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Abstract

The Paneitz operator is a fourth order differential operatuich arises in conformal geometry
and satisfies a certain covariance property. Associatedigaaifourth order curvature — thg-
curvature.

We prove the existence of a continuum of conformal radialiymetric complete metrics in
hyperbolic spacél”, n > 4, all having the same constaftcurvature.

Moreover, similar results can be shown also for suitable-camstant prescribe@-curvature
functions.

1 Introduction

The fourth order Paneitz operator arises naturally in con& geometry, when one looks for higher
order elliptic operators enjoying some covariance prgp&¥e shall be concerned with a correspond-
ing semilinear equation, which comes up when searchingocoral metrics with a certain prescribed
fourth order curvature invariant — the so call@ecurvature.

Let (M™, g) be a Riemannian manifold of dimensien The objective of conformal geometry is
the following: can one change the original metyiconformally into a new metrié with prescribed
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properties? This means that one searches for some positieéidn p such thath = pg and the
conformal factorp has to satisfy an elliptic boundary value problem.

E.g, forn > 2let L, := —c,A, + R, be the conformal Laplacian, wherg, is the Laplace
Beltrami operatorg, = 4(n — 1)/(n — 2) and R, is the scalar curvature. If one sets the conformal

factorp = wie ,u > 0then itis well known that. has the following conformal covariance property:

n+42

Vo e CR(M):  Ly(ug) = uF3Ly(p).

If one prescribes the scalar curvatuRe for the metrich then« has to satisfy the second-order
equation

Ly(u) = w2 Ly(1) = Ryurs. (1)
In the caseR;, = const. this is the so called Yamabe problem. In the cRgas a prescribed function
itis called the Nirenberg problem.

It turns out that there are many operators beside the coafoaplacianLZ, on general Rie-
mannian manifolds of dimension greater than two which eajapnformal covariance property. A
particularly interesting one is the fourth order operatron n-manifolds discovered by Paneitz in
1983, which can be written for > 4 as:

n —

4
— Q.

P, = Af] —div, (anRgg — by, Ricg) Vy+

wherea,, = % b, = -%5. HereRic : TM — TM is the (1, 1)-tensor given byRic] =

¢’% Ricy;, the operatoR/,, produces the gradient vector-field of a function dind, the divergence of
a vector-field. Further, th@-curvature is given by

n3—4n2+16n—16R2 1

2 .
R T (T A T

(n —2)?

with | Ric|? := R;; Rieg™ g’*. In weak form the Paneitz operator may be written

AR

—4
/ (Pyu)p dv, = / Agulgp + a, Ry(Vu, V g0) g — by Ricg(Vgu, V) + nTqucp dv,
M M

for all ¢ € C5°(M). In the caser > 4, the conformal factor is usually chosen in the fopm=
u* (=Y 4 > 0 and the conformal covariance property of the Paneitz operaads as follows:

n+4

Vo e C*(M):  Fylup) =urP(p).
If one prescribes th@-curvature for the metrié by a function@),, this leads to the equation

n+4 n —

2

n+4

4Qhum7 (2)

which is a fourth-order analogue of (1).

Natural generalizations of problems from second orderaromél geometry like the Yamabe prob-
lem, the Nirenberg problem or also existence, uniquenessegularity for equations involving the
Paneitz operator or biharmonic mappings are obvious amdesting questions to be studied. We
refer to the survey articles of Chang [C1] and Chang, Yang3[canhd on the lecture notes [C2] for
more background information on the Paneitz operator
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In the present paper the manifold/™, g) is the hyperbolic spacB" with its standard metric.
We focus on finding a complete metric= Uﬁg on H" such thath has prescribed)-curvature.
We give conditions or) (which include the cas€) = const.) such that an entire continuum of
mutually distinct complete radially symmetric conformagtmics exist all having the same prescribed
@-curvature. In the case whefg = %n(nz — 4) this family contains in its “center” the explicitly
known standard hyperbolic Poincaré metric, and at leagbacentinuum of these metrics has negative
scalar curvature.

We point out that it is surprising to find such highly non-wregsolutions. In previous work on
the second order Yamabe problem, uniqueness of metricscaitbtant scalar curvature was found
in the case ofl"” by Loewner-Nirenberg [LN]. In the case 6f uniqueness (up to isometries) was
proved by Obata [O] and later by Caffarelli, Gidas, Sprucksf} and Chen, Li [CL]. In the fourth
order Paneitz problem, uniqueness (up to isometries) aficsetith constant)-curvature orb™ was
found by Chang, Yang [CY2] for. = 4, by Wei, Xu [WX2] and C.-S. Lin [L] forn > 4 and by Choi,
Xu [CX] in the exceptional case = 3.

In our setting we chosé), ¢g) to be a non-compact manifold. In contrast to this non-cormpac
case, the literature for the existence of solutions of tes@ibed))-curvature problem on compact
manifolds is considerably bigger. We only give a brief syrea results concerning fourth order
Paneitz operators. In Chang, Yang [CY1], Wei, Xu [WX1] andr§ky [G] existence results for the
constant))-curvature problem in compadtmanifolds are given. Recent work of Djadli, Malchiodi
[DM] provides further extensions and completions of theseks.

On compact manifolds of dimension greater thaxistence results were given for Einstein mani-
folds by Djadli, Hebey, Ledoux [DHL] and in the case of inaarce of both the manifold an@-
curvature function under a group of isometries by Robert (R} the spher&™ we refer to results of
Djadli, Malchiodi, Ould Ahmedou [DMO1], [DMO2] and Felli [E].

