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Abstract

We prove that the best constant for the critical embedding of higher order Sobolev spaces
does not depend on all the traces. The proof uses a comparison principle due to Talenti [19]
and an extension argument which enables us to extend radial functions from the ball to the
whole space with no increase of the Dirichlet norm. Similar arguments may also be used to
prove the very same result for Hardy-Rellich inequalities.
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1 Introduction and results

Let n ∈ N, p ∈ (1,∞) and m ∈ N with m < n/p. Then, it is well-known [1] that the Sobolev

space Wm,p(Rn) embeds continuously into Lnp/(n−mp)(Rn). Since p∗ := np/(n − mp) is the

largest exponent for which embeddings into Lq(Rn) spaces hold, it is called the critical Sobolev

exponent. In fact, more refined embeddings hold true. On the space C∞
c (Rn) of smooth compactly

supported functions, define the norm

‖u‖m,p,Rn :=





‖∆ku‖Lp(Rn) if m = 2k,

‖∇(∆ku)‖Lp(Rn) := ‖ |∇(∆ku)| ‖Lp(Rn) if m = 2k + 1,
(1)

and denote by Dm,p(Rn) the closure of C∞
c (Rn) with respect to the norm (1). Then, also the

larger space Dm,p(Rn) embeds continuously into Lp∗(Rn) and a best Sobolev constant for the

corresponding embedding is defined, see [12, 18] and also previous results in [20]. More precisely,

let

Sm,p := inf
Dm,p(Rn)\{0}

‖u‖p
m,p,Rn

‖u‖p

Lp∗(Rn)

, (2)

then Sm,p > 0 and

Sm,p ‖u‖p

Lp∗ (Rn)
≤ ‖u‖p

m,p,Rn for all u ∈ Dm,p(Rn) .

It can be shown that the infimum in (2) is achieved and, when m = 1 or p = 2, the constant

Sm,p can be explicitly computed, see [12, 17, 18, 20].

Similar results are also available in bounded domains. Let Ω ⊂ R
n be a bounded domain and

on the space C∞
c (Ω) of smooth compactly supported functions, define the norm

‖u‖m,p,Ω :=





‖∆ku‖Lp(Ω) if m = 2k,

‖∇(∆ku)‖Lp(Ω) := ‖ |∇(∆ku)| ‖Lp(Ω) if m = 2k + 1,
(3)
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1



and denote by Wm,p
0 (Ω) the closure of C∞

c (Ω) with respect to the norm ‖·‖m,p,Ω from (3). Again,

one is interested in the optimal constant for the embedding inequality. By taking advantage of

scaling arguments and the concentration-compactness principle, it is shown in [12] that

inf
W m,p

0 (Ω)\{0}

‖u‖p
m,p,Ω

‖u‖p

Lp∗(Ω)

= Sm,p, (4)

where Sm,p is the same constant as in (2). In other words, the best Sobolev constant for the

critical embedding is independent of the domain. However, contrary to the case addressed in

(2), the infimum in (4) is not achieved.

The space Wm,p
0 (Ω) may also be seen as the closed subspace of Wm,p(Ω) of functions with

vanishing traces up to order m − 1. A natural question which arises is to find out whether the

best embedding constant (4) depends on all the traces. The space of particular interest that

appears, is

Wm,p
ϑ (Ω) :=

{
v ∈ Wm,p(Ω); ∆jv|∂Ω

= 0 in the sense of traces for 0 ≤ j <
m

2

}
. (5)

Indeed, when p = 2, the space Wm,2
ϑ (Ω) is the space where variational solutions to polyharmonic

elliptic pde’s are sought when complemented with the so-called homogenous Navier boundary

conditions on ∂Ω. With these boundary conditions, the polyharmonic equation may be rewrit-

ten as a second order system. Note that Wm,p
ϑ (Ω) strictly contains Wm,p

0 (Ω) so that the just

mentioned question is of interest. The first step to answer this question is to define a suitable

norm and, in this case, some smoothness of the boundary is required. For simplicity, we take

∂Ω ∈ Cm although much less regularity is needed, see [2]. In such case, ‖·‖m,p,Ω from (3) is a

complete norm also on Wm,p
ϑ (Ω). Then, the best embedding constant is defined by

Sm,p,ϑ(Ω) := inf
W m,p

ϑ (Ω)\{0}

‖u‖p
m,p,Ω

‖u‖p

Lp∗(Ω)

. (6)

In view of the just mentioned inclusion Wm,p
0 (Ω) ⊂ Wm,p

ϑ (Ω), it is clear that Sm,p,ϑ(Ω) ≤ Sm,p

for any bounded smooth domain Ω.

