj = −1 + jh, j = 0, ..., N + 1, h = 2

N+1 and define

Xh := {φh ∈ C0([−1, 1]) |φh|[xj−1,xj ] ∈ P1, j = 1, ..., N + 1},

where P1 is the space of polynomials of degree less than or equal to 1. Furthermore, we set
Xh0 := Xh ∩H1

0 (−1, 1).
We now propose the following scheme: find uh ∈ Xh, uh(±1) = α,wh ∈ Xh0 such that uh > 0 in
[−1, 1] and for all φh, ηh ∈ Xh0

∫ 1

−1

uhw
′
hφ
′
h

(1 + (u′h)2)3/2
+

∫ 1

−1

uhu
′
hw

2
hφ
′
h

(1 + (u′h)2)3/2
−

∫ 1

−1

whφh√
1 + (u′h)2

( 1
uh
− wh

)
= 0, (26)

2
∫ 1

−1

uhwhηh√
1 + (u′h)2

−
∫ 1

−1

uhu
′
hη
′
h√

1 + (u′h)2
−

∫ 1

−1

√
1 + (u′h)2 ηh = 0. (27)

Note that the hat functions φj ∈ Xh with φj(xk) = δjk, j, k = 0, 1, ..., N + 1 form a basis of Xh,
while φ1, ..., φN are a basis of Xh0. We define Ω := {(u,w) ∈ R2N |ui > 0, i = 1, . . . , N} and assign
to each (u,w) ∈ Ω, u = (u1, . . . , uN ), w = (w1, . . . , wN ) the functions

uh = αφ0 +
N∑

i=1

uiφi + αφN+1 ∈ Xh, wh =
N∑

i=1

wiφi ∈ Xh0.
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This allows us to translate (26), (27) into a system of nonlinear equations for the coefficients
u1, . . . , uN , w1, . . . , wN . To do so, define F : Ω → R2N by

Fj(u,w) :=
∫ 1

−1

uhw
′
hφ
′
j

(1 + (u′h)2)3/2
+

∫ 1

−1

uhu
′
hw

2
hφ
′
j

(1 + (u′h)2)3/2
−

∫ 1

−1

whφj√
1 + (u′h)2

( 1
uh
− wh

)
,

Fj+N (u,w) := 2
∫ 1

−1

uhwhφj√
1 + (u′h)2

−
∫ 1

−1

uhu
′
hφ
′
j√

1 + (u′h)2
−

∫ 1

−1

√
1 + (u′h)2 φj ,

for 1 ≤ j ≤ N . It is straightforward to see that the scheme (26), (27) is equivalent to the solution
of the system

F (u,w) = 0. (28)

We used Newton’s method in order to obtain approximate solutions of (28). To start the iteration
we picked a vector u(0) with u

(0)
i > 0, 1 ≤ i ≤ N and then calculated the vector w(0) via the finite

difference formula (cf. (22))

w
(0)
i :=

1
2

(√
1 + (δ+u(0)

i )2 +
√

1 + (δ−u(0)
i )2

){−1
2h

( δ+u
(0)
i√

1 + (δ+u(0)
i )2

− δ−u(0)
i√

1 + (δ−u(0)
i )2

)

+
1

4u(0)
i

( 1√
1 + (δ+u(0)

i )2
+

1√
1 + (δ−u(0)

i )2

)}
, 1 ≤ i ≤ N,

where

δ+u
(0)
i =

u
(0)
i+1 − u

(0)
i

h
, δ−u(0)

i =
u

(0)
i − u

(0)
i−1

h
.

