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Abstract. We prove existence of nontrivial solutions to semilinear fourth order
problems at critical growth in some contractible domains which are perturba-
tions of small capacity of domains having nontrivial topology. Compared with
the second order case, some difficulties arise which are overcome by a decomposi-
tion method with respect to pairs of dual cones. In the case of Navier boundary
conditions, further technical problems have to be solved by means of a careful
application of concentration compactness lemmas. The required generalization of
a Struwe type compactness lemma needs a somehow involved discussion of certain
limit procedures.

Also nonexistence results for positive solutions in the ball are obtained, ex-
tending a result of Pucci and Serrin on so-called critical dimensions to Navier
boundary conditions. A Sobolev inequality with optimal constant and remainder
term is proved, which is closely related to the critical dimension phenomenon.
Here, this inequality serves as a tool in the proof of the existence results and in
particular in the discussion of certain relevant energy levels.

Mathematics Subject Classification (2000): 35J65; 35J40, 58E05

1. Introduction

We consider the following biharmonic critical growth problem

∆2u = λu+ |u|2∗−2u in Ω (1)

either with Navier boundary conditions

u = ∆u = 0 on ∂Ω (2)
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or with Dirichlet boundary conditions

u = ∇u = 0 on ∂Ω. (3)

Here Ω ⊂ Rn (n ≥ 5) is a bounded smooth domain, λ ≥ 0 and 2∗ = 2n
n−4 is

the critical Sobolev exponent for the embedding H2(Rn) ↪→ L2∗(Rn). We
are interested in existence and nonexistence of nontrivial solutions of (1)
with one of the above boundary conditions.

We consider first the case where λ = 0, namely the equation

∆2u = |u|8/(n−4)u in Ω. (4)

It is well known that (4)–(2) and (4)–(3) admit no positive solutions if
Ω is star shaped (see [27, Theorem 3.3] and [30, Corollary 1]). Clearly,
these are not exhaustive nonexistence results as they only deal with posi-
tive solutions, see also Section 3 below for further comments. On the other
hand, by combining the Pohožaev identity [34] with the unique continuation
property [22, Section 3], it is known that one indeed has nonexistence re-
sults of any nontrivial solution for the correponding second order equation
−∆u = |u|4/(n−2)u in star shaped domains. This suggests that, in order to
obtain existence results for (4), one should either add subcritical perturba-
tions like the linear term λu in (1) or modify the topology or the geometry
of the domain Ω. For general subcritical perturbations we refer to [4,13] and
references therein. Domains with nontrivial topology are studied in [3] for
Dirichlet and in [11] for Navier boundary conditions. Here we are interested
in topologically simple but geometrically complicated domains. As far as we
are aware, the case of “strange” contractible domains has not been tackled
before and this is precisely the first aim of the present paper. We show that
(4)–(2) admits a positive solution in a suitable contractible domain Ω. This
result is the exact counterpart of [27, Theorem 3.3] where it is shown that
(4)–(2) admits no positive solution if Ω is star shaped. For the Dirichlet
boundary condition we obtain a weaker result: we show that (4)–(3) admits
a nontrivial solution in the same kind of contractible domain. Clearly, this
still leaves open some problems concerning Dirichlet boundary conditions,
see Section 3. On one hand our proof is inspired by strong arguments de-
veloped by Passaseo [32], on the other hand we have to face several hard
difficulties, especially (and somehow unexpectedly) under Navier boundary
conditions. One of the crucial steps in the approach by Passaseo is to prove
that sign changing solutions of (4) “double the energy” of the associated
functional. For the second order problem this may be shown by the usual
technique of testing the equation with the positive and negative parts of the
solution. Of course, this technique fails for (4) where higher order derivatives
are involved and we overcome this difficulty thanks to the decomposition
method in dual cones developed in [14]. This method enables us to bypass
the lack of nonexistence results for nodal solutions of (4) in star shaped
domains. Moreover, when dealing with Navier boundary conditions, the re-
quired generalization of the Struwe compactness lemma [37] turns out to
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be very delicate because of the second boundary datum and the lack of a
uniform extension operator for H2 ∩ H1

0–functions in families of domains.
See Lemma 5 and its proof in Section 7. The same problem arises in Lemma
7 where a uniform lower bound for an enlarged optimal Sobolev constant
has to be found in a suitable class of domains. An important tool for this
Lemma is a Sobolev inequality with optimal constant and remainder term,
see Theorem 5. This inequality is closely related to nonexistence results,
which will be summarized in what follows.

Next, we restrict our attention to the case where λ > 0 and Ω = B, the
unit ball in Rn. We are interested in positive radially symmetric solutions.
Let λ1 > 0 be the first eigenvalue of ∆2 with homogeneous Dirichlet bound-
ary conditions. A celebrated result by Pucci–Serrin [36] shows that (1)–(3)
admits a nontrivial radially symmetric solution for all λ ∈ (0, λ1) if and
only if n ≥ 8 (n is the space dimension). If n = 5, 6, 7 the range 0 < λ < λ1

is no longer correct since there exists λ∗ ∈ (0, λ1) such that (1)–(3) admits
no nontrivial radial solution whenever λ ∈ (0, λ∗]; moreover, there exists
λ∗ ∈ [λ∗, λ1) (presumably λ∗ = λ∗) such that (1)–(3) admits even a pos-
itive radially symmetric solution for all λ ∈ (λ∗, λ1). In other words, the
well known [6] nonexistence result for radially symmetric solutions of the
second order problem for small λ in dimension n = 3 carries over to (1)–(3)
in dimensions n = 5, 6, 7: Pucci–Serrin call these dimensions critical. Fur-
thermore, the space dimensions n for which one has nonexistence of positive
radially symmetric solutions of (1)–(3) for λ in some (right) neighbourhood
of 0 are called weakly critical [17]. In Theorem 3 below we prove that the
dimensions n = 5, 6, 7 are weakly critical also for Navier boundary condi-
tions. Therefore, critical dimensions seem not to depend on the boundary
conditions. This result is perhaps related to the fact that critical dimensions
may have an explanation in terms of the summability of the fundamental
solution corresponding to the differential operator ∆2, see [20,26].