One then wonders whether this inequality is even an equality and, subsequently, whether

Sm,p,ϑ(Ω) is independent of the domain Ω. When m = p = 2, this question was answered

positively in a paper by van der Vorst [21]. Subsequently, Ge [9] gave a positive answer when

p = 2 for any m ∈ N. As far as we are aware, the general case p > 1 has not been previously

considered. Both papers [9, 21] are based on the concentration-compactness principle by Lions

[12]. Van der Vorst [21, p.259] claims that “the concentration-compactness lemma is a virtual

transcription of the principle due to Lions” although a crucial part of the proof is not carried

out in full detail. However, it is not clear to us how the result in [21, Lemma A1] can be proved

with an extension argument as in [12] since a) the space C∞
c (Ω) is not dense in Wm,p

ϑ (Ω) and b)

functions in Wm,p
ϑ (Ω) cannot be trivially extended to R

n.

The first purpose of the present paper is to provide a complete proof to the following state-

ment:

Theorem 1. Let n ∈ N, p ∈ (1,∞) and m ∈ N with m < n/p. Let Ω ⊂ R
n be a bounded domain

with ∂Ω ∈ Cm. Then,

Sm,p,ϑ(Ω) = Sm,p.

This result is in striking contrast with subcritical embeddings for which the best embedding

constant does depend on the traces, see [7]. Moreover, according to Talenti [20], “if p = 1 the

Sobolev inequality behaves in a slightly different manner” and Cassani-Ruf-Tarsi [5] show that

Theorem 1 becomes false for p = 1.
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We prove Theorem 1 with the aid of two basic tools. First, we use a comparison principle

due to Talenti [19] to reduce it to the case where Ω is a ball and the infimum in (6) is taken

among positive radially symmetric functions, see Section 2. Second, we show how such functions

may be extended to R
n with no increase of the Wm,p

ϑ -norm and with increase of the Lp∗-norm,

see Section 3.

In fact, these tools may be used to prove similar results also for the Hardy-Rellich inequalities

which can be considered as classical Sobolev-type embedding inequalities. The first version of

these inequalities appears in [10, 11] whereas a higher order generalization has been proved by

Rellich [16]. More recently, further extensions have appeared in [6, 14], see also [8] for inequalities

with remainder terms. Although it is not explicitly assumed that 0 ∈ Ω, here we have this

particularly interesting case in mind. Assume again that p > 1 and m < n/p. Then, there exists

a constant Hm,p > 0, independent of Ω, such that

inf
W m,p

0 (Ω)\{0}

‖u‖p
m,p,Ω∫

Ω

|u(x)|p

|x|mp
dx

= Hm,p .

For this result and the exact value of Hm,p we refer to [6, Corollary 14]. Then, by arguing as in

the proof of Theorem 1 one obtains

Theorem 2. Let n ∈ N, p ∈ (1,∞) and m ∈ N with m < n/p. Let Ω ⊂ R
n be a bounded domain

with ∂Ω ∈ Cm. Then,

inf
W m,p

ϑ (Ω)\{0}

‖u‖p
m,p,Ω∫

Ω

|u(x)|p

|x|mp
dx

= Hm,p .

There are only two small differences between proving Theorems 1 and 2. First, contrary to

(2), the best Hardy-Rellich constant Hm,p is not attained on R
n. However, this gives no further

complication in the proof. Second, in order to reduce to the radial situation, beside Talenti’s

principle one should also recall that symmetrization increases Lp-norms with the singular weight

|x|−mp, see [3, Theorem 2.2].

This paper is organized as follows. In Section 2 we recall a comparison principle due to

Talenti [19] and we explain how it may be used in the proof of Theorem 1. In Section 3 we

explain and comment the main ideas of the proof of Theorem 1; to this end, we give a simple

proof in the case m = 2. In Section 4 we give the complete proof of Theorem 1 for any m ≥ 2.

2 The iterated Talenti principle

Here and in the sequel, we denote by B the unit ball, by en = |B| its measure and by f∗ ∈ Lp(B)

the spherical rearrangement of f ∈ Lp(Ω) according to [19, p. 701] when |Ω| = |B| and p > 1.

