
Differences between fundamental solutions of general higher
order elliptic operators and of products of second order

operators

Hans-Christoph Grunau
Fakultät für Mathematik

Otto-von-Guericke-Universität
Postfach 4120, 39016 Magdeburg, Germany
hans-christoph.grunau@ovgu.de

Giulio Romani
Institut für Mathematik

Martin-Luther-Universität Halle-Wittenberg
06099 Halle (Saale), Germany

giulio.romani@mathematik.uni-halle.de

Guido Sweers
Department Mathematik/Informatik

Universität zu Köln
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Abstract

We study fundamental solutions of elliptic operators of order 2m ≥ 4 with constant coefficients in
large dimensions n ≥ 2m, where their singularities become unbounded. For compositions of second
order operators these can be chosen as convolution products of positive singular functions, which are
positive themselves. As soon as n ≥ 3, the polyharmonic operator (−∆)m may no longer serve as a
prototype for the general elliptic operator. It is known from examples of Maz’ya-Nazarov [MN] and
Davies [D] that in dimensions n ≥ 2m+ 3 fundamental solutions of specific operators of order 2m ≥ 4
may change sign near their singularities: there are “positive” as well as “negative” directions along which
the fundamental solution tends to +∞ and −∞ respectively, when approaching its pole. In order to
understand this phenomenon systematically we first show that existence of a “positive” direction directly
follows from the ellipticity of the operator. We establish an inductive argument by space dimension
which shows that sign change in some dimension implies sign change in any larger dimension for suitably
constructed operators. Moreover, we deduce for n = 2m, n = 2m + 2 and for all odd dimensions an
explicit closed expression for the fundamental solution in terms of its symbol. From such formulae it
becomes clear that the sign of the fundamental solution for such operators depends on the dimension.
Indeed, we show that we have even sign change for a suitable operator of order 2m in dimension n =
2m + 2. On the other hand we show that in the dimensions n = 2m and n = 2m + 1 the fundamental
solution of any such elliptic operator is always positive around its singularity.

1 Introduction and main results
General constant coefficients elliptic operators. We focus our attention to uniformly elliptic operators
of order 2m with constant coefficients which involve only the highest order derivatives, namely

L = (−1)mQ

(
∂

∂x1
, · · · , ∂

∂xn

)
= (−1)m

∑
i1,...,i2m=1,...,n

Ai1,...,i2m
∂

∂xi1
· · · ∂

∂xi2m
, (1)

where the 2m-homogeneous characteristic polynomial

Q(ξ) =
∑

i1,...,i2m=1,...,n

Ai1,...,i2m ξi1 · · · ξi2m .
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is called (possibly up to a sign) the symbol of the operator.
Uniform ellipticity means then that Q is strictly positive on the unit sphere, i.e. there exists a constant

λ > 0 such that
∀ξ ∈ Rn : Q(ξ) ≥ λ|ξ|2m.

Fundamental solutions. In order to construct and to understand solutions u to the differential equation
Lu = f for a given right-hand side f , one introduces the concept of a fundamental solution KL(x, . ) for
any “pole” x ∈ Rn which is defined as a solution to the equations L∗KL(x, . ) = δx and LKL( . , x) = δx
in the distributional sense where δx is the δ-distribution located at x. This means that for any test function
ψ ∈ C∞0 (Rn) one has∫

Rn
KL(x, y)Lψ(y) dy = ψ(x),

∫
Rn
KL(y, x)L∗ψ(y) dy = ψ(x)

with
L∗ = (−1)m

∑
i1,··· ,i2m=1,···n

∂

∂xi1
· · · ∂

∂xi2m
Ai1,···i2m

being the adjoint operator of L. Because L has only constant coefficients and only of the highest even order
2m, we have that L = L∗. Moreover, we may achieve that

KL(x, y) = KL(0, x− y) = KL(0, y − x) = KL(y, x). (2)

For given f ∈ C∞0 (Rn), any fundamental solution yields a solution to the differential equation Lu = f in
Rn by putting

u(x) :=

∫
Rn
KL(x, y)f(y) dy.

One should also notice that, if a fundamental solution exists, it is not unique: one may add any smooth
solution of Lv = 0, namely K̃L(x, y) = KL(x, y) + v(x− y) yields another fundamental solution.

Green functions. When the problem Lu = f is considered in a sufficiently smooth bounded domain,
one may still obtain solution and even representation formulae by means of suitable fundamental solutions.
Indeed, let Ω ⊂ Rn be a bounded smooth domain and consider the problem{

Lu = f in Ω,

B(u) = 0 on ∂Ω,
(3)

where f ∈ C0,γ(Ω) and the boundary conditions verify a complementing condition, see [ADN]. As a
typical and most frequently studied prototype one may think of Dirichlet boundary conditions

BD(u) := (u, ∂ν , . . . , ∂
m−1
ν ν) = 0 on ∂Ω,

with ν the exterior unit normal at ∂Ω. If there exists a unique solution hL,Ω,B(x, ·) of the boundary value
problem (recall that L∗ = L){

LhL,Ω,B(x, ·) = 0 in Ω,

B(hL,Ω,B(x, ·)) = −B(KL(|x− ·|)) on ∂Ω,

one can define the so called Green function for problem (3), given by

GL,Ω,B(x, y) = KL(|x− y|) + hL,Ω,B(x, y).

Then the unique solution of (3) is given by

u(x) =

∫
Ω

GL,Ω,B(x, y) f(y) dy.

Notice that in general it is not straightforward to infer the existence of such hL,Ω,B . However, exploiting
the general elliptic theory of Agmon, Douglis, and Nirenberg [ADN] this is always possible in our special
case when the operator L has only constant coefficients of highest order, if Dirichlet boundary conditions
B = BD are imposed and the domain is C2m,γ-smooth.

In this case, one also infers by standard estimates that the function hL,Ω,B is regular in Ω. Since in
large dimensions fundamental solutions have a singularity near the pole, it becomes clear that, in order to
understand GL,Ω,B , we need first to investigate the behaviour of fundamental solutions.
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Positivity questions. Positivity properties for GL,Ω,B concern the question whether a positive right-hand
side yields a positive solution: if u is a solution of (3), does it hold that f ≥ 0 ⇒ u ≥ 0 ? One often
expects such a behaviour for physical or geometrical reasons. However, for equations of order at least 4,
such a positivity preserving property will fail in general, see [GGS] for historical remarks and detailed
references. This question concerns a nonlocal behaviour of the full boundary value problem and often the
influence of boundary conditions spoils the expected positivity. However, physically, one would hope that
when applying an extremely concentrated right-hand side – a δ-distribution – then close to this point the
solution should respond in the same direction. This leads to the related but relaxed local question: Is a
suitable fundamental solution to the differential equation positive, at least close to its pole? This question is
reasonable only for large dimensions n ≥ 2m because only here, fundamental solutions become unbounded
and they are unique only up to locally bounded regular solutions of the homogeneous equation. If n > 2m
one may achieve uniqueness of the fundamental solution by imposing zero (Dirichlet) boundary conditions
at infinity. In this case KL may be considered as the Green function GL,Rn,BD in the whole space. This
means that one considers just the behaviour of the differential equation and disregards the influence of
possible boundary conditions (being infinitely far apart).

Previous results. In the context of second order equations (m = 1), both local and nonlocal behaviours
are well established. Indeed, within the class of constant coefficients operators, the Laplacian −∆ is, up
to a change of coordinates, the only such operator. Its fundamental solutions are known explicitly and in
particular they are positive (if n = 2, at least close to the pole). Moreover, the maximum principle holds
for such operators, so positive data yield positive solutions (see [GT]). In other words, the Green function
is always positive.

When one moves to the higher order setting (m ≥ 2), several differences arise, even for (−∆)m or,
equivalently, for powers of second order operators with constant coefficients.

Indeed, if one investigates the positivity preserving property in bounded domains, then the answer
is largely affected by the choice of boundary conditions. As an example, on the one hand, with Navier
boundary conditions (u = ∆u = · · · = ∆m−1u = 0) one may rewrite the problem as a second order
system and thus the maximum principle implies positivity. On the other hand, this tool is in general not
available when dealing with Dirichlet boundary conditions (u = ∂νu = · · · = ∂m−1

ν u = 0) and one
cannot expect positivity, in general not even in convex bounded smooth domains (see [G1]). Nevertheless,
positivity holds in balls and their small smooth deformations (see [B, GR]). We refer to [GGS] for an
extensive survey of the topic.

However, within that class of powers of second order operators, if one restricts to a “local” question,
meaning the positivity of Green functions under Dirichlet boundary conditions near the pole, the answer
is still affirmative. Indeed, a uniform local positivity can be proved, namely the existence of constants
rm,Ω > 0, δm,Ω > 0 such that G(−∆)m,Ω,BD (x, y) > δm,Ω > 0 for all x, y ∈ Ω with |x− y| < rm,Ω. This
means that the negative part and the singularity of the Green function are uniformly apart.

A consequence of that result is that the size of negative part of the Green function, if present at all, is
small compared to its positive part. Indeed, concerning Dirichlet problems, positivity for a rank-1-correction
of the polyharmonic Green function is retrieved, namely

G(−∆)m,Ω,BD (x, y) + cm,ΩdΩ(x)mdΩ(y)m ≥ 0,

where dΩ denotes the distance to the boundary and cm,Ω is a sufficiently large positive constant, see [GR,
GRS].

These results have been extended later on by Pulst in his PhD-dissertation [Pu] for formally selfadjoint
positive definite operators of order 2m with the polyharmonic operator (−∆)m or an m-th power of a
second order elliptic operator with constant coefficients as the leading term. Lower order terms are permit-
ted provided they can be written in divergence form and have sufficiently smooth and uniformly bounded
coefficients.

In two dimensions, i.e. n = 2, the symbol Q with real coefficients can be split into 2m linear terms.
Combining mutually conjugate pairs (ξ1 + akξ2) and (ξ1 + akξ2) of these linear terms with nonreal ak we
see that

Q(ξ) = c

m∏
k=1

(
ξ2
1 + (ak + ak) ξ1ξ2 + |ak|2ξ2

2

)
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is a product of second order symbols.
However, in dimensions n > 2 powers of second order operators are not the prototype of a general

operator L of order 2m, not even in the case of constant coefficients. Moreover, it is in general not possible
to rewrite L as an m-fold composition of (possibly different) second order operators. Indeed, let us simply
consider the case of a homogeneous fourth order operator with a symbol of the kind

Q(x, y, z) = x4 + y4 + z4 +
∑

i+j+k=4
0≤i,j,k≤3

ci,j,kx
iyjzk

and suppose that it is the product of two second order polynomials q1, q2. One may assume that both
polynomials have their coefficients in front of x2 equal to 1 and then, they would necessarily be of the kind

q1(x, y, z) = x2 + cy2 + dz2 + a1xy + a2xz + a3yz

q2(x, y, z) = x2 +
1

c
y2 +

1

d
z2 + b1xy + b2xz + b3yz.

The smooth map from (0,∞)2 × R6 into the 12-dimensional vector space of such symbols Q which maps

(c, d, a1, a2, a3, b1, b2, b3) 7→ q1 · q2

is not surjective.
Concerning explicit formulae and (local) positivity properties of fundamental solutions of such general

elliptic operators only little is known. Existence of fundamental solution is shown in [J] in a very general
framework, and rather involved formulae are obtained. In the particular case of a 2m-homogeneous higher
order uniformly elliptic operator with constant coefficients, different implicit expressions have been found
according to the parity of the dimension n. In what follows we always assume that

n ≥ 2m.

For odd n, the general formula for a fundamental solution [J, (3.44)] simplifies as

KL(x, y) = − 1

4(2π)n−1
(−∆y)

n+1−2m
2

∫
|ξ|=1

|(x− y) · ξ|
Q(ξ)

dHn−1(ξ) (4)

(from [J, (3.54)]), while for even n one has (see [J, (3.62)])

KL(x, y) = − 1

(2π)n
(−∆y)

n−2m
2

∫
|ξ|=1

log |(x− y) · ξ|
Q(ξ)

dHn−1(ξ). (5)

We recall that Q denotes the symbol (possibly up to a sign) of the operator L. On the other hand, motivated
by questions in potential and Schrödinger semigroup theory, respectively, and without referring to (4), (5)
or even [J], Maz’ya-Nazarov [MN] and Davies [D] found examples of elliptic operators of order 2m ≥ 4 in
dimensions n ≥ 2m+ 3 with sign changing fundamental solutions. The precise range of dimensions where
this phenomenon may be observed remained open as well as a systematic study, see [D, p. 85]: “It seems
to be difficult to find a useful characterization of the symbols of those constant coefficient elliptic operators
with this property.”

Aim and results. The aim of this paper is a systematic investigation of the behaviour of fundamental
solutions - and in particular whether or not they are positive close to the pole - for this class of uniformly
elliptic operators of order 2m with constant coefficients.

We find the above mentioned examples of sign changing fundamental solutions somehow unexpected
because this means that even when applying a right hand side, which is concentrated at some point and
points into one direction, the response of any solution to the differential equation will be sign changing and
so - in some regions arbitrarily close to this point - in opposite direction to the right hand side. Indeed, we
show in Theorem 2.3 that “positivity” is somehow the expected behaviour related to ellipticity.

In Section 2.3 we establish an inductive argument by space dimension. Roughly speaking this says that
for understanding in any dimension whether one finds operators with sign changing fundamental solutions
it suffices to understand the behaviour in “small” dimensions.
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In Section 3 we calculate in almost closed form fundamental solutions for some specific fourth order
elliptic operators in any dimension n ≥ 5. For a specific direction we even find a very simple closed
expression. From n = 6 on, we observe sign change. While for n = 6, 7 we need a nonconvex symbol, for
n ≥ 8 even convex symbols are admissible. The examples presented here use similar symbols as in [D] and
[MN], but they are constructed with the help of a different method based on the Fourier transform and the
residue theorem. For n = 6 even the observation is new – to the best of our knowledge.

These examples yield the first important result.

Theorem 1.1. For m = 2 and any n ≥ 6 there exists a uniformly elliptic (fourth order) operator L with
constant coefficients such that the corresponding fundamental solutionKL is sign changing for |x−y| → 0.

For the proof, see Theorem 2.3 and Proposition 3.3.

In order to answer the question asked by Davies for a systematic understanding of this phenomenon,
we find in Section 4 explicit formulae for fundamental solutions from which it becomes clear which kind
of elliptic symbols yield positive and sign changing fundamental solutions, respectively.

In odd dimensions we find the following general elegant formula.

Theorem 1.2. Let n ≥ 2m+ 1 be odd. Then, the fundamental solution KL is given by

KL(x, y) =
(−1)

n−2m−1
2

2nπn−1|x− y|n−2m

∫
|ξ|=1

(x−y)·ξ= 0

∇n−2m−1 1

Q(ξ)

(
x− y
|x− y|

⊗n−2m−1
)
dHn−2(ξ).

Here, if T is a j-multilinear form and v is a vector, we use the compact tensorial notation

T
(
v⊗j
)

:= T (v, v, · · · , v︸ ︷︷ ︸
j−times

),

so, in particular,

∇jf(ξ)
(
v⊗j
)

=

n∑
h1,··· ,hj = 1

∂jf

∂h1
· · · ∂hj

(ξ) vh1
· · · vhj .

To avoid redundant parenthesis we write
y

|y|
⊗2j

:=

(
y

|y|

)⊗2j

. Theorem 1.2 is proved in Section 4.1 and

it follows directly from Theorem 4.3.
In even dimensions, due to the presence of the logarithm in (5), we are not able to achieve a comparable

compact result, computations being much more involved. However, we show a related formula for the first
“critical” dimension n = 2m+ 2.

