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Given an arbitrary C2k,θ-smooth bounded domain Ω ⊂ R
n with exterior unit nor-

mal ν, n > 2k ≥ 2 and θ ∈ (0, 1), we define GΩ : Ω×Ω\{(x, x)/ x ∈ Ω} → R as the
Green function of (−∆)k in the domain Ω with Dirichlet boundary condition. This
means that for f ∈ C0,θ(Ω) the unique solution u ∈ C2k,θ(Ω) of the polyharmonic
Dirichlet problem

(1)

{

(−∆)ku = f in Ω,

u = ∂νu = . . . = ∂
(k−1)
ν u = 0 on ∂Ω

is given by

u(x) =

∫

Ω

GΩ(x, y)f(y) dy.

We are interested in pointwise estimates for GΩ. In the special case k = 1, i.e. the
case of the usual Laplacian, these can be deduced by using the maximum princi-
ple. This yields that GΩ is positive und bounded from above by the fundamental
solution, i.e. for n > 2 and any bounded smooth domain Ω ⊂ R

n we have

(2) ∀x, y ∈ Ω, x 6= y, : 0 < GΩ(x, y) <
1

(n− 2)nen
|x− y|2−n.

Here, en denotes the measure of the n-dimensional unit ball. One should observe
that the constant in the right inequality is independent of Ω, even with respect to
singular perturbations.

When passing to biharmonic or –more general– polyharmonic equations, i.e. the
cases k ≥ 2, the maximum principle is no longer available and positivity issues
remain valid only in a very weak and modified sense. Mathematical contributions
on this topic go back at least to Boggio and Hadamard [2,7]; these papers are also
fundamental for subsequent works on estimating polyharmonic Green functions.
For an extensive discussion of related and more recent contributions one may see
the monograph Gazzola-Grunau-Sweers [3] and Grunau-Robert [5]. There is no
obvious idea how to directly prove higher order analogues to estimate (2). However,
basing on the general Schauder and Lp-theory developed by Agmon, Douglis, and
Nirenberg [1], Krasovskĭı [8,9] proved that for any given bounded sufficiently smooth
domain Ω, there exists CΩ > 0 such that

(3) |GΩ(x, y)| ≤ CΩ|x− y|2k−n for all x, y ∈ Ω, x 6= y.

The constant CΩ depends on C2k,θ-properties of the boundary ∂Ω. In Krasovskĭı’s
works, very general operators and boundary conditions were discussed. Applying
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these general results to our special polyharmonic Dirichlet problems originally re-
quired a higher degree of smoothness. However, it turns out that for our purposes,
C2k,θ-smoothness of ∂Ω suffices. For more detailed information on this issue we
refer to Theorem 2 in the appendix. Estimate (3) can also be extended to the
derivatives of Green functions: For any 0 ≤ r ≤ 2k, there exists CΩ,r such that

(4) |∇r
yGΩ(x, y)| ≤ CΩ,r|x− y|2k−n−r for all x, y ∈ Ω, x 6= y.

Here, ∇r
y denotes any partial derivative with respect to y of order r.

The constant CΩ in the Green function estimate (3) depends –as soon as k > 1–
heavily on the smoothness properties of ∂Ω. As long as one considers families of
domains with uniform smoothness properties one may choose the same constant.

In the present article, we exhibit families of domains with unbounded curvature,
namely fixed domains Ω where we punch out arbitrarily small holes. For uniform
Green function estimates, (3) can no longer be used since the curvature blows-up,
and so does the constant C(Ω). Nevertheless, we can prove the following uniform
estimates.

Theorem 1. Let Ω be a C2k,θ-smooth bounded domain of R
n and let x0 ∈ Ω.