We remark that in particular f∗ = |f |∗. A crucial tool for the proof of Theorem 1 is the following

comparison principle due to Talenti [19, Theorem 1].

Proposition 3. Let Ω ⊂ R
n (n ≥ 2) be a Cm-smooth bounded domain such that |Ω| = |B| = en.

Let q ≥ 2n/(n + 2) and let m = 2k be an even number. Let f ∈ Lq(Ω) and let u ∈ Wm,q
ϑ (Ω) be

the unique strong solution to

{
(−∆)ku = f in Ω,

∆ju = 0 on ∂Ω, j = 0, . . . , k − 1.
(7)
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Let f∗ ∈ Lq(B) and u∗ ∈ W 1,q
0 (B) denote respectively the spherical rearrangements of f and u,

and let v ∈ Wm,q
ϑ (B) be the unique strong solution to

{
(−∆)kv = f∗ in B,

∆jv = 0 on ∂B, j = 0, . . . , k − 1.
(8)

Then, v ≥ u∗ a.e. in B.

Remark 4. In this proposition we assumed that ∂Ω ∈ Cm. In order to use the result of

Talenti it is sufficient that ∂Ω ∈ C1,1. Indeed, this condition guarantees that the solution of

the Dirichlet Laplacian with right hand side in Lp(Ω) exists uniquely in W 2,p
ϑ (Ω). For such a

boundary however, the solution of (7) in general does not lie in Wm,p
ϑ (Ω) but in another space,

which can be defined for even m as

W̃m,p
ϑ (Ω) :=

{
v ∈ W 2,p

ϑ (Ω); ∆jv ∈ W 2,p
ϑ (Ω) for 0 ≤ j <

m

2

}
. (9)

If one drops the smoothness assumption even further, the result does not hold true any longer

with the same generality. For q = m = 2 there is still a unique weak solution of ∆2u = f in

the sense of a weak ‘system’ solution, namely u, u1 ∈ W 1,2
0 (Ω) satisfying weakly −∆u1 = f

and −∆u = u1 but in general u 6∈ W 2,2 (Ω). It shows that on nonsmooth domains Ω the map

u 7→ ‖u‖2,2,Ω is not a norm in W 2,2
ϑ (Ω). Moreover, there might be a weak ‘equation’ solution

ũ 6= u with ũ ∈ W 2,2
ϑ (Ω) and nevertheless ∆ũ = 0 pointwise almost everywhere on ∂Ω, see [15].

Proof. When k = 1 Proposition 3 is precisely [19, Theorem 1]. For k ≥ 2 we proceed by finite

induction. We may rewrite (7) and (8) as the following systems:
{

−∆u1 = f in Ω,

u1 = 0 on ∂Ω,

{
−∆ui = ui−1 in Ω,

ui = 0 on ∂Ω,
i = 2, . . . , k; (10)

{
−∆v1 = f∗ in B,

v1 = 0 on ∂B,

{
−∆vi = vi−1 in B,

vi = 0 on ∂B,
i = 2, . . . , k. (11)

Note that uk = u and vk = v. By Talenti’s principle [19, Theorem 1] applied for i = 1, we know

that v1 ≥ u∗
1 a.e. in B. Assume that the inequality vi ≥ u∗

i a.e. in B has been proved for some

i = 1, . . . , k − 1. Then, by (10) and (11) we infer
{

−∆ui+1 = ui in Ω

ui+1 = 0 on ∂Ω,

{
−∆vi+1 = vi ≥ u∗

i in B

vi+1 = 0 on ∂B.

By combining the maximum principle for −∆ in B with a further application of Talenti’s prin-

ciple, we obtain vi+1 ≥ u∗
i+1 a.e. in B. This finite induction shows that vk ≥ u∗

k and proves the

statement.

Let us now explain how we intend to apply Proposition 3. Assume that m is even, m = 2k

for some k ∈ N, and note that Sm,p,ϑ(Ω) is invariant under scaling so that we may assume that

Ω has the same measure as the unit ball, |Ω| = |B| = en. In order to apply the iterated Talenti

principle we further fix

q :=
2n

n + 2
.