The choice of u(0) was determined by the value of α: In the case 0 < α < α0 we simply took

u
(0)
i := α, 1 ≤ i ≤ N

and observed convergence of Newton’s method, at least as long as α ≥ 0.05. We denote this solution
by uh,α.
For α > α0 we chose

u
(0)
i = λ

cosh(bαxi)
bα

+ (1− λ)
cosh(b′αxi)

b′α
, 1 ≤ i ≤ N,

where λ ∈ [0, 1] and bα, b
′
α are the two (approximate) solutions of the equation cosh(b)/b = α. If

we chose λ close to either 1 or 0 we observed convergence towards the minimal surface solutions
x 7→ cosh(bαx)/bα and x 7→ cosh(b′αx)/b′α respectively. For the choice λ = 1

2 Newton’s method
converged to a third solution which we denote by uh,α and which we expected to lie (approximately)
on the branch of non–minimal surface solutions. Figure 4 shows an example of a calculation for
α = 1.6. The graph of the non–minimal surface solution is displayed together with those of the two
catenoid solutions and lies between them.

In order to verify that the functions uh,α lie indeed on the nontrivial branch we evaluated the
expression

wh(x) =
1

12δ
(
uh,α0−2δ(x)− 8uh,α0−δ(x) + 8uh,α0+δ(x)− uh,α0+2δ(x)

)

and calculated an approximation to the derivative of α 7→ uh,α with respect to α. The resulting
function is shown in Fig. 5 (right) for the choices h = 0.0025 and δ = 0.1 and is in very good
agreement with the function w in Remark 2.
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Figure 4: Numerically calculated non-minimal surface solution and the two catenoid solutions for
α = 1.6.

A First and second variation of W

The aim of this section is to derive, for the reader’s convenience, formulae for the first and second
variation of the Willmore functional

W̃ (u) :=
1
π
W (u) =

1
2

∫ 1

−1

(
1

u(x)
√

1 + u′(x)2
− u′′(x)

(1 + u′(x)2)3/2

)2

u(x)
√

1 + u′(x)2 dx.

We recall that the corresponding Euler-Lagrange is well known. However, since we are in a quite
symmetric setting, the formulae and calculations become particularly simple. The above expression
can be rewritten in a slightly more convenient way:

W̃ (u) =
1
2

∫ 1

−1

1
u(x)

√
1 + u′(x)2

dx+
1
2

∫ 1

−1

u(x)u′′(x)2

(1 + u′(x)2)5/2
dx−

[
u′(x)√

1 + u′(x)2

]1

−1

.

Lemma 6. Let u ∈ C4([−1, 1], (0,∞)) and ϕ, η ∈ H2(−1, 1) ∩H1
0 (−1, 1). Then

〈W̃ ′(u), ϕ〉 = −2
[
H

uϕ′

1 + (u′)2

]x=1

x=−1

− 2
∫ 1

−1
uϕ

(
∆RH + 2H(H2 −K)

)
dx

W̃ ′′(u)(ϕ, η) =
∫ 1

−1

(
ϕη

u3(1 + (u′)2)1/2
+

u′(ϕη)′

2u2(1 + (u′)2)3/2

)
dx

+
∫ 1

−1

( −ϕ′η′
2u(1 + (u′)2)3/2

+
3(u′)2ϕ′η′

2u(1 + (u′)2)5/2

)
dx

+
∫ 1

−1

(
u′′(ϕη)′′

(1 + (u′)2)5/2
− 2u′′ϕ′η′

(1 + (u′)2)5/2
− 5u′(u′′)2(ϕη)′

2(1 + (u′)2)7/2

)
dx

+
∫ 1

−1

(
uϕ′′η′′

(1 + (u′)2)5/2
− 5uu′u′′(ϕ′η′)′

(1 + (u′)2)7/2

)
dx

+
∫ 1

−1

( −5u(u′′)2ϕ′η′

2(1 + (u′)2)7/2
+

35u(u′)2(u′′)2ϕ′η′

2(1 + (u′)2)9/2

)
dx+

[
3u′ϕ′η′

(1 + (u′)2)5/2

]x=1

x=−1

.

17



0,8

0,6

0,4

0,2

0

x

10,50-0,5-1

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5: Profile of w = 1
ϕ(1) (λ′(0)∂λuλ|λ=λ0 + ϕ) of the bifurcating perturbations from the branch

of minimal surface solutions (left). On the right, plot of its numerical approximation wh.