The main results

As a model for hyperbolic spadé™ we use the Poincaré ball, i.é1" is represented by the unit-
ball B = B,(0) C R™ with standard co-ordinates, ..., z, and the Poincaré metrig; = 4/(1 —

|z|?)%6;;. SinceH" is conformally flat we may seek the mettiof the formh,; = Uﬁgij = uﬁélj
and the corresponding differential equation (2)daeduces to

) .
A2y ="""% 5 Qunty/(=Y >0 inB,  ul0B = . 3)

The conditionu|0B = oo is necessary (and as we shall show also sulfficient) for caempss of the
metrich. ForU = 1 we are at the Poincaré metric. In this case the conformedifaegiven explicitly

b
Y 9 (n—4)/2
0= (5p) ?

The Poincaré metriéué/ ("_4)6@-) ~ with u as above has constatcurvatureQ = in(n? — 4).
)

Infinitely many complete radial conformal metrics with the same constant()-curvature

Theorem 1. For everya > 0, there exists a radial solution of the prescrib@ecurvature equation (3)
in the unit ball withQ = $n(n?® — 4), infinite boundary values &@tB and withu(0) = . Moreover,
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(i) the conformal metrigu*/ (”—4)6ij)ijon B is complete;

(i) if w(0) > 0is sufficiently small then the corresponding solution gates a metric with negative
scalar curvature.

The existence proof is given in Section 2. Closely relatexilte can be found in a recent and
independent work of Diaz, Lazzo, Schmidt [DLS1]. Staten{énis discussed in Section 3.

According to forthcoming work [DLSZ2] of Diaz, Lazzo, Schridne has, for the solutions con-
structed in Theorem 1, that asymptotically fop” 1

u(r) ~ C(1 — r2)t-m/2

whereC' = C(n) does not depend on the solution. Furthermore, the derast¥u exhibit a cor-
responding uniform behavior. This is an even more precif@nmation than just completeness of
the conformal metric. However, for the less far reachingestent (i) of completeness, we provide a
relatively simple and elementary independent proof iniSaa.

The equation (3) is invariant under Moebius transformatiointhe unit ball. But the only solution
which is invariant under all Moebius transformations oftimé ball is the explicit solution (4). Hence,
we also have infinitely many distinct nonradial solution$iieh is again in striking contrast to the
second order analogue of (3). The following is an open prablehich we could not solve in this
paper but hope to address in future work:

Find a geometric criterion, which singles out the expliatusion (4) among all other
solutions of (3).

One might guess that among all radially symmetric metriesetkplicit Poincaré metric is uniquely
characterized by a condition of the kind

1
—CSR}LS—5<O

with a suitable constan®. This is however wrong, since it follows from the result ofL[B2] that
for every radial solution: of (3) one has that the scalar curvature of the generatedmsettisfies
lim,_; R, = —n(n — 1). Itis however trivially true that the Poincaré metric igtbnly one with
R, = —n(n—-1).

Infinitely many complete radial conformal metrics with the same non-constant()-curvature

For smooth positive radial function@ : B — R we give suitable assumptions ghsuch that the
conformal metrig(u*/("~% 5ij)ij has@-curvature equal to the given functich We can prove a result,
which is analogous to Theorem 1.

Theorem 2. LetQ € C'[0,1] and assume that there are two positive const&ts@, > 0 such
that0 < Qo < Q(r) < Q1 on|0, 1]. Suppose further that there exigts [0, 1) such that-@Q'(r) >
—qQ(r)on|0, 1], i.e.,r?Q(r) is monotonically increasing. Then, for every- 0, there exists a radial
solution of the prescribed-curvature equation (3) in the unit ball with infinite bounglavalues at
0B and withu(0) = «. Moreover,

(i) the conformal metri({u4/("‘4)5ij)ijon B is complete;

(i) if »(0) > 0 is sufficiently small, then the corresponding solution gates a metric with nega-
tive scalar curvature.



Infinitely many solutions have also been observed by Chaddzdmen [CC] in a different confor-
mally covariant fourth order equation it with exponential nonlinearity.

R. Mazzeo pointed out that perturbation methods develogdd Bacard and him [MP] will also
apply in the present situation in order to construct neiginboods of nonradial solutions close to our
radial ones.

2 Shooting method

2.1 ConstantQ)-curvature
Here we look for radial solutions of (3). By means of a shaptimethod we shall construct infinitely
many distinct solutions. Applying the special Moebius sfanms

biiB=B )= o a—<|a|2—1>%(x—i) ©)

we even find nonradial solutions by setting
= J;Z_4)/(2") U O (Pg,

where.J,,, is the Jacobian-determinant@f. All these conformal metrics have constahturvature
In(n? — 4) and a continuum of them has negative scalar curvature.

8
In order to construct solutions of (3) with = én(n2 — 4), we do this for the simplified problem
A%y = /=D >0 inB, u|0B = o0.

By a simple scaling argument both boundary value problem&quivalent. For radial solutions we
study the initial value problem

{ A?u(r) = 7’1_"% 7“"_1% u(r) = u(r)ntH/ =4, r >0, (6)
u(0) = «, u'(0) =0, Au(0) = 3, (Au)'(0) = 0,

wherea > 0, 3 € R are given. If necessary,"+4/("=% will denote also the odd extension to
the negative reals; however, we mainly focus on positivetgois. It is a routine application or
modification of the Banach fixed point theorem or the Picairtiklof-result to show that (6) always
has unique local’*—solutions.