Let ω be a C2k,θ-smooth bounded domain of R
n containing 0. We fix a number

q ∈ (0, 1). Then there exists a constant C = C(Ω, ω, x0, q) > 0 such that that for

all ε ∈ (0, q d(x0,∂Ω)
diam(ω) ), we have that

|GΩε
(x, y)| ≤ C|x− y|2k−n for all x, y ∈ Ωε, x 6= y,

where Ωε := Ω \ {x0 + εω}.

Remark 1. In small dimensions n ≤ 2k, a uniform estimate like (7) below is no
longer available in the complements of arbitrarily small domains for i = 0. Nakai
and Sario [11] discussed the biharmonic case k = 2 in dimension n = 2 with the
help of energy estimates and their approach can probably be used for any k ≥ 2
and any dimension n < 2k. In this small dimensions case some (in general not
all) of the Dirichlet boundary conditions remain in x0 even in the singular limit
Ω0 = Ω \ {x0}. This phenomenon cannot be expected in large dimensions n ≥ 2k.

It is then natural to ask whether in estimates like (4) we may also expect uniformity
with respect to the family of domains (Ωε)ε. This, however, is not the case. More
precisely, we have the following:

Proposition 1. Let Ω, q ∈ (0, 1), Ωε, ε > 0, be as in Theorem 1. Then for all

1 ≤ r ≤ 2k, we have that

sup
ε∈(0,qd(x0,∂Ω)/ diam(ω))

sup
x,y∈Ωε, x 6=y

|x− y|n−2k+r|∇r
yGΩε

(x, y)| = +∞.

As mentioned at the beginning, one has a comparison principle for (1) in general
only in the second order case, i.e. if k = 1. In this case, GΩ > 0 holds true for
any Ω, while if k ≥ 2 one has positivity GΩ > 0 only in very restricted classes
of domains among which are balls (Boggio [2]) and small perturbations of balls
(Grunau-Robert [5]). In general, however, one has sign change, i.e. GΩ 6≥ 0.
Already Hadamard [7] observed that this will occur in the biharmonic case in two-
dimensional annuli with very small inner radii, see also Nakai-Sario [11]. On the
other hand, for fixed domains, the negative part will be “relatively” small. For more
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detailed information on this issue one may see Grunau-Robert [5], Gazzola-Grunau-
Robert [3] and Grunau-Robert-Sweers [6]. For instance, the authors proved in [5]
that for any C4,θ-smooth bounded domain Ω ⊂ R

n, n > 4, there exists C(Ω) > 0
such that ‖(GΩ)−‖L∞(Ω) ≤ C(Ω), where GΩ is the Green function for (−∆)2 with
Dirichlet boundary condition. A natural question is to ask whether one may expect
uniformity of this lower bound with respect to families of domains. As shown by the
following proposition, the validity of this guess is equivalent to the nonnegativity
of all Green functions:

Proposition 2. We assume that n > 2k. The two following assertions are equiv-

alent:

(i) There exists C(k, n, θ) depending only on k, n, θ such that such that

‖(GΩ)−‖L∞(Ω) ≤ C(k, n, θ)

for all C2k,θ-smooth bounded domains Ω ⊂ R
n.

(ii) GΩ ≥ 0 for all C2k,θ-smooth bounded domains Ω ⊂ R
n.

Since (ii) is false for the higher order case k ≥ 2 (see the discussion and references
in the monograph Gazzola-Grunau-Sweers [3, pp. 62/63 and 69/70]) we conclude
that there is no uniform bound for negative parts of biharmonic and polyharmonic
Green functions. We emphasise that we only discuss Dirichlet boundary conditions
and that positivity issues may be quite different for other boundary conditions.

Notation: In the sequel, C(a, b, . . .) denotes a constant depending on ω,Ω, a, b, . . ..
The same notation can be used for two different constants from line to line, and
even in the same line.

Proofs.

We start with proving Theorem 1 and proceed in several steps. In order to keep
the exposition as simple as possible we shall prove the theorem for q = 1

42 . At the
end of Step 3 we shall indicate how to modify the proof for larger q < 1. Without
loss of generality, we assume that x0 = 0 so that Ωε := Ω \ εω.

