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Abstract. Estimates from above and below by the same positive prototype function for suitably

modified Green functions in bounded smooth domains under Dirichlet boundary conditions for el-

liptic operators L of higher order 2m ≥ 4 have been shown so long only, when the pricipal part of L
is the polyharmonic operator (−∆)m. In the present note it is shown that such kind of results still

hold, when the Laplacian is replaced by any second order uniformly elliptic operator in divergence
form with smooth variable coefficients. For general higher order elliptic operators, whose principal

part cannot be written as a power of second order operators, it was recently proved that such kind

of results become false in general.
MSC: 35B51; 35J40, 35A08

1. Introduction

In a series of works [3, 4, 6, 7, 9, 13] Dall’Acqua, Meister, Pulst, Robert, Sweers and the present
author have studied the question whether (suitably modified) Green functions in bounded smooth
domains Ω ⊂ Rn under Dirichlet boundary conditions for elliptic operators L of higher order 2m ≥ 4
may be estimated from above and below by the same positive prototype function. Such kind of
results may be considered as a kind of substitute or relaxation of the maximum principle which in its
strong form is true only for second order operators. Employing perturbative and blow-up arguments,
all these works are based on Boggio’s explicit formula for the polyharmonic Green function under
Dirichlet boundary conditions in balls (see [2, p. 126] and also [5, Lemma 2.27]) and similarly in half
spaces (see [5, Remark 2.28]). This does not only show its positivity in these special domains but does
also allow for precise estimates from above and below, see [5, Theorem 4.6] and Remark 2 (a) below.

In order to keep this note short and as simple as possible I shall consider only the (simplest) generic
case

n > 2m.

The “small” dimensions n = 2, . . . , 2m require more effort, but related results will hold also there.
The most general class of operators, which could be treated so long, was considered by Pulst [13]. He
could show that in general bounded smooth domains the estimate (2) below holds for operators of the
form

L = (−∆)m +

m−1∑
j=0

∑
|α|=|β|=j

Dα(aαβ( . )Dβ),

where the coefficients obey symmetry, smoothness and coercivity conditions.
The goal here is to show that the same estimates can be proved for a principal part with variable

coefficients, as long as this stays in the class of powers of second order elliptic operators.

Theorem 1. For n,m ∈ N with

n > 2m
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let Ω ⊂ Rn be a bounded C∞-smooth domain and L be a uniformly elliptic symmetric operator of the
form

L =

− n∑
i,j=1

∂i (aij( . )∂j)

m

.

For the coefficients we assume that

aij( . ) = aji( . ) ∈ C∞(Ω)

and that there exist numbers

0 < λ ≤ Λ : ∀x ∈ Ω, ∀ξ ∈ Rn : λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2.

Let GΩ,L denote the Green function in Ω for the following Dirichlet problem

(1) Lu = f in Ω, u = |∇u| = . . . = |∇m−1u| = 0 on ∂Ω.

Then there exist constants c1 ≥ 0, c2 > 0, depending on the domain Ω and the elliptic operator L,
such that we have the following Green function estimate:

(2) c−1
2 HΩ(x, y) ≤ GΩ,L(x, y) + c1dΩ(x)mdΩ(y)m ≤ c2 HΩ(x, y)

for all x, y ∈ Ω, where

(3) HΩ(x, y) := |x− y|2m−n min

{
1,
dΩ(x)mdΩ(y)m

|x− y|2m

}
and

dΩ(x) := dist(x, ∂Ω).

Remark 2. (a) If L = (−∆)m and Ω is a ball or a half space in Rn, (2) holds true with c1 = 0.
This follows from Boggio’s formula as already mentioned at the beginning of the introduction.
Since n > 2m, one has a unique Green function even in the whole space and this is given by
the positive fundamental solution G(−∆)m,Rn(x, y) = cm,n|x− y|2m−n with a suitable positive
normalisation constant cm,n > 0.

(b) The existence of a Green function is in the case of a principal part with nonconstant coefficients
by no means obvious and is due to Krasovskĭı [11, Theorem 3.3]. Thanks to the symmetry of
the operator L, this is symmetric, i.e. GΩ,L(x, y) = GΩ,L(y, x).

(c) Krasovskĭı’s work requires high regularity of the coefficients of L and of the domain. To keep
the exposition as simple as possible I just assume everything to be C∞-smooth.

(d) The estimate from above follows from [4, 10, 11], see also [6], so that only the estimate from
below has to be proved here.