It is a simple but very useful observation that the initidusaproblem enjoys a comparison prin-
ciple, see [MKR]:

Lemma 1. Letu,v € C*([0, R)) andQ € C([0, R)), Q > 0 be such that

{ Vrel0,R): Au(r) — Q(r)u(r) ™/ =D > A2y () — Q(r)u(r) /(=) -
uw(0) > v(0), «'(0)=2"(0)=0, Au(0)> Av(0), (Au)(0)= (Av)(0)=0.
Then we have

Vr € [0,R): u(r) >o(r), o' (r)>'(r), Au(r) > Av(r), (Au)(r) > (Av)'(r). (8)

Moreover,



(i) the initial point 0 can be replaced by any initial point > 0 if all four initial data at p are
weakly ordered,

(i) a strict inequality in one of the initial data g& > 0 or in the differential inequality orip, R)
implies a strict ordering ofi, v', Au, Au' andv, v', Av, Av' on (p, R).

The problem (6) has the following entire solutions

n(n? — 4)(n — 4)]°T

U,(r) =« N
") (Vn(n? —4)(n — 4) + (a?/=Hr)") %

9)

of (6) with « > 0 and suitably chosefl, := (Gy(a) := AU,(0). It is known that these solutions

are the only positive entire solutions of (6), cf. [L], [WX1The metrich = Uy *4,; arises as the
pullback of the standard metric of the sphBfeunder a stereographic projectionRé .

For our purposes it is enough to show the following resuke gblutionl,, is a separatrix in the
r-u-plane, i.e., if we fixa > 0 and considep as a varying parameter thép, separates the blow-up
solutions from the solutions with one sign-change, whietbklowU,,.

Lemma 2. Leta > 0 be fixed. Then, fo > [, the solutiornu = u, 3 blows up on a finite interval,
which we denote by, R(«, 3)). The blow-up-radius(«, (3) is monotonically decreasing ii.

Proof. It is useful to have the explicit solutions

o\ —(n—4)/2
Volr) =« (1 — ()\La) ) : (10)

of (6) at hand, where\, = a~2/®=4 [n(n? — 4)(n — 4)]"/*. We fix anya > 0, somes > Fy(a)
and look at the corresponding solution= u, g of (6). In order to see that'(r) — U/ (r) is strictly
increasing, note first by Lemma 1 that(r) — AU,(r) is positive and strictly increasing. Since
W' (r)—Ul(r) = fol rt"1(Au — AU,)(rt) dt it follows thatw/(r) — U/ (r) is also strictly increasing.
So u(r) cannot converge t0 and hence has to become unbounded as> co. By integrating
successively the differential equationwofve find R large enough such that

uw(R) > 0, u'(R) > 0, Au(R) > 0, (Au)'(R) > 0.
Sincelimg .o Va(r) = 0 locally uniformly inC*, we can find a sufficiently smaidl > 0 such that
w(R) > Va(R),  u'(R)>Vi(R),  Au(R)>AVi(R),  (Au)(R)> (AVa)(R).

But then, the comparison principle Lemma 1 shows that- R :  u(r) > Vi(r) and hence, blow
up of u at some finite radiug(«, ). The monotonicity ofR(«, 3) is also a direct consequence of
Lemma 1. U

Lemma 3. Leta > 0 be fixed. The blow-up radius(«, 3) is a continuous function af € (5, o).

Proof. Let 3 > (3, be arbitrary but fixed and let denote= u,, s the corresponding solution of (6).
The continuity from the right

BB = Rla,b)— Rla,p)
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follows directly from the monotonicity of2(«, 3) in 5 and continuous dependence on initial data.
Only continuity from the left has to be proved.

First we show that for close enough té& = R(«, 3) the functionsu, v/, Au and(Au)’ are finally
strictly increasing. For, r"~'u/, Au andr"~! (Au)’, this follows from successive integration of the
differential equation, since the relevant quantities Ipeee- at least finally — positive. It remains to
consider/ (R — 0) and(Au)’ (R — 0).

We observe that

R
o =R"1(R-0)= / " Audr; (11)
0

R R
0o = R"HAu)' (R —0) = / " AR dr = / Ty (/=) gy (12)
0 0

From this we conclude far " R:

r n—1 1
(Au)’(r) = / <f) u(n+4)/(n—4)(s> ds = 7,/ (u(rt))(n+4)/(n—4)tn—1 dt,
0 0

-
n+4

4/0 (u(rt))¥ =Y o/ (rt)t" dt

1
(Auw)'(r) = / (u(rt)) D/ ==L gt 4y
0
~ tooby (12)

W(r) = /0 <f>n_1Au(S)d$=7’ /0 L A dt

r

n —

1 1
u'(r) = / t" T Au(rt) dt+r/ t"(Auw) (rt) dt
0 0
Moreover, for later purposes we note thatfor” R
1 1
u"'(r) = 2/ t"(Au)'(rt) dt+r/ " (Aw)” (rt) dt
0 0

2
T"+1

" 1
/ s"(Au)'(s)ds — C > EAU(T’) — C — +o0.
0

Here,C' denotes a constant which depends on the solution
Now, we consider a sequence " 3. By monotonicity we haveR(«, 5;) > R(«, ). For
tr > 1, which will be adequately chosen below, we define the functio

. r
v(r) = t;(:‘ )/zua,ﬁ (5) , (13)

which solves the same differential equation@ag. We find values, — § < ro < R(«, 3) such that
Uap(ro) >0, gy s(ro) >0, Augp(ro) >0, (Augp)(re) >0,

and all these quantities are strictly increasing(an— ¢, R(«, 5)). By continuous dependence on
data, forg, close enough t@ we also have

Ua g, (o) > 0, U/a,@k(ro) >0, Augg,(ro) >0, (Auag,) (ro) >0.