Finally, when Ω = B we show that (4)–(3) admits no nontrivial radially
symmetric solution; note that no positivity assumptions on the solution are
made. This result was already obtained in [16, Theorem 3.11]; we give here
a different (and simpler) proof.

2. Existence results

By D2,2(Rn) we denote the completion of the space C∞
c (Rn) with respect

to the norm ‖f‖22,2 =
∫

Rn |∆f |2; this is a Hilbert space when endowed with
the scalar product

(f, g)2,2 =
∫

Rn

∆f∆g dx.

By solution of (1) we mean here a function u ∈ H2 ∩H1
0 (Ω) (when dealing

with (2)) or a function u ∈ H2
0 (Ω) (when dealing with (3)) which satisfies∫

Ω

∆u∆ϕdx =
∫

Ω

(
λuϕ+ |u|8/(n−4)uϕ

)
dx
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for all ϕ ∈ H2 ∩H1
0 (Ω) (resp. H2

0 (Ω)). For Dirichlet boundary conditions
this variational formulation is standard, while for Navier boundary data
we refer to [4, p.221]. By well known regularity results (see [25, Theorem
1] and [43, Lemma B3]), if ∂Ω ∈ C4,α, then the solutions u of (1) satisfy
u ∈ C4,α(Ω) and solve (1) in the classical sense.

Definition 1. Let K ⊂ Rn bounded. We say that u ∈ D2,2(Rn) satisfies
u ≥ 1 on K in the sense of D2,2(Rn) if there exists a sequence (uh) in
C2

c (Rn) such that uh ≥ 1 on K for each h ∈ N and uh → u in D2,2(Rn).
Analogously, u ≤ 1 and u = 1 on K are defined.

Definition 2. We define the (2, 2)−capacity of K (capK) as

capK = inf
{∫

Rn

|∆u|2 dx : u = 1 on K in the D2,2(Rn) sense
}
.

We set cap ∅ := 0.

Since the nonempty set{
u ∈ D2,2(Rn) : u = 1 on K in the D2,2(Rn) sense

}
is closed and convex, there exists a unique function zK ∈ D2,2(Rn) such
that zK = 1 on K and ∫

Rn

|∆zK |2 dx = capK.

Finally we make precise what we mean by set deformations:

Definition 3. Let Ω̃ ⊂ Rn and let H,Ω ⊂ Ω̃. We say that H can be
deformed in Ω̃ into a subset of Ω if there exists a continuous function

H : H × [0, 1] → Ω̃

such that H (x, 0) = x and H (x, 1) ∈ Ω for all x ∈ H.

Our first result states the existence of positive solutions for the criti-
cal growth equation (4) with Navier boundary conditions. Combined with
the already mentioned nonexistence result in star shaped domains [27], this
shows that the existence of positive solution strongly depends on the geom-
etry of the domain.

Theorem 1. Let Ω̃ be a smooth bounded domain of Rn (n ≥ 5) and let
H be a closed subset contained in Ω̃. Then there exists ε > 0 such that if
Ω ⊂ Ω̃ is a smooth domain with cap(Ω̃ \Ω) < ε and such that H cannot be
deformed in Ω̃ into a subset of Ω then there exists a positive solution of{

∆2u = u(n+4)/(n−4) in Ω
u = ∆u = 0 on ∂Ω.

(5)
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We will prove this result in Section 5.
Next we turn to Dirichlet boundary conditions. In this case, we merely

show the existence of nontrivial solutions to (4). The lack of information
about the sign of the solution is due to the lack of information about the
sign of the corresponding Green’s function. Moreover, in general domains
sign change has even to be expected. See [18] for a survey on this feature
and for further references.

Theorem 2. Let Ω̃ be a smooth bounded domain of Rn (n ≥ 5) and let
H be a closed subset contained in Ω̃. Then there exists ε > 0 such that if
Ω ⊂ Ω̃ is a smooth domain with cap(Ω̃ \Ω) < ε and such that H cannot be
deformed in Ω̃ into a subset of Ω then there exists a nontrivial solution of{

∆2u = |u|8/(n−4)u in Ω
u = ∇u = 0 on ∂Ω.

(6)

The proof of this result is simpler than the one of Theorem 1. As we will
explain below, for (5), one has to study very carefully the behaviour of suit-
able sequences uh ∈ H2∩H1

0 (Ωh) for varying domains Ωh. In contrast with
the spaces H2

0 (Ωh), there is no “trivial” extension operator into H2(Rn).
Only as positivity of solutions is concerned, the situation with respect to
Dirichlet boundary conditions is more involved than with respect to Navier
boundary conditions. Here we have no positivity statement of the solution
because Lemma 3 below does not seem to hold.

If Ω is an annulus and if one restricts to radial functions, the problem
is no longer critical and then both (5) and (6) admit a nontrivial solution.
For the second order problem −∆u = |u|4/(n−2)u in Ω, u = 0 on ∂Ω, it
was shown with help of very subtle methods by Coron [7] and Bahri–Coron
[2] that this result extends to domains with nontrivial topology. Recently,
corresponding results have been found also in the higher order case: see [11]
for problem (5) and [3] for the polyharmonic analogue of (6) under Dirichlet
boundary conditions. However, the solutions which are constructed in these
papers and here are not related. To explain this, assume that Ω̃ satisfies
the assumptions of [11] or [3]. If uΩ is the solution of (5) or (6), then by
exploiting the proof of Theorem 1 one has that uΩ converges weakly to
zero as cap(Ω̃ \ Ω) → 0. Hence, any nontrivial solution in Ω̃ may not be
obtained as limit of the solutions uΩ in Ω. On the other hand one expects
the nontrivial solutions in Ω̃ to be stable and to remain under “small”
perturbations Ω ⊂ Ω̃. These solutions in Ω will be different from ours. The
latter situation was studied in [9] for the second order problem.