(e) With the techniques used here and developed in the mentioned works one may admit also
lower order terms as long as symmetry and coercivity assumptions are obeyed.

(f) As it was investigated in [8], the situation becomes completely different when L is a general
uniformly elliptic operator (even with constant coefficients), which cannot be written as a
composition of second order operators, and when the dimension is large, i.e. n ≥ 2m + 2.
Here, in general, even the fundamental solution is sign changing near its singularity. This
means that close to its singularity the negative part of any corresponding Green function
becomes unbounded of the same order of magnitude as the positive part.

(g) For implications of two-sided estimates as in Theorem 1 one may see [14, 15, 16].

An interesting consequence of Theorem 1 is a uniform local positivity result, which was shown in
the mentioned works before for the more special class of operators.

Theorem 3. Let the assumptions of Theorem 1 be satisfied. Then there exist a constant rΩ,L > 0,
such that

(4) GΩ,L(x, y) > 0 for all x, y ∈ Ω with |x− y| < rΩ,L.
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2. Local estimates from below

Lemma 4. Suppose that the assumptions of Theorem 1 are satisfied. Then for each x0 ∈ Ω there
exists a radius r = rx0 > 0 and a constant C = Cx0 > 0 such that for all x, y ∈ Ωx0,r := Ω ∩ Br(x0),
x 6= y, one has

(5) GΩ,L(x, y) ≥ CHΩ(x, y),

where HΩ is defined in (3).

Proof. We assume by contradiction that no such positive numbers exist such that (5) is satisfied. This
means that we may find sequences (xk)k∈N, (yk)k∈N ⊂ Ω with

(6) xk 6= yk, xk, yk → x0

and

(7) GΩ,L(xk, yk) <
1

k
HΩ(x, y).

We shall rescale the domain and the Green function such that |xk − yk| becomes the new length unit.
In the scaling limit we shall end up with a Green function for a constant coefficient elliptic operator
in the half space or in the whole space which is known to enjoy an estimate like (5) so that we end
up with a contradiction. This key argument relies on knowing the Green functions in these prototype
situations explicitly, see Remark 2 (a) above.

To this end we need to distinguish the cases whether the xk, yk are as close together as to the
boundary or much closer.

First case: The sequence dΩ(xk)/|xk − yk| remains bounded.
This means that there exists a constant c3 > 0 such that

(8)
dΩ(xk)

|xk − yk|
≤ c3.

Thanks to the triangle inequality dΩ(yk) ≤ dΩ(xk) + |xk − yk| we also have

(9)
dΩ(yk)

|xk − yk|
≤ c3 + 1.

This yields in view of (6) that

dΩ(xk), dΩ(yk)→ 0 and x0 ∈ ∂Ω

and due to our assumption (7) that

(10) GΩ,L(xk, yk) <
1

k

dΩ(xk)mdΩ(yk)m

|xk − yk|n
.

Without loss of generality we may assume that x0 = 0 and that the first unit vector ~e1 is the
exterior unit normal to ∂Ω at x0.

For k large enough, we may define x̃k ∈ ∂Ω as the closest boundary point to xk. We introduce the
rescaled Green functions

Gk(ξ, η) := |xk − yk|n−2mGΩ,L(x̃k + |xk − yk|ξ, x̃k + |xk − yk|η)

for

ξ, η ∈ Ωk :=
1

|xk − yk|
(−x̃k + Ω) .

These belong to the elliptic operators

Lk =

− n∑
i,j=1

∂i

(
a

(k)
ij ( . )∂j

)m



4 HANS-CHRISTOPH GRUNAU

with

(11) a
(k)
ij (ξ) := aij(x̃k + |xk − yk|ξ),

in Ωk. This can be seen as follows. For smooth v : Ωk → R we define

u : Ω→ R, u(x) := v

(
x− x̃k
|xk − yk|

)
and find

∂i (aij(x)∂ju(x)) =
1

|xk − yk|2
∂i

(
a

(k)
ij ( . )∂jv( . )

)( x− x̃k
|xk − yk|

)
,

Lu(x) =
1

|xk − yk|2m
(Lkv)

(
x− x̃k
|xk − yk|

)
.