For suitably chosen, we conclude that

'U]g(’f’o) = tl(j_n)/QUaﬂ (Q)
) = (R (—) < 1By () <l (o),
Avg(ro) = 1" Augg (Z_O)

—n— T —n— /
(Au)(ro0) = 67" (Aug,p) (7) < " (Bua ) () < (Dutas,) (r0).

By continuous dependence on data, we may achieve
te \ 1 (k — o0).
The comparison result of Lemma 1 yields fop rg:
Ua,, (1) > vg(r).
This gives finally
R(a, B) < R(a, B) < R(vk) = R(a, B) - t, — R(e, B) as k — oo,
whereR(v;,) denotes the blow-up-radius of. The proof is complete. O
Lemma 4. Leta > 0 be fixed. Then, for the limits of the blow-up radi&v, 3), one has:

lim R(a, 3) =00,  lim R(a,3)=0. 14
Jimy (a,B) = o0 Jim (o, B) (14)

Proof. The first claim is just a consequence of the global existemd¢keosolution for = 3, and
continuous dependence of solutions on the initial data.prbef of the second statement relies upon
some rescaling arguments. First we note that the same anj@a®én the proof of Lemma 2 shows
that R(0,1) < oco. By the comparison result from Lemma 1 we conclude that

Vo > 0: R(a/;1) < R(0,1) < 0. (15)

For 5 > 0 we find the relation

vt = (&) e ((3)77'7). w9

whered’ is chosen such that
n/(n—4) .
b= (%) ,ie. o =a-plmin

Obviously,a’ \, 0 for 3 co. We read from (16) and (15) that

«

o 2/(n—4) N\ 2/(n—4)
R(a, 8) = R(d/, 1) <—) < R(0,1) (—) = R(0, 1)5_2/"

(0% (0%

which tends ta) asf — oo. O



Theorem 3. For everya > 0 there exists a radial solution of (6) witt(0) = a which blows up at
r = 1. Moreover,

(i) if u,a are two such solutions with(0) < @(0) thenAwu(0) > Aw(0),

(i) if 0 < w(0) < [n(n? — 4)(n — 4)]"s" then the corresponding solution generates a metric with
negative scalar curvature.

Proof. Leta > 0 be fixed, and denote, 5 the solution of (6). According to Lemmas 3 and 4, we find
a suitables > [y(«a) such that for the blow-up-radius, we have precis@ly, 3) = 1. Property (i)
is a consequence of Lemma 1. To see property (ii) note thagnthd hypothesig < «(0) < V,,(0)
with ap = [n(n? — 4)(n — 4)]"s" we find by (i) thatAu(0) > AV,,(0) > 0 and hencedu > 0 on
[0,1). Thus by Lemma 8 below the solutiangenerates a metric with negative scalar curvaturel

In order to complete the proof of Theorem 1, it remains to pritne completeness of the induced
metrics. Indeed, these metrics are complete, see Section A.

2.2 Nonconstant()-curvature

To obtain radial solutions of (3) for a prescribed smoothab@-curvature functior@ : B — R we
also use the shooting method. For simplicitydet= %‘Q. We then study the problem

A2y = Qun+D/=1 50 inB, u|0B = oo, (17)

such that the conformal metr(m4/ ("‘4)5ij)ij has()-curvature equal to the given functigh In all of
our discussion we make the following assumptions on thetfomc):

(Q1) there are two positive constaifs, @, such thab < Q, < Q(r) < Q, on[0,1], Q € C'[0,1],
(Q2) there existg € [0,1) such thatQ'(r) > —qQ(r) on |0, 1], i.e.,7?Q(r) is increasing.

We extend@ as aC'-function to [0, oo) which is bounded onl, cc) and satisfies (Q1), (Q2) on
0, 00).

Theorem 4. Let () satisfy(Q1), Q(2) For everya > 0, there exists a radial solution of the prescribed
Q-curvature equation (17) in the unit ball with infinite bolargt values and with(0) = «. Moreover,

(i) if u,u are two solutions with(0) < @(0) thenAu(0) > Awu(0),
(i) if w(0) > 0is sufficiently small then the corresponding solution gates a metric with negative

scalar curvature.

The initial value problem for (17) takes the form

9 a\\? -
2 _ 1-n ¥ n—-1"%Y _ (n+4)/(n—4)
Au(r) (7’ e (7“ 87")) u(r) = Q(r)u(r) , r >0, (18)
u(0) = «, u'(0) = 0, Au(0) = 3, (Au)'(0) = 0,
wherea > 0, 3 € R are given. Existence and uniqueness of la¢&lsolutions denoted by, 5 is
standard.
We recall from (9) the definition ofy = 5y(«) = AU,(0) < 0.
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Lemma 5. Leta > 0 be fixed. Then there exists a valge € [\/Q1 05, v/QoFo] with the following
properties:

(i) For —oo < 3 < B* the solutionu,, 5 is decreasing and has a finite first zero.