Step 1. The Green function in the exterior domain R
n \ ω.

Let ω be a C2k,θ domain of Rn such that 0 ∈ ω. We define

ω0 := inv(Rn \ ω) ∪ {0} , where inv :

{

R
n \ {0} → R

n \ {0},
x 7→ x

|x|2 .

We emphasise that inv is a special Möbius transform of Rn and in particular con-
formal. The set ω0 is a C2k,θ-smooth bounded domain of Rn containing 0. We
define

(5) G(εω)c(x, y) := εn−2k|y|2k−n|x|2k−nGω0
(ε inv(x), ε inv(y))

for all x, y ∈ R
n \ εω. The following proposition shows that this is indeed the

polyharmonic Green function in (εω)c:

Proposition 3. For any ϕ ∈ C2k
c (Rn \ εω) such that ∂

(i)
ν ϕ = 0 on ∂(εω) for

i = 0, . . . , (k − 1), we have that

(6) ϕ(x) =

∫

Rn\εω

G(εω)c(x, y)(−∆)kϕ(y) dy
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for all x ∈ R
n \ εω. Moreover, for all 0 ≤ i ≤ 2k, the derivatives with respect to y

satisfy the upper bound

(7) |∇i
yG(εω)c(x, y)| ≤ C|y|−i

∑

r≤i

|x|r|x− y|2k−n−r.

Proof. We prove the claim first for ε = 1. Let ϕ ∈ C2k
c (Rn \ ω) be such that

∂
(i)
ν ϕ = 0 on ∂ω for i = 0, . . . , (k − 1). We show that

(8) ϕ(x) =

∫

Rn\ω

|y|2k−n|x|2k−nGω0
(inv(x), inv(y))(−∆)kϕ(y) dy

for all x ∈ R
n \ ω.

Indeed, inv is the composition of two sterographic projections of opposite poles, and
therefore, it is conformal and the pull-back of the Euclidean metric Eucl via inv is
inv⋆ Eucl = | · |−4 Eucl = µ4/(n−2k) Eucl where µ(x) := |x|2k−n for all x ∈ R

n \{0}.
As a consequence, considering (−∆)k as the conformal operator of Graham-Jenne-
Mason-Sparling for the Euclidean space (see [4]), the conformal law of the GJMS
operators yields

((−∆)kϕ) ◦ inv = µ−(n+2k)/(n−2k)(−∆)k(µ(ϕ ◦ inv)).

In addition, the Jacobian of inv and then the Riemannian element of volume of
inv⋆ Eucl are

Jac(inv) = | · |−2n and dvinv⋆ Eucl = | · |−2n dx.

This transformation behaviour of polyharmonic operators with respect to Möbius
transforms is classical, see e.g. Loewner [10] and references therein. A convenient
and easily accessible reference is also Gazzola-Grunau-Sweers [3, Lemma 6.14] .

We fix x ∈ R
n\ω and we consider x′ := inv(x) ∈ ω0\{0}. We define ϕ̃(y) := µ(y)ϕ◦

inv(y) = |y|2k−nϕ(y/|y|2) for y ∈ ω0\{0}. We find that ϕ̃ is vanishing around 0 and
therefore extends smoothly to ω0. It follows from Green’s representation formula
that

ϕ̃(x′) =

∫

ω0

Gω0
(x′, y)(−∆)kϕ̃(y) dy.

Performing the change of variable y = inv(z) and using the above properties yields

ϕ̃(x′) =

∫

Rn\ω

|z|n+2kGω0
(x′, inv(z))(−∆)kϕ(z)|z|−2n dz.

Going back to the expression of ϕ yields (8).