To conclude the section, we observe that there are also contractible do-
mains Ω, which satisfy the assumptions of the preceding theorems. In the
following example we describe precisely such a situation. Further examples
may be adapted to the biharmonic setting from [32, pp. 39–41].

Example 1. We consider an annular shaped domain as Ω̃ ⊂ Rn with n > 5,
where we drill a sufficiently “thin” cylindrical hole along a straight line in
order to obtain the smooth contractible subdomain Ω.
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To be more precise: we assume that for ε small enough, Ω̃ \ Ωε is con-
tained in a cylinder with basis Bε ⊂ Rn−1 and fixed height. Then by simple
scaling arguments one finds that cap

(
Ω̃ \Ωε

)
= O(εn−5) → 0 as ε → 0,

provided that the dimension satisfies n > 5.
We choose H to be a spherical hypersurface in Ω̃, which cannot be

deformed into a subset of Ωε. This can be seen by looking at the degree
of mapping d(H ( . , t),H, 0) for t ∈ [0, 1], where H is assumed to exist
according to Definition 3.

Instead of the above mentioned segment of fixed length, one may consider
any bounded piece of a fixed generalized plane, provided that its codimen-
sion is at least 5.

3. Nonexistence results and a Sobolev inequality with optimal
constant and remainder term

We collect here a number of known as well as of new nonexistence results
for the equation

∆2u = λu+ |u|8/(n−4)u in Ω (7)

under either Navier or Dirichlet boundary conditions. Here, we include the
linear term λu. It turns out that the discussion of the borderline case λ = 0,
where the purely critical equation has to be considered, is somehow involved
and still not exhaustive. This lack of nonexistence results complicates the
formulation of the compactness result Lemma 5 below.

The functional analytic counterpart of nonexistence results for (7) for
small λ > 0 in so-called critical dimensions are Sobolev inequalities with
optimal constant and remainder term. (This becomes clear in the proof of
Theorem 5. See also [14].) Such an inequality in H2

0 (Ω) – i.e. under Dirichlet
boundary conditions – was proved in [14] while the result in H2 ∩H1

0 (Ω) –
i.e. under Navier boundary conditions – is provided in Sect. 3.3 below. In
the present paper, this refined Sobolev inequality is applied to show that
the optimal Sobolev constant can be increased uniformly for all subdomains
Ω ⊂ Ω̃ with help of a condition on the “barycenter” of the functions u ∈
H2 ∩H1

0 (Ω). See Lemma 7 below.

3.1. Nonexistence under Navier boundary conditions

It turns out that nonexistence questions in this case are relatively hard and
that only restricted results are available.

The case λ = 0
In this case, no positive solution to (5) may exist, provided Ω is star shaped.
See [42, Theorem 3.10] and also [27, Theorem 3.3]. The key ingredient is a
Pohožaev type identity [35]. By means of techniques developed by Pucci and
Serrin in [36], such a nonexistence result may be also shown for nontrivial
radial solutions in the ball.
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More difficult seems this nonexistence result for any nontrivial solution
of (5). In this case the Pohožaev type identity is not powerful enough to
extend u outside Ω by zero as a solution of (4) in Rn and then to apply the
unique continuation property [33].

The case λ > 0
In Section 6 we prove the following result.

Theorem 3. Let n ∈ {5, 6, 7} and B ⊂ Rn be the unit ball. Then there
exists a number λ∗ > 0 such that the problem{

∆2u = λu+ u(n+4)/(n−4) in B
u = ∆u = 0 on ∂B

(8)

admits no positive solution if λ ∈ (0, λ∗].

By [41], positive solutions to (8) are radially symmetric.
Theorem 3 answers a question left open by van der Vorst in [44, Theo-

rem 3]. Moreover, in [44, Theorem 1] complementary existence results were
shown implying that such a nonexistence result can hold at most in the
dimensions 5, 6, 7.

These are the critical dimensions for problem (8), at least, when restrict-
ing to positive solutions in the ball. Theorem 3 can also be shown just for
nontrivial radial solutions: here one has to combine methods of [36] with
some techniques, which appear in the proof of Theorem 4 below.

Again, nonexistence of any nontrivial solution, although expected, has
to be left open.

The case λ < 0
In the preceding nonexistence results, the positivity of a solution, the nonex-
istence of which had to be shown, is intensively exploited. For λ ≥ 0 one
can conclude from u ≥ 0 that even −∆u ≥ 0 in Ω.

For λ negative, we can only argue as before, when λ is close enough to
0, see [28,21]. If λ << 0, the framework of positive solutions is no longer
adequate for (7), and the argument in [42, pp. 390/391] and [44, Theorem
3] breaks down. Instead, one has to look for nonexistence of any nontrivial
solution. But such a result seems to be still unknown, even for nontrivial
radial solutions in the ball.

3.2. Nonexistence under Dirichlet boundary conditions

In this situation, existence results for positive solutions are more involved
than under Navier boundary conditions (see [15]) and cannot even be ex-
pected in general domains. On the other hand, we know much more about
nonexistence for relatively large classes of solutions.

The case λ < 0
Nonexistence of any nontrivial solution is shown in [35], provided the domain
Ω is star shaped. This proof is based on a generalized Pohožaev identity
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and covers also the general polyharmonic problem with (−∆)K as linear
principal part.