Theorem 1.3. Let n = 2m+ 2. Then, the fundamental solution KL is given by

KL(x, y) =
1

22m+1π2m+2|x− y|2

{
n− 2

2

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ)

+

∫
|ξ|=1

(x−y)·ξ>0

log

(
ξ · x− y
|x− y|

)[
(4m+ 4− n)

(
ξ · x− y
|x− y|

)
∇ 1

Q(ξ)

(
x− y
|x− y|

)

+ 2m
1

Q(ξ)
+∇2 1

Q(ξ)

(
x− y
|x− y|

⊗2
)

+

(
ξ · x− y
|x− y|

)2

∆
1

Q(ξ)

]
dHn−1(ξ)

}
.

The proof is given in Section 4.2.

The difference between even and odd dimensions here reminds us somehow of the same dinstinc-
tion for the wave equation. In Theorem 1.3 (even dimensional) the integration is carried out over a one-
codimensional surface with a weight function, which becomes infinite at its boundary. On the other hand,
in Theorem 1.2 (odd dimensional) the integration is carried out over the boundary of this surface, i.e. a
2-codimensional surface. The method of descent, as outlined in Section 2.3, gives further support to this
observation.

Theorem 1.2 and Formula (5) allow for a first interesting result concerning positivity of fundamental
solutions.
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Corollary 1.4.

i) If n = 2m, the fundamental solution KL is positive for |x− y| ∈ BrL(0) with some rL > 0.

ii) If n = 2m+ 1, the fundamental solution KL is always positive.

Theorem 1.2 shows further which kind of symbol Q will e.g. in space dimension n = 2m + 3 yield
K(0, e1) < 0. For this one needs ∂2

1
1
Q (0, ξ′) > 0 for |ξ′| = 1. This would follow e.g. from ∂1Q(0, ξ′) = 0

and ∂2
1Q(0, ξ′) < 0, i.e. (only) from a nonconvex shape of the level set of Q in these points.

For an example of this kind see [D, p. 100] and pp. 20-23 of a preliminary preprint version of this
article which can be found at arXiv:1902.06503v1.

The situation is similar but not this clear in the even dimension n = 2m+ 2, due to the relatively higher
dimensional domain of integration and to the presence of further terms. However, thanks to the logarithmic
singularity one may expect that also here, a nonconvex symbol may work. Indeed we prove in Section 5 the
following result.

Theorem 1.5 (Examples of sign changing fundamental solutions, the even dimensional case). For any
m ≥ 2 and n = 2m + 2 there exists an elliptic symbol Q of order 2m such that the fundamental solution
of the associated operator LQ is sign changing for |x− y| → 0.

In view of Section 2.3 and Theorem 2.3 we may immediately conclude the following general result.

Corollary 1.6. For any m ≥ 2 and n ≥ 2m+ 2 there exists an elliptic symbol Q such that the fundamental
solution of the associated operator LQ is sign changing for |x− y| → 0.

Together with Corollary 1.4 we have so obtained a complete picture of positivity and change of sign,
respectively, in all “singular” dimensions n ≥ 2m.

Notation. We denote the partial derivative as Dα or ∂α or ∂
∂α , where α is a multi-index, with the conven-

tion that if D0u = u for any function. Moreover, if j ∈ N,∇ju stands for the tensor of the j-th derivatives.
Finally, we denote byHk the k-th dimensional Hausdorff measure.

2 Basic observations
In this section we consider only the case n > 2m of large dimensions. In what follows L always denotes
a uniformly elliptic operator as in (1) with constant coefficients and only of highest order 2m. KL denotes
John’s fundamental solution as it is given in (4) and (5), respectively. By (2), without loss of generality, we
may consider 0 as the pole of KL.

2.1 Homogeneity, decay and uniqueness of John’s fundamental solution
Lemma 2.1. For σ ∈ R \ {0} and x ∈ Rn \ {0} we have

KL(0, σx) = |σ|2m−nKL(0, x). (6)

In particular this yields for all x ∈ Rn \ {0} and all multi-indices α ∈ Nn0

|DαKL(0, x)| ≤ Cα|x|2m−n−|α|. (7)

Proof. In case of odd n > 2m, (4) shows thatKL can be obtained as (−∆)(n+1−2m)/2 of a 1-homogeneous
function. In case of even n ≥ 2m + 2, the proof of Theorem 1.3 in Section 4.2 shows that KL can be
obtained (−∆)(n+1−2m)/2 of a (−2)-homogeneous function. KL(0, x) = KL(0,−x) follows from the
corresponding property of the symbol.

Proposition 2.2. Let KL and K̃L be two fundamental solutions for L which both obey (6). Then

KL(0, x) ≡ K̃L(0, x).

6
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Proof. Defining u(x) := KL(0, x)− K̃L(0, x), we find a solution of Lu = 0 in Rn which thanks to ellip-
tic regularity theory satisfies u ∈ C∞(Rn). To see this one may combine local elliptic Lp-estimates (see
[ADN, Theorem 15.1”]), the difference quotient method as outlined in [GT, Section 7.11] and a bootstrap-
ping argument. Since both KL and K̃L satisfy (6) we find that for any x ∈ Rn \ {0} and any σ ∈ R \ {0}:

u(x) = |σ|n−2mu(σx).

Since n > 2m we conclude by continuity of u in 0 from letting σ → 0 that u(x) ≡ 0.

2.2 Ellipticity and positive directions
We prove the existence of “positive” directions (observe our sign convention for ellipticity) for the funda-
mental solutions which is somehow the simpler case and which one expects from the notion of ellipticity.

Theorem 2.3. Assume that n > 2m, L is a uniformly elliptic operator with constant coefficients of order
2m as introduced in (1) and consider the (2m − n)-homogeneous fundamental solution KL according to
(4) and (5), respectively. Then there exists y ∈ Rn \ {0} such that

KL(0, y) > 0.

Proof. We assume by contradiction that

∀y ∈ Rn \ {0} : KL(0, y) ≤ 0.

Certainly, KL(0, y) 6≡ 0. By continuity there exists a nonempty open set Ω ⊂ Sn−1 such that we have

∀y ∈ CΩ : KL(0, y) < 0

on the corresponding cone
CΩ := {rη : η ∈ Ω, r ∈ R \ {0}}.

We consider a fixed radially symmetric ϕ ∈ C∞0 (Rn) with

0 ≤ ϕ(x) ≤ 1; ϕ(x) > 0⇔ |x| ≤ 1

2
.

We introduce a corresponding solution (defined in the whole space) of the differential equation by

U(x) :=

∫
Rn
KL(x, y)ϕ(y) dy =

∫
Rn
KL(0, y)ϕ(x− y) dy.

Since for x ∈ B1/2(0) the intersection (x + CΩ) ∩ B1/2(0) is nonempty, U is strictly negative there. By
compactness we find a constant C0 > 0 such that

∀x ∈ B1/2(0) : U(x) ≤ −C0 < 0.

Next, we introduce a scaling parameter σ ∈ (0, 1] and consider for

ϕσ(x) := ϕ(x/σ)

the solution of the corresponding Dirichlet problem in B1(0)

B1(0) 3 x 7→ uσ(x) :=

∫
B1(0)

G(x, y)ϕσ(y) dy.

Here,
G(x, y) := GL,B1(0)(x, y) =: KL(x, y) + h(x, y) = KL(x, y) + hL,B1(0)(x, y)

denotes the corresponding Green function and its decomposition into fundamental solution and regular part.
By continuous dependence on parameters and general elliptic theory (see [ADN]) we find that

∀(x, y) ∈ B1/2(0)×B1/2(0) : |h(x, y)| ≤ C1

7



with a suitable constant C1. In what follows we consider only x ∈ B1/2(0). By the (2m−n)-homogeneity
of the fundamental solution we obtain:

uσ(σx) = σn
∫
B1(0)

(KL(σx, σy) + h(σx, σy))ϕ(y) dy

= σ2mU(x) + σn
∫
B1/2(0)

h(σx, σy)ϕ(y) dy

≤ −C0σ
2m + σnC1|B1/2(0)| ≤ −C0

2
σ2m,

provided that σ ∈ (0, 1] is chosen small enough. We fix such a suitable parameter and keep the correspond-
ing uσ and ϕσ fixed. We recall that we have shown:

ϕσ(x) > 0 in Bσ/2(0), ϕσ(x) = 0 outside Bσ/2(0), uσ(x) < 0 in Bσ/2(0).

This yields (we recall that λ denotes the ellipticity constant of L)

0 >

∫
Bσ/2(0)

uσ(x)ϕσ(x) dx =

∫
B1(0)

uσ(x)ϕσ(x) dx =

∫
B1(0)

uσ(x) (Luσ(x)) dx

≥ λ‖uσ‖2Hm0 (B1(0)) > 0,

a contradiction. In the last step we used the elementary form of Gårding’s inequality (see [G2]) for oper-
ators, which have only constant coefficients and only of highest order, which follows from the ellipticity
condition by employing the Fourier transform.

An alternative proof would follow from Corollary 1.4 and the inductive argument of Proposition 2.7
below.

2.3 An inductive argument
For simplicity we write in the remainder of this section

KL(x) := KL(0, x) = KL(x, 0).

In what follows we always assume that n− 1 > 2m, i.e. that

n > 2m+ 1.

2.3.1 A method of descent with respect to space dimension

Here we use the notation
x = (x′, xn) ∈ Rn−1 × R = Rn.

Let Ln be an elliptic operator in Rn as in (1)

Ln = (−1)mQn

(
∂

∂x1
, · · · , ∂

∂xn

)
= (−1)m

∑
i1,...,i2m=1,...,n

Ai1,...,i2m
∂

∂xi1
· · · ∂

∂xi2m
,

with the symbol
Qn(ξ) =

∑
i1,...,i2m=1,...,n

Ai1,...,i2m ξi1 · · · ξi2m .

From this we obtain an operator in Rn−1 by simply “forgetting” the xn-coordinate or by considering only
functions, which do not depend on xn:

Ln−1 = (−1)mQn−1

(
∂

∂x1
, · · · , ∂

∂xn−1

)
= (−1)m

∑
i1,...,i2m=1,...,(n−1)

Ai1,...,i2m
∂

∂xi1
· · · ∂

∂xi2m
, (8)
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with the the corresponding symbol

Qn−1(ξ′) = Qn(ξ′, 0) =
∑

i1,...,i2m=1,...,(n−1)

Ai1,...,i2m ξi1 · · · ξi2m .

Since
Qn−1(ξ′) = Qn(ξ′, 0) ≥ λ|(ξ′, 0)|2m = λ|ξ′|2m,

Ln−1 is an elliptic operator. Next we define

Kn−1(x′) :=

∫
R
Kn(x′, ξn) dξn (9)

and aim at showing that this is John’s (unique) fundamental solution for Ln−1.
We prove first that we have the expected homogeneity and hence also the expected decay at∞.

Lemma 2.4. For σ ∈ R \ {0} and x′ ∈ Rn−1 \ {0} we have:

Kn−1(σx′) = |σ|2m−n+1Kn−1(x′).

Proof.

Kn−1(σx′) =

∫
R
Kn(σx′, ξn) dξn = |σ|

∫
R
Kn(σx′, σξn) dξn

= |σ|1+2m−n
∫
R
Kn(x′, ξn) dξn = |σ|1+2m−nKn−1(x′).

Next we prove that Kn−1 is in fact a fundamental solution for Ln−1.

Lemma 2.5. For all ϕ ∈ C∞0 (Rn−1) we have that∫
Rn−1

(Ln−1ϕ(x′))Kn−1(x′) dx′ = ϕ(0).

Proof. For ϕ ∈ C∞0 (Rn−1) we define
ϕ̃(x′, xn) := ϕ(x′)

and find that∫
Rn−1

(Ln−1ϕ(x′)) Kn−1(x′) dx′ =

∫
Rn−1

(Ln−1ϕ(x′))

∫
R
Kn(x′, xn) dx′dxn

=

∫
Rn

(Lnϕ̃(x)) Kn(x) dx. (10)

In order to proceed we need to overcome the difficulty that ϕ̃ 6∈ C∞0 (Rn) by a suitable approximation. To
this end we choose

χ ∈ C∞0 (R, [0, 1]), χ =

{
1 in [−1, 1],
0 outside [−2, 2],

and define
ϕ̃k(x) := ϕ̃(x)χ(xn/k) = ϕ(x′)χ(xn/k).

We find∫
Rn
|Lnϕ̃(x)− Lnϕ̃k(x)| |Kn(x)| dx ≤

∫
supp(ϕ)×R

(1− χ(xn/k)) |Ln−1ϕ(x′)| |Kn(x)| dx′ dxn

+

2m∑
j=1

Cjk
1−j

∫
supp(ϕ)×([−2,−1]∪[1,2])

∣∣D2m−jϕ(x′)
∣∣ |Kn(x′, kxn)| dx′ dxn

≤C
∫

supp(ϕ)×((−∞,k)∪(k,∞))

|Kn(x)| dx+

2m∑
j=1

Cjk
1−jk2m−n ≤

2m∑
j=0

Cjk
2m−n+1−j

≤Ck2m−n+1 → 0 as k →∞,
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because we assume that n > 2m+ 1. With this we conclude from (10)∫
Rn−1

(Ln−1ϕ(x′)) Kn−1(x′) dx′ = lim
k→∞

∫
Rn

(Lnϕ̃k(x)) Kn(x) dx = lim
k→∞

ϕ̃k(0) = ϕ(0)

as claimed.

Combining Lemmas 2.4 and 2.5 with the uniqueness result of fundamental solutions with suitable de-
gree of homogeneity from Proposition 2.2 we conclude:

Proposition 2.6. Kn−1 as defined in (9) is John’s fundamental solution for Ln−1 as it is given in (4) and
(5), respectively.

2.3.2 Understanding “small” dimensions is sufficient

Proposition 2.7. Assume that n > 2m + 1 and that for all elliptic operators Ln−1 of the form (8) in
Rn−1 with John’s corresponding fundamental solution Kn−1 there exists a vector x′ ∈ Rn−1 \ {0} such
that Kn−1(x′) > 0. Then for all elliptic operators Ln of the form (1) in Rn with John’s corresponding
fundamental solution Kn there exists a vector x = (x′, xn) ∈ Rn \ {0} such that Kn(x′) > 0.

Proof. Let Ln be an arbitrary elliptic operator of the form (1) in Rn with corresponding John’s fundamental
solution Kn. We define Ln−1 and Kn−1 as in Subsection 2.3.1. Then Prop. 2.6 shows that Kn−1 is John’s
corresponding fundamental solution. Making use of (9), the assumption yields the existence of a vector
x′ ∈ Rn−1 \ {0} such that

0 < Kn−1(x′) =

∫
R
Kn(x′, ξn) dξn.

This shows that there exists a point xn ∈ R which satisfies Kn(x′, xn) > 0.

Remark 1. Theorem 1.2(i) and Proposition 2.7 yield a different proof of Theorem 2.3 by means of the
inductive procedure.

Proposition 2.8. Assume that n > 2m+1 and that there exists one elliptic operator Ln−1 of the form (8) in
Rn−1 with John’s corresponding fundamental solution Kn−1 for which one finds a vector x′ ∈ Rn−1 \ {0}
such that Kn−1(x′) < 0. Then there exists one elliptic operator Ln of the form (1) in Rn with John’s
corresponding fundamental solution Kn for which one finds a vector x = (x′, xn) ∈ Rn \ {0} such that
Kn(x′) < 0.

Proof. Let Ln−1 be an elliptic operator of the form (8) in Rn−1 with symbol Qn−1 and corresponding
John’s fundamental solution Kn−1 for which one finds a vector x′ ∈ Rn−1 \ {0} such that Kn−1(x′) < 0.
We define

Ln := Ln−1 + ∂2m
n

which is an operator of the form (1) in Rn with elliptic symbol

Qn(ξ′, ξn) = Qn−1(ξ′) + ξ2m
n ≥ λn−1|ξ′|2m + ξ2m

n ≥ min{λn−1, 1}
2m

|(ξ′, ξn)|2m.