Given α a multi-index and j ∈ {1, . . . , n}, there exists an homogeneous polynomial
Pα
j of degree |α|+ 1 such that

∂α inv(x)j =
Pα
j (x)

|x|2(|α|+1)

for all x ∈ R
n \ {0}, where |α| is the length of the index. We fix x, y ∈ R

n \ ω
such that x 6= y. With help of the binomial formula, the derivative of order α with
respect to y is such that

(9) |∂αyGωc(x, y)| ≤ C|x|2k−n
∑

β≤α

|y|2k−n−|α|+|β||∂βy (Gω0
(inv(x), inv(y)))|,
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where we have adopted the standard order on multi-indices. For |β| ≥ 1, the chain
rule yields

∂β(f ◦ inv) =
∑

1≤r≤|β|

∑

I1+...+Ir=β

∑

j1,...,jr

c
(I1,...,Ir)
j1,...,jr

∂I1 invj1 . . . ∂
Ir invjr (∂

j1...jrf) ◦ inv

for any function f when the derivatives make sense. The second sum is taken

over all decompositions of β as a sum of r multi-indices and the c
(I1,...,Ir)
j1,...,jr

are
combinatorial constants which can be calculated explicitly. When restricting to
suitable decompositions of β these constants are equal to 1. This formula yields

(10) |∂βy (Gω0
(inv(x), inv(y)))| ≤ C

∑

r≤|β|

|y|−|β|−r|(∇rGω0
)(inv(x), inv(y))|

for all β ≤ α. Here, ∇rf = (∂γf)|γ|=r when this makes sense.

It follows from Krasovskĭı [8, 9] that for any 0 ≤ r ≤ 2k, there exists C = C(ω0 =
inv(ωc) ∪ {0}, r) > 0 such that

|∇rGω0
(x, y)| ≤ C|x− y|2k−n−r

for all x, y ∈ ω0, x 6= y. For the sake of completeness, we refer to Theorem 2 in the
appendix where we comment on an alternative to Krasovskĭı’s proof. Noting that

(11) | inv(x)− inv(y)| =
|x− y|

|x| · |y|

and putting (9), (10) and (11) together yields

|∂αyGωc(x, y)| ≤ C|y|−|α|
∑

r≤|α|

|x|r|x− y|2k−n−r.

This proves the claim for ε = 1, while for arbitrary ε > 0 it follows from the previous
reasoning and the observation that G(εω)c(x, y) := ε2k−nGωc(x/ε, y/ε). �

Step 2. Control outside a small annulus.

Given δ ∈
(

0, d(0,∂Ω)
3

)

, we define ηδ ∈ C∞
c (Ω) such that ηδ(x) = 1 for all x ∈ Bδ(0)

and ηδ(x) = 0 for all x ∈ Ω \ B2δ(0). Given ε ∈ (0, δ
2 diam(ω) ) and x, y ∈ Ωε, we

define

(12) G̃ε,δ(x, y) := ηδ(y)G(εω)c(x, y) + (1− ηδ(y))GΩ(x, y).

We get that

(−∆)kG̃ε,δ(x, · ) = ηδ(−∆)kG(εω)c(x, · ) + (1− ηδ)(−∆)kGΩ(x, · )

+
∑

i<2k

(

Ai(∇
2k−iηδ,∇

iG(εω)c(x, · )) +Ai(∇
2k−i(1− ηδ),∇

iGΩ(x, · ))
)

,

where the A′
is are contractions of suitable tensors, that is bilinear forms with smooth

coefficients. Therefore, for any x ∈ Ωε, there exists fε,δ,x such that

(−∆)kG̃ε,δ(x, · ) = δx + fε,δ,x in D′(Ωε).

Moreover, the pointwise control (7) yields

|fε,δ,x(y)| ≤ C · 1B2δ(0)\Bδ(0)|x− y|1−n
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for all x, y ∈ Ωε, x 6= y. In particular, there exists C(δ) > 0 such that

(13) ‖fε,δ,x‖L∞(Ωε) ≤ C(δ) for all ε > 0 and x ∈ Ωε,δ

where

Ωε,δ :=
(

Ωε ∩Bδ/2(0)
)

∪
(

Ωε \B3δ(0)
)

= Ωε \
(

B3δ(0) \Bδ/2(0)
)

.