Proof. Clearly,

〈W̃ ′(u), ϕ〉 =
∫ 1

−1

uu′′ϕ′′

(1 + (u′)2)
5
2

− 5
2

∫ 1

−1

uu′(u′′)2ϕ′

(1 + (u′)2)
7
2

− 1
2

∫ 1

−1

u′ϕ′

u(1 + (u′)2)3/2
(29)

+
1
2

∫ 1

−1

( (u′′)2ϕ

(1 + (u′)2)
5
2

− ϕ

u2(1 + (u′)2)
1
2

)
−

[
ϕ′

(1 + (u′)2)3/2

]x=1

x=−1

≡ I + II + III + IV + V.

In view of (5) we may write

u′′

(1 + (u′)2)3/2
= −2H +

1

u(1 + (u′)2)
1
2

. (30)

Using (30) as well as integration by parts we derive for the first term

I = −2
∫ 1

−1

uHϕ′′

1 + (u′)2
+

∫ 1

−1

ϕ′′

(1 + (u′)2)3/2

=
[
−2H

uϕ′

1 + (u′)2
+

ϕ′

(1 + (u′)2)3/2

]1

−1

+ 2
∫ 1

−1

uH ′ϕ′

1 + (u′)2
+ 2

∫ 1

−1

u′Hϕ′

1 + (u′)2

−4
∫ 1

−1

uu′u′′Hϕ′

(1 + (u′)2)2
+ 3

∫ 1

−1

u′u′′ϕ′

(1 + (u′)2)
5
2

=
[
−2H

uϕ′

1 + (u′)2
+

ϕ′

(1 + (u′)2)3/2

]1

−1

− 2
∫ 1

−1

( u√
1 + (u′)2

H ′
)′ ϕ√

1 + (u′)2
+ 2

∫ 1

−1

u′H ′ϕ
1 + (u′)2

−4
∫ 1

−1

uu′HH ′ϕ

(1 + (u′)2)
1
2

− 8
∫ 1

−1

u′Hϕ′

1 + (u′)2
+ 8

∫ 1

−1

uu′H2ϕ′

(1 + (u′)2)
1
2

+ 3
∫ 1

−1

u′ϕ′

u(1 + (u′)2)3/2
.

Next, taking the square of (30) we deduce

(u′′)2

(1 + (u′)2)3
= 4H2 − 4H

u(1 + (u′)2)
1
2

+
1

u2(1 + (u′)2)
. (31)
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As a consequence,

II + V = −
[

ϕ′

(1 + (u′)2)3/2

]1

−1

− 10
∫ 1

−1

uu′H2ϕ′

(1 + (u′)2)
1
2

+ 10
∫ 1

−1

u′Hϕ′

1 + (u′)2
− 5

2

∫ 1

−1

u′ϕ′

u(1 + (u′)2)3/2

as well as

IV = 2
∫ 1

−1
H2ϕ

√
1 + (u′)2 − 2

∫ 1

−1

Hϕ

u
.

Thus,

I + II + III + V = −2
[
H

uϕ′

1 + (u′)2

]1

−1

− 2
∫ 1

−1
uϕ∆RH − 2

∫ 1

−1

uu′(H2ϕ)′

(1 + (u′)2)
1
2

+ 2
∫ 1

−1

u′(Hϕ)′

1 + (u′)2

= −2
[
H

uϕ′

1 + (u′)2

]1

−1

− 2
∫ 1

−1
uϕ∆RH + 2

∫ 1

−1

(u′)2H2ϕ

(1 + (u′)2)
1
2

+2
∫ 1

−1

uu′′H2ϕ

(1 + (u′)2)3/2
− 2

∫ 1

−1

u′′Hϕ
1 + (u′)2

+ 4
∫ 1

−1

(u′)2u′′Hϕ
(1 + (u′)2)2

= −2
[
H

uϕ′

1 + (u′)2

]1

−1

− 2
∫ 1

−1
uϕ∆RH + 2

∫ 1

−1

(u′)2H2ϕ

(1 + (u′)2)
1
2

− 4
∫ 1

−1
uϕH3

+2
∫ 1

−1

H2ϕ

(1 + (u′)2)
1
2

− 4
∫ 1

−1

u′′Hϕ
(1 + (u′)2)2

+ 2
∫ 1

−1

u′′Hϕ
1 + (u′)2

.