The operator Ln is connected to Ln−1 by the procedure described in Subsection 2.3.1. In particular John’s
fundamental solution Kn−1 corresponding to Ln−1 is given by (9). The assumption yields the existence of
a vector x′ ∈ Rn−1 \ {0} such that

0 > Kn−1(x′) =

∫
R
Kn(x′, ξn) dξn.

This shows that there exists a point xn ∈ R which satisfies

Kn(x′, xn) < 0,

which completes the proof.
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3 Sign changing fundamental solutions for m = 2

On S (Rn), the space of rapidly decreasing functions, one may define the Fourier-transformation F :
S (Rn)→ S (Rn) by

(Fu) (ξ) =
1

(2π)
n/2

∫
Rn
e−ix·ξu (x) dx. (11)

The inverse on S (Rn) is
(
F−1v

)
(x) = (Fv) (−x). The definition of F in (11) can be directly extended

to u ∈ L1 (Rn). For u ∈ W 1,1 (Rn) one finds
(
F
(

∂
∂xj

u
))

(ξ) = iξj (Fu) (ξ) and for u ∈ W 2m,1 (Rn)

the differential equation Lu = f , with L as in (1) having symbol Q, turns into Q(ξ) (Fu) (ξ) = (Ff) (ξ).
If F−1 is defined, then one would obtain a solution of Lu = f by

u = F−1Q (ξ)
−1 Ff.

So formally one would obtain the following expression for the corresponding fundamental solution:

F (x) =
(
F−1Q (ξ)

−1 Fδ0
)

(x) =
1

(2π)
n

∫
Rn
eix·ξ

1

Q (ξ)
dξ, (12)

with δ0 the delta-distribution in 0 and Fδ0 = (2π)−n/2, cf. (16) below. Due to the homogeneity of Q the
integral in (12) is however not defined in L1 (Rn) but at most as an oscillatory integral.

The Malgrange-Ehrenpreis Theorem, see [RS, Theorem IX.23], states that a distributional solution F
exists for LF = δ0, whenever L is a differential operator with constant coefficients. For elliptic operators
the zero sets of Q are small in Rn, which may allow one to give a classical meaning to (12) and gives a
route to the fundamental solution. In some special cases this formula even allows one to derive an (almost)
explicit fundamental solution. One such case is the following class of fourth order elliptic operators:

L = (∆′)
2

+ α∆′
(

∂
∂xn

)2

+
(

∂
∂xn

)4

, (13)

where x′ = (x1, . . . , xn−1) and ∆′ =
∑n−1
i=1

(
∂
∂xi

)2

.

Although L is only interesting in the present setting whenever n ≥ 5, allow us to classify L for all
dimensions.

Lemma 3.1. For L in (13) one finds:

1. L is elliptic, if and only if α > −2.

2. If α ≥ 2, the operator L can be written as a product of two real second order elliptic operators.

3. If α ∈ (−2, 2), the operator L can be written as a product of two real second order elliptic operators
only for n = 2.

Notice that the level hypersurfaces of the symbol for L are convex, if and only if α ≥ 0. For α = 2 one
recovers L = ∆2.

Proof. To prove that ellipticity holds if and only if α > −2, is elementary. For |α| ≥ 2 one may split the
symbol Q for L in (13) into real quadratic polynomials by:

Q (ξ′, ξn) =
(
|ξ′|2 + α+

√
α2−4
2 ξ2

n

)(
|ξ′|2 + α−

√
α2−4
2 ξ2

n

)
.

Whenever n = 2 and α ∈ (−2, 2] the operator L can be split into a product of two real second order elliptic
operators following:

Q (ξ1, ξ2) =
(
ξ2
1 −
√

2− α ξ1ξ2 + ξ2
2

) (
ξ2
1 +
√

2− α ξ1ξn + ξ2
2

)
.

This last splitting in dimensions n ≥ 3 with α ∈ (−2, 2), that is, replacing ξ1 by |ξ′|, would lead to a Fourier
multiplier operator of order 2 with nonsmooth symbol, i.e. not even to a pseudodifferential operator.
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The interesting case is hence α ∈ (−2, 2) and then it is convenient to use α = 2 cos γ with γ ∈ (0, π).
So we write

Lγ = (∆′)
2

+ 2 cos γ ∆′
(

∂
∂xn

)2

+
(

∂
∂xn

)4

(14)

with corresponding symbol Q (ξ′, ξn) = |ξ′|4 + 2 cos γ |ξ′|2 ξ2
n + ξ4

n. The fundamental solution for (14)
is a regular distribution, so a function, which is C∞ on Rn \ {0} and moreover, homogeneous of degree
4− n. We will recall that fact as the first step, when we prove the following result.

Proposition 3.2. Let n ≥ 5 and γ ∈ (0, π). The fundamental solution Fn,γ for (14) satisfies:

• when |x′| 6= 0 and xn 6= 0 one has

Fn,γ (x) =
1

2n−2Γ
(
n−2

2

)
πn/2 |x′|n−4

∫ ∞
0

Cn (s)
exp

(
− |xn||x′| s cos( 1

2γ)
)

sin

(
|xn|
|x′| s sin( 1

2γ)+ 1
2γ

)
2 sin(γ) sn−5ds

with Cn (s) :=
∫ π

0
cos (s cosϕ) (sinϕ)

n−3
dϕ;

• when |x′| = 0 and xn 6= 0 one obtains

Fn,γ (x) =
Γ (n− 4)

2n−1Γ
(
n−1

2

)
π(n−1)/2 |xn|n−4

sin (γ)
sin

(
n− 3

2
γ

)
. (15)

Proof. The proof is divided into 4 steps.

i) Fundamental solution as distribution through an inverse Fourier transform. Let us first discuss the
extensions of the Fourier transform F in (11). Both F and its inverse are well defined on S (Rn). By
definition, a sequence (ϕ`)`∈N ⊂ S (Rn) converges to ϕ ∈ S (Rn) iff for all k ∈ N and for all multi-
indices α ∈ Nn0 one has supx∈Rn

(
(1 + |x|)k |Dα(ϕ` − ϕ)(x)|

)
→ 0 as ` → ∞. The natural extension to

the space of tempered distributions S (Rn)
′ is then [H, Definition 7.1.9] as follows:

〈FΨ, ϕ〉 := 〈Ψ,Fϕ〉 for Ψ ∈ S (Rn)
′ and ϕ ∈ S (Rn) , (16)

with a similar version for the inverse; 〈·, ·〉 denotes the duality between distribution and test function.
For u ∈ L1 (Rn) the F in (11) is well defined and one finds Fu ∈ L∞ (Rn) and even the estimate

‖Fu‖∞ ≤
1

(2π)n/2
‖u‖1, but generically Fu 6∈ L1 (Rn). In general F−1 is not directly well defined

on L∞ (Rn). The Fourier-transformation can also be extended to L2 (Rn) by Plancherel and hence [H,
Theorem 7.1.13] for Lp (Rn) with p ∈ [1, 2]. For those p ∈ (1, 2] one finds FLp (Rn) ⊂ Lq (Rn) with
q = p

p−1 ≥ 2. So the formula in (12) needs clarification.
With the definition of the (inverse) Fourier transform in (16) one finds by [H, Theorem 7.1.20] for

n > 4, that

Fn,γ := F−1

((
1

Q

)
Fδ0

)
= (2π)−n/2F−1

((
1

Q

)•)
(17)

is defined in S (Rn)
′ and, since Lϕ = L∗ϕ, is such that

〈LFn,γ , ϕ〉 := 〈Fn,γ , Lϕ〉 = 〈δ0, ϕ〉 for all ϕ ∈ S (Rn) .

The dot in (17) is defined in [H, Theorem 3.2.3] as the unique homogeneous extension to D (Rn)
′ of the

same degree of homogeneity, namely −4, of Q−1 ∈ D (Rn \ {0})′, whenever this degree is not an integer
below or equal −n. Here D (Rn)

′ is the space of Schwartz distributions. The distribution u ∈ D (X)
′ is

homogeneous of degree a, when

〈u, ϕ〉 = ta 〈u, tnϕ (t·)〉 for all t > 0 and ϕ ∈ D (X) .

The distribution Q−1 on D (Rn \ {0}), when extended to D (Rn), can only add a combination of the δ0-
distribution and its distributional derivatives. Since in Rn each such a distribution is homogeneous of degree
−n or less, one finds that the extension is the regular distribution, that is, the function ξ 7→ Q−1 (ξ) on Rn
and we may skip the dot. By [H, Theorem 7.1.16] Fn,γ with n ≥ 5 is then homogeneous of degree 4 − n
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and by [H, Theorem 7.1.18] one finds that Fn,γ ∈ S (Rn)
′ and that (Fn,γ) |Rn\{0} ∈ C∞ (Rn \ {0}) is a

function. Also here the extension in 0 of this function can only add a combination of the δ0-distribution and
its distributional derivatives and again, in Rn each such distribution is homogeneous of degree −n or less.
So indeed, one finds that also Fn,γ is given by a function satisfying:

Fn,γ (x) = |x|4−n Fn,γ
(
x

|x|

)
.

With M = sup|ω|=1 |Fn,γ (ω)| one finds from this

|Fn,γ (x)| ≤M |x|4−n for x ∈ Rn \ {0} . (18)

ii) Approximation as distribution through a summability kernel. Since we have established that Fn,γ is a
function, we will try next to derive a more explicit formula. Since Q−1 is not an L1-function the direct
definition of the inverse Fourier-transform just after (11) is not applicable. We will use an approximation
through a special positive summability kernel kε, see [K, Section VI.1.9]. A positive summability kernel
on Rn is defined as a family (kε)ε∈(0,ε0] ⊂ C (Rn) with kε ≥ 0 satisfying:

1. for all ε ∈ (0, ε0]:
∫
Rn kε (x) dx = 1;

2. for all δ > 0: limε↓0
∫
|x|>δ kε (x) dx = 0.

The summability kernel that we use is a combination of a Gauss kernel in x′ ∈ Rn−1 and 1
2εe
−|xn|/ε.

We set
k1 (x) :=

1
√

2π
n−1 exp

(
− 1

2 |x
′|2
) 1

2
exp (− |xn|) (19)

and define
kε (x) := ε−nk1 (x/ε) . (20)

Recall that ∫
R
e−ist−

1
2 t

2

dt =
√

2πe−
1
2 s

2

and
∫
R
e−ist 1

2e
−|t|dt =

1

1 + s2
.

So one finds (Fkε) (ξ) = (Fk1) (εξ) and

(Fk1) (ξ) =
1

√
2π

n−1 exp
(
− 1

2 |ξ
′|2
) 1√

2π (1 + ξ2
n)

=
1
√

2π
n

exp
(
− 1

2 |ξ
′|2
)

1 + ξ2
n

.

One obtains for all ϕ ∈ S (Rn), exploiting kε ∗ ϕ→ ϕ in S (Rn), that

〈Fn,γ , ϕ〉 = lim
ε↓0
〈Fn,γ , kε ∗ ϕ〉 = (2π)−n/2 lim

ε↓0

〈
1

Q
,F−1 (kε ∗ ϕ)

〉
= lim

ε↓0

〈
1

Q
,
(
F−1kε

) (
F−1ϕ

)〉
(21)

and from the properties of distributions:〈
1

Q
,
(
F−1kε

) (
F−1ϕ

)〉
=

〈
F−1kε

1

Q
,F−1ϕ

〉
=

〈
Fkε

1

Q
,F−1ϕ

〉
=

〈
F−1

(
Fkε

1

Q

)
, ϕ

〉
.

(22)
In other words F−1

(
Fkε 1

Q

)
→ Fn,γ for ε ↓ 0 in the sense of distributions.

iii) Approximation as a function through the summability kernel. Since Fn,γ is a regular distribution and

(x, y) 7→ Fn,γ(x) kε (x− y) ϕ(y) ∈ L1 (Rn × Rn) ,

we may also write

〈Fn,γ , kε ∗ ϕ〉 =

∫
Rn
Fn,γ (x)

∫
Rn
kε (x− y) ϕ(y) dydx

=

∫
Rn

∫
Rn
Fn,γ(x) kε (x− y) ϕ(y) dxdy = 〈Fn,γ ∗ kε, ϕ〉 . (23)
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Setting
fε(x) := (Fn,γ ∗ kε) (x) (24)

we find from (18) and (20) that

|fε(x)| ≤
∫
y∈Rn

|Fn,γ (y) kε (x− y)| dy ≤M
∫
y∈Rn

|y|4−n kε (x− y) dy

= M
(
kε ∗ |·|4−n

)
(x) = ε4−nM

(
k1 ∗ |·|4−n

) (
ε−1x

)
. (25)

Since k1 (x) ≤ ce−|x|/2 for some c > 0, we may estimate the last expression in (25) by splitting the
corresponding integral in two parts: |x− y| < 1

2 |x|, implying |y| ≥ 1
2 |x|, and |x− y| > 1

2 |x|. Indeed,
one finds for some C1 > 0 that(

k1 ∗ |·|4−n
)

(x) ≤ c

(∫
|x−y|< 1

2 |x|
e−|y|/2 |x− y|4−n dy +

∫
|x−y|> 1

2 |x|
e−|y|/2 |x− y|4−n dy

)

≤ cσn

(
e−

1
4 |x|

∫ 1
2 |x|

r=0

r4−n+n−1dr +
(

1
2 |x|

)4−n ∫ ∞
r=0

e−r/2rn−1dr

)
= cσn

(
1
64e
− 1

4 |x| |x|4 + 22n−4 |x|4−n Γ (n)
)
≤ C1 |x|4−n ,

with σn =
∫
Sn−1 dω = 2πn/2

Γ(n/2) , the surface area of the unit sphere in Rn. The result is that

|fε(x)| ≤ ε4−nM
(
k1 ∗ |·|4−n

) (
ε−1x

)
≤ C1ε

4−n ∣∣ε−1x
∣∣4−n = C1 |x|4−n .

This allows us to use Lebesgue’s dominated convergence theorem to find with (21) and (23) that

〈Fn,γ , ϕ〉 = lim
ε↓0

∫
Rn
fε(x)ϕ (x) dx =

∫
Rn

lim
ε↓0

fε(x)ϕ (x) dx for all ϕ ∈ S (Rn) (26)

with the last identity for any measurable ϕ : Rn → R such that
∫
Rn |ϕ (x)| |x|4−n dx <∞.

iv) An almost explicit formula by a contour integral. Next we will compute fε using the formula
F−1

(
Fkε 1

Q

)
from (22). The symbol Q = Qγ for (14) satisfies

Qγ (ξ′, ξn) =
(
ξn + ieiγ/2 |ξ′|

)(
ξn − ieiγ/2 |ξ′|

)(
ξn + ie−iγ/2 |ξ′|

)(
ξn − ie−iγ/2 |ξ′|

)
and the approximation fε of the fundamental solution Fn,γ (x) for (14) becomes

fε(x) =

(
F−1

(
Fkε

1

Qγ

))
(x) =

1

(2π)
n

∫
Rn
eix·ξ

1

Qγ (ξ)

exp
(
− 1

2ε
2 |ξ′|2

)
1 + ε2ξ2

n

dξ. (27)

Note that the integral converges near 0 for n ≥ 5. Near∞ the integral converges for all n.
The integrand in (27) contains an analytic function of ξn ∈ C and we find for γ ∈ (0, π) and xn > 0 by

a contour integral in R + i [0,∞) ⊂ C that

fε (x) =
1

(2π)
n
ε2

∫
ξ′∈Rn−1

eix
′·ξ′− 1

2 ε
2|ξ′|2

∫
ξn∈R

eixnξn

Q (ξ′, ξn)
(
ξn − i

ε

) (
ξn + i

ε

)dξndξ′
=

2πi

(2π)
n
ε2

∫
ξ′∈Rn−1

eix
′·ξ′− 1

2 ε
2|ξ′|2 ∑

z∈{ieiγ/2|ξ′|, ie−iγ/2|ξ′|, iε}
Res

(
exp (ixnξn)

Qγ (ξ′, ξn)
(
ξn − i

ε

) (
ξn + i

ε

))
ξn=z

dξ′

=
2πi

(2π)
n

∫
ξ′∈Rn−1

eix
′·ξ′− 1

2 ε
2|ξ′|2

 exp
(
−xneiγ/2 |ξ′|

)
4eiγ/2 sin (γ) |ξ′|3

(
1− ε2eiγ |ξ′|2

)
+

− exp
(
−xne−iγ/2 |ξ′|

)
4e−iγ/2 sin (γ) |ξ′|3

(
1− ε2e−iγ |ξ′|2

) − iε3 exp (−xn/ε)

2
(

1− ε2eiγ |ξ′|2
)(

1− ε2e−iγ |ξ′|2
)
 dξ′. (28)
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Since γ ∈ (0, π) holds and by the negative exponents in the exponential, the integral in (28) converges. The
last term of (28) contains exp (−xn/ε), which shows that∣∣∣∣ε3 exp (−xn/ε)

2iQγ (εξ′, i)

∣∣∣∣ ≤ k! εk+3(
ε4 |ξ′|4 − 2 cos γ ε2 |ξ′|2 + 1

)
xkn

.