Then it follows from elliptic theory that for any x ∈ Ωε,δ, there exists ux,ε,δ ∈

W k,2
0 (Ωε) such that

(14)

{

(−∆)kux,ε,δ = fε,δ,x in Ωε,

∂
(i)
ν ux,ε,δ = 0 for all i = 0, . . . , k − 1 on ∂Ωε.

We claim that ux,ε,δ ∈ C2k−1(Ωε) for all ε, δ > 0 and x ∈ Ωε,δ. Moreover, there
exists C(δ) > 0 such that

(15) ‖ux,ε,δ‖C2k−1(Ω\Bδ/4(0)) ≤ C(δ)

for all admissible ε, δ > 0 and x ∈ Ωε,δ.

We prove this claim. For simplicity, we define

((−∆)k/2ψ)2 :=

{

((−∆)lψ)2 if k = 2l is even
|∇(−∆)lψ|2 if k = 2l + 1 is odd.

As a consequence, u 7→ ‖(−∆)k/2u‖2 is a norm on W k,2
0 (Ωε), the completion of

C∞
c (Ωε) for the usual norm. Multiplying (14) by ux,ε,δ and integrating by parts

yields with Hölder’s inequality
∫

Ω

((−∆)k/2ux,ε,δ)
2 dx =

∫

Ωε

((−∆)k/2ux,ε,δ)
2 dx

=

∫

Ωε

fε,δ,xux,ε,δ dy ≤ ‖fε,δ,x‖ 2n
n+2k

‖ux,ε,δ‖ 2n
n−2k

.

Sobolev’s inequality yields the existence of Cn,k > 0 such that

‖u‖ 2n
n−2k

≤ Cn,k‖(−∆)k/2u‖2

for all u ∈ C∞
c (Rn). The density of C∞

c (Ωε) in W
k,2
0 (Ωε) allows to conclude that

‖ux,ε,δ‖
2

2n
n−2k

≤ C2
n,k‖fε,δ,x‖ 2n

n+2k
‖ux,ε,δ‖ 2n

n−2k

for all ε > 0 and x ∈ Ωε,δ. Therefore ‖ux,ε,δ‖ 2n
n−2k

≤ C ′(δ).

It follows from elliptic theory (see for instance Agmon-Douglis-Nirenberg [1]) that
for all p > 1 and all δ′ > 0, there exists C(δ′) > 0 such that

‖ux,ε,δ‖W 2k,p(Ω\Bδ′ (0))
≤ C(δ′, p,Ω)(‖fε,δ,x‖p + ‖ux,ε,δ‖p).

The claim (15) follows from this inequality, Sobolev’s inequalities and iterations.

It remains to gain control of ux,ε,δ in Bδ′(0)\ (εω). To this end we consider ηδux,ε,δ
and observe that this function solves a Dirichlet problem in the exterior domain
(εω)c. Indeed, we have that

(−∆)k(ηδux,ε,δ) = ηδ(−∆)kux,ε,δ +
∑

i<2k

Ai(∇
2k−iηδ,∇

iux,ε,δ)

= ηδfε,δ,x +
∑

i<2k

Ai(∇
2k−iηδ,∇

iux,ε,δ) := f̃ε,δ,x
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where the Ai’s are as above. We observe that

supp f̃ε,δ,x ⊂ B2δ(0) and ‖f̃ε,δ,x‖∞ ≤ C(δ)

for all x ∈ Ωε,δ. Since ηδux,ε,δ has compact support in R
n \ εω and vanishes up to

(k − 1)th order on ∂(εω), Green’s representation formula (6) yields

(ηδux,ε,δ)(z) =

∫

Rn\εω

G(εω)c(z, y)f̃ε,δ,x(y) dy

for all z ∈ R
n \ εω. Consequently, for any z ∈ Bδ(0) \ (εω), one gets

|ux,ε,δ(z)| = |(ηδux,ε,δ)(z)| ≤

∫

Rn\εω

|G(εω)c(z, y)f̃ε,δ,x(y)| dy

≤ C(δ)

∫

B2δ(0)\εω

|y − z|2k−n dz ≤ C(δ).