Since x̃k → x0 = 0, the exterior unit normal at ∂Ω converges to the first unit vector and so we
conclude that

Ωk → H := {x : x1 < 0} locally uniformly for k →∞.
In order to understand the limit of the Gk we observe first that Krasovskĭı’s estimates [11, Theorem
3.3] yield uniformly in k that

|Gk(ξ, η)| ≤ C|ξ − η|2m−n.
Employing local elliptic estimates [1] we find a limit

G : H×H → R ∪ {∞}

in L1
loc and locally uniformly in H ×H \ {(ξ, ξ) : ξ ∈ H}. This is symmetric, i.e. G(ξ, η) = G(η, ξ),

obeys homogeneous Dirichlet boundary conditions on ∂H and satisfies

(12) |G(ξ, η)| ≤ C|ξ − η|2m−n.

We introduce the limit operator

L∞ =

− n∑
i,j=1

∂i
(
a∞ij ∂j

)m

with the constant coefficients

a∞ij = aij(x0).

One should observe that this operator can be easily transformed by means of a linear transformation
into the polyharmonic (−∆)m. To be more precise let C1 ∈ SO(n) diagonalise

(
a∞ij
)
i,j=1,...,n

. We

then introduce a diagonal dilation matrix C2 with positive diagonal entries such that (C1 · C2)
T ·(

a∞ij
)
i,j=1,...,n

· (C1 · C2) becomes the n-dimensional identity matrix. Finally we introduce a further

“rotation” C3 ∈ SO(n) such that C := C1 · C2 · C3 : H → H maps again the half space onto itself.
Using this transformation we find that

GH,L∞(ξ, η) = det(C)GH,(−∆)m(C · ξ, C · η).

The latter is given by Boggio’s formula

GH,(−∆)m(ξ, η) = km,n|ξ − η|2m−n
∫ |ξ∗−η|/|ξ−η|

1

(v2 − 1)m−1v1−n dv,

where km,n > 0 is a suitable constant and ξ∗ = (−ξ1, ξ2, . . . , ξn). So we conclude from [5, Theorem 4.6]
that

(13) GH,L∞(ξ, η) ≥ c4HH(ξ, η)
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with a strictly positive constant c4. HH is as in (3) with dH(ξ) = |ξ1|. Since Boggio’s formula has
the same form in H as in the ball, (13) is deduced in H in the same way as in the ball. Moreover, as
explained in [6, 7] GH,L∞ is unique under the assumption

|GH,L∞(ξ, η)| ≤ C|ξ − η|2m−n.

In order to conclude that G = GH,L∞ we only need to show that

(14) L∞G(ξ, . ) = δξ( . )

in the distributional sense. To this end we consider any function ψ ∈ C∞0 (H) and find from the fact
that Gk is the Green function for Lk that one has for any ξ ∈ H and k large enough

ψ(ξ) =

∫
H
Gk(ξ, η)(Lkψ)(η) dη.

The smoothness assumptions on the coefficients yield that a
(k)
ij → a∞ij in C2m−1

loc (H) and hence

Lkψ → L∞ψ

uniformly in C0
0 (H). We come up with

ψ(ξ) =

∫
H
G(ξ, η)(L∞ψ)(η) dη.

This shows that G is a Green function for L∞ in H, which in view of its uniqueness explained above
yields that

G = GH,L∞ .

Defining

ξk :=
xk − x̃k
|xk − yk|

, ηk :=
yk − x̃k
|xk − yk|

,

on the one hand the assumption gives via (10) that

(15) Gk(ξk, ηk) = |xk − yk|n−2mGΩ,L(xk, yk) <
1

k

dΩ(xk)mdΩ(yk)m

|xk − yk|2m
.

On the other hand, we have

|ξk| =
dΩ(xk)

|xk − yk|
≤ c3, |ξk − ηk| = 1.

After passing to a further subsequence we find ξ, η ∈ H with ξ = limk→∞ ξk, η = limk→∞ ηk. In view
of the local smooth convergence of Gk to the Green function GH,L∞ we see from (13) that there exists
a positive constant c5 > 0 such that for k large enough:

Gk(ξk, ηk) ≥ c5dΩk
(ξk)mdΩk

(ηk)m = c5

(
dΩ(xk)

|xk − yk|

)m(
dΩ(yk)

|xk − yk|

)m
= c5

dΩ(xk)mdΩ(yk)m

|xk − yk|2m
.

This contradicts (15) and the proof of the lemma is complete in the first case.

Second case: The sequence dΩ(xk)/|xk − yk| becomes unbounded.
The reasoning here is similar to the first case and I outline only the main steps. After passing to a
subsequence we may assume that

dΩ(xk)

|xk − yk|
→ ∞.