If p ≥ q we know that Wm,p
ϑ (Ω) ⊂ Wm,q

ϑ (Ω) but if p < q this inclusion fails. For any u ∈

Wm,p
ϑ (Ω) ∩ Wm,q

ϑ (Ω), consider v ∈ Wm,p
ϑ (B) ∩ Wm,q

ϑ (B) given by

{
(−∆)kv = ((−∆)ku)∗ in B

∆jv = 0 on ∂B, j = 0, . . . , k − 1.
(12)
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Then, (−∆)jv is positive, radially symmetric and radially decreasing for all j = 0, . . . , k. More-

over, Proposition 3 yields v ≥ u∗ so that

‖v‖Lp∗(B) ≥ ‖u∗‖Lp∗ (B) = ‖u‖Lp∗ (Ω) , (13)

where the last equality follows from standard properties of symmetric rearrangements, see e.g.

[3]. For the same reason, we also have

∥∥∥∆kv
∥∥∥

Lp(B)
=

∥∥∥(∆ku)∗
∥∥∥

Lp(B)
=

∥∥∥∆ku
∥∥∥

Lp(Ω)

and we obtain the following statement:

Lemma 5. Let p > 1 and let m = 2k be even. Then, for any u ∈ Wm,p
ϑ (Ω) ∩ Wm,q

ϑ (Ω) there

exists a positive radial function v ∈ Wm,p
ϑ (B) ∩ Wm,q

ϑ (B) (i.e. v = v(r), r = |x|) such that

r 7→ (−∆)jv(r) is positive and radially decreasing for all 0 ≤ j ≤ k (14)

and
‖u‖p

m,p,Ω

‖u‖p

Lp∗ (Ω)

≥
‖v‖p

m,p,B

‖v‖p

Lp∗ (B)

. (15)

When m is odd, m = 2k + 1 for some k ≥ 1, the same result may be obtained with slightly

more work. For any u ∈ Wm,p
ϑ (Ω) consider again v ∈ Wm,p

ϑ (B) defined by (12). Then, (−∆)jv

is positive, radially symmetric and radially decreasing for all j = 0, . . . , k. Moreover, we obtain

again (13). Finally, by standard properties of symmetric rearrangements [3], we infer

∥∥∥∇(∆kv)
∥∥∥

Lp(B)
=

∥∥∥∇(∆ku)∗
∥∥∥

Lp(B)
≤

∥∥∥∇(∆ku)
∥∥∥

Lp(Ω)

and we obtain:

Lemma 6. Let p > 1 and let m = 2k + 1 be odd. Then, for any u ∈ Wm,p
ϑ (Ω) ∩ Wm,q

ϑ (Ω) there

exists a positive radial function v ∈ Wm,p
ϑ (B) ∩ Wm,q

ϑ (B) (i.e. v = v(r), r = |x|) such that (14)

and (15) hold.

Let p > 1, m be any integer and consider minimizing sequences for Sm,p,ϑ(Ω) in Wm,p
ϑ (Ω).

Since Ω is a bounded smooth domain, smooth functions can be shown to be dense in Wm,p
ϑ (Ω)

by referring to the existence theory for strong solutions of Navier boundary value problems.

This means that we may restrict ourselves to minimizing sequences for Sm,p,ϑ(Ω) in Wm,p
ϑ (Ω) ∩

Wm,q
ϑ (Ω). Lemmas 5 and 6 now show that

inf
Rm,p

ϑ (B)\{0}

‖u‖p
m,p,B

‖u‖p

Lp∗(B)

≤ Sm,p,ϑ(B) ≤ Sm,p,ϑ(Ω),

where Rm,p
ϑ (B) denotes the positive convex cone of Wm,p

ϑ (B) containing radially symmetric

functions v such that (14) holds. Moreover, as already mentioned in the previous section, we

have Sm,p,ϑ(Ω) ≤ Sm,p for any domain Ω. Hence, we have

inf
Rm,p

ϑ (B)\{0}

‖u‖p
m,p,B

‖u‖p

Lp∗ (B)

≤ Sm,p,ϑ(B) ≤ Sm,p,ϑ(Ω) ≤ Sm,p

for all Ω and the proof of Theorem 1 is complete (for any m) if we show that

inf
Rm,p

ϑ (B)\{0}

‖u‖p
m,p,B

‖u‖p

Lp∗(B)

≥ Sm,p. (16)
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3 The extension argument and comments

In this section we will give a proof of Theorem 1 for the simplest case.