This inequality combined with (15) yields

(16) ‖ux,ε,δ‖L∞(Ωε) ≤ C(δ) for all x ∈ Ωε,δ.

As a consequence, we find that

(−∆)k(G̃ε,δ(x, · )− ux,ε,δ) = δx weakly in D′(Ωε)

and ∂
(i)
ν (G̃ε,δ(x, · ) − ux,ε,δ) = 0 on ∂Ωε for all x ∈ Ωε,δ and all i = 0, . . . , k − 1.

The uniqueness of the Green function implies that

(17) GΩε
(x, · ) = G̃ε,δ(x, · )− ux,ε,δ

and then, using (6) and (16), we arrive at

|GΩε
(x, y)| ≤ |G̃ε,δ(x, y)|+ |ux,ε,δ(y)| ≤ C(Ω, ω)|x− y|2k−n + C(δ)(18)

≤ C(δ)|x− y|2k−n(19)

for all x ∈ Ωε,δ = (Ωε ∩Bδ/2) ∪ (Ωε \B3δ(0)) and all y ∈ Ωε.

Step 3.

Conclusion of the proof of Theorem 1. We fix δ0 ∈ (0, d(x0,∂Ω)
21 ). We apply Step 2

with δ := δ0 and to δ := 7δ0. Since Ωε = Ωε,δ0 ∪ Ωε,3δ0 , it follows from (18) that
there exists C > 0 such that

|GΩ\εω(x, y)| ≤ C|x− y|2k−n for all x, y ∈ Ω \ εω, x 6= y.

This proves Theorem 1 for q = 1/42. For q ∈ (1/42, 1), instead of δ/2, δ, 2δ, 3δ, in
Step 2 one has to work with δ/(1+σ), δ, (1+σ)δ, (1+2σ)δ with σ > 0 sufficiently
close to 0. Alternatively one may argue that for

ε ∈ [(1/42)d(x0, ∂Ω)/diam(ω), qd(x0, ∂Ω)/diam(ω))

the boundaries of the Ωε enjoy uniform C2k,θ-properties so that (3) holds uniformly
with respect to these ε. �
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Step 4.

Proof of Proposition 1. We argue by contradiction and assume that there exist 1 ≤
r ≤ 2k and C > 0 such that

(20) |x− y|n−2k+r|∇r
yGΩε

(x, y)| ≤ C

for all x, y ∈ Ωε, x 6= y, uniformly in ε → 0. For any x, y ∈ (ε−1Ω) \ ω, we define
Gε(x, y) := εn−2kGΩε

(εx, εy). It follows from (12), (15), and (17) that for any
x ∈ ωc, we have that

lim
ε→0

Gε(x, y) = Gωc(x, y)

in C0
loc(R

n \ (ω ∪ {x})). Since (−∆)kGε(x, · ) = 0 and Gε(x, · ) vanishes on ∂ω up
to order (k − 1), elliptic regularity yields convergence in C2k

loc(ω
c \ {x}). Rewriting

(20) for Gε and passing to the limit ε→ 0 yields

(21) |x− y|n−2k+r|∇r
yGωc(x, y)| ≤ C

for all x, y ∈ R
n \ω, x 6= y. We fix x 6= 0 and we define GR(z) := Rn−2kGωc(Rx, z)

for all z ∈ ωc and R > R0 large enough. It follows from the explicit expression of
Gωc in (5) that

