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Abstract. It is known that the Dirichlet bilaplace boundary value problem,
which is used as a model for a clamped plate, is not sign preserving on gen-

eral domains. It is also known that the corresponding first eigenfunction may

change sign. In this note we will show that even a constant right hand side
may result in a sign-changing solution.

1. Introduction. For Ω a ball in any dimension Boggio in [3] was able to give
explicit Green functions for the solution of{

∆2u = f in Ω,
u = ∂

∂νu = 0 on ∂Ω.
(1)

Since his Green functions are positive, one finds a positivity preserving property:
f ≥ 0 implies u ≥ 0. In two dimensions (1) is a model for the clamped plate (see [2])
and it seems natural that pushing that plate in the positive direction (f ≥ 0) will
imply that the plate bends in the same direction (u ≥ 0). Boggio and Hadamard
[17] were interested in the question, whether such a positivity preserving property
would hold for other domains too. Hadamard in [18] even claimed to have proven
such a result for all limaçons. The conjecture that such a result holds true on at least
convex domains became known as the Boggio-Hadamard conjecture. Since the first
counterexample by Duffin in [10] on a long, almost rectangular domain appeared, it
is well known that for most domains Ω ⊂ R2 this bilaplace boundary value problem
under homogeneous Dirichlet boundary conditions is not sign preserving with the
exception of domains close to the disk [15], see also [14]. Also on limaçons near the
cardioid there is no positivity preserving property ([8]). For a short history of this
problem see [13].
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A weaker question related to positivity is, whether or not the first eigenfunction
for the Dirichlet bilaplace is of one sign. See the paper by Szegö [21]. Also this
positivity does not hold in general. Coffman, Duffin and Shaffer [5, 6] were able to
show that a disk with a small hole has a sign-changing first eigenfunction. Coffman
[4] also considered the behaviour of eigenfunctions near corners following earlier
observations of a nodal line on a square in [1]. A brief overview concerning the
sign of this first eigenfunction can be found in [22]. In higher dimensions and in
a more general context sign changing first eigenfunctions were studied by Kozlov,
Kondrat’ev and Maz’ya in [19]. Some questions on how the sign change of both
problems are related are found in [16].

An apparently still weaker question is, whether or not the solution of (1) for
f ≡ 1 is positive. This problem was pointed out to us by Svitlana Mayboroda, for
a motivation from an applied point of view see [11]. This note will show that even
for that question the answer is in general negative. To obtain a suitable bounded
smooth domain Ω ⊂ R2 as a counterexample we use that any Möbius transformation
h will transform the boundary value problem in (1) on Ω to a similar problem on
h (Ω). Loewner pointed out in [20] that these are the only conformal transformations
which enjoy nice covariance properties with respect to the bilaplacian. Moreover,
any polyharmonic operator ∆m in any dimension has related properties. We think
that also Boggio was aware of this tool and had it in mind when deriving his explicit
formulas on the ball and on the half space in [3].

2. The result. Our counterexample will yield a C∞-domain in R2. For our ar-
guments, however, it will be sufficient that Ω ⊂ R2 is a bounded domain with
∂Ω ∈ C4,γ . We will assume this throughout this note.

Assumption 2.1. Ω is a domain for which (1) is not positivity preserving in the
following quantitative sense: Let GΩ denote the Green function for (1). Then we
assume that there are x∗, y∗ ∈ ∂Ω such that

∆x∆yGΩ(x∗, y∗) < 0. (2)

According to a celebrated example of Garabedian [12] this is e.g. true for a
relatively long thin ellipse (ratio of half axes ≈ 5/3) with x∗, y∗ opposite boundary
points on the longer half axis.

Lemma 2.2. If Ω satisfies Assumption 2.1, then there exist δ > 0 and C > 0 such
that for all x ∈ Ω ∩Bδ (x∗) and y ∈ Ω ∩Bδ (y∗):

GΩ(x, y) ≤ −C dist(x, ∂Ω)2 dist(y, ∂Ω)2. (3)

Proof. Since GΩ ∈ C4,γ
(
Ω̄× Ω̄ \DΩ

)
where DΩ = {(x, x) ;x ∈ Ω} one finds that

∆x∆yGΩ(x, y) < 0 holds in a neighbourhood of (x∗, y∗). Moreover, due to the
boundary conditions it holds that

∇kx∇`yGΩ(x, y) = 0 for (x, y) ∈ ∂Ω× ∂Ω,

whenever |k| ≤ 1 or |`| ≤ 1. In case that |k| = 2 resp. |`| = 2 at least one of the
derivatives has to be taken in tangential direction. Assumption 2.1 gives then that(

∂2

∂ν2
x

)(
∂2

∂ν2
y

)
GΩ(x, y) < 0 for (x, y) ∈ ∂Ω× ∂Ω close to (x∗, y∗)

and (3) follows by Taylor expansion.
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We will not directly use the domain Ω for a counterexample, but will instead
proceed through a Möbius-transformed Ω. For h a Möbius transformation in R2,
see [7] or [13, p. 202], one finds(

∆2u
)

(h (x)) = J
− 3

2

h (x) ∆2
(
J
− 1

2

h (x) u (h (x))
)

(4)

where Jh is the Jacobian of the transformation h. Next to translations, rotations
and reflections in a plane, which all preserve more or less the shape of the domain,
the inversion is a Möbius transformation that changes that shape. All Möbius
transformations are combinations of the elementary transformations just mentioned.
A sketch of an ellipse with its Möbius transformation can be found in Figure 1.