Hence by taking k > n− 4 it follows, whenever xn > 0, for ε ↓ 0 that∣∣∣∣∫
ξ′∈Rn−1

eix
′·ξ′− 1

2 ε
2|ξ′|2 ε3 exp (−xn/ε)

2iQγ (εξ′, i)
dξ′
∣∣∣∣ ≤ ∫

y′∈Rn−1

k!εk+4−ne−
1
2 |y′|2(

|y′|4 − 2 cos γ |y′|2 + 1
)
xkn

dy′ → 0.

It remains to consider

Fn,γ (x) = lim
ε↓0

fε (x)

= lim
ε↓0

2πi

(2π)
n

∫
ξ′∈Rn−1

eix
′·ξ′− 1

2 ε
2|ξ′|2

4 sin (γ) |ξ′|3

(
exp(−xneiγ/2|ξ′|)
eiγ/2(1−ε2eiγ |ξ′|2)

− exp(−xne−iγ/2|ξ′|)
e−iγ/2(1−ε2e−iγ |ξ′|2)

)
dξ′

=
2πi

(2π)
n

∫
ξ′∈Rn−1

eix
′·ξ′

4 sin (γ) |ξ′|3
(
e−xne

iγ/2|ξ′|−iγ/2 − e−xne
−iγ/2|ξ′|+iγ/2

)
dξ′

=
1

(2π)
n−1

∫
ξ′∈Rn−1

eix
′·ξ′ exp

(
−xn |ξ′| cos( 1

2γ)
)

sin
(
xn |ξ′| sin( 1

2γ) + 1
2γ
)

2 |ξ′|3 sin(γ)
dξ′, (29)

which is well-defined for xn > 0. For xn < 0 one replaces xn by |xn| in (29).
For the remaining integral in (29) we proceed by using for ξ′ ∈ Rn−1 with n ≥ 4 the coordinates

ξ′ =

(
r cosϕ
rω′′ sinϕ

)
with r ≥ 0, ω′′ ∈ Sn−3 and ϕ ∈ [0, π] ,

where Sn−3 =
{
v ∈ Rn−2; |v| = 1

}
. By the rotational symmetry in x′ ∈ Rn−1 one may assume that

x′ = |x′|~e1 and we find through eix
′·ξ′ = ei|x

′|ξ1 = eir|x
′| cos(ϕ) and dξ′ = (sinϕ)

n−3
rn−2dϕdrdω′′,

that

Fn,γ (x) =
1

(2π)
n−1

∫
Sn−3

(∫ ∞
0

exp
(
− |xn| r cos

(
1
2γ
))

sin
(
|xn| r sin

(
1
2γ
)

+ 1
2γ
)

2r3 sin (γ)

·
(∫ π

0

eir|x
′| cosϕ (sinϕ)

n−3
dϕ

)
rn−2dr

)
dω′′. (30)

Notice that ∫ π

0

eis cosϕ (sinϕ)
n−3

dϕ =

∫ π

0

cos (s cosϕ) (sinϕ)
n−3

dϕ = Cn (s) (31)

with Cn as in Lemma 3.2 and

Cn(0) =

∫ π

0

(sinϕ)
n−3

dϕ =
√
π Γ(n−2

2 )
Γ(n−1

2 )
> 0.

We find for |x′| 6= 0 and xn 6= 0 from (30) that

Fn,γ (x) =
σn−2

(2π)
n−1

∫ ∞
0

Cn (r |x′|) exp(−|xn|r cos( 1
2γ)) sin(|xn|r sin( 1

2γ)+ 1
2γ)

2 sin(γ) rn−5dr

=
1

2n−2Γ
(
n−2

2

)
πn/2 |x′|n−4

∫ ∞
0

Cn (s)
exp

(
− |xn||x′| s cos( 1

2γ)
)

sin

(
|xn|
|x′| s sin( 1

2γ)+ 1
2γ

)
2 sin(γ) sn−5ds.
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For |x′| = 0 and xn 6= 0 one obtains

Fn,γ (x) =
σn−2

(2π)
n−1

√
π Γ(n−2

2 )
Γ(n−1

2 )

∫ ∞
0

exp
(
− |xn| r cos

(
1
2γ
))

sin
(
|xn| r sin

(
1
2γ
)

+ 1
2γ
)

2 sin (γ)
rn−5dr

=

√
π

2n−1Γ
(
n−1

2

)
πn/2 |xn|n−4

sin (γ)
Re

(
ie−iγ/2

∫ ∞
0

exp
(
−seiγ/2

)
sn−5ds

)
=

1

2n−1Γ
(
n−1

2

)
π(n−1)/2 |xn|n−4

sin (γ)
Re

(
i
(
eiγ/2

)3−n
Γ (n− 4)

)
=

Γ (n− 4)

2n−1Γ
(
n−1

2

)
π(n−1)/2 |xn|n−4

sin (γ)
sin

(
n− 3

2
γ

)
,

which shows (15).

Whenever n−3
2 γ reaches values above π, Fn,γ in (15) changes sign. This is the case when n ≥ 6, so we

may conclude:

Proposition 3.3. For all n ≥ 6 there are γ ∈ (0, π) such that Fn,γ (0, . . . , 0, xn) < 0 for xn 6= 0.

Together with Theorem 2.3, this proposition yields the proof of Theorem 1.1. Notice that whenever
n ≥ 8, the fundamental solution changes sign even for γ < 1

2π, where the level hypersurfaces of the
symbol are still convex.

Example 1. For n = 8 one finds that

C8 (s) = 16

(
3− s2

)
sin s− 3s cos s

s5
= 16

15 −
8

105s
2 +O

(
s4
)
.

We have F8,γ (0, . . . , 0, x8) =
sin( 5

2γ)
40π4|x8|4 sin(γ)

, which is negative for γ ∈
(

2
5π,

4
5π
)
. To get an impression

for which combinations of γ and β := arctan
(
|x8|
|x′|

)
the fundamental solution is negative, Figure 1 contains

a graph of
g (β, γ) = |x|4 F8,γ(x) for x = (x′, x8) with |x8| = |x′| tanβ, (32)

which indeed only depends on β, γ ∈
[
0, 1

2π
]
× (0, π).

γ →

↑β

g↑

Figure 1: Sign changing depending on γ for F8,γ through a sketch of g from (32). The nodal lines appear
in red (dark).
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4 Developing John’s formulae

4.1 Odd dimensions n > 2m: explicit fundamental solutions
In this section we prove Theorem 1.2 starting from John’s formula (4). In other words, recalling that
KL(x, y) = KL(0, x− y), we shall compute the iterated Laplacian for

F (y) :=

∫
|ξ|=1
y·ξ > 0

y · ξ
Q(ξ)

dHn−1(ξ). (33)

4.1.1 The first iteration: ∆F

Proposition 4.1. With the notation above, we have

∇F (y) =

∫
|ξ|=1
y·ξ > 0

ξT

Q(ξ)
dHn−1(ξ), (34)

∆F (y) =
1

|y|

∫
|ξ|=1
y·ξ= 0

1

Q(ξ)
dHn−2(ξ). (35)

Before going into details of the proof, let us remark an important consequence of Proposition 4.1.

Remark 2. In the case n = 2m+ 1, e.g. for a fourth order elliptic operator in R5, (4) and (35) imply

KL(x, y) =
1

32π4|x− y|

∫
|ξ|=1

(x−y)·ξ= 0

1

Q(ξ)
dHn−2(ξ), (36)

which is thus a positive fundamental solution having the expected order of singularity. The only difference
with the polyharmonic case is that an ”angular dependent” positive factor appears. Notice that for the
model polyharmonic case, as Q∆m(ξ) := |ξ|2m, then such factor is identically 1 and we of course retrieve
its well-known fundamental solution.

We first recall a classical result about integrations of differential forms (see for instance [F, Satz 3]).

Lemma 4.2. Let M be an oriented hypersurface with exterior normal vector field ν(x), which means that

for any admissible parametrisation Φ with x = Φ(t) we have det
(
ν(x), ∂Φ

∂t1
(t), . . . , ∂Φ

∂tn−1
(t)
)
> 0. Let

further A ⊆M be a compact submanifold and f = (fi)
n
i=1 : M → Rn be a vector field. Then we have∫

A

f(x) · ν(x)dS(x) =

∫
A

( n−1∑
i=1

(−1)i−1fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn
)
,

with the convention that d̂xi means that this factor is missing.

Proof of Proposition 2. Step 1. Let us first compute ∇F on points y = (y1, 0, · · · , 0) 6= 0. Here and
everywhere in what follows we assume y1 > 0. Then, by means of a rigid motion in Rn, we will extend the
result to the general case.
Writing y = rη, where |η| = 1, we have

F (y) = r

∫
|ξ|=1
η·ξ > 0

η · ξ
Q(ξ)

dHn−1(ξ).

Noticing that the derivative in the first direction is indeed a normal derivative,

∂k

∂yk1
F (y1, 0, · · · , 0) =

dk

drk
F (rη), (37)

therefore we infer

∂

∂y1
F (y1, 0, · · · , 0) =

1

|y|

∫
|ξ|=1
y·ξ > 0

y · ξ
Q(ξ)

dHn−1(ξ) =

∫
|ξ|=1
y·ξ > 0

ξ1
Q(ξ)

dHn−1(ξ), (38)
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∂2

∂y2
1

F (y1, 0, · · · , 0) = 0.

Let us now compute all other first and second derivatives, which thus involve tangential directions. Without
loss of generality, we may consider just ∂3F and ∂2

33F , the general case being similar. To this aim, we
introduce the rotation matrix Bϕ which roughly speaking exchanges the first direction with the third:

Bϕ =


cosϕ 0 − sinϕ

0 1 0 0
sinϕ 0 cosϕ

0 I

 (39)

Moreover, define H(ϕ) := F (Bϕy). Recalling that yi = 0 for all i > 1 and differentiating H in ϕ = 0, we
have

∂H

∂ϕ

∣∣∣∣
ϕ=0

= ∂1F |(y1 cosϕ,0,y1 sinϕ,0,··· ,0)

∣∣∣∣
ϕ=0

(− sinϕy1)|ϕ=0 + ∂3F |(y1 cosϕ,0,y1 sinϕ,0,··· ,0)

∣∣∣∣
ϕ=0

(cosϕy1)|ϕ=0

= y1∂3F (y).

(40)

On the other hand, by definition

H(ϕ) =

∫
|ξ|=1

Bϕy·ξ > 0

Bϕy · ξ
Q(ξ)

dHn−1(ξ)
ξ=Bϕξ

′

=

∫
|ξ′|=1
y·ξ′> 0

y · ξ′

Q(Bϕξ′)
dHn−1(ξ′).

Therefore, using Lemma 4.2,

∂H

∂ϕ

∣∣∣∣
ϕ=0

=

∫
|ξ′|=1
y·ξ′> 0

(y · ξ′) ∂
∂ϕ

∣∣∣∣
ϕ=0

1

Q(Bϕξ′)
dHn−1(ξ′)

=

∫
|ξ′|=1
ξ′1> 0

(y1ξ
′
1)

(
− ξ′3∂1

1

Q(ξ′)
+ ξ′1∂3

1

Q(ξ′)

)
dHn−1(ξ′)

=

∫
|ξ′|=1
ξ′1> 0

(y1ξ
′
1)



∂3
1

Q(ξ′)

0
−∂1

1
Q(ξ′)

0
· · ·
0

 · ξ
′dHn−1(ξ′)

= y1

∫
|ξ′|=1
ξ′1> 0

(
ξ′1∂3

1

Q(ξ′)
dξ′2 ∧ · · · ∧ dξ′n − ξ′1∂1

1

Q(ξ′)
dξ′1 ∧ dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n

)
.

(41)

We observe that for the (n− 2) - form

ω := − ξ′1
Q(ξ′)

dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n

we have

dω = −
(
d

ξ′1
Q(ξ′)

)
∧ dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n

= −∂1

(
ξ′1

Q(ξ′)

)
dξ′1 ∧ dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n − ∂3

(
ξ′1

Q(ξ′)

)
dξ′3 ∧ dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n

= −ξ′1
(
∂1

1

Q(ξ′)

)
dξ′1 ∧ dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n −

1

Q(ξ′)
dξ′1 ∧ dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n

+ ξ′1∂3
1

Q(ξ′)
dξ′2 ∧ · · · ∧ dξ′n.

(42)
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Hence, by (40)-(42) and Stokes’ Theorem, noticing that ω = 0 on {ξ′1 = 0}, we infer

∂F

∂y3
(y1, 0, · · · , 0) =

1

y1

∂H

∂ϕ

∣∣∣∣
ϕ=0

=

∫
|ξ′|=1
ξ′1> 0

1

Q(ξ′)
dξ′1 ∧ dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n +

∫
|ξ′|=1
ξ′1> 0

dω

=

∫
|ξ′|=1
ξ′1> 0

1

Q(ξ′)
ν3(ξ′)dHn−1(ξ′)

=

∫
|ξ′|=1
ξ′1> 0

ξ′3
Q(ξ′)

dHn−1(ξ′).

Analogously one may compute ∂kF (y1, 0, · · · , 0) for k 6= 1 and then obtain

∂F

∂yk
(y1, 0, · · · , 0) =

∫
|ξ′|=1
y·ξ′> 0

ξ′k
Q(ξ′)

dHn−1(ξ′). (43)

Indeed, it is sufficient to consider instead of Bϕ a similar matrix corresponding to a rotation in the plane
〈y1, yk〉. Hence, (38) and (43) yield

∇F (y1, 0, · · · , 0) =

∫
|ξ′|=1
y·ξ′> 0

(ξ′)T

Q(ξ′)
dHn−1(ξ′).

Step 2. Now we want to to extend this identity to a generic point y ∈ Rn \ {0}. To this aim, let us write
y = |y|b1, where |b1| = 1, and complete this unit vector to a matrix B =

(
b1 | · · · | bn

)
∈ SO(n). Notice

that
y = |y|b1 = B ·

(
|y|, 0, · · · , 0

)T
and (|y|, 0, · · · , 0

)T
= BT y.

Moreover, define F̃ := F ◦B. From (33) we infer for all z ∈ Rn \ {0} that

F̃ (z) = F (Bz) =

∫
|ξ|=1

Bz·ξ > 0

Bz · ξ
Q(ξ)

dHn−1(ξ)
ξ=Bξ′

=

∫
|ξ′|=1
z·ξ′> 0

z · ξ′

Q(Bξ′)
dHn−1(ξ′).

Therefore,

∇F (y) = ∇F (B(|y|, 0, · · · , 0)T ) = ∇F̃ (|y|, 0, · · · , 0)BT

=

∫
|ξ′|=1
ξ′1> 0

ξ′T

Q(Bξ′)
dHn−1(ξ′) ·BT =

∫
|ξ′|=1
ξ′1> 0

(Bξ′)T

Q(Bξ′)
dHn−1(ξ′).