(22) lim
R→+∞

GR(z) = G(z) := |x|2k−n|z|2k−nGω0

(

0,
z

|z|2

)

in C0
loc(R

n \ ω). Since (−∆)kGR = 0 and GR vanishes on ∂ω up to order (k − 1),
elliptic regularity yields the convergence of (GR) to G in C2k

loc(ω
c). On the other

hand, (21) may be rewritten as

|∇rGR(z)| ≤ CR−r|x−R−1z|2k−n−r

for z in a compact sudomain of Rn \ ω and R large enough. Since r ≥ 1, passing
to the limit R → +∞ yields ∇rG = 0 in R

n \ ω, which contradicts the explicit
expression (22) of G. This concludes the proof of Proposition 1. �

Step 5.

Proof of Proposition 2. Assume that (ii) does not hold. Then there exists a C2k,θ-
smooth bouned domain ω0 ⊂ R

n such that Gω0
attains some negative values, say

at (x0, y0) ∈ ω0 × ω0, x 6= 0. We define ω := (inv(Rn \ ω0)) ∪ {0} and Ωε := Ω \ εω
where ε > 0 is small and Ω is a smooth bounded domain containing 0. It follows
from (12), (16), and (17) that

lim
ε→0

εn−2kGΩε
(εx, εy) = Gωc(x, y) = |x|2k−n|y|2k−nGω0

(inv(x), inv(y))

for all x, y ∈ R
n \ ω. Choosing x := inv(x0) and y := inv(y0) yields

lim
ε→0

GΩε
(εx, εy) = −∞,

and then (i) does not hold. Conversely, if (ii) holds, then (i) holds. �
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Appendix A. Pointwise control of the Green function for fixed

domains

The following result, under stronger smoothness assumptions on Ω but at the
same time in a more general context, is due to Krasovskĭı [8, 9]:

Theorem 2. Let Ω ⊂ R
n be a C2k,θ-smooth bounded domain of Rn with 2k < n,

θ ∈ (0, 1), and k ≥ 1. Let GΩ be the Green function for (−∆)k with Dirichlet

boundary condition. Then for all 0 ≤ r ≤ 2k, there exists C(Ω, r) > 0 such that

(23) |∇r
yGΩ(x, y)| ≤ C|x− y|2k−n−r

for all x, y ∈ Ω, x 6= y.

We sketch here an alternative proof.

Proof. The case r = 0 and k = 2 under the smoothness assumptions as in the
theorem is treated in Grunau-Robert [5, Theorem 4] (see also Gazzola-Grunau-
Sweers [3, Propositions 4.22 and 4.23] for an exposition in book form). By making
the obvious changes one may check that the proof can be extended to any k ≥ 1
and n > 2k. (Only the discussion of the smaller dimensions n ≤ 2k requires more
care.) This means that there exists a constant C(Ω) > 0 such that

(24) |GΩ(x, y)| ≤ C(Ω)|x− y|2k−n

for all x, y ∈ Ω, x 6= y. We fix r ≥ 1 and we prove (23) by using local elliptic esti-
mates and rescaling arguments. We proceed as in Grunau-Gazzola-Sweers [3, Prop.
4.23] and use the following local Schauder estimate from Agmon-Douglis-Nirenberg
[1, Theorem 9.3] which holds true also close to ∂Ω. For any two concentric balls
BR ⊂ B2R and any polyharmonic function v on B2R ∩ Ω satisfying homogeneous
Dirichlet boundary conditions on B2R ∩ ∂Ω we have

(25) ‖∇rv‖L∞(BR∩Ω) ≤
C

Rr
‖v‖L∞(B2R∩Ω).

The constant is uniform in R; the behaviour with respect to (small) R is obtained
by means of scaling.

Keeping x ∈ Ω fixed, for any y ∈ Ω \ {x} we choose R = |x − y|/4 and apply
(25) and (24) in BR(y) ⊂ B2R(y) to GΩ(x, · ). This proves (23).

�
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