Using once more (30) and recalling the formula for K we finally have

I + II + III + V = −2
[
H

uϕ′

1 + (u′)2

]1

−1

− 2
∫ 1

−1
uϕ

(
∆RH + 2H3 − 2HK

)

−2
∫ 1

−1
H2ϕ

√
1 + (u′)2 + 2

∫ 1

−1

Hϕ

u

= −2
[
H

uϕ′

1 + (u′)2

]1

−1

− 2
∫ 1

−1
uϕ

(
∆RH + 2H3 − 2HK

)− IV.

In order to obtain the formula for the second variation we return to (29):

W̃ ′′(u)(ϕ, η) =
d

dε
〈W̃ ′(u+ εη), ϕ〉|ε=0

=
∫ 1

−1

(
u′′ϕ′′η

(1 + (u′)2)5/2
+

uϕ′′η′′

(1 + (u′)2)5/2
− 5uu′u′′ϕ′′η′

(1 + (u′)2)7/2

)
dx

−
∫ 1

−1

(
5u′(u′′)2ϕ′η

2(1 + (u′)2)7/2
+

5u(u′′)2ϕ′η′

2(1 + (u′)2)7/2

)
dx

−
∫ 1

−1

(
5uu′u′′ϕ′η′′

(1 + (u′)2)7/2
− 35u(u′)2(u′′)2ϕ′η′

2(1 + (u′)2)9/2

)
dx

−1
2

∫ 1

−1

(
ϕ′η′

u(1 + (u′)2)3/2
− u′ϕ′η
u2(1 + (u′)2)3/2

− 3(u′)2ϕ′η′

u(1 + (u′)2)5/2

)
dx

+
∫ 1

−1

(
u′′ϕη′′

(1 + (u′)2)5/2
− 5u′(u′′)2ϕη′

2(1 + (u′)2)7/2

)
dx

−1
2

∫ 1

−1

( −2ϕη
u3(1 + (u′)2)1/2

− u′ϕη′

u2(1 + (u′)2)3/2

)
dx+

[
3u′ϕ′η′

(1 + (u′)2)5/2

]1

−1

.
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B Proof of Lemma 2

Let us begin by verifying that ϕ1, . . . , ϕ4 as defined in Lemma 2 are indeed solutions of the differ-
ential equation in (8). As for ϕ1, we compute:

ϕ′1(x) = 2(2− x2)−3/2

ϕ′′1(x) = 6x(2− x2)−5/2

c(x)ϕ′′1(x) = 12x− 6x(2− x2)1/2

(cϕ′′1)
′(x) = 12− 12(2− x2)1/2 + 12(2− x2)−1/2

(cϕ′′1)
′′(x) = 12x(2− x2)−1/2 + 12x(2− x2)−3/2;

b(x)ϕ′1(x) =
4

2−√2− x2

(
6(2− x2)−1/2 + 3− 10(2− x2)1/2 + 3(2− x2)

)

(bϕ′1)
′(x) = − 4x

(2−√2− x2)2
√

2− x2

(
6(2− x2)−1/2 + 3− 10(2− x2)1/2 + 3(2− x2)

)

+
4

2−√2− x2

(
6x(2− x2)−3/2 + 10x(2− x2)−1/2 − 6x)

)

=
4x

(2−√2− x2)2

·
(
12(2− x2)−3/2 − 12(2− x2)−1 + 17(2− x2)−1/2 − 12 + 3(2− x2)1/2

)

= 12x(2− x2)−3/2 + 12x(2− x2)−1/2 +
8x√

2− x2(2−√2− x2)2

= (cϕ′′1)
′′(x) + a(x)ϕ1(x).