The change of variable ξ = Bξ′ yields finally (34).

Step 3. Now it is the turn of second derivatives. We compute them with the same method we applied
so far, so first we consider the easier case y = (y1, 0, · · · , 0)T with y1 > 0 and then we extend this to a
general y ∈ Rn \ {0}.

Once again, we may for simplicity consider just ∂3F , the other cases being similar as already mentioned.
Let Bϕ be as in (39) and for y = (y1, 0, · · · , 0)T define

H̃(ϕ) := ∂3F (Bϕy) =

∫
|ξ|=1

Bϕy·ξ > 0

ξ3
Q(ξ)

dHn−1(ξ)
ξ=Bϕξ

′

=

∫
|ξ′|=1
ξ′1> 0

(Bϕξ
′)3

Q(Bϕξ′)
dHn−1(ξ′).

Exactly as for F in (40), we have

∂2F

∂y2
3

(y1, 0, · · · , 0) =
1

y1

∂H̃

∂ϕ

∣∣∣∣
ϕ=0

.
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We denote R(z) := z3
Q(z) for all z ∈ Rn. Then we have

∂H̃

∂ϕ

∣∣∣∣
ϕ=0

=
∂

∂ϕ

∣∣∣∣
ϕ=0

∫
|ξ′|=1
ξ′1> 0

R(Bϕξ
′) dHn−1(ξ′)

=

∫
|ξ′|=1
ξ′1> 0

(
− ξ′3∂1R(ξ′) + ξ′1∂3R(ξ′)

)
dHn−1(ξ′)

=

∫
|ξ′|=1
ξ′1> 0


∂3R(ξ′)

0
−∂1R(ξ′)

0
· · ·
0

 · ν(ξ′) dHn−1(ξ′)

=

∫
|ξ′|=1
ξ′1> 0

(
∂3R(ξ′) dξ′2 ∧ · · · ∧ dξ′n − ∂1R(ξ′) dξ′1 ∧ dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n

)
=

∫
|ξ′|=1
ξ′1> 0

dξ′2 ∧
(
∂1R(ξ′)dξ′1 + ∂3R(ξ′)dξ′3

)
∧ dξ′4 ∧ · · · ∧ dξ′n

= −
∫
|ξ′|=1
ξ′1> 0

d
(
R(ξ′)dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n

)
= −

∫
|ξ′|=1
ξ′1 = 0

R(ξ′) dξ′2 ∧ dξ′4 ∧ · · · ∧ dξ′n,

having applied Stokes’ Theorem. Let ν̃ denote the exterior normal of the half-sphere on its boundary, which
gives its induced orientation. Hence, using Lemma 4.2 and the definition of R,

∂H̃

∂ϕ

∣∣∣∣
ϕ=0

=

∫
|ξ′|=1
ξ′1 = 0

ν̃(ξ′) ·


0

R(ξ′)
0
· · ·
0

 dHn−2(ξ′) =

∫
|ξ′|=1
ξ′1 = 0

ξ′3
2

Q(ξ′)
dHn−2(ξ′).

Therefore, we may conclude that for all k ∈ {2, · · · , n} we have

∂2F

∂y2
k

(y1, 0, · · · , 0) =
1

|y|

∫
|ξ′|=1
ξ′1 = 0

ξ′k
2

Q(ξ′)
dHn−2(ξ′).

Recalling that ∂2
11F (y1, 0, · · · , 0) = 0, we thus infer

∆F (y1, 0, · · · , 0) =
1

|y|

∫
|ξ′|=1
ξ′1 = 0

1

Q(ξ′)
dHn−2(ξ′). (44)

Step 4. Let now y ∈ Rn \ {0} which we write as y = |y|b1, with |b1| = 1, and let us complete this unit
vector to a matrix B :=

(
b1 | · · · | bn

)
∈ SO(n). Moreover, recall F̃ := F ◦B. Then, one has

∆F (z) = Tr(∇2F (z)) = Tr(B∇2F̃ |BT zBT ) = Tr(∇2F̃ |BT z) = ∆F̃ (BT z),

and therefore by (44),

∆F (y) = ∆F̃ (|y|, 0, · · · , 0) =
1

|y|

∫
|ξ′|=1

BT y·ξ′ = 0

1

Q(Bξ′)
dHn−2(ξ′)

ξ=Bξ′

=
1

|y|

∫
|ξ|=1
y·ξ= 0

1

Q(ξ)
dHn−2(ξ).
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4.1.2 The k-th iteration ∆kF and the proof of Theorem 1.2

The following theorem provides a general formula for the iterated Laplacian of F . We will see that tangen-
tial derivatives of the symbol play a fundamental role in the formula.

Theorem 4.3.

∆kF (y) =
1

|y|2k−1

k∑
j=1

dk,j(n,m)

∫
|ξ|=1
y·ξ= 0

∇2(k−j) 1

Q(ξ)

(
y

|y|
⊗2(k−j)

)
dHn−2(ξ), (45)

where
dk,1(n,m) = 1

and for j = 2 . . . , k:

dk,j(n,m) = (−1)j−1ck,j

j∏
`=2

(n− 2m− (2k − 2`+ 3)) (46)

with (using the convention that the product is 1 whenever j = 1)

ck,j =

j∏
`=2

(k − `+ 1)(2k − 2`+ 1)

`− 1
. (47)

Note that Theorem 1.2 is an immediate consequence of Theorem 4.3. This follows from putting k =
n−2m+1

2 , where dk,j = 0 for all j ≥ 2.

The rest of the subsection is devoted to proving Theorem 4.3, the strategy being the following. Firstly,
we show that each term of the sum, namely∫

|ξ|=1
y·ξ= 0

∇2j 1

Q
(ξ)

(
y

|y|
⊗2j
)
dHn−2(ξ),

once the Laplacian is applied, produces only terms of the same kind (so only even derivatives of 1
Q are

involved) with order at most 2j + 2, each of them multiplied by the same suitable power of 1
|y| . This is

achieved in Proposition 4.4. As a consequence, we obtain some recurrence formulae for the coefficients dk,j
in the proof of Theorem 4.3. These relations will be important to finally prove the theorem by induction.

Let us fix k ∈ N and j ∈ {0, · · · , k − 1} and define

Jk,j(y) :=
1

|y|2k−1

∫
|ξ|=1
y·ξ= 0

∇2j 1

Q
(ξ)

(
y

|y|
⊗2j
)
dHn−2(ξ).

Proposition 4.4.

∇Jk,j(y) =
1

|y|2k

∫
|ξ|=1
y·ξ= 0

[
(2j)∇2j 1

Q
(ξ)

(
y

|y|
⊗2j−1

, ·
)
− ξT · ∇2j+1 1

Q
(ξ)

(
y

|y|
⊗2j+1

)

− (2k − 1 + 2j)∇2j 1

Q
(ξ)

(
y

|y|
⊗2j
)
yT

|y|

]
dHn−2(ξ),

(48)

∆Jk,j(y1, 0, · · · , 0) =
1

|y|2k+1

∫
|ξ′|=1
ξ′1 = 0

[
c0

∂2j

∂ξ′1
2j

1

Q
(ξ′)+c∆

∂2j−2

∂ξ′1
2j−2

1

Q
(ξ′)+

∂2j+2

∂ξ′1
2j+2

1

Q
(ξ′)

]
dHn−2(ξ′),

(49)
where

c0(n,m, k, j) = 2k(2k − 1) + (n− 1)(1− 2k − 2j) + 2(4j + 1)(m+ j) (50)

and
c∆(n,m, j) = 4j(2j − 1)(m+ j − 1)(2m+ 2j + 1− n). (51)

Therefore, we obtain

∆Jk,j(y) = c∆(n,m, j)Jk+1,j−1 + c0(n,m, k, j)Jk+1,j + Jk+1,j+1. (52)
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Proof. In order to simplify the notation, as k, j are fixed, we write J(y) instead of Jk,j(y).
Step 1. Let y = (y1, 0, · · · , 0), y1 > 0. First of all, writing J in polar coordinates

J(r, η) =
1

r2k−1

∫
|ξ|=1
η·ξ= 0

∇2j 1

Q
(ξ)
(
η⊗2j

)
dHn−2(ξ),

by (37) one infers

∂

∂y1
J(y1, 0, · · · , 0) = −2k − 1

|y|2k

∫
|ξ|=1
y·ξ= 0

∇2j 1

Q
(ξ)

(
y

|y|
⊗2j
)
dHn−2(ξ),

and
∂2

∂y2
1

J(y1, 0, · · · , 0) =
2k(2k − 1)

|y|2k+1

∫
|ξ|=1
y·ξ= 0

∇2j 1

Q
(ξ)

(
y

|y|
⊗2j
)
dHn−2(ξ). (53)

As in the proof of Proposition 4.1, defining H(ϕ) := J(Bϕy) with Bϕ as in (39), we have

H(ϕ) =
1

|y|2k−1

∫
|ξ|=1

(Bϕy)·ξ= 0

∇2j 1

Q
(ξ)

(
Bϕy

|y|

⊗2j)
dHn−2(ξ)

ξ=Bϕξ
′

=
1

|y|2k−1

∫
|ξ′|=1
ξ′1 = 0

∇2j 1

Q
(Bϕξ

′)

(
Bϕy

|y|

⊗2j)
dHn−2(ξ′).

We may rewrite the argument as

∇2j 1

Q
(Bϕξ

′)

(
Bϕy

|y|

⊗2j)
=

2j∑
h=0

(
2j

h

)
∂2j

12j−h3h
1

Q
(Bϕξ

′) cos2j−h ϕ sinh ϕ,

with the shorter notation

∂kik :=
∂k

∂xki
.

A differentiation with respect to ϕ yields

∂H

∂ϕ

∣∣∣∣
ϕ=0

=
1

|y|2k−1

∫
|ξ′|=1
ξ′1 = 0

2j∑
h=0

(
2j

h

){
d

dϕ

∣∣∣∣
ϕ=0

(
∂2j

12j−h3h
1

Q
(Bϕξ

′)

)(
cos2j−h ϕ

∣∣∣∣
ϕ=0

)(
sinh ϕ

∣∣∣∣
ϕ=0

)

+ ∂2j
12j−h3h

1

Q
(ξ′)

[(
sinh ϕ

∣∣∣∣
ϕ=0

)(
d

dϕ

∣∣∣∣
ϕ=0

cos2j−h ϕ

)

+

(
cos2j−h ϕ

∣∣∣∣
ϕ=0

)(
d

dϕ

∣∣∣∣
ϕ=0

sinh ϕ

)]}
dHn−2(ξ′).

Since the terms which remain must have only cosines, everything vanishes except for the term with h = 0
in the first sum and the one with h = 1 in the third. Therefore,

∂H

∂ϕ

∣∣∣∣
ϕ=0

=
1

|y|2k−1

∫
|ξ′|=1
ξ′1 = 0

{
d

dϕ

∣∣∣∣
ϕ=0

(
∂2j

12j

1

Q
(Bϕξ

′)

)
+ 2j ∂2j

12j−13

1

Q
(ξ′)

}
dHn−2(ξ′). (54)

Moreover, we compute on {ξ′1 = 0}

d

dϕ

∣∣∣∣
ϕ=0

(
∂2j

12j

1

Q
(Bϕξ

′)

)
=

n∑
h=1

∂2j+1
12jh

1

Q
(ξ′)

∂(Bϕξ
′)h

∂ϕ

∣∣∣∣
ϕ=0

= ∂2j+1
12j+1

1

Q
(ξ′) (− sinϕξ′1 − cosϕξ′3)

∣∣∣∣
ϕ=0

+ ∂2j+1
12j3

1

Q
(ξ′) (cosϕξ′1 − sinϕξ′3)

∣∣∣∣
ϕ=0

= −ξ′3 ∂
2j+1
12j+1

1

Q
(ξ′).

(55)
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Inserting in (54), we infer

∂J

∂y3

∣∣∣∣
(y1,0,··· ,0)

=
1

|y|
∂H

∂ϕ

∣∣∣∣
ϕ=0

=
1

|y|2k

∫
|ξ′|=1
ξ′1 = 0

(
−ξ′3 ∂

2j+1
12j+1

1

Q
(ξ′) + 2j ∂2j

12j−13

1

Q
(ξ′)

)
dHn−2(ξ′).

Of course, an analogous formula holds for any h ∈ {2, · · · , n}, namely

∂J

∂yh

∣∣∣∣
(y1,0,··· ,0)

=
1

|y|2k

∫
|ξ′|=1
ξ′1 = 0

(
−ξ′h ∂

2j+1
12j+1

1

Q
(ξ′) + 2j ∂2j

12j−1h

1

Q
(ξ′)

)
dHn−2(ξ′).

Step 2. Let us now consider y ∈ Rn \ {0}, so y = |y|b1, where |b1| = 1, and let B =
(
b1 | · · · | bn

)
∈

SO(n). Defining J̃ := J ◦B, one has

∇J(y) = ∇J(B(|y|, 0, · · · , 0)T ) = ∇J̃(|y|, 0, · · · , 0)BT

=
1

|y|2k

∫
|ξ′|=1
ξ′1 = 0


−(2k − 1)∂2j

12j
1
Q (Bξ′)

2j ∂2j
12j−12

1
Q (Bξ′)− ξ′2∂

2j+1
12j+1

1
Q (Bξ′)

· · ·
2j ∂2j

12j−1n
1
Q (Bξ′)− ξ′n∂

2j+1
12j+1

1
Q (Bξ′)


T

dHn−2(ξ′) ·BT

=
1

|y|2k

∫
|ξ′|=1
ξ′1 = 0

2j∇
(
∂2j−1

12j−1

1

Q
(Bξ′)

)
·BT − (Bξ′)T · ∂2j+1

12j+1

1

Q
(Bξ′)

− (2k − 1 + 2j)


∂2j

12j
1
Q (Bξ′)

0
· · ·
0


T

BT dHn−2(ξ′).

Returning therefore to the variable ξ = Bξ′, we get

∇J(y) =
1

|y|2k

[
2j

∫
|ξ|=1
y·ξ= 0

∇2j 1

Q
(ξ)

(
y

|y|
⊗2j−1

, ·
)
dHn−2(ξ)−

∫
|ξ|=1
y·ξ= 0

∇2j+1 1

Q
(ξ)

(
y

|y|
⊗2j+1

)
ξT dHn−2(ξ)

− (2k − 1 + 2j)

∫
|ξ|=1
y·ξ= 0

∇2j 1

Q
(ξ)

(
y

|y|
⊗2j
)
yT

|y|
dHn−2(ξ)

]
,

(56)

that is, (48).

Step 3. Let us again consider y = (y1, 0, · · · , 0), y1 > 0, and compute ∆J(y). Defining H̃(ϕ) :=
∂y3J(Bϕy), according to the splitting in (56), we have

H̃(ϕ) =:
1

|y|2k
(
2j H̃0(ϕ)− H̃1(ϕ)− (2k − 1 + 2j)H̃2(ϕ)

)
. (57)
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Let us differentiate with respect to ϕ term by term. Firstly,

H̃0(ϕ) =

∫
|ξ|=1

(Bϕy)·ξ= 0

∇2j 1

Q
(ξ)

(
Bϕy

|y|

⊗2j−1

, e3

)
dHn−2(ξ)

ξ=Bϕξ
′

=

∫
|ξ′|=1
ξ′1 = 0

∇2j 1

Q
(Bϕξ)




cosϕ

0
sinϕ

0
· · ·
0



⊗2j−1

, e3

 dHn−2(ξ′)

=

∫
|ξ′|=1
ξ′1 = 0

n∑
h1,··· ,h2j−1=1

(
∇2j 1

Q
(Bϕξ)

)
3,h1,··· ,h2j−1


cosϕ

0
sinϕ

0
· · ·
0


h1

· · ·


cosϕ

0
sinϕ

0
· · ·
0


h2j−1

dHn−2(ξ′)

=

∫
|ξ′|=1
ξ′1 = 0

2j−1∑
h=0

(
2j − 1

h

)
∂2j

12j−1−h3h+1

1

Q
(Bϕξ

′) cos2j−1−h ϕ sinh ϕ dHn−2(ξ′).