The case λ > 0
In [36] we already find the following result, which gives a stronger statement
than the analogous Theorem 3 above for Navier boundary conditions:

Let n ∈ {5, 6, 7} and assume that Ω is the unit ball B. Then there ex-
ists a number λ∗ > 0 such that a necessary condition for a nontrivial
radial solution to (6) to exist is λ > λ∗.

As this special behaviour of the critical growth Dirichlet problem (6) may
be observed only in space dimensions 5, 6 and 7, Pucci and Serrin call these
dimensions critical. For the critical dimension phenomenon for general poly-
harmonic problems with Dirichlet boundary conditions we refer to [17].

The case λ = 0
Also in this case, the nonexistence of any nontrivial solution to (6) has to
be left open, only more restricted results are available. Oswald [30] proved
the nonexistence of positive solutions in strictly star shaped domains by
means of a Pohožaev type identity (see e.g. [27, (2.6)]) and strong maximum
principles for superharmonic functions.

Moreover, we can also exclude nontrivial radial solutions:

Theorem 4. Let B ⊂ Rn (n ≥ 5) be the unit ball. Then problem{
∆2u = |u|8/(n−4)u in B,

u = ∇u = 0 on ∂B
(9)

admits no nontrivial radial solution.

This result can be found in [16, Theorem 3.11]. The proof there is based
on a refined integral identity of Pucci and Serrin [36] and some Hardy type
embedding inequalities. In Section 6 we will give a more elementary and
geometric proof.

Unfortunately neither this proof nor the one given in [16, Theorem 3.11]
carry over to the general polyharmonic problem, where the discussion of
nonexistence of nontrivial radial solutions in the borderline case λ = 0
remains essentially open.

3.3. An optimal Sobolev inequality with remainder term

Sobolev embeddings with critical exponents and the corresponding optimal
Sobolev constants will play a crucial role in the proof of our existence results.

Let us set

S = inf
u∈D2,2(Rn)\{0}

‖∆u‖22
‖u‖22∗

. (10)
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When working in the whole Rn, this optimal Sobolev constant is at-
tained. According to Lemma 2 below, minimizers are necessarily of one
sign. Positive solutions of the corresponding Euler Lagrange equations are
known to be of the following form.

Lemma 1. The constant S in (10) is a minimum and (up to nontrivial
real multiples) it is attained only by the functions

uε,x0(x) =
[(n− 4)(n− 2)n(n+ 2)](n−4)/8ε(n−4)/2

(ε2 + |x− x0|2)(n−4)/2
, (11)

for any x0 ∈ Rn and each ε > 0. Moreover, the functions uε,x0 are the only
positive solutions of the equation

∆2u = u(n+4)/(n−4) in Rn. (12)

Proof. From Lemma 2 below, we take that any minimizer of (10) may be
assumed to be positive. Then, the result follows from [12, Theorem 2.1], [39,
Theorem 4] and [23, Theorem 1.3]. �

Similarly one can define S(Ω) for any Ω ⊂ Rn. It is well known that
S(Ω) is not attained if Ω is bounded [12] and that it does not depend neither
on the domain nor on the boundary conditions [43]. The following extension
of the embedding inequality corresponding to (10) with optimal constant S
gives a quantitative formulation for the fact that S is not attained. Here, it
will be used to show Lemma 7, which in turn is an important step in the
proof of our existence results.

Theorem 5. Let Ω ⊂ Rn be open and of finite measure and p ∈ [1, n
n−4 ).

Then there exists a constant C = C(n, p, |Ω|) > 0, such that for every
u ∈ H2 ∩H1

0 (Ω), one has∫
Ω

|∆u|2 dx ≥ S ‖u‖22∗ +
1
C
‖u‖2p. (13)

Here, |Ω| denotes the n-dimensional Lebesgue measure of Ω. Moreover, if
ω > 0, then (13) holds with a constant C = C(n, p, ω) for all Ω with |Ω| ≤ ω.

For the smaller class H2
0 (Ω) a more refined result can be found in [14].

The proof there is based on an extension and decomposition method (see
also Section 4 below), by means of which analogues to (13) for the spaces
Hm

0 (Ω) of any order can be also obtained. This proof, however, does not
seem to carry over directly to the space H2∩H1

0 due to the lack of informa-
tion at the boundary. In Section 6 we sketch a technical proof of Theorem 5,
which is based on nonexistence results like in Theorem 3 and on Talenti’s
symmetrization result [40].
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4. Preliminary results

In the previous section we have briefly discussed energy minimizing solu-
tions of (12). These are necessarily of one sign (this is obtained as a byprod-
uct of the following lemma) and of the form given in Lemma 1. The next
results show that nodal solutions of (4) double the energy level of the corre-
sponding “free” energy functional (observe that here, we are working with a
constrained functional). This will allow us to bypass the lack of nonexistence
results for nodal solutions of (4) in star shaped domains.

Lemma 2. Let u ∈ D2,2(Rn) be a nodal solution of the equation

∆2u = |u|8/(n−4)u in Rn. (14)

Then ‖∆u‖22 ≥ 24/nS‖u‖22∗ .

Proof. Consider the convex closed cone

K =
{
u ∈ D2,2(Rn) : u ≥ 0 a.e. in Rn

}
,

and its dual cone

K ′ =
{
u ∈ D2,2(Rn) : (u, v)2,2 ≤ 0 ∀v ∈ K

}
.

Let us show that K ′ ⊆ −K . For each h ∈ C∞
c (Rn) ∩ K consider the

solution uh of the problem

∆2uh = h in Rn.