Figure 1. An ellipse and its inversion with respect to the point as
center. Note how both subdomains are transformed.

Let j : R2 \ {0} → R2 \ {0} be the inversion: j (x) = x
|x|2 . So if we take x̃ 6∈ Ω as

the center of the inversion and set A = j (Ω− x̃), that is, h (x) = j (x− x̃), we find
that the boundary value problem{

∆2u = 1 in A,
u = ∂

∂νu = 0 on ∂A,
(5)

transfers with v (x) = J
− 1

2

h (x) u (h (x)) to{
∆2v = J

3
2

h in Ω,
v = ∂

∂ν v = 0 on ∂Ω.
(6)

Figure 2. Ω and the typical right hand side J
3
2

h
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If we choose x̃ 6∈ Ω such that the solution of (6) changes sign, then so does the
solution of (5). A sketch for the domain Ω with the right hand side in (6) is given
in Figure 2.

Theorem 2.3. Suppose that Ω satisfies Assumption 2.1 and let (x∗, y∗) ∈ ∂Ω×∂Ω
be as in Lemma 2.2. Then choosing t > 0 sufficiently small in x̃ := x̃ (t) = x∗+t ν∗,
where ν∗ is the outside normal direction in x∗, one finds that the solution of (6)
with h (x) = j (x− x̃ (t)) changes sign.

Proof. The Jacobian Jj that corresponds with the inversion x 7→ |x|−2
x is as follows

Jj (x) =

∣∣∣∣∣∣det

 x2
2−x

2
1

|x|4
−2x1x2

|x|4
−2x1x2

|x|4
x2
1−x

2
2

|x|4

∣∣∣∣∣∣ = |x|−4
.

So the function v satisfies{
∆2v (x) = |x− x̃ (t)|−6

for x ∈ Ω,
v = ∂

∂ν v = 0 on ∂Ω.
(7)

Fix ỹ ∈ Ω ∩Bδ (y∗) with dist(ỹ, ∂Ω)2 > 1
2δ. Next we split the contribution to v (y)

by the right hand side into two parts:

Ω1 = {x ∈ Ω; |x− x∗| < δ} and Ω2 = {x ∈ Ω; δ ≤ |x− x∗|} .

We may assume without loss of generality, that |x∗ − y∗| > 2δ. For the contribution
by Ω1 we find with C as in Lemma 2.2 that∫

Ω1

GΩ (ỹ, x) |x− x̃ (t)|−6
dx ≤ −C dist(ỹ, ∂Ω)2

∫
Ω1

dist(x, ∂Ω)2 |x− x̃ (t)|−6
dx

≤ −C1

∫ δ

0

r3 (r + t)
−6
r dr

= −C1 t
−2

∫ δ/t

0

s3

(1 + s)
6 ds

≤ −C2 t
−2 for t > 0 small enough. (8)

For the contribution by Ω2 we find by the Green function estimate (see [9] or [13,
Thm. 4.28])

|GΩ (x, y)| ≤ c dist(x, ∂Ω) dist(y, ∂Ω) min

(
1,

dist(x, ∂Ω) dist(y, ∂Ω)

|x− y|2

)
(9)

that∫
Ω2

GΩ (ỹ, x) |x− x̃ (t)|−6
dx ≤ c dist(ỹ, ∂Ω)

∫
Ω2

dist(x, ∂Ω) |x− x̃ (t)|−6
dx

≤ c1

∫ diam(Ω)

δ

(r + t)
−6
r dr ≤ c2. (10)

Letting t ↓ 0 we find by (8) and (10) for the solution v of (7) that

v (ỹ) ≤ c2 − C2t
−2.

So for t > 0 but sufficiently small, v will have a negative part.
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Corollary 2.4. There are domains A ⊂ R2 such that the solution of{
∆2u = 1 in A,

u = ∂
∂νu = 0 on ∂A,

(11)

changes sign.

Proof. We remark that in any bounded smooth domain A, there exists x0 ∈ A such
that u(x0) > 0 for the solution u of (11). Indeed, since ∆u(x) 6≡ 0 we even have
that

0 <

∫
A

(∆u)2 dx =

∫
A

u∆2u dx =

∫
A

u dx.

We choose now Ω and h as in Theorem 2.3 and put A = h(Ω). In this case the
solution u of (11) attains also strictly negative values.

Remark 2.5. In higher dimension one may still use the inversion to transform
one biharmonic Dirichlet problem to another one. Indeed the transformation rule
changes into (

∆2u
)
◦ h = J

− 1
2−

2
n

h ∆2
(
J

1
2−

2
n

h u ◦ h
)

and the estimate in (9) and our proof could be adapted. A technical problem, how-
ever, is whether there exist domains satisfying (2). We still expect this inequality
to hold for eccentric domains in higher dimensions but we have no actual reference.
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