(i) For g > [3* the solutionu, s blows up on a finite intervdD, R(«a, 3)). For fixedq, the blow-
up-radius is decreasing if.

(iii) For 5 = B* the solutionu, s exists on0, co) and converges to at co.

Proof. For simplicity we assume that< Q(r) < 2 forr € [0,00). As in the proof of Lemma 2 we
find with the help of the same subsolutidh(r) (& > 0 small enough) that fof > 3, the solution
a3 Must blow up at a finite valug(a, 3). Likewise, we can use the functiobs,(r) := U, (v/2r)

n+4

solving A%U, = 2U4 " on |0, c0) as supersolutions to see that fox /23, the solutions:,, s have
a finite first zero. Hence we can define

B* = sup{f € R: u,g has afinite first zerg
inf{ € R : u, g blows up at a finite valug,

where it is easy to see that the two numbers coincide. Moregves [v/23,, 3. Finally, the solution
uq,3+ MUSt exist orj0, co) and can therefore only decay(at co. O

Lemma 6. Leta > 0 be fixed. Then, the blow-up radid&«, 3) is a continuous function of €
(87, 00).

Proof. Let 5 > * be fixed. Continuity of the blow-up radius from the right tmdis as before. For
the continuity from the left one shows first that foclose enough t&? = R(«, ) the functionsu,
o/, Au and(Au)' are finally strictly increasing. Far, r"~'u/, Au andr™~! (Au)’, this follows from

successive integration of the differential equation. T®tbe strict monotonicity of’, (Au)’ near the
blow-up point one finds as before

R
o =R"1(R-0)= / " Audr; (19)
0

R R
0o = R"HAu)' (R —0) = / " AR dr = / Q) u Y (=) gy (20)
0 0
From this we conclude far " R:

S n+4

(Au)(r) = /O ()" Qo () ds = /O Ot (e dt

r

1
n +i /0 O(rtyuss (rt)u (rt)t" dt

1 ~ n+4
(Auw)'(r) = /OQ(rt)uM(rt)t"_ldt—l—r

—
1
tr / O (rt)unsi (rt)t™ dt
0
— 400 by (20)

where we have used hypothesis (Q2). The same proof as in Leéhsmaws that.”(r), u” (r) — oo
asr /' R. The actual continuity proof of Lemma 3 was based on findinglesslution

_ r
v (r) ==t MUap (a) :

10



with v = "7‘4 and suitable, > 1. For non-constan® we need to choose a different positiyesince
the condition for, being a subsolution is given by

’Y—4+’Y @+4 n+4 n+4

Qe el < QU

To achieve this we use hypothesis (Q2). Hence we need to ehosd) such that-~ — 4 + VZ—J_Ff; <
—q. Sinceq € [0, 1) one possible choice ig = 3(n — 4)/8. Then the rest of the proof of Lemma 3
goes through. O

szk = t;

Lemma 7. Leta > 0 be fixed. Then, for the limits of the blow-up radi&x, 3), one has:

lim R(a, 3) = oo, lim R(a, 8) = 0. 21
Jim, (o, B) = 00 Jim, (o, B) (21)

Proof. For 5 = (3* there exists a global solution tendingitat co. By continuous dependence on the
initial data the first statement follows. The proof of the@®t statement is adapted from Lemma 4.
Let v, 5 be the solution 0f\2 = Quu=1 with v(0) = a, v/(0) = 0, Av(0) = 3, (Av)'(0) = 0. The
argument of Lemma 5 shows that; blows up at the finite point(0, 1). Fora’ > 0 let us denote the
blow-up point ofv, ; by S(¢/, 1). ThenS(a/,1) < S(0,1) < oco. For positive3 we find the relation

= () ((2)77). @

whereqa’ is chosen such that

n/(n—4) .
8= <g,) e o =a- gl
(6]

We see that,, g is a subsolution ta,, 5. The blow-up positions therefore satisfy

N 2/(n—1) N
R(a, ) < S(a. B) = S(/, 1) (—) < $(0,1) (—) _ 5(0,1)5°",

« «
which tends td) asf — oo. U

Proof of Theorem 4.The proof follows from Lemmas 6 and 7. Let us prove propery (if we
defineV := Q,° Vi, With ap = [n(n? — 4)(n — 4)]"5" then A2V = Q,Vi=i. Therefore, if
0 < u(0) < V(0) thenAu(0) > AV(0) > 0 by an argument similar to (i), and hence: > 0 on
[0,1). Thus by Lemma 8 below the solutiangenerates a metric with negative scalar curvaturel

In order to finish the proof of Theorem 2, it remains to show ¢benpleteness of the induced
metrics. See Section A.

3 Subharmonicity and negative scalar curvature
Let us recall that we consider conformal metrics of the form

hyy = D5, (23)
In order to compute the scalar curvature it is more convengewrite the conformal factor as

hij = U4/("_2)5ij,

11



i.e. we set := u""2/("Y 1y = o=/ The scalar curvatur®, of the metric(h;;),; is then
given by

R, = =D eiymen oy - AT 2o oy -2/
(n—2) (n—2)
i Gl B VTER G 26/
(n_4)u u u+(n_4)u |Vul (24)

The following lemma is an immediate consequence of this tdam

Lemma 8. Letu : B — (0,00) be aC*-function such that-Au < 0 in B. Then the conformal
metrich given by (23) satisfies
R, <0 in B.