This also implies that
dΩ(yk)

|xk − yk|
≥ dΩ(xk)

|xk − yk|
− 1→∞.



6 HANS-CHRISTOPH GRUNAU

We obtain from the assumption (7) that in this case

(16) GΩ,L(xk, yk) <
1

k
|xk − yk|2m−n.

We rescale again such that |xk − yk| becomes the new length unit; however, here it is the xk which
become the new origins.

Gk(ξ, η) := |xk − yk|n−2mGΩ,L(xk + |xk − yk|ξ, xk + |xk − yk|η)

for

ξ, η ∈ Ωk :=
1

|xk − yk|
(−xk + Ω) .

These belong to the elliptic operators

Lk =

− n∑
i,j=1

∂i

(
a

(k)
ij ( . )∂j

)m

with

(17) a
(k)
ij (ξ) := aij(xk + |xk − yk|ξ),

in Ωk. In view of the assumptions in this case we conclude that

Ωk → Rn.

For the sequence Gk we find a limit in L1
loc and locally uniformly in Rn×Rn \ {(ξ, ξ) : ξ ∈ Rn}, which

is symmetric and decays like (ξ, η) 7→ |ξ − η|2m−n at infinity. Thanks to the uniqueness of such kind
of Green function we conclude that in the sense just described we have

(18) Gk( . , . )→ GRn,L∞( . , . ),

where the constant coefficient operator L∞ is obtained precisely as in the first part. I emphasise
that here the assumption n > 2m simplifies the proof a lot because the uniqueness conclusion follows
directly from Liouville’s theorem for polyharmonic operators, cf. e.g. [12, p. 19]. Observe that a
linear transformation changes L∞ into the polyharmonic operator.

Defining

ηk :=
yk − xk
|xk − yk|

,

our assumption gives via (16) that

(19) Gk(0, ηk) = |xk − yk|n−2mGΩ,L(xk, yk) <
1

k
.

Thanks to |ηk| = 1 we may pass to a subsequence and find ηk → η∞ with |η∞| = 1 and

GRn,L∞(0, η∞) ≤ 0.

We proceed now precisely as explained in some detail above in the first case. After applying a
linear transformation we may change L∞ into (−∆)m whose Green function in Rn is given by the
fundamental solution with zero boundary conditions at infinity, i.e. a positive multiple of (ξ, η) 7→
|ξ − η|2m−n. We conclude that GRn,L∞(0, η∞) > 0 and achieve a contradiction. So the proof of the
lemma is complete also in this case. �
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3. Proof of the main results: a compactness argument

3.1. Proof of Theorem 1. Applying a compactness argument to

Ω =
⋃
x0∈Ω

Ωx0,rx0/2

we see that there exist positive numbers r > 0, c6 > 0, such that |x− y| ≤ r implies that GΩ,L(x, y) ≥
c6HΩ(x, y). If |x− y| ≥ r we take from [4, 11], cf. also [5], that GΩ,L(x, y) ≥ −c7HΩ(x, y) so that

GΩ,L(x, y) + 2c7HΩ(x, y) ≥ c7HΩ(x, y).

Since HΩ(x, y) ≤ |x− y|−ndΩ(x)mdΩ(y)m ≤ r−ndΩ(x)mdΩ(y)m we end up with

GΩ,L(x, y) + c8dΩ(x)mdΩ(y)m ≥ c7HΩ(x, y)

and positive constants c7, c8 > 0. The proof of Theorem 1 is complete. �

3.2. Proof of Theorem 3. This theorem was proved for L = ∆2 in [6] when n ≥ 3 and in [5,
Theorem 6.15] when n = 2. See also [7, Theorem 2] for a unified and simpler proof, which I shall
adapt to the present situation.

Case I: dΩ(x)dΩ(y) ≤ |x− y|2. For this situation we have

(20) HΩ(x, y) = |x− y|−ndΩ(x)mdΩ(y)m.

Then there is c > 0 such that we find c−1
2 HΩ(x, y) ≥ 2c1dΩ(x)mdΩ(y)m for |x− y| < c.

Case II: dΩ(x)dΩ(y) > |x− y|2. Now we have

(21) HΩ(x, y) = |x− y|2m−n.
Since n > 2m by assumption and since dΩ(x)dΩ(y) is bounded on Ω one finds a constant c > 0 such
that c−1

2 HΩ(x, y) ≥ 2c1dΩ(x)mdΩ(y)m for |x− y| < c. The proof of Theorem 3 is complete. �
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the presentation.
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