Then by the positivity of the fundamental solution of ∆2 in Rn, it follows
uh ∈ K and thus if v ∈ K ′,

∀h ∈ C∞
c (Rn) ∩K :

∫
Rn

hv dx =
∫

Rn

∆2uhv dx = (uh, v)2,2 ≤ 0.

By a density argument one obtains v ≤ 0 a.e. in Rn, i.e. v ∈ −K . Now,
by a result of Moreau [29], for each u ∈ D2,2(Rn) there exists a unique pair
(u1, u2) in K ×K ′ such that

u = u1 + u2, (u1, u2)2,2 = 0. (15)

Let u be a nodal solution of (14) and let u1 ∈ K and u2 ∈ K ′ be the
components of u according to this decomposition. We obtain that ui 6≡ 0
and

|u(x)|2∗−2u(x)ui(x) ≤ |ui(x)|2∗ , i = 1, 2, (16)

for a.e. x ∈ Rn. Indeed, if i = 1 and u(x) ≤ 0 then (16) is trivial, while if
u(x) ≥ 0, since u2 ∈ −K one has u(x) = u1(x) + u2(x) ≤ u1(x) and again
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(16) holds. The case i = 2 is similar. By combining the Sobolev inequality
with (15) and (16), we get for i = 1, 2

S‖ui‖22∗ ≤ ‖ui‖22,2 =
∫

Rn

∆u∆ui dx =
∫

Rn

∆2uui dx =

=
∫

Rn

|u|2∗−2uui dx ≤
∫

Rn

|ui|2∗ dx = ‖ui‖2∗2∗ ,

which implies ‖ui‖22∗ ≥ S(n−4)/4 for i = 1, 2. Hence, again by (15), one
obtains

‖∆u‖22
‖u‖22∗

=
[∫

Rn

|∆u|2 dx
] [∫

Rn

|u|2∗ dx
]−2/2∗

=
[∫

Rn

|∆u|2 dx
]4/n

=

=
[∫

Rn

|∆u1|2 dx+
∫

Rn

|∆u2|2 dx
]4/n

≥

≥
[
S‖u1‖22∗ + S‖u2‖22∗

]4/n ≥ 24/nS ,

which concludes the proof. �

In a completely similar fashion, one may extend the previous result to
any domain in case of Navier boundary conditions. For Dirichlet boundary
conditions this seems not possible due to the lack of information about the
positivity of the corresponding Green’s function.

Lemma 3. Let Ω be a bounded domain of Rn and assume that u solves (5)
and changes sign. Then ‖∆u‖22 ≥ 24/nS‖u‖22∗ .

In the case of the half space, by exploiting nonexistence results for pos-
itive solutions, we have a stronger result.

Lemma 4. Let Ω = {xn > 0} be the half space and assume that u ∈
D2,2(Ω) solves the equation

∆2u = |u|8/(n−4)u in {xn > 0} (17)

with boundary data either (2) or (3). Then ‖∆u‖22 ≥ 24/nS‖u‖22∗ .

Proof. Notice first that by [27, Theorem 3.3], equation (17)–(2) does not
admit positive solutions. A similar nonexistence result holds for boundary
conditions (3), see [30, Corollary 1] which may be easily extended to un-
bounded domains.

Therefore, any nontrivial solution of (17) (with boundary conditions (2)
or (3)) necessarily changes sign. We obtain the result if we repeat the ar-
gument of the proof of Lemma 2. With Navier boundary conditions this is
straightforward, while with Dirichlet boundary data one may invoke Bog-
gio’s principle [5] in the half space. �
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As pointed out in the introduction, the H2 ∩ H1
0–framework is more

involved than the H2
0–case. Therefore, from now on we restrict our attention

to the first situation.
Consider the functional f : V (Ω) → R

f(u) =
∫

Ω

|∆u|2 dx (18)

constrained on the manifold

V (Ω) =
{
u ∈ H2 ∩H1

0 (Ω) :
∫

Ω

|u|2∗ dx = 1
}
. (19)

We say that (uh) ⊂ V (Ω) is a Palais–Smale sequence for f at level c if

lim
h
f(uh) = c, lim

h
‖f ′(uh)‖(Tuh

V (Ω))∗ → 0

where Tuh
V (Ω) denotes the tangent space to the manifold V (Ω) at uh.

We can now state a global compactness result for the biharmonic oper-
ator, in the spirit of [37]. Even if the proof is on the lines of that of Struwe,
some difficulties arise. In the appendix we give an outline of the proof em-
phasizing the main differences with respect to second order equations.

Lemma 5. Let (uh) ⊂ V (Ω) be a Palais–Smale sequence for f at level c ∈
R. Then, for a suitable subsequence, one has the following alternative: either
(uh) is relatively compact in H2 ∩H1

0 (Ω) or there exist k nonzero functions
û1, ..., ûk ∈ D2,2, solving either (14) or (17) with boundary condition (2)
and a solution û0 ∈ H2 ∩H1

0 (Ω) of (5) such that

uh ⇀ û0

 k∑
j=0

∫
|ûj |2∗ dx

−1/2∗

in H2 ∩H1
0 (Ω) (20)

and

lim
h
f(uh) =

 k∑
j=0

∫
|∆ûj |2 dx

 k∑
j=0

∫
|ûj |2∗ dx

−2/2∗

. (21)

The domain of integration for û0 is just Ω, while for û1, ..., ûk, it is either
a half space or the whole Rn.

When working in H2
0 (Ω) a similar compactness result holds true with

Navier boundary conditions replaced with Dirichlet boundary conditions.
We believe that nontrivial solutions of (17) either with Navier (2) or

Dirichlet (3) boundary conditions do not exist and that the previous lemma
may be strengthened (see Section 3.1 and 3.2). Nevertheless, Lemma 5 is
sufficient to prove the following compactness property in the second critical
energy range.
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Lemma 6. Let (uh) ⊂ V (Ω) be a Palais–Smale sequence for f at level
c ∈ (S, 24/nS). Then, up to a subsequence, (uh) strongly converges in H2 ∩
H1

0 (Ω).