Therefore we obtain

d

dϕ

∣∣∣∣
ϕ=0

H̃0(ϕ) =

∫
|ξ′|=1
ξ′1 = 0

2j−1∑
h=0

(
2j − 1

h

){
d

dϕ

∣∣∣∣
ϕ=0

(
∂2j

12j−1−h3h+1

1

Q
(Bϕξ

′)

)(
cos2j−1−h ϕ

∣∣∣∣
ϕ=0

)(
sinh ϕ

∣∣∣∣
ϕ=0

)

+ ∂2j
12j−1−h3h+1

1

Q
(ξ′)

[(
sinh ϕ

∣∣∣∣
ϕ=0

)(
d

dϕ

∣∣∣∣
ϕ=0

cos2j−1−h ϕ

)

+

(
cos2j−1−h ϕ

∣∣∣∣
ϕ=0

)(
d

dϕ

∣∣∣∣
ϕ=0

sinh ϕ

)]}
dHn−2(ξ′).

As in Step 1, the terms which remain are the first with h = 0 and the third with h = 1, so

d

dϕ

∣∣∣∣
ϕ=0

H̃0(ϕ) =

∫
|ξ′|=1
ξ′1 = 0

[
d

dϕ

∣∣∣∣
ϕ=0

(
∂2j

12j−13

1

Q
(Bϕξ

′)

)
+ (2j − 1)∂2j

12j−232

1

Q
(ξ′)

]
dHn−2(ξ′).

Differentiating the first term as in (55) on {ξ′1 = 0},

d

dϕ

∣∣∣∣
ϕ=0

(
∂2j

12j−13

1

Q
(Bϕξ

′)

)
=

n∑
h=1

∂2j+1
12j−13h

1

Q
(ξ′)

(
∂(Bϕξ

′)h
∂ϕ

) ∣∣∣∣
ϕ=0

= −ξ′3 ∂
2j+1
12j3

1

Q
(ξ′),

we obtain hence

d

dϕ

∣∣∣∣
ϕ=0

H̃0(ϕ) =

∫
|ξ′|=1
ξ′1 = 0

[
(2j − 1) ∂2j

12j−232

1

Q
(ξ′)− ξ′3 ∂

2j+1
12j3

1

Q
(ξ′)

]
dHn−2(ξ′). (58)
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Let us now address to the second term in (57):

H̃1(ϕ) =

∫
|ξ|=1

(Bϕy)ξ= 0

ξ3∇2j+1 1

Q
(ξ)

(
Bϕy

|y|

⊗ 2j+1)
dHn−2(ξ)

ξ=Bϕξ
′

=

∫
|ξ′|=1
ξ′1 = 0

(Bϕξ
′)3∇2j+1 1

Q
(Bϕξ

′)


cosϕ

0
sinϕ

0
· · ·
0



⊗ 2j+1

dHn−2(ξ′)

=

∫
|ξ′|=1
ξ′1 = 0

(ξ′1 sinϕ+ ξ′3 cosϕ)

n∑
h1,··· ,h2j+1=1

∂2j+1
h1···h2j+1

1

Q
(Bϕξ

′)


cosϕ

0
sinϕ

0
· · ·
0


h1

· · ·


cosϕ

0
sinϕ

0
· · ·
0


h2j+1

dHn−2(ξ′)

=

∫
|ξ′|=1
ξ′1 = 0

(ξ′1 sinϕ+ ξ′3 cosϕ)

(
2j+1∑
h=0

(
2j + 1

h

)
∂2j+1

12j+1−h3h
1

Q
(Bϕξ

′) cos2j+1−h ϕ sinh ϕ

)
dHn−2(ξ′).

Hence, differentiating with respect to ϕ, with similar computations as for H̃0, we obtain:

d

dϕ

∣∣∣∣
ϕ=0

H̃1(ϕ) =

∫
|ξ′|=1
ξ′1 = 0

(ξ′1 cosϕ− ξ′3 sinϕ)

∣∣∣∣
ϕ=0

(
2j+1∑
h=0

(
2j + 1

h

)
∂2j+1

12j+1−h3h
1

Q
(Bϕξ

′) cos2j+1−h ϕ sinh ϕ

)∣∣∣∣
ϕ=0

+ ξ′3

2j+1∑
h=0

(
2j + 1

h

)
d

dϕ

∣∣∣∣
ϕ=0

(
∂2j+1

12j+1−h3h
1

Q
(Bϕξ

′)

)(
cos2j+1−h ϕ

∣∣∣∣
ϕ=0

)(
sinh ϕ

∣∣∣∣
ϕ=0

)

+ ξ′3

2j+1∑
h=0

(
2j + 1

h

)
∂2j+1

12j+1−h3h
1

Q
(ξ′)

[(
sinh ϕ

∣∣∣∣
ϕ=0

)(
d

dϕ

∣∣∣∣
ϕ=0

cos2j+1−h ϕ

)

+

(
cos2j+1−h ϕ

∣∣∣∣
ϕ=0

)(
d

dϕ

∣∣∣∣
ϕ=0

sinh ϕ

)]

= 0 +

∫
|ξ′|=1
ξ′1 = 0

ξ′3

[
d

dϕ

∣∣∣∣
ϕ=0

∂2j+1
12j+1

1

Q
(Bϕξ

′) + (2j + 1)∂2j+1
12j3

1

Q
(ξ′)

]
dHn−2(ξ′).

With similar computations as in (55), we infer

d

dϕ

∣∣∣∣
ϕ=0

H̃1(ϕ) =

∫
|ξ′|=1
ξ′1 = 0

[
(2j + 1) ξ′3 ∂

2j+1
12j3

1

Q
(ξ′)− (ξ′3)2 ∂2j+2

12j+2

1

Q
(ξ′)

]
dHn−2(ξ′). (59)

Finally, we have to consider the third term in (57):

H̃2(ϕ) =

∫
|ξ|=1

(Bϕy)ξ= 0

∇2j 1

Q
(ξ)

(
Bϕy

|y|

⊗2j)(Bϕy
|y|

)
3

dHn−2(ξ)

ξ=Bϕξ
′

=

∫
|ξ′|=1
ξ′1 = 0

n∑
h1,··· ,h2j=1

∂2j
h1···h2j

1

Q
(Bϕξ

′)


cosϕ

0
sinϕ

0
· · ·
0


h1

· · ·


cosϕ

0
sinϕ

0
· · ·
0


h2j

sinϕ dHn−2(ξ′)

=

∫
|ξ′|=1
ξ′1 = 0

2j∑
h=0

(
2j

h

)
∂2j

12j−h3h
1

Q
(Bϕξ

′) cos2j−h ϕ sinh+1 ϕ dHn−2(ξ′).
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Hence,

d

dϕ

∣∣∣∣
ϕ=0

H̃2(ϕ) =

∫
|ξ′|=1
ξ′1 = 0

2j∑
h=0

(
2j

h

)[
d

dϕ

∣∣∣∣
ϕ=0

(
∂2j

12j−h3h
1

Q
(Bϕξ

′)

)(
cos2j−h ϕ

∣∣∣∣
ϕ=0

)(
sinh+1 ϕ

∣∣∣∣
ϕ=0

)

+ ∂2j
12j−h3h

1

Q
(ξ′)

((
sinh+1 ϕ

∣∣∣∣
ϕ=0

)(
d

dϕ

∣∣∣∣
ϕ=0

cos2j−h ϕ

)

+

(
cos2j−h ϕ

∣∣∣∣
ϕ=0

)(
d

dϕ

∣∣∣∣
ϕ=0

sinh+1 ϕ

))]
dHn−2(ξ′).

The first two terms vanish for any choice of h, while the last one remains only for h = 0, so

d

dϕ

∣∣∣∣
ϕ=0

H̃2(ϕ) =

∫
|ξ′|=1
ξ′1 = 0

∂2j
12j

1

Q
(ξ′) dHn−2(ξ′). (60)

Hence, recalling the splitting (57), by (58)-(60) we obtain (omitting from now on in each integral its differ-
ential dHn−2(ξ′)):

∂2J

∂y2
3

∣∣∣∣
(y1,0,··· ,0)

=
1

|y|
d

dϕ

∣∣∣∣
ϕ=0

H̃(ϕ)

=
1

|y|2k+1

[
2j

d

dϕ

∣∣∣∣
ϕ=0

H̃0(ϕ)− d

dϕ

∣∣∣∣
ϕ=0

H̃1(ϕ)− (2k − 1 + 2j)
d

dϕ

∣∣∣∣
ϕ=0

H̃2(ϕ)

]

=
1

|y|2k+1

[
− (2k − 1 + 2j)

∫
|ξ′|=1
ξ′1 = 0

∂2j
12j

1

Q
(ξ′) + 2j(2j − 1)

∫
|ξ′|=1
ξ′1 = 0

∂2j
12j−232

1

Q
(ξ′)

− (4j + 1)

∫
|ξ′|=1
ξ′1 = 0

ξ′3 ∂
2j+1
12j3

1

Q
(ξ′) +

∫
|ξ′|=1
ξ′1 = 0

(ξ′3)2 ∂2j+2
12j+2

1

Q
(ξ′)

]
.

Therefore, the same being valid for any variable yh with h ∈ {2, · · · , n}, and recalling (53) if h = 1, we
may compute the Laplacian of J :

∆J

∣∣∣∣
(y1,0,··· ,0)

=
∂2J

∂y2
1

∣∣∣∣
(y1,0,··· ,0)

+

n∑
h=2

∂2J

∂y2
h

∣∣∣∣
(y1,0,··· ,0)

=
1

|y|2k+1

{
2k(2k − 1)

∫
|ξ′|=1
ξ′1 = 0

∂2j
12j

1

Q
(ξ′) + (n− 1)(1− 2k − 2j)

∫
|ξ′|=1
ξ′1 = 0

∂2j
12j

1

Q
(ξ′)

+ 2j(2j − 1)

∫
|ξ′|=1
ξ′1 = 0

n∑
h=2

∂2j
12j−2h2

1

Q
(ξ′)− (4j + 1)

∫
|ξ′|=1
ξ′1 = 0

n∑
h=1

ξ′h ∂h

(
∂2j

12j

1

Q

)
(ξ′)

+

∫
|ξ′|=1
ξ′1 = 0

( n∑
h=1

(ξ′h)2

︸ ︷︷ ︸
|ξ′|2=1

)
∂2j+2

12j+2

1

Q
(ξ′)

}

=
1

|y|2k+1

{[
2k(2k − 1) + (n− 1)(1− 2k − 2j)]

∫
|ξ′|=1
ξ′1 = 0

∂2j
12j

1

Q
(ξ′)

+ 2j(2j − 1)

∫
|ξ′|=1
ξ′1 = 0

∆′
(
∂2j−2

12j−2

1

Q

)
(ξ′)− (4j + 1)

∫
|ξ′|=1
ξ′1 = 0

∂ν

(
∂2j

12j

1

Q

)
(ξ′)

+

∫
|ξ′|=1
ξ′1 = 0

∂2j+2
12j+2

1

Q
(ξ′)

}
.

(61)

Here, we denote
∆′ = ∂2

22 + . . .+ ∂2
nn.
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By homogeneity of the symbol, one has (see Lemma 4.5 below)

∂ν

(
∂2j

12j

1

Q

)
= −2(m+ j)

(
∂2j

12j

1

Q

)
. (62)

Moreover, in order to handle the term ∆∂2j−2
12j−2

1
Q , we may apply the following well-known identity

∆′u = ∆Su+HS∂νu+ ∂2
ννu (63)

with u = ∂2j−2
12j−2

1
Q and S := {|ξ′| = 1 , ξ′1 = 0} the manifold on which we are integrating, and where

HS stands for the mean curvature of S, so we have HS = (n− 2). Noticing that the normal derivatives in
(63) may be handled as in (62), it remains the term with the tangential part of the Laplacian. However, it
vanishes when integrated on S. Hence,∫

|ξ′|=1
ξ′1 = 0

∆′
(
∂2j−2

12j−2

1

Q

)
(ξ′) = (n− 2)

∫
|ξ′|=1
ξ′1 = 0

∂ν

(
∂2j−2

12j−2

1

Q

)
+

∫
|ξ′|=1
ξ′1 = 0

∂2
νν

(
∂2j−2

12j−2

1

Q

)
(62)
=
[
(n− 2)

(
− 2(m+ j − 1)

)
+ 2(m+ j − 1)

(
2m+ 2j − 1

)] ∫
|ξ′|=1
ξ′1 = 0

∂2j−2
12j−2

1

Q
(ξ′)

= 2(m+ j − 1)(2m+ 2j + 1− n)

∫
|ξ′|=1
ξ′1 = 0

∂2j−2
12j−2

1

Q
(ξ′)

(64)

Inserting (62) and (64) in (61) and summing the constants, we finally end up with (49) and thus with our
formula (52).

Lemma 4.5. Let Q(·) be positive and p-homogeneous. Then, one has for any multi-index α ∈ Nn0 and any
x ∈ Rn \ {0}:

x · ∇
(
Dα 1

Q

)
(x) = −(p+ |α|)

(
Dα 1

Q

)
(x).

Proof. By assumption we have for r > 0 that

1

Q
(rx) = r−p

1

Q
(x).

Differentiation with respect to x yields:

r|α|
(
Dα 1

Q

)
(rx) = r−p

(
Dα 1

Q

)
(x) ⇒

(
Dα 1

Q

)
(rx) = r−p−|α|

(
Dα 1

Q

)
(x).

Differentiating now with respect to r gives:

x · ∇
(
Dα 1

Q

)
(rx) = (−p− |α|)r−p−|α|−1

(
Dα 1

Q

)
(x).

The claim follows by putting r = 1.

Proof of Theorem 4.3. Notice that for k = 1, ∆F is already in the form (45) by Proposition 4.1. We
thus proceed by induction and let us suppose that ∆kF has the form (45) for some k ∈ N, k > 1, with
coefficients as in (46)-(47), namely

∆kF =

k∑
j=1

dk,j(n,m)Jk,k−j .

Applying the recursive formula (52), we thus have

∆k+1F =

k+1∑
j=1

dk+1,j(n,m)Jk+1,k+1−j
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with

dk+1,j(n,m) = dk,j(n,m) + dk,j−1(n,m)c0(n,m, k, k − j + 1) + dk,j−2(n,m)c∆(n,m, k − j + 2),

for j = 3, . . . , k + 1. We have dk,k+1 according to (47) and put dk,0 := dk,−1 := 0. Hence, for j = 1 and
j = 2 we have the recurrence relations

dk+1,2 = dk,2 + dk,1 c0(n,m, k, k − 1),

dk+1,1 = dk,1,

and for those the formulae (46) and (47) are easily checked.
We show the shape of dk+1,j(n,m) for j = 3, . . . , k+1, the cases j = 1, 2 being analogous but simpler.