For radially symmetric solutions, also the converse is:true

Proposition 1. Letu : B — (0,00) be an unbounded smooth radially symmetric solution of the
perturbed Paneitz equation (17) for the hyperbolic ballhwit > 0. Assume further thak, < 0 in
B. Then

—Au<0 in B.

Proof. Since A%u > 0, the function—Aw is superharmonic. So, if we assume thatu > 0
somewhere, then in particular
—Au(0) > 0.

Sinceu is assumed to be radially symmetric, we also have
Vu(0) = 0.

Now, formula (24) would give?, (0) > 0, a contradiction. O

A Completeness of the conformal metric

Completeness of the metric= y 0;; on B means that every maximally extended geodesic curve
has infinite length. However, the following lemma reduces th a property, which is simpler to
check.

Lemma 9. Letu be a radial solution of (17). The induced metﬂﬁ@j onH" is complete if and
only if

1
/ u(r) ™ dr = co.
0

Proof. To see necessity of the above condition note that for fixedR™\ {0} the curvey(r) = rz/|z|
for r € (—1, 1) is a maximally extended geodesic and its length is given by

! 1
> [ e =2 [ s
0 0

12



Next we prove sufficiency. Let be a maximally extended geodesiqi, h) parameterized oveR.
Thenlim; 1 |y(t)] = 1. Clearly~ has infinite length ib(¢) = dist,(y(t),0) becomes unbounded
for t — +o00. Since

[v(t)]
i) = / un=a(r)dr
0
the claim follows. U

We recall that according to forthcoming work [DLS2] of Didazzo, Schmidt, one has, for the
solutions with constan®-curvature constructed in Theorem 1, that asymptoticalty-f,~ 1

u(r) ~ C(1 —r2)=—m/2,

whereC' = C(n) does not depend on the solution. This gives in particuldr tha

1
/ u(r) ™ dr = 0o

and so, the completeness of the conformal metric. This wovkrs a very general situation, is quite
involved and relies on deep work of Mallet-Paret and SmithlPBJl on Poincaré-Bendixson results
for monotone cyclic feedback systems. Moreover, we exgettiese solutions to oscillate infinitely
many times around the explicit solution (4) and around edlfro

In what follows we give an independent and relatively simgotel elementary proof of the state-
ment of completeness by means of a suitable transformatidreaergy considerations. The proof
applies in the same way both to the case of constant and nwiasa()-curvature functions. The
final statement of completeness is given in Theorem 5 in &e&i6 below.

Estimates from above and a first nonoptimal estimate frorovb@re deduced in the original
setting of equation (17). For the final conclusion thfat.(r)% 4 dr = oo we have to perform a
change of variables such that” 1 is replaced bys — oo so that elementary qualitative theory of
dynamical systems becomes applicable. This procedurensismv motivated by techniques recently
developed for fourth order equations in [GG, FG].

A.1 Pohataev’s identity for solutions of (17)
The following is true for every € (0, 1), cf. [PO], [PS]:

2n

_4 .
N / x - VQ(x)ur-1 dx
B,(0)

2n
n—4
2

2—n
2

= / VAu~1/(x-Vu+ U)—i- AuVu-vdo
Sr(0)

n_4 2n

(z - )Q(z)un1 do.

1
—/ Au(z" D*uv) — =(z - v)(Au)* +
S, (0) 2 n
For radial solutions this implies

n

—4 ("~ n
5 /OQ/(S)uﬁs”ds

=r""H(Au) (ru +

n—4 ot on ol o  n—4 - 2n
5 u)+§r uAu—r (Q(Au) + o Q(r)u ) (25)

A corresponding equality holds for radial solutions [pnr], where the integration on the left-hand
side is fromp to r and on the right-hand side the corresponding term evaluiets subtracted.

13



A.2 Maximal blow-up rate for radial solutions of (17)

Proposition 2. Letu : B — [0, co) be an unbounded smooth radial solutions of the perturbee®an
equation (17) on the unit ball with < Q(r) < 2. Then there exists a constatit= C'(u) such that

u(r) SC’( ! >"24

1—1r2

Proof. As was shown in the proof of Lemma 3, we may chopse (0, 1) such that
u, v, u", Au, (Au) > 0 are increasing in(p,1).

By C' we denote a constant dependinguorBy using the analogue of Pohozaev’s identity (25) on
the intervallp, r| we obtain for all- € (p, 1)

7’L—4 ~ 2n n

S QU (1) + S (Au(r)?

n

- 4 r ~ n
- /,, O (s)ur2a (s)s™ ds +
n—4

=" (Au) (ru’ + u) + grn_lulAu +C. (26)

We estimate the two sides of the equality separately.
Right-hand sideThe following estimates for > p obtained by integration

u(r) = u(p)+ /T u'(s)ds < u'(r) + C,
Au(r) < (Au) (r)+C.

Hence the entire right-hand side of (26) can be estimated;by(r) (Au)’ (r) + C, and since/(r),
(Au)' (r) — oo for r — 1 we find thatCu'(r) (Au)’ (r) for p < r < 1 is an upper estimate for the
right-hand side of (26).