Proof. Assume by contradiction that the sequence (uh) is not relatively
compact in H2 ∩H1

0 (Ω). Then, by Lemma 5 one finds functions û0 ∈ H2 ∩
H1

0 (Ω) and û1, ..., ûk ∈ D2,2 satisfying (20) and (21). Assume first that all
û1, . . . , ûk are positive solutions of (14). Then, by Lemma 1 each ûj is of
type (11) and attains the best Sobolev constant, i.e.∫

Rn

|ûj |2∗ dx =
∫

Rn

|∆ûj |2 dx = S

[∫
Rn

|ûj |2∗ dx
]2/2∗

, j = 1, . . . k, (22)

which implies
∫

Rn |ûj |2∗ dx = Sn/4 for j = 1, ..., k. In particular, one obtains

lim
h
f(uh) =

[∫
Ω

|û0|2∗ dx+ kSn/4

]4/n

.

If û0 ≡ 0, we get f(uh) → k4/nS, while if û0 6≡ 0 for each k ≥ 1 one has[∫
Ω

|û0|2∗ dx+ kSn/4

]4/n

> (k + 1)4/nS.

In any case we have a contradiction with S < lim
h
f(uh) < 24/nS.

We now consider the case in which at least one ûj is sign changing or a
solution in the half space {xn > 0}. By Lemmas 2 and 4 we then have for
these ûj :∫

Rn

|ûj |2∗ dx =
∫

Rn

|∆ûj |2 dx ≥ 24/nS

[∫
Rn

|ûj |2∗ dx
]2/2∗

, (23)

and hence
∫

Rn |ûj |2∗ dx ≥ 2Sn/4 , while for the remaining ûj , (22) holds

true. In any case, we have lim
h
f(uh) ≥

(
2Sn/4

)4/n
= 24/nS, again a con-

tradiction. �

5. Proof of Theorems 1 and 2

The proof of Theorem 1 is by far more involved than the proof of Theorem 2,
because the trivial extension of any function u ∈ H2∩H1

0 (Ω) by 0 does not
yield a function in H2(Rn). In particular, for the space H2

0 (Ω) Lemma 7
easily follows by this extension argument. A further difference is that the
positivity conclusion of Lemma 3 does not hold in the Dirichlet boundary
value case. But in the latter case, one simply has to drop this argument.
Therefore we only deal with the proof of Theorem 1.

For all smooth Ω ⊆ Ω̃ let β : V (Ω) → Rn be the “barycenter” map

β(u) =
∫

Ω

x|u(x)|2∗ dx.
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Since Ω̃ is smooth one finds r̃ > 0 such that Ω̃ is a deformation retract of

Ω̃+ =
{
x ∈ Rn : d(x, Ω̃) < r̃

}
.

First we show that the energy or, equivalently, the optimal Sobolev con-
stants will remain relatively large if we prevent the functions from concen-
trating “too close” to their domain of definition.

Lemma 7.

γ = inf
{

inf
{
f(u) : u ∈ V (Ω), β(u) 6∈ Ω̃+

}
, Ω smooth subset of Ω̃

}
> S.

Proof. Assume by contradiction that for each ε > 0 there exists a smooth
Ωε ⊆ Ω̃ and uε ∈ H2 ∩H1

0 ∩ C∞(Ωε) such that∫
Ωε

|uε|2∗ dx = 1 (24)

∫
Ωε

|∆uε|2 dx ≤ S + ε (25)

β(uε) 6∈ Ω̃+. (26)

Let Uε ∈ H2(Rn) be any entire extension of uε. Since Ωε is smooth, the
existence of such an extension is well known. We emphasize that the quanti-
tative properties of Uε outside Ωε (which are expected to blow up for ε↘ 0)
will not be used. Further, let 1Ωε

be the characteristic function of Ωε.

Step I. We claim that 1ΩεUε → 0 in L2(Rn) as ε→ 0.

By Theorem 5 there exists C > 0 independent of ε such that

∀u ∈ H2 ∩H1
0 (Ωε) : ‖∆u‖22 ≥ S‖u‖22∗ +

1
C
‖u‖21. (27)

Putting together (24), (25) and (27), for each ε > 0 we have

S + ε ≥
∫

Ωε

|∆uε|2 dx ≥ S‖uε‖22∗ +
1
C
‖uε‖21 = S +

1
C
‖1ΩεUε‖21

so that ‖1Ωε
Uε‖1 → 0 as ε→ 0. By (24) and classical Lp–interpolation, we

also get ‖1Ωε
Uε‖2 → 0 as ε→ 0.

Step II. The weak* limit (in the sense of measures) of 1Ωε |Uε|2∗ is a Dirac
mass.

Integration by part shows that ‖∇uε‖2L2(Ωε) ≤ ‖∆uε‖L2(Ωε) ‖uε‖L2(Ωε).
Then by Step I and (25), we infer that

‖1Ωε
∇Uε‖L2(Rn) = ‖∇uε‖L2(Ωε) → 0.
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Therefore, taking any ϕ ∈ C∞
c (Rn), as ε→ 0 we find∫

Rn

1Ωε |∆(ϕUε)|2 dx =
∫

Rn

1Ωε |ϕ|2|∆Uε|2 dx+ o(1) . (28)

By the L1(Rn) boundedness of the sequences (1Ωε |Uε|2∗) and (1Ωε |∆Uε|2)
there exist two bounded non negative measures ν, µ on Rn such that

1Ωε
|Uε|2∗ ⇀∗ ν, 1Ωε

|∆Uε|2 ⇀∗ µ (29)

in the sense of measures. By the Sobolev inequality in Ωε we have

∀ε > 0 : S

(∫
Rn

1Ωε |Uε|2∗ |ϕ|2∗ dx
)2/2∗

≤
∫

Rn

1Ωε |∆(ϕUε)|2 dx

and therefore, by (28) and (29), letting ε→ 0 yields

S

(∫
Rn

|ϕ|2∗ dν
)2/2∗

≤
∫

Rn

|ϕ|2 dµ.