In order to prove that dk+1,j(n,m) has the shape as in (45) with k + 1, which will prove Theorem 4.3, we
show that the following term is equal to 0:

dk,j(n,m) + dk,j−1(n,m)c0(n,m, k, k − j + 1) + dk,j−2(n,m)c∆(n,m, k − j + 2)

− (−1)j−1ck+1,j

j∏
`=2

(n− 2m− 2k + 2`− 5)

=(−1)j−1

j−2∏
`=2

(n− 2m− 2k + 2`− 3)

·

{
ck,j(n− 2m− 2k + 2j − 5)(n− 2m− 2k + 2j − 3)

− ck,j−1(n− 2m− 2k + 2j − 5)

·
(

2k(2k − 1) + (n− 1)(2j − 4k − 1) + 2(4k − 4j + 5)(m+ k + 1− j)
)

+ 4ck,j−2(k + 2− j)(2k + 3− 2j)(m+ k + 1− j)(−n+ 2m+ 2k − 2j + 5)

− ck+1,j(n− 2m− 2k − 1)(n− 2m− 2k + 2j − 5)

}

=(−1)j−1

j−1∏
`=2

(n− 2m− 2k + 2`− 3)

·

{
ck,j(n− 2m− 2k + 2j − 3)

− ck,j−1 ·
(

2k(2k − 1) + (n− 1)(2j − 4k − 1) + 2(4k − 4j + 5)(m+ k + 1− j)
)

− 4ck,j−2(k + 2− j)(2k + 3− 2j)(m+ k + 1− j)

− ck+1,j(n− 2m− 2k − 1)

}

=(−1)j−1

(
j−1∏
`=2

(n− 2m− 2k + 2`− 3)

)(
j∏
`=2

1

`− 1

)(
j−2∏
`=2

(k − `+ 1)(2k − 2`+ 1)

)

·

{
(k − j + 2)(2k − 2j + 3)(k − j + 1)(2k − 2j + 1)(n− 2m− 2k + 2j − 3)

− (j − 1)(k − j + 2)(2k − 2j + 3)

·
(

2k(2k − 1) + (n− 1)(2j − 4k − 1) + 2(4k − 4j + 5)(m+ k + 1− j)
)

− 4(j − 1)(j − 2)(k + 2− j)(2k + 3− 2j)(m+ k + 1− j)

− k(2k − 1)(k − j + 2)(2k − 2j + 3)(n− 2m− 2k − 1)

}
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=(−1)j−1

(
j−1∏
`=2

(n− 2m− 2k + 2`− 3)

)(
j∏
`=2

1

`− 1

)(
j−1∏
`=2

(k − `+ 1)(2k − 2`+ 1)

)

·

{
(k − j + 1)(2k − 2j + 1)(n− 2m− 2k + 2j − 3)

− (j − 1) ·
(

2k(2k − 1) + (n− 1)(2j − 4k − 1) + 2(4k − 4j + 5)(m+ k + 1− j)
)

− 4(j − 1)(j − 2)(m+ k + 1− j)− k(2k − 1)(n− 2m− 2k − 1)

}

=(−1)j−1

(
j−1∏
`=2

(n− 2m− 2k + 2`− 3)

)(
j∏
`=2

1

`− 1

)(
j−1∏
`=2

(k − `+ 1)(2k − 2`+ 1)

)

·

{
(k − j + 1)(2k − 2j + 1)(n− 2m− 2k + 2j − 3)

− k(2k − 1)(n− 2m− 2k + 2j − 3)− (n− 1)(2j − 4k − 1)(j − 1)

− 2(j − 1)(m+ k − j + 1)(4k − 2j + 1)

}

=(−1)j−1

(
j∏
`=2

(n− 2m− 2k + 2`− 3)

)(
j∏
`=2

1

`− 1

)(
j−1∏
`=2

(k − `+ 1)(2k − 2`+ 1)

)

·

{
(k − j + 1)(2k − 2j + 1)− k(2k − 1) + (j − 1)(4k − 2j + 1)

}
= 0.

This concludes the proof of Theorem 4.3.

4.2 The even dimension n = 2m + 2: explicit fundamental solutions
Here we provide the proof of Theorem 1.3. The starting point is John’s formula (5), according to which we
have

KL(0, y) = − 1

(2π)n
(−∆y)(n−2m)/2

∫
|ξ|=1

log |y · ξ|
Q(ξ)

dHn−1(ξ)

= − 2

(2π)n
(−∆y)(n−2m)/2

∫
|ξ|=1
y·ξ>0

log(y · ξ)
Q(ξ)

dHn−1(ξ).

(65)

For n = 2m we immediately see that the fundamental solution of L satisfies

KL(0, y)→ +∞ as y → 0,

which is similar to the case n = 2m+ 1 above.

Hence, in order to obtain an explicit expression for KL, we thus have to compute the Laplacian of

G(y) :=

∫
|ξ|=1
y·ξ>0

log(y · ξ)
Q(ξ)

dHn−1(ξ). (66)

Due to the logarithmic term, the calculations for even dimensions cannot be simplified similarly to the previ-
ous section. An application of Stokes’ theorem would change log(ξ1) into 1

ξ1
, a non-integrable singularity.

For this reason we restrict ourselves to the case n = 2m+ 2.
The strategy is similar to the one applied in the proofs of Propositions 4.1 and 4.4.

Step 1. Let y = (y1, 0, · · · , 0) with y1 > 0. Splitting G as

G(y) =

∫
|ξ|=1
y·ξ>0

log(y1ξ1)

Q(ξ)
dHn−1(ξ)

= log(y1)

∫
|ξ|=1
y·ξ>0

1

Q(ξ)
dHn−1(ξ) +

∫
|ξ|=1
y·ξ>0

log(ξ1)

Q(ξ)
dHn−1(ξ),
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we first infer
∂G

∂y1
(y) =

1

y1

∫
|ξ|=1
ξ1>0

1

Q(ξ)
dHn−1(ξ) =

1

2y1

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ) (67)

as Q(ξ) = Q(−ξ) by homogeneity of the symbol. Moreover,

∂2G

∂y2
1

(y) = − 1

2y2
1

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ). (68)

In order to compute the other first derivatives of G, let us split it as

G(y) = log |y|
∫
|ξ|=1
y·ξ>0

1

Q(ξ)
dHn−1(ξ) +

∫
|ξ|=1
y·ξ>0

log
(
y
|y| · ξ

)
Q(ξ)

dHn−1(ξ)

=: log |y| G̃1(y) + G̃2(y).

Hence,
∂G

∂y3
(y) =

y3

|y|2
G̃1(y) + log |y| ∂G̃1

∂y3
(y) +

∂G̃2

∂y3
(y). (69)

We use the matrix Bϕ defined in (39) and define

H̃1(ϕ) = G̃1(Bϕy) and H̃2(ϕ) = G̃2(Bϕy).

Concerning the first term, exploiting Q(ξ) = Q(−ξ), we find for any y

G̃1(y) =
1

2

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ) ⇒ ∂G̃1

∂y3
(y) = 0. (70)

Concerning the second term, reasoning as in (40), we get

y1
∂G̃2

∂y3
(y) =

∂H̃2

∂ϕ
(ϕ)

∣∣∣∣
ϕ=0

=
∂

∂ϕ

∣∣∣∣
ϕ=0

∫
|ξ|=1
ξ1>0

log
(
y
|y| · ξ

)
Q(Bϕξ)

dHn−1(ξ)

=

∫
|ξ|=1
ξ1>0

log(ξ1)

(
− ξ3∂1

1

Q
(ξ) + ξ1∂3

1

Q
(ξ)

)
dHn−1(ξ).

(71)

Therefore, by (69)-(71) we conclude

∂G

∂y3
(y) =

y3

|y|2

∫
|ξ|=1
y·ξ>0

1

Q(ξ)
dHn−1(ξ) +

1

|y|

∫
|ξ|=1
ξ1>0

log(ξ1)

(
− ξ3∂1

1

Q
(ξ) + ξ1∂3

1

Q
(ξ)

)
dHn−1(ξ)

and, analogously, for any k ∈ {2, · · · , n}, one has

∂G

∂yk
(y1, 0 · · · , 0) =

yk
2|y|2

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ)

+
1

|y|

∫
|ξ|=1
ξ1>0

log

(
ξ · y
|y|

)(
− ξk

(
∇ 1

Q
(ξ) · y

|y|

)
+

(
ξ · y
|y|

)
∂k

1

Q
(ξ)

)
dHn−1(ξ).

Because this formula is consistent with (67), we can write it in a more compact way as

∇G(y) =
yT

2|y|2

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ)

+
1

|y|

∫
|ξ|=1
y·ξ>0

log

(
ξ · y
|y|

)(
− ξT

(
∇ 1

Q
(ξ) · y

|y|

)
+

(
ξ · y
|y|

)
∇ 1

Q
(ξ)

)
dHn−1(ξ).

(72)

Step 2. Let now y ∈ Rn \ {0} so that y = |y|b1 with |b1| = 1, and let B =
(
b1 | · · · | bn

)
∈ SO(n).

Defining

G̃(y) := (G ◦B)(y) =

∫
|ξ|=1
y·ξ>0

log(y · ξ)
Q(B(ξ))

dHn−1(ξ),
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we have
∇G(y) = ∇G

(
B(|y|, 0, · · · , 0)T

)
= ∇G̃

(
(|y|, 0, · · · , 0)T

)
BT .

Therefore,

∇G̃
(
(|y|, 0, · · · , 0)T

)
=

1

2|y|
eT1

∫
|ξ|=1

1

Q(B(ξ))
dHn−1(ξ)

+
1

|y|

∫
|ξ|=1
y·ξ>0

log(ξ1)

(
− ξT

(
∇ 1

Q
(B(ξ)) ·Be1

)
+ ξ1∇

1

Q
(B(ξ)) ·B

)
dHn−1(ξ)

=
1

2|y|
eT1

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ)

+
1

|y|

∫
|ξ|=1

(BT ξ)1>0

log((BT ξ)1)

(
− ξTB

(
∇ 1

Q
(ξ) · y

|y|
)

+ (BT ξ)1∇
1

Q
(ξ) ·B

)
dHn−1(ξ).

Observing that (BT ξ)1 = y·ξ
|y| and multiplying by BT shows that (72) holds also for any y ∈ Rn \ {0}.

Step 3. We consider again y = (y1, 0, · · · , 0) with y1 > 0 and compute ∆G(y). Similarly as in Step 1, we
get

∂2
3 G(y1, 0, · · · , 0) =

1

2|y|2

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ) +

1

|y|
∂

∂ϕ

∣∣∣∣
ϕ=0

1

|Bϕy|

∫
|ξ|=1

Bϕy·ξ>0

log

(
Bϕy · ξ
|Bϕy|

)
·
(
− ξ3

(
∇ 1

Q
(ξ) · Bϕy

|Bϕy|

)
+

(
ξ ·Bϕy
|Bϕy|

∂3
1

Q
(ξ)

))
dHn−1(ξ).

A change of variables and (39) imply

∂2
3 G(y1, 0, · · · , 0)− 1

2|y|2

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ)

=
1

y1

1

|y|
∂

∂ϕ

∣∣∣∣
ϕ=0

∫
|ξ|=1
ξ1>0

log(ξ1)

(
− (ξ1 sinϕ+ ξ3 cosϕ)∇ 1

Q(Bϕξ)
·


cosϕ

0
sinϕ

0
· · ·
0

+ ξ1 ∂3
1

Q(Bϕξ)

)
dHn−1(ξ)

=
1

y2
1

∫
|ξ|=1
ξ1>0

log(ξ1)

(
− ξ1 ∂1

1

Q
− ξ3 ∂3

1

Q
+ ξ2

3 ∂
2
1

1

Q
+ ξ2

1 ∂
2
3

1

Q
− 2ξ1ξ3 ∂

2
13

1

Q

)
dHn−1(ξ).

As the same holds for any k ∈ {2, · · · , n}, we infer

∂2
3 G(y1, 0, · · · , 0) =

1

2|y|2

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ) +

1

|y|2

∫
|ξ|=1
ξ1>0

log

(
ξ · y
|y|

)
·
(
− ξ1 ∂1

1

Q
− ξk ∂k

1

Q
+ ξ2

k ∂
2
1

1

Q
+ ξ2

1 ∂
2
k

1

Q
− 2ξ1ξk ∂

2
1k

1

Q

)
dHn−1(ξ).

This together with (68) yields (omitting from now on the differentials)

∆G(y1, 0, · · · , 0) =
n− 2

2|y|2

∫
|ξ|=1

1

Q
+

1

|y|2

∫
|ξ|=1
ξ1>0

log

(
ξ · y
|y|

)[
− (n− 1)ξ1 ∂1

1

Q

−
n∑
k=2

ξk∂k
1

Q
+

( n∑
k=2

ξ2
k

)
∂2

1

1

Q
+ ξ2

1

( n∑
k=2

∂2
k

1

Q

)
− 2ξ1

( n∑
k=2

ξk∂k

(
∂1

1

Q

))]
=
n− 2

2|y|2

∫
|ξ|=1

1

Q
+

1

|y|2

∫
|ξ|=1
y·ξ>0

log

(
ξ · y
|y|

)[
− (n− 2)ξ1 ∂1

1

Q
− ξ · ∇ 1

Q

+ ∂2
1

1

Q
+ ξ2

1∆
1

Q
− 2ξ1 ξ · ∇

(
∂1

1

Q

)]
.
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Step 4. Let now y ∈ Rn \ {0}. Reasoning as in Step 2 and using the same notation as there we obtain

∆G(y) = ∆G̃(BT y) = ∆G̃((|y|, 0, · · · , 0)T ) =
n− 2

2|y|2

∫
|ξ|=1

1

Q
+

1

|y|2

∫
|ξ|=1
ξ1>0

log(ξ · e1)

·
[
− (n− 2)(ξ · e1)

(
e1 ·

(
∇ 1

Q
(Bξ) ·B

)
− ξ ·

(
∇ 1

Q
(Bξ) ·B

)
+ eT1 ·BTD∇2 1

Q
(Bξ)B · e1

+ (ξ · e1)2∆
1

Q
(Bξ)− 2(ξ · e1)

(
ξT ·BT∇2 1

Q
(Bξ)B · e1

)]
.

(73)

Recalling that B · e1 = y
|y| , (73) implies

∆G(y) =
n− 2

2

1

|y|2

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ) +

1

|y|2

∫
|ξ|=1
y·ξ>0

log

(
ξ · y
|y|

)
·
[
− (n− 2)

(
ξ · y
|y|

)(
∇ 1

Q(ξ)
· y
|y|

)
− ξ · ∇ 1

Q(ξ)
+
yT

|y|
· ∇2 1

Q(ξ)
· y
|y|

+

(
ξ · y
|y|

)2

∆
1

Q(ξ)
− 2

(
ξ · y
|y|

)(
ξT · ∇2 1

Q(ξ)
· y
|y|

)]
dHn−1(ξ).

Finally, due to the 2m-homogeneity of Q by means of Lemma 4.5 we have

∀ξ ∈ Sn−1 : ξ · ∇ 1

Q(ξ)
= −2m

1

Q(ξ)
, ξT · ∇2 1

Q(ξ)
· y
|y|

= −(2m+ 1)

(
∇ 1

Q(ξ)
· y
|y|

)
.

Hence the previous formula simplifies to

∆G(y) =
n− 2

2

1

|y|2

∫
|ξ|=1

1

Q(ξ)
dHn−1(ξ) +

1

|y|2

∫
|ξ|=1
y·ξ>0

log

(
ξ · y
|y|

)
·
(

(4m+ 4− n)

(
ξ · y
|y|

)(
∇ 1

Q(ξ)
· y
|y|

)
+ 2m

1

Q(ξ)
(74)

+
yT

|y|
· ∇2 1

Q(ξ)
· y
|y|

+

(
ξ · y
|y|

)2

∆
1

Q(ξ)

)
dHn−1(ξ)

and, recalling (2), the proof is concluded.

5 Further examples: Sign change of suitable fundamental solutions
for n ≥ 2m + 2

Proposition 2.8 shows that in any space dimension n ≥ 2m + 2 there exists an elliptic operator L of the
form (1) in Rn with corresponding fundamental solution KL, where one finds a vector y ∈ Rn \ {0} such
that KL(0, y) < 0, provided we are able to construct such an operator of order 2m in space dimension
n = 2m+ 2. Together with Theorem 2.3 this will show that KL is sign changing near the origin, i.e. near
its singularity. In view of Theorem 2.3 this will prove Theorem 1.1.