Left-hand sideAfter dropping the last term in the left-hand side of (26)waéo bound is given by

n—4 " ~, 27714 n n—4 " d nA %
o /,, Q' (s)ui(s)s" ds + (1 — ) /p E(s O(s)u (s)) ds
n—4 ~ 2n_

+e o r"Q(r)un—4(r), (27)

wheree € (0, 1) is chosen later. The two integrals add up to

n—4
2n

~ n+4

witi(s)s™ + (1 — 2)Q(s)s w1 (s)u'(s) ds,

/pr ( —eQ'(s) +n(1 - g)(g(s)s—l)

which is positive provided = ¢, is chosen sufficiently small. Hence, for finding a lower boéod
(27) the two integrals can be dropped. Moreover, by usirgQ@ < 2 we obtain finally that

- 4 n
€0n2n T"uﬁ(r)

is lower bound for the right-hand side of (26).

Hence, (26) yields the existence of a constant C(u, p, €) such that
w1 < Cu' (Au) onfp,1).

14



Multiplication with «’ leads to

3n—4

(un= ), <COu*(Auw) =C (u'zAu>/ —2Cu'v"Au < C (u'2Au>, on[p,1),

and integration shows
3n—4

un-1 < C'lu/2Au + Oy < Cu* Au on p, 1).
Now, as above, we can estimate

n—1 n—1
+

/ u’(s)ds < Cu'(r)+C < Cu"(r)
p

T T

and we may proceed to the inequality

3n—4

un < C(u)?Au < Ou)*u”.

In a similar way, multiplication with:” and integration leads to
unr < Cu'* on p, 1), wi=i < Cu' on [p,1).

Solutions ofCv' = v~ on some interva)p, 0) are given by

—4 N\ —n
U5(T) _ <n 4

C) -, s<1.
If for some value of, € [p, 1) we would haveu(ry) > v;(ro) thenu(rg) > vs(ry) for somes € (0,1).
Thenu stays strictly above; and hence: blows up somewhere in the intervig, 0), i.e., strictly
before the point. This contradiction shows tha{r) < v,(r) for all » € [p, 1). This establishes the
claim. 0

A.3 Afirst estimate from below for the blow-up rate of radial solutions to (17)
Letu = u(r) solve A%y = Q(T)u% on[0,1), u(1) = co with 1 < Q(r) < 2. Then, forr > r, we
may assume that(r) is increasing andAw)'(r) > 0. Thus

TO S n+4 n+4

(Auy(r) = <—>n_l(Au)’(ro) + / 7" (—)"_b(r)um (s)ds < (Au)(ro) + 2un i (r),

T 0 T

and hence

n+4

Au(r) < Au(ro) + (Au) (ro) + 2uni(r) = K + 2uni(r)
with suitably choser{ = K (u) > 0. Now letv be the unique radial solution of

Av =K + v forrg < r < 1, v(rg) = u(rg), v(l) = oo.

Thenw is a subsolution for, and

n—4

——) " onfr.1)

whereC' = C(ry; u). Hence we have proved the following result:

u(r) >v(r) > C’(

Proposition 3. Letu : B — [0, o) be an unbounded smooth radial solution of the perturbed iane
equation (17) omB with 1 < Q(r) < 2. Then there exists a constafit= C'(u) such that

1 7LZ4
- —7~2> on[1/2,1).

u(r) > C'(

15



A.4 A transformation: Moving the boundary r = 1to o

The equation (17) reads in radial coordinates

U
r r2 73

u(4)(7") + 2(” — 1) ///(T) + (n — 1)(n — 3)u//(7,) . (n — 1)(n — g)ul(r> _ Q(r)u%i (7”)

With the transformation

u(r) = (1 —r2) 2" o(=log(l — r2)), w(t) = e ™2y (/1—e ), te (0,00)

we get
K)o () + Ka(t)o" (t) + Ka(£)o" () + Ky ()0 (t) + Kov(t) = %q(t)v%(t) (28)
with
Ky = %6(7# — 4n3 — 4n® + 16n),
Ki(t) = 1—16<(1 — e 2(=4n® 4+ 24n — 32) + (1 — e7")(4n® — 16n* — 16n + 64)
4 4n® — 4n? — 24n>,
Fo(t) = 1—16<(1 — e (4n? — 40n + 80) + (1 — e~*)(16n2 — 16n — 96) + 4n® + 8n>,
K(t)=(1—e")P(n—4)+ (1 —e)(n+2),
Ky(t) = (1—e™)’,
att) =@ (Vi—e).
Eventually, it will be useful to have the valués§® = lim; .., K;(t), i.e,
Kg°:1i6n(n—2)(n+2)(n—4), Kf":%(n—l)(nz—2n—4),
K;O:%n2—3n—1, K =2n—2, KX =1.

In view of the differentiability properties assumed @rit is enough to consider
qt) =1+ ae™

as a prototype.

Note that (28) has always the constant solutiprs 0. Moreover, in the case of constapi i.e.
a = 0, it has a second constant solution= (16K,)"s".

Motivated by the observation that

W(r) =0 v'(t) + ——u(t) =0

2
we transform (28) into a system far(t) = (wy(t), w(t), ws(t), wy(t))? by setting

n—4 n—4 n—4

wi(t) = v(t), wo(t) = ' (t) + 5 v(t), ws(t) = v"(t) + 5 V(1) wy(t) = 0" (t) + TU”(t).