By (24) and (25) we also know that

S

(∫
Rn

dν

)2/2∗

=
∫

Rn

dµ.

Hence by [24, Lemma I.2] there exist x ∈ Ω̃ and σ > 0 such that ν = σδx.
From (24) we see that σ = 1.

The contradiction follows by Step II, since β(uε) → x, against (26). This
completes the proof. �

According to the previous lemma, we may choose µ such that S < µ <
min{24/nS, γ}. Let ϕ ∈ C∞

c (B1(0)) be such that∫
B1(0)

|ϕ|2∗ dx = 1,
∫

B1(0)

|∆ϕ|2 dx < µ. (30)

Define for each σ > 0 and y ∈ Rn the function ϕσ,y : Rn → R by setting

ϕσ,y(x) = ϕ

(
x− y

σ

)
where ϕ is set to zero outside B1(0) . It is readily seen that there exists
σ > 0 such that Bσ(y) ⊂ Ω̃ and hence ϕσ,y ∈ C∞

c (Ω̃) for each y ∈ H . For
all Ω ( Ω̃ let zΩ ∈ D2,2(Rn) be such that zΩ = 1 in Ω̃\Ω and∫

Rn

|∆zΩ |2 dx = cap(Ω̃\Ω),

see what follows Definition 1. Note that one has

(1− zΩ)Ty(ϕ) ∈ H2 ∩H1
0 (Ω) ∀y ∈ H,
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where Ty(ϕ) := ϕσ,y

‖ϕσ,y‖2∗
. Moreover, for each δ > 0 there exists ε > 0 with

sup
y∈H

‖zΩTy(ϕ)‖H2∩H1
0 (Ω) < δ (31)

whenever cap(Ω̃\Ω) < ε. Then one gets

‖(1− zΩ)Ty(ϕ)‖L2∗ (Ω) 6= 0 ∀y ∈ H,

if ε is sufficiently small. So, if we define the map ΦΩ : H → V (Ω) by

ΦΩ(y) =
(1− zΩ)Ty(ϕ)

‖(1− zΩ)Ty(ϕ)‖2∗
.

Taking into account (30) and (31), we find ε > 0 such that

sup{f(ΦΩ(y)) : y ∈ H} < µ (32)

provided that cap(Ω̃\Ω) < ε. From now on ε is fixed subject to the previous
restrictions. Let Ω ⊂ Ω̃ be such that cap(Ω̃\Ω) < ε and r ∈ (0, r̃) be such
that Ω is a deformation retract of

Ω+ =
{
x ∈ Rn : d(x,Ω) < r

}
.

As in Lemma 7, one obtains

inf {f(u) : u ∈ V (Ω), β(u) 6∈ Ω+} > S. (33)

Notice that

inf {f(u) : u ∈ V (Ω), β(u) 6∈ Ω+} ≤ sup {f(ΦΩ(y)) : y ∈ H} (34)

otherwise the map R : H × [0, 1] → Ω̃ given by

R(y, t) = (1− t)y + tβ(ΦΩ(y)) ∀y ∈ H, ∀t ∈ [0, 1]

would deform H in Ω̃ into a subset of Ω+ and then into a subset of Ω (Ω is
a deformation retract of Ω+) contradicting the assumptions. Here, in order
to see R(y, t) ∈ Ω̃, we used the fact that supp ΦΩ(y) ⊂ Bσ(y) and that,
since ϕ ≥ 0, β (ΦΩ(y)) ∈ Bσ(y) ⊂ Ω̃.

Therefore, by combining (32), (33) and (34) one gets

S < inf {f(u) : u ∈ V (Ω), β(u) 6∈ Ω+} ≤ sup {f(ΦΩ(y)) : y ∈ H} (35)

< µ < γ ≤ inf
{
f(u) : u ∈ V (Ω), β(u) 6∈ Ω̃+

}
.

In what follows we need to find two appropriate levels, such that the corre-
sponding sublevel sets

fc = {u ∈ V (Ω) : f(u) ≤ c}
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cannot be deformed into each other. For this purpose let c1, c2 > S be such
that

c1 < inf{f(u) : u ∈ V (Ω), β(u) 6∈ Ω+} ,

c2 = sup{f(ΦΩ(y)) : y ∈ H}.

Assume by contradiction that there exists a deformation ϑ of fc2 into fc1 ,
i.e.

ϑ : fc2 × [0, 1] → fc2 , ϑ( . , 0) = Idfc2 and ϑ(fc2 , 1) ⊆ fc1 .

We define H : H × [0, 1] → Ω̃ by setting for each x ∈ H

H (x, t) =


(1− 3t)x+ 3tβ(ΦΩ(x)) if t ∈ [0, 1/3]
%̃(β(ϑ(ΦΩ(x), 3t− 1))) if t ∈ [1/3, 2/3]
%̃ (% (β (ϑ(ΦΩ(x), 1)) , 3t− 2)) if t ∈ [2/3, 1]

where %̃ : Ω̃+ → Ω̃ is a retraction and % : Ω+ × [0, 1] → Ω+ is a continuous
map with %(x, 0) = x and %(x, 1) ∈ Ω for all x ∈ Ω+. In order to see that
H (x, t) ∈ Ω̃, one should observe that c2 < γ and ϑ(ΦΩ(x), 3t − 1) ∈ fc2 ,
hence β(ϑ(ΦΩ(x), 3t− 1)) ∈ Ω̃+.