Proof for m = 2. As already mentioned, Theorem 1 follows if we prove (16). We assume that

m = 2 and, for contradiction, also that there exists u ∈ R2,p
ϑ (B) \ {0} such that

‖u‖p
m,p,B

‖u‖p

Lp∗ (B)

< S2,p. (17)

Note that necessarily u′(1) < 0 since u′(1) = 0 would imply u ∈ W 2,2
0 (B) contradicting (4).

Consider the radial entire function defined by

w(r) :=





u(r) + 1
n−2 |u

′(1)| for r ∈ (0, 1],

r2−n

n−2 |u
′(1)| for r ∈ [1,∞),

and note that w ∈ C1,1(0,∞) and w ∈ D2,p(Rn). Moreover, ‖w‖Lp∗(Rn) > ‖u‖Lp∗ (B) whereas

‖∆w‖Lp(Rn) = ‖∆u‖Lp(B). Hence, by (17),

‖w‖p
m,p,Rn

‖w‖p

Lp∗(Rn)

<
‖u‖p

m,p,B

‖u‖p

Lp∗ (B)

< S2,p,

which contradicts (2).

In the remaining of this section we comment the above proof in the simplest Hilbertian case

p = 2. It consists of three steps. First, Talenti’s comparison principle enables us to restrict our

attention to the case where Ω = B and u is radially symmetric. Then, by contradiction, if (17)

holds we may build an entire function by increasing the L2∗-norm and maintaining the L2-norm

of its Laplacian, since the modification is performed by adding a constant in B and a multiple

of the fundamental solution outside B. This extension is possible for any u ∈ R2,2
ϑ (B) \ {0} and

the increase of its L2∗-norm may be estimated as follows:

‖w‖2∗

L2∗ (Rn) =
∥∥∥u + Cn

∣∣u′(1)
∣∣
∥∥∥

2∗

L2∗ (B)
+ ‖w‖2∗

L2∗ (Rn\B) ...

...





<
(
‖u‖L2∗ (B) + Cn |u

′(1)|
)2∗

+ Cn |u
′(1)|2

∗

,

> ‖u‖2∗

L2∗ (B) + Cn |u
′(1)|2

∗

,

where Cn are positive constants which may differ also within the same line. The two above

inequalities show that |u′(1)| measures “the increase of the L2∗-norm” and large values of |u′(1)|

correspond to large increases of the norm.

For any ε > 0 consider the entire functions

uε(x) :=
εn−4

(ε2 + |x|2)
n−4

2

which all satisfy uε(0) = 1. It is known (see e.g. [12]) that they achieve the best constant in (2),

that is,

S2,2 =
‖uε‖

2
2,2,Rn

‖uε‖2
L2∗ (Rn)

for all ε > 0.

We “lower” uε by setting

Uε(x) := uε(x) −
εn−4

(ε2 + 1)
n−4

2

=
εn−4

(ε2 + |x|2)
n−4

2

−
εn−4

(ε2 + 1)
n−4

2
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so that Uε ∈ W 2,2
ϑ (B) and one can show that (see [4])

lim
ε→0

‖∆Uε‖
2
L2(B)

‖Uε‖2
L2∗ (B)

= S2,2.

In this respect, |U ′
ε(1)| = (n−4)εn−4

(1+ε2)(n−2)/2 is a measure of concentration. If it is small then ε is small,

which corresponds to high concentration (Sobolev ratio close to S2,2). In this case, we have seen

above that the L2∗-norm of the extension of Uε is small. Summarizing, not only |u′(1)| weights

the increase of the L2∗-norm of the extension of u but also its degree of concentration.

A similar but slightly more delicate interpretation can be given for all m and p. As we

shall see in next section, in this case there are more extension parameters. Since the norm of

the extension is related to the degree of concentration, it seems that all these parameters could

possibly reduce to only one or at least just a few. This gives rise to a further question. Does the

optimal Sobolev constant depend only on the first trace(s)? In other words, is Sm,p also the best

constant for the embedding

Wm,p
B (Ω) = {Wm,p(Ω);B (u) = 0} ⊂ Lp∗(Ω) ?