16



The resulting system is

wi(t) = —Zhw(t) + ws(t)
wy(t) = ws(t)
wht) = wilt @
Ky(t)wy(?) Co(t)wy(t) + Ca(t)ws(t) + Ca(t)wa(t) + f5q(t)wi(t) =1,
where
Z Kk k-i—l m
k=m—1
By explicit calculations we get' (¢) = 0 and
151
Cs(t)=1-— §n2 + e_lt(ln2 —n)+ e_Zt(ln - 1)
’ 4 2 2
Cy(t) = —gn +et(2n —2) +e (2 - in)

To get an idea about the behavior of the almost-autonomastersy(29) we replace the functions
C;(t) by their limit C° = limy_. C;i(t),7 = 2, 3,4 andt — ¢(t) by the constant. In other words
we put for the moment = 0 and study the resulting autonomous system

wi(t) = —%wl(t) + wy(t)
wy(t) = ws(t)
whlt) = it 3 59
wi(t) = C5Pws(t) + C5Pws(t) + Cwy(t) + Ewi (¢) 4,
where | ) 5 5
co _ .3 - oo __ Y2 co _ _ Y
Oy = 3" +2n, =1 2 Cy 5

The autonomous system has the steady-states
n—4 4
0 = (0,0,0,0)andP = ((16K,)"F", —— 5~ (16K0)"% £,0,0);

note thatO is also a steady state for the almost autonomous systemA2®)e pointO the system
(30) has the linearized stability matrix

T2
0 0 1 0
Mo o 0 0 1
0 C5° O COF
with four negative eigenvalues
n n n n
)\1—2—5>)\2—1—§>)\3——§>)\4——1—§
and corresponding eigenvectors
—92)2
¢1:(1707070)7 ¢2:(17_17_1+ga_(n 4 ) )7
n? 3n  3(n+2)?
¢3:(1,—2,7’L,—?), ¢4:(17_373+77_ ( 4 ) )



ThusO is asymptotically stable for (30). At the poiftthe linearized stability matrix is
d-n 1 0 0

2
0 0 1 0
0 0 0 1

n+4 00 00 e )

Mp =

with the eigenvalues

1—n 2 1—n 1
p=1pp=-n pz=— —§Vn2+2n—9> o =— +§vn2+2n—9.

ThusP has a three-dimensional stable manifold and a one-dimealsimstable manifold.

A.5 Stability of O in the nonautonomous equation (28)

Lemma 10. The originO is an asymptotically stable steady state of the system {@8j)eover the
following holds

(i) if w is a solution to the system (29) such that for a sequépee oo, one has thatv(t,) — O,
then for anye > 0 one has that eventually

wiol <ew (57 +)1):

(i) the corresponding solution(r) = (1 — rz)%wl(— log(1 — r?)) of the original equation (17)
is bounded near = 1.

Proof. System (29) has the form
w'(t) = Mow(t) + G(t, w(t));

1 n n—a)\ T _ _
Gt,w) = [ = +0(e ")) (0,0,0,w" ™DV 4 et By + e 2Cw
1

16
with constantt x 4—matricesB andC. In particular
G(t
( 7w) — 0’
t—oo0,w—0 ‘w|

i.e. Condition [H, (8.11)] is satisfied. Since all eigenveswf M, are belowy := (4 — n)/2, the
corollary of [H, Theorem 8.1] shows asymptotic stabilitytieé originO. Moreover, for a solutiom
with w(tx) — O, it follows from this corollary that

log |w(t)| 4—n

Hence, for any > 0, one has that eventually

lw(t)] < exp ((A‘_T” + 5) t) .

For the solution of the original equation (17) this means that for. 1 close enough ta
u(r) < (1 — 7’2)

In view of the minimal blow up rate for unbounded solutionsy@d in Proposition 3, this shows that
r — u(r) has to remain bounded near 1. O

—€
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A.6 Energy considerations

Theorem 5. Letu : B — [0, 00) be an unbounded smooth radial solutions of the perturbee®an
equation (17) on the unit ball with < Q(r) < 2. Then

1
/ u(r)Y " Vdr = .

Proof. First we take from Proposition 2 that in the transformed dowtes,v is bounded. Then, as
in [FG, Lemma 2], we see that alst . .., v are bounded.
Let us assume for contradiction that

1
/ u(r)? " dr < oo,

which gives that
/ v(s)*ds < C/ v(s)Y " ds < 0o,
0 0

Testing the differential equation (28) once witland once with/’ gives that fort — oo

/Ot V'(s)? ds — K&° /Ot V(s)2ds = O(1);

t t
Kgo/ v'(s)*ds — Kf"/ v'(s)?ds = O(1).
0 0

Observe that only the terms with constant coefficients devaat since all other terms contain a
factore" and produce finite integrals.
Combining the two equations above gives

(K3°K$® — KfO)/O v"(5)*ds = O(1).

Since
(K3°K3® — K7°) > 0,
this shows first -
/ v"(s)?ds < o0
0
and then

/ v'(s)?ds < oo.
0

Testing the differential equation (28) witl{’ finally gives

/ v"(5)*ds < 00
0

so that -
/0 (w1(5)? + wa(s)? + ws(s)? + wa(s)?) ds < oc.
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Consequently there is a sequemge” oo such that

klim (w1, we, w3, wy) (tr) = 0.

SinceO = (0,0,0,0) is stable, this shows that

tlim (w1, wa, w3, wy) (t) = 0.
From Lemma 10 we conclude thatr) remains bounded near= 1, contradicting the assumption
onwu. n
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