Concerning ϕ2, we have:

ϕ2(x) = 1− 1√
2− x2

ϕ′2(x) = −x(2− x2)−3/2

ϕ′′2(x) = −(2− x2)−3/2 − 3x2(2− x2)−5/2

c(x)ϕ′′2(x) = −4− 4x2 − 2(2− x2)3/2 + 6(2− x2)1/2

(cϕ′′2)
′(x) = −8x+ 6x(2− x2)1/2 − 6x(2− x2)−1/2

(cϕ′′2)
′′(x) = −8 + 12(2− x2)1/2 − 12(2− x2)−1/2 − 12(2− x2)−3/2;

b(x)ϕ′2(x) = − 12x√
2− x2(2−√2− x2)

+
10x

2−√2− x2
− 8x+ 6x(2− x2)1/2

(bϕ′2)
′(x) = − 12√

2− x2(2−√2− x2)
− 12x2

(2− x2)3/2(2−√2− x2)
+

12x2

(2− x2)(2−√2− x2)2

+
10

2−√2− x2
− 10x2

√
2− x2(2−√2− x2)2

− 8 + 6(2− x2)1/2 − 6x2(2− x2)−1/2

=
−48 + 48

√
2− x2 − 20(2− x2) + 8(2− x2)3/2

(2− x2)3/2(2−√2− x2)2
− 8 + 12(2− x2)1/2 − 12(2− x2)−1/2

=
−12(2−√2− x2)2 − 8(2− x2) + 8(2− x2)3/2

(2− x2)3/2(2−√2− x2)2
+ (cϕ′′2)

′′(x) + 12(2− x2)−3/2

=
8

(2−√2− x2)2

(
1− 1√

2− x2

)
+ (cϕ′′2)

′′(x) = a(x)ϕ2(x) + (cϕ′′2)
′′(x).
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Concerning ϕ3, the calculations are slightly more complicated. For brevity, we denote

Z := Z(x) :=
√

2 arctan
x√

2(
√

2− x2 − 1)
.

With the help of

Z ′(x) =
2√

2− x2(2−√2− x2)
,

we see that

ϕ′3(x) = − 2
2− x2

sin(Z) +
2x

(2− x2)3/2
cos(Z),

ϕ′′3(x) = sin(Z)
(
− 4x

(2− x2)2
− 4x

(2− x2)2(2−√2− x2)

)

+cos(Z)
(
− 2

(2− x2)(2−√2− x2)
− 6

(2− x2)3/2
+

12
(2− x2)5/2

)
,

c(x)ϕ′′3(x) = sin(Z)
(
−12x(2− x2)1/2 + 4x(2− x2)

)

+cos(Z)
(
−4(2− x2)(2−

√
2− x2) + 12(2−

√
2− x2)− 4(2− x2)

)
,

(cϕ′′3)
′(x) = sin(Z)

(
16

2−√2− x2
− 12x2 − 16

√
2− x2

)

+cos(Z)
(
− 8x

2−√2− x2
+

12x√
2− x2

+ 16x− 12x
√

2− x2

)

b(x)ϕ′3(x) = sin(Z)
(

16
2−√2− x2

+ 4− 12x2 − 16
√

2− x2

)

+cos(Z)
(
− 8x

2−√2− x2
+

12x√
2− x2

+ 16x− 12x
√

2− x2

)
,

so that finally

(cϕ′′3)
′(x)− b(x)ϕ′3(x) = −4 sin(Z),

(
(cϕ′′3)

′ − bϕ′3
)′ (x) = − 8√

2− x2(2−√2− x2)
cos(Z) = −a(x)ϕ3(x).