Here B (u) is a set of at least
[

m+1
2

]
boundary conditions which guarantee that ‖·‖m,p,Ω is a

norm on Wm,p
B (Ω). Maz’ya [13, Section 1.6.6] proves that for Wm,p (Ω) ∩ W ℓ,p

0 (Ω) with 2ℓ ≥ m

embeddings only need the boundedness of Ω. If Wm,p
B (Ω) 6⊂ Wm,p (Ω) ∩ W ℓ,p

0 (Ω) for some

ℓ ≥ 1
2m, that is, if not all first

[
m+1

2

]
-traces are contained in B, then the regularity of the domain

Ω plays a role.

4 Proof of Theorem 1

The full proof of Theorem 1 needs to distinguish between even and odd m.

Even m, m = 2k for some k ≥ 1.

For g : [0, 1] → R let us define

(G0g) (r) :=

∫ 1

r

∫ ρ

0

(
s

ρ

)n−1

g(s)dsdρ.

Hence, G0 is the solution operator for the radially symmetric Poisson problem in the unit ball of

R
n, that is, it satisfies {

−∆ (G0g) (|x|) = g (|x|) for |x| < 1,

(G0g) (|x|) = 0 for |x| = 1.

Let us also define for g : [0,∞)→ R with appropriate integrability conditions

(Gg) (r) :=

∫ ∞

r

∫ ρ

0

(
s

ρ

)n−1

g(s)dsdρ.

If g also goes to 0 fast enough for r → ∞ (e.g. like r−γ with γ > 2), then an integration by parts

gives

(Gg) (r) =
1

n − 2
r2−n

∫ r

0
sn−1g(s)ds +

1

n − 2

∫ ∞

r
sg(s)ds, (18)

and

−∆ (Gg) (|x|) = g (|x|) for x ∈ R
n.

Note that

g ≥ 0 =⇒ Gg ≥ G0g in B. (19)

We now describe the inductive procedure which we will use in order to suitably extend

functions in Rm,p
ϑ (B).
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Lemma 7. Let n, γ > 2, γ 6= n and let ℓ ≥ 0. If f ∈ W ℓ,p
loc (Rn) is radially symmetric, positive

and such that

f (x) ≤ cf |x|
−γ for |x| > 1,

then there is a unique radially symmetric solution u ∈ W ℓ+2,p
loc (Rn) of





−∆u = f in R
n,

lim
|x|→∞

u (x) = 0.

Moreover, u = Gf implies that u is positive and

u (x) ≤ c2 |x|
2−n +

cf

(γ − 2) (n − γ)
|x|2−γ for |x| > 1.

Equality holds if f (x) = cf |x|
−γ for |x| > 1.

Proof. In view of the “boundary condition” at infinity, uniqueness follows from Weyl’s lemma

and Liouville’s theorem.

Suppose first that f is continuous. We have

−r1−n∂r

(
rn−1∂ru (r)

)
= f (r) .

Since ∂ru is bounded in 0 we find

rn−1∂ru (r) = −

∫ r

0
sn−1f(s)ds

and since u goes to 0 at ∞ it follows that

u(r) =

∫ ∞

r
ρ1−n

∫ ρ

0
sn−1f(s)dsdρ

=
−1

n − 2

[
ρ2−n

∫ ρ

0
sn−1f(s)ds

]∞

r

+
1

n − 2

∫ ∞

r
sf(s)ds

=
1

n − 2
r2−n

∫ r

0
sn−1f(s)ds +

1

n − 2

∫ ∞

r
sf(s)ds. (20)

If f ≥ 0 is not identically 0, then u > 0. For r > 1 it follows from (20) that

u (r) ≤
1

n − 2
r2−n

(∫ 1

0
sn−1f(s)ds + cf

∫ r

1
sn−1−γds

)
+

cf

(n − 2)(γ − 2)
r2−γ

=
1

n − 2

(∫ 1

0
sn−1f(s)ds −

cf

n − γ

)
r2−n +

cf

(γ − 2) (n − γ)
r2−γ .

Equality holds if f (x) = cf |x|
−γ for |x| > 1. The formula in (20) also holds for f ∈ W ℓ,p

loc (Rn).

The claim that u ∈ W ℓ+2,p
loc (Rn) is direct.

The second tool is a variation of an extension result which enables us to modify functions in

Rm,p
ϑ (B) to functions on the whole space with no increase of the Dirichlet norm.