The starting point to obtain such a result is formula (5), according to which we have in dimension
n = 2m+ 2

KL(0, y) =
1

(2π)n
∆G(y),

where G is defined in (66) and ∆G(y) is calculated in (74).
We consider the symbol

Qα(ξ′, ξn) = |ξ′|2m − α|ξ′|2m−2ξ2
n + ξ2m

n ,

which for m = 2 reduces to the symbol of the operator L as in (13). First, we find a threshold parameter
α∗m > 0 so that Qα is elliptic for α < α∗m. Then, for such symbols we compute ∆G in a suitable point.
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Finally, exploiting the form of the “limiting” symbol Qα∗m , we will find that for α < α∗m but close to it the
sign of ∆G in such a point is negative. Notice that for such α the sublevels ofQα are non-convex. Together
with the observation that sgn(KL(0, y)) = sgn(∆G(y)) for any y ∈ Rn - an immediate consequence of
(65) - this proves the existence of operators of order 2m in R2m+2 whose fundamental solution attains
negative values in some directions.

Lemma 5.1. Qα is a symbol of an elliptic operator provided α < α∗m := m(m− 1)
1
m−1.

Proof. Since ellipticity for α ≤ 0 is obvious, we consider only α > 0. Notice that Qα(ξ′, 0) = |ξ′|2m > 0
and that Qα(ξ′, ξn) = Qα(ξ′, |ξn|), so we may assume that ξn > 0.

Let us write ξn =
√
s|ξ′| for s > 0, so that Qα(ξ′,

√
s|ξ′|) = |ξ′|2mf(s), where f(s) := sm − αs+ 1.

Then f ′(s) > 0 provided s >
(
α
m

) 1
m−1 . This implies that Qα is elliptic if and only if

f

(( α
m

) 1
m−1

)
= α

m
m−1

(
m−

m
m−1 −m−

1
m−1

)
+ 1 > 0,

namely for α < m(m− 1)
1
m−1 = α∗m.

Remark 3. Notice that, as a consequence of the proof of Lemma 5.1 the symbol Qα∗m is degenerate elliptic

and that f vanishes of order 2 at
(
α∗m
m

) 1
m−1

= (m− 1)−
1
m =: γm. Indeed, f ′′(γm) > 0.

In this section we need to consider α < α∗m but close to α∗m. The sublevel sets of such Qα are non-
convex. However, as pointed out in [D, p. 100] and Prop. 3.3 above one may also have sign changing
fundamental solutions for α < 0 in dimensions n ≥ 2m+ 4, where the sublevel sets of Qα are convex. See
Figure 2.

(a) m = 2, α = −1 (b) m = 2, α = 1

Figure 2: The shape of sublevel sets of Qα for α < 0 (left) and α > 0 (right).

Computation of ∆Gα(en). By the peculiar form of Qα we choose y = en and we write Gα instead of
G to stress the dependence on the parameter α. By (74), recalling that all integrals are on S := Sn−1, so
ξn =

√
1− |ξ′|2, we get

∆Gα(en) =

∫
|ξ′|<1

2m

Qα(ξ′,
√

1− |ξ′|2)

dξ′√
1− |ξ′|2

+
1

2

∫
|ξ′|<1

log
(
1− |ξ′|2

)√
1− |ξ′|2

·

(
(2m+ 2)

√
1− |ξ′|2 ∂n

1

Qα
(ξ′,

√
1− |ξ′|2) +

2m

Qα(ξ′,
√

1− |ξ′|2)

+(2− |ξ′|2)∂2
n

1

Qα
(ξ′,

√
1− |ξ′|2) +

(
1− |ξ′|2

)
∆′

1

Qα
(ξ′,

√
1− |ξ′|2)

)
dξ′,

(75)

where ∆′ :=
∑n−1
k=1 ∂

2
k . Exploiting the form of Qα and writing Qα(ξ′) := Qα(ξ′,

√
1− |ξ′|2), one has

∂n
1

Qα

∣∣∣∣
S

= −∂nQα
Q2
α

∣∣∣∣
S

= −2mξ2m−1
n − 2αξn|ξ′|2m−2

Qα(ξ)2

∣∣∣∣
S

=
−2m(1− |ξ′|2)

2m−1
2 + 2α|ξ′|2m−2(1− |ξ′|2)1/2

Qα(ξ′)2
,

(76)
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∂2
n

1

Qα

∣∣∣∣
S

=

(
− ∂2

nQ

Q2
α

+
2(∂nQα)2

Q3
α

)∣∣∣∣
S

=
−2m(2m− 1)ξ2m−2

n + 2α|ξ′|2m−2

Qα(ξ)2

∣∣∣∣
S

+
2(2mξ2m−1

n − 2αξn|ξ′|2m−2)2

Qα(ξ)3

∣∣∣∣
S

=
−2m(2m− 1)(1− |ξ′|2)m−1 + 2α|ξ′|2m−2

Qα(ξ′)2

+ 2 · 4m2(1− |ξ′|2)2m−1 + 4α2(1− |ξ′|2)|ξ′|4m−4 − 8αm|ξ′|2m−2(1− |ξ′|2)m

Qα(ξ′)3
.

(77)

Analogously we find for k = 1, . . . , n− 1

∂k
1

Qα

∣∣∣∣
S

= −∂kQα
Q2
α

∣∣∣∣
S

=
(2m− 2)αξ2

n|ξ′|2m−4ξk − 2m|ξ′|2m−2ξk
Qα(ξ)2

∣∣∣∣
S

=
(2m− 2)α(1− |ξ′|2)|ξ′|2m−4ξk − 2m|ξ′|2m−2ξk

Qα(ξ′)2
,

∂2
k

1

Qα

∣∣∣∣
S

=

(
− ∂2

kQα
Q2
α

+
2(∂kQα)2

Q3
α

)∣∣∣∣
S

=
(2m− 2)αξ2

n

(
(2m− 4)|ξ′|2m−6ξ2

k + |ξ′|2m−4
)
− 2m

(
|ξ′|2m−2 + (2m− 2)|ξ′|2m−4ξ2

k

)
Qα(ξ)2

∣∣∣∣
S

+ 2 · (2m− 2)2α2ξ4
n|ξ′|4m−8ξ2

k + 4m2|ξ′|4m−4ξ2
k − 4m(2m− 2)αξ2

n|ξ′|4m−6ξ2
k

Qα(ξ)3

∣∣∣∣
S

=
(2m− 2)α(1− |ξ′|2)

(
(2m− 4)|ξ′|2m−6ξ2

k + |ξ′|2m−4
)
− 2m

(
|ξ′|2m−2 + (2m− 2)|ξ′|2m−4ξ2

k

)
Qα(ξ′)2

+ 2 · (2m− 2)2α2(1− |ξ′|2)2|ξ′|4m−8ξ2
k + 4m2|ξ′|4m−4ξ2

k − 4m(2m− 2)α(1− |ξ′|2)|ξ′|4m−6ξ2
k

Qα(ξ′)3
.

Therefore,

∆′
1

Qα

∣∣∣∣
S

=

n−1∑
k=1

∂2
k

1

Qα

∣∣∣∣
S

=
(2m− 2)(4m− 3)α(1− |ξ′|2)|ξ′|2m−4 − 2m(4m− 1)|ξ′|2m−2

Qα(ξ′)2

+
2|ξ′|4m−8

Qα(ξ′)3

(
(2m− 2)2α2(1− |ξ′|2)2|ξ′|2 + 4m2|ξ′|6 − 4m(2m− 2)α|ξ′|4(1− |ξ′|2)

)
.

(78)

We insert (76)-(78) into (75) and write it in polar coordinates. Let σn denote as before the (n − 1)-
dimensional volume of the unit sphere in Rn. We obtain

∆Gα(en)

σn−1
=

∫ 1

0

2mr2m

√
1− r2Qα(r)

dr +

∫ 1

0

log(1− r2)r2m

√
1− r2

[
(2m+ 2)

(
−m(1− r2)m + α(1− r2)r2m−2

Qα(r)2

)
+

m

Qα(r)
− (2− r2)

m(2m− 1)(1− r2)m−1 − αr2m−2

Qα(r)2

+ 4(2− r2)
m2(1− r2)2m−1 + α2(1− r2)r4m−4 − 2αmr2m−2(1− r2)m

Qα(r)3

+
4(1− r2)r4m−6

Qα(r)3

(
(m− 1)2α2(1− r2)2 +m2r4 − 2m(m− 1)αr2(1− r2)

)
+ (1− r2)

(m− 1)(4m− 3)α(1− r2)r2m−4 −m(4m− 1)r2m−2

Qα(r)2

]
dr

=

∫ 1

0

2mr2m

√
1− r2Qα(r)

dr +

∫ 1

0

log(1− r2)r2m

√
1− r2

[
m

Qα(r)
+
N2(r2)

Qα(r)2
+

4(1− r2)N3(r2)

Qα(r)3

]
dr,

(79)
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where

N2(t) =− (2m+ 2)(1− t)
(
m(1− t)m−1 − αtm−1

)
+ (2− t)(−m(2m− 1)(1− t)m−1 + αtm−1)

+ (1− t)tm−2
(
(m− 1)(4m− 3)α(1− t)−m(4m− 1)t

)
(80)

and, after some algebra,

N3(t) = (2− t)
(
m(1− t)m−1 − αtm−1

)2
+ t2m−3

(
(m− 1)α(1− t)−mt

)2
=: (2− t)R1(t)2 + t2m−3R2(t)2.

(81)

The goal is to understand the behaviour of ∆Gα(en) as α ↑ α∗m. By Remark 3, we know that
Qα∗m(r) := Qα∗m(r,

√
1− r2) = Q̃(r2)

(
1 − (1 + γm)r2

)2
where Q̃ is a positive polynomial of degree

m− 2. Actually, it is easy to show that (cf. Lemma 5.1)

f(s)
∣∣
α=α∗m

= sm − α∗ms+ 1 =

(
m−2∑
k=0

m− 1− k
m− 1

γ−k−2
m sk

)
(s− γm)2.

Therefore, recalling the value of γm = (m− 1)
1
m and substituting s = 1−r2

r2 , we get

Qα∗m(r) =

(
m−2∑
k=0

m− 1− k
(m− 1)

m−k−2
m

(1− r2)k r2m−4−2k

)(
1− (1 + γm)r2

)2
.

Notice that the singularity that Qα∗m would produce at r0 := (1 + γm)−1/2 is not integrable. Moreover,
we shall see that, although the numerator of the second integral in (79) vanishes precisely at the same point,
it is not strong enough to compensate such a singularity.

Computation of ∆Gα∗m(en). Let t = r2, t0 := r2
0 = 1

1+γm
and define

N(t) := mQ∗(t)
2 +N2(t)Q∗(t) + 4(1− t)N3(t), (82)

where Q∗(t) := Qα∗m
(√
t
)
.

Step 1: N(t0) = 0. Because Q∗(t0) = 0, we just need to show that N3(t0) = 0. First,

R1(t0) = m

(
γm

1 + γm

)m−1

− α∗m
(

1

1 + γm

)m−1

=
mγm−1

m − α∗m
(1 + γm)m−1

= 0 (83)

by the definitions of α∗m and γm. Moreover,

R2(t0) = (m− 1)α∗m
γm

1 + γm
−m 1

1 + γm
=

m

1 + γm

(
(m− 1)

1
m γm − 1

)
= 0. (84)

Step 2: N ′(t0) = 0. Since t0 is a zero of Q∗ of order 2,

N ′(t0) = 2mQ∗(t0)Q′∗(t0) +N ′2(t0)Q∗(t0) +N2(t0)Q′∗(t0) + 4(1− t0)N ′3(t0)− 4N3(t0)

= 4(1− t0)N ′3(t0).

By (81) and (83)-(84) it is clear that N ′3(t0) = 0.

Step 3: N ′′(t0) 6= 0. Similarly as before, by (82) and Q∗(t0) = Q′∗(t0) = N3(t0) = N ′3(t0) = 0 we get

N ′′(t0) = N2(t0)Q′′∗(t0) + 4(1− t0)N ′′3 (t0). (85)
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Because of (81) and (83)-(84), we have

N ′′3 (t0) = 2(2− t0) (R′1(t0))
2

+ 2t2m−3
0 (R′2(t0))

2

= 2
2γm + 1

1 + γm
(m− 1)2

(
mγm−2

m +m(m− 1)
1
m−1

(1 + γm)m−2

)2

+ 2

(
m(m− 1)

1
m +m

)2

(1 + γm)2m−3

=
2m2

(1 + γm)2m−3

((
2(m− 1)−

1
m + 1

)
(m− 1)

2
m

(
(m− 1)

1
m + 1

)2

+
(

(m− 1)
1
m + 1

)2
)

=
2m2

(1 + γm)2m−3

(
(m− 1)

1
m + 1

)4

.

(86)

Next, we may rewrite

N2(t) = −(2m+ 2)(1− t)R1(t) + (2− t)M1(t) + (1− t)tm−2M2(t), (87)

where
M1(t) = −m(2m− 1)(1− t)m−1 + α∗mt

m−1

and
M2(t) = (m− 1)(4m− 3)α∗m(1− t)−m(4m− 1)t.

Evaluating on t0, we get

M1(t0) =
m

(1 + γm)m−1

(
−(2m− 1)(m− 1)

1
m−1 + (m− 1)

1
m−1

)
=
−2m(m− 1)

1
m

(1 + γm)m−1
,

M2(t0) = (m− 1)(4m− 3)m(m− 1)
1
m−1 γm

1 + γm
−m(4m− 1)

1

1 + γm
=
−2m

1 + γm
.

Since R1(t0) = 0, from (87) we infer

N2(t0) =
2γm + 1

1 + γm
· −2m(m− 1)

1
m

(1 + γm)m−1
+

γm
(1 + γm)m−1

· −2m

1 + γm

=
−2m

(1 + γm)m

[(
2(m− 1)−

1
m + 1

)
(m− 1)

1
m + (m− 1)−

1
m

]
=
−2m(m− 1)−

1
m

(1 + γm)m

(
(m− 1)

1
m + 1

)2

.

(88)

Next, Qα∗m(r,
√

1− r2)|r=√t = Q∗(t) = tm − α∗m(1− t)tm−1 + (1− t)m, therefore

Q′′∗(t0) = m(m− 1)(1− t0)m−2 − α∗m(m− 1)(m− 2)(1− t0)tm−3
0 + (2α∗m +m)(m− 1)tm−2

0

=
m(m− 1)

(1 + γm)m−2

[
(m− 1)

2
m−1 − (m− 1)

1
m−1(m− 2)(m− 1)−

1
m + 2(m− 1)

1
m−1 + 1

]
=

m

(1 + γm)m−2

(
(m− 1)

1
m + 1

)2

.

(89)

Hence, according to (85), (86), (88), and (89) we finally obtain

N ′′(t0) =
6m2(m− 1)−

1
m

(1 + γm)2m−2

(
(m− 1)

1
m + 1

)4

> 0.

As a consequence of Steps 1-3, we have thus proved that t0 is a zero of N of order 2 and, moreover, that
it is also a minimum, thus N(t) > 0 for t close to t0. This yields ∆Gα∗m(en) = −∞: indeed, the second
integral in (79) has a non-integrable singularity at r0 =

√
t0 ∈ (0, 1) of the kind (r − r0)−4 which prevails

on the one in the first integral, of the kind (r − r0)−2. The negative sign comes from log(1 − r2) < 0 as
r ∈ (0, 1).
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Figure 3: The graph of ∆Gα(en) for m = 2 with α ∈ [0, 1.95].

Proof of Theorem 1.5. By pointwise convergence ∆Gα(en) → ∆Gα∗m(en) as α ↑ α∗m, we may apply
Fatou’s lemma and obtain

lim sup
α↑α∗m

∆Gα(en) ≤ ∆Gα∗m(en) = −∞

and conclude that for α < α∗m and close to α∗m one has ∆Gα(en) < 0. This behaviour is well observable in
Figure 3, where the graph of α 7→ ∆Gα(en) is displayed for m = 2 (here α∗2 = 2). The proof is completed
recalling that sgn(Kα(0, en)) = sgn(∆Gα(en)), Kα being the fundamental solution of the operator whose
symbol is Qα.
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