The calculations for ϕ4 are similar:

ϕ′4(x) =
2

2− x2
cos(Z) +

2x
(2− x2)3/2

sin(Z),

ϕ′′4(x) = cos(Z)
(

4x
(2− x2)2

+
4x

(2− x2)2(2−√2− x2)

)

+ sin(Z)
(
− 2

(2− x2)(2−√2− x2)
− 6

(2− x2)3/2
+

12
(2− x2)5/2

)
,

c(x)ϕ′′4(x) = cos(Z)
(
12x(2− x2)1/2 − 4x(2− x2)

)

+ sin(Z)
(
−4(2− x2)(2−

√
2− x2) + 12(2−

√
2− x2)− 4(2− x2)

)
,

(cϕ′′4)
′(x) = cos(Z)

(
− 16

2−√2− x2
+ 12x2 + 16

√
2− x2

)

+ sin(Z)
(
− 8x

2−√2− x2
+

12x√
2− x2

+ 16x− 12x
√

2− x2

)
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b(x)ϕ′4(x) = cos(Z)
(
− 16

2−√2− x2
− 4 + 12x2 + 16

√
2− x2

)

+sin(Z)
(
− 8x

2−√2− x2
+

12x√
2− x2

+ 16x− 12x
√

2− x2

)
,

so that finally

(cϕ′′4)
′(x)− b(x)ϕ′4(x) = 4 cos(Z),

(
(cϕ′′4)

′ − bϕ′4
)′ (x) = − 8√

2− x2(2−√2− x2)
sin(Z) = −a(x)ϕ4(x).

It remains to prove that ϕ1, . . . , ϕ4 are linearly independent. We shall present the argument in such
a way that it can be also used to prove Lemma 3. Assume that

∑4
i=1 βiϕi ≡ 0 in [−1, 1]. Then we

have in particular

4∑

i=1

βiϕi(1) =
4∑

i=1

βiϕi(−1) = 0; (32)

4∑

i=1

βiϕ
′′
i (1)− 2

4∑

i=1

βiϕ
′
i(1) = 0,

4∑

i=1

βiϕ
′′
i (−1) + 2

4∑

i=1

βiϕ
′
i(−1) = 0. (33)

We need the following values of ϕi and its derivatives:

ϕ1(1) = −ϕ1(−1) = 1, ϕ′1(1) = ϕ′1(−1) = 2,
ϕ′′1(1) = −ϕ′′1(−1) = 6,
ϕ2(1) = ϕ2(−1) = 0, ϕ′2(1) = −ϕ′2(−1) = −1,
ϕ′′2(1) = ϕ′′2(−1) = −4,
ϕ3(1) = ϕ3(−1) = cos

(√
2

2 π
)
, ϕ′3(1) = −ϕ′3(−1) = 2 cos

(√
2

2 π
)
− 2 sin

(√
2

2 π
)
,

ϕ′′3(1) = ϕ′′3(−1) = 4 cos
(√

2
2 π

)
− 8 sin

(√
2

2 π
)
,

ϕ4(1) = −ϕ4(−1) = sin
(√

2
2 π

)
, ϕ′4(1) = ϕ′4(−1) = 2 cos

(√
2

2 π
)

+ 2 sin
(√

2
2 π

)
,

ϕ′′4(1) = −ϕ′′4(−1) = 8 cos
(√

2
2 π

)
+4 sin

(√
2

2 π
)
,

With the help of these values, we conclude from (32) that

β3 = 0, β1 = −β4 sin

(√
2

2
π

)
. (34)

Combining this result with (33) we infer




0 = −β2 + β4

(
2 cos

(√
2

2 π
)
− sin

(√
2

2 π
))

0 = −β2 − β4

(
2 cos

(√
2

2 π
)
− sin

(√
2

2 π
))

,

which by
√

2
2 π ∈ (π

2 , π),
(
2 cos

(√
2

2 π
)
− sin

(√
2

2 π
))

< 0 gives

0 = β2 = β4

Finally, from (34) we obtain that also β3 = β1 = 0.
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