Lemma 8. Let m = 2k and let u ∈ Rm,p
ϑ (B) \ {0}. Let w(r) =

(
Gkf

)
(r) for

f(r) =

{
(−∆)k u(r) for r ≤ 1,

0 for r > 1,

then w ∈ Dm,p(Rn) and

8



1. ‖w‖m,p,Rn = ‖u‖m,p,B

2. ‖w‖Lp∗(Rn) > ‖u‖Lp∗(B).

Proof. From Lemma 7 we find that

w (r) = c1r
2−n + c2r

4−n + · · · + cmrm−n for r > 1

which implies with w ∈ Wm,p
loc (Rn) that w ∈ Dm,p (Rn). Here, it is crucial that p > 1 is assumed.

Since

f(r) = (−∆)k
(
Gkf

)
(r) = (−∆)k w (r)

it even follows that

‖w‖m,p,Rn =
∥∥∥∆kw

∥∥∥
Lp(Rn)

= ‖f‖Lp(Rn) = ‖f‖Lp(B) =
∥∥∥∆ku

∥∥∥
Lp(Ω)

= ‖u‖m,p,B .

Moreover, by (18) it follows that Gf(1) > 0 =
(
(−∆)k−1 u

)
(1) and hence by the maximum

principle and by (19)

Gf ≥ G0f = (−∆)k−1 u in B. (21)

Since G2f(1) > 0 =
(
(−∆)k−2 u

)
(1) and since (21) holds, a further iteration of the maximum

principle and (19) implies

G2f ≥ G2
0f = (−∆)k−2 u in B.

Repeating this argument we find

w = Gkf ≥ Gk
0f = u in B.

Hence ‖w‖Lp∗ (Rn) > ‖w‖Lp∗(B) ≥ ‖u‖Lp∗ (B).

As already mentioned, the proof of Theorem 1 follows if we show that (16) holds. By contra-

diction, assume that there exists u ∈ Rm,p
ϑ (B) \ {0} such that

‖u‖p
m,p,B

‖u‖p

Lp∗(B)

< Sm,p.

Let w ∈ Dm,p(Rn) \ {0} be the function constructed in Lemma 8. Then, Lemma 8 shows that

‖w‖p
m,p,Rn

‖w‖p

Lp∗(Rn)

<
‖u‖p

m,p,B

‖u‖p

Lp∗(B)

< Sm,p

which contradicts (2). This contradiction completes the proof of Theorem 1 for even m = 2k.

Odd m, m = 2k + 1 for some k ≥ 1. In this case, we take advantage of what has just been

proved for the even exponent 2k. Since W 2k+1,p
ϑ (B) ⊂ W 2k,p

ϑ (B), by Lemma 8 we know that any

u ∈ R2k+1,p
ϑ (B) \ {0} allows to define an entire function w such that

w > u in B , ∆k(w − u) = 0 in B , ∆kw = 0 in R
n \ B.

In particular, this implies that also

∇(∆k(w − u)) = 0 in B , ∇(∆kw) = 0 in R
n \ B.

The construction for the 2k-case also enables us to conclude that w ∈ C2k−1(Rn), a regularity

which is not enough to obtain w ∈ D2k+1,p(Rn), here we need one more degree of regularity. This

is obtained by recalling the extra boundary condition that appears by going from W 2k,p
ϑ (B) to

W 2k+1,p
ϑ (B), namely ∆ku = 0 on ∂B, and that ∆kw = 0 in R

n \ B.

9



Remark 9. The inductive procedure described in Lemmas 7 and 8 can be resolved even explicitly.

For the comparison function w introduced above one finds after some tedious calculations that

w(r) =





u(r) +
k−1∑

ℓ=0

a
(k)
ℓ r2ℓ for r ≤ 1,

k−1∑

ℓ=0

b
(k)
ℓ r2ℓ+2−n for r > 1,

where

a
(k)
ℓ =

(−1)ℓ+1

2ℓℓ!
∏ℓ

s=1(n − 2 + 2s)
·




k−1−ℓ∑

j=0

1

j!2j
∏j

s=0(n − 2 − 2s)
((−∆)j+ℓu)′(1)




and

b
(k)
ℓ =

1

2ℓℓ!
∏ℓ

s=1(n − 2 − 2s)
·




k−1−ℓ∑

j=0

(−1)j+1

j!2j
∏j

s=0(n − 2 + 2s)
((−∆)j+ℓu)′(1)


 .
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