As ϑ(ΦΩ(x), 1) ∈ fc1 for each x ∈ H and

c1 < inf {f(u) : u ∈ V (Ω), β(u) 6∈ Ω+} ,

then for each x ∈ H
β(ϑ(ΦΩ(x), 1)) ∈ Ω+

and H is a deformation of H in Ω̃ into a subset of Ω, in contradiction with
our assumptions. Then the sublevel set

fc2 = {u ∈ V (Ω) : f(u) ≤ c2}

cannot be deformed into

fc1 = {u ∈ V (Ω) : f(u) ≤ c1} .

Hence, by combining Lemma 6 with the standard deformation lemma (see
[31, Theorem 4.6] and also [10, Lemma 27.2], [38, Theorem 3.11]) one obtains
a constrained critical point uΩ such that

S < f(uΩ) ≤ sup{f (ΦΩ(y)) : y ∈ H} < µ < 24/nS.

Finally, uΩ does not change sign by Lemma 3. �
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6. Proof of Theorems 3, 4 and 5

Proof of Theorem 3. We assume that Ω = B = B1(0) is the unit ball
and that (8) with λ > 0 has a positive solution u. As we have already
mentioned above, the result by Troy [41, Theorem 1] shows that u is radially
symmetric. As the right hand side in (8) is positive, an iterated application
of the maximum principle for −∆ yields that −∆u and u are strictly positive
and strictly radially decreasing. We will exploit the following Pohožaev type
identity, which may be taken e.g. from [42, Lemma 3.9]:

2λ
∫

B

u2 dx =
∫

∂B

(
∂u

∂r

)(
∂

∂r
(−∆u)

)
dS. (36)

As u is radially symmetric we may proceed as follows with the term on the
right hand side; here, en denotes the n-dimensional volume of the unit ball
B and c(n) denotes a generic positive constant which may vary from line to
line: ∫

∂B

(
∂u

∂r

)(
∂

∂r
(−∆u)

)
dS = −n en

∂u

∂r
(1) · ∂

∂r
(∆u)(1)

=
1
n en

(∫
∂B

(
−∂u
∂r

)
dS

)(∫
∂B

(
∂

∂r
(∆u)

)
dS

)
=

1
n en

(∫
B

(−∆u) dx
)(∫

B

∆2u dx

)
. (37)

The first integral needs some further consideration. First of all, by making
use of homogeneous Navier boundary conditions, we find:∫

B

(
1− |x|2

)
∆2u dx = −

n∑
j=1

∫
B

(−2xj)(∆u)xj
dx = 2n

∫
B

(−∆u) dx.

Furthermore, as we have already mentioned, u and by (8) also ∆2u are
positive and strictly radially decreasing. This fact can be used to get rid of
the degenerate weight factor 1− |x|2 in the previous term:∫

B

∆2u dx ≤
∫
|x|≤1/2

∆2u dx+
∫

1/2≤|x|≤1

∆2u dx

≤
∫
|x|≤1/2

∆2u dx+ c(n)∆2u

(
1
2

)
≤
∫
|x|≤1/2

∆2u dx+ c(n)
∫
|x|≤1/2

∆2u dx

≤ c(n)
∫

B

(
1− |x|2

)
∆2u dx.

Combining this estimate with the previous identity, we obtain from (36)
and (37):

λ

∫
B

u2 dx ≥ c(n)
(∫

B

∆2u dx

)2

= c(n)‖∆2u‖21. (38)
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By a duality argument and using elliptic estimates, we find

‖u‖2 ≤ c(n)‖∆2u‖1, provided n < 8. (39)

Observe that L2−estimates for the biharmonic operator under homogeneous
Navier boundary conditions follow immediately from the L2−estimates for
the Laplacian.

Combining (38) and (39), we see that for any positive radial solution u
of (8), we have

λ

∫
B

u2 dx ≥ c(n)
∫

B

u2 dx;

where the constant c(n) is in particular independent of u. As u > 0, we have
necessarily λ ≥ c(n). �

Proof of Theorem 4. Assume by contradiction that u is a nontrivial radial
solution of (9). According to the remarks in Section 3.2 on the nonexistence
of positive solutions, we may assume that u is sign changing. Further, u
cannot have infinitely many oscillations near ∂B, because in this case, as
u ∈ C4(B) we would also have ∆u = 0 as well as d

dr∆u = 0 on ∂B and could
extend u by 0 to the whole of Rn as a solution of the differential equation.
The unique continuation property [33] would give the desired contradiction.

As one may replace u with −u if necessary, we may thus assume that
there exists a number a ∈ (0, 1) such that

u(x) = 0 for |x| = a, u(x) > 0 for a < |x| < 1;

moreover, by a Pohožaev-type identity,

u(x) = ∇u(x) = ∇2u(x) = 0 for |x| = 1. (40)

Clearly d
dru(a) ≥ 0. We define

f(x) := |u(x)|2∗−2u(x)

and compare u with the solution v of{
∆2v(x) = f(x) for a < |x| < 1,

v(x) = ∇v(x) = 0 for |x| ∈ {a, 1}.

Obviously v > 0 on a < |x| < 1. We now make use of comparison results,
which hold true for radial solutions of biharmonic inequalities in the annulus
{x : a < |x| < 1} and can e.g. be found in [8, Section 2]. First one obtains

d2

dr2
v(1) > 0. (41)

Next, as u and v satisfy the same differential equation, if d
dru(a) = 0 it

follows that u ≡ v while if d
dru(a) > 0 = d

drv(a) we find u > v in a < |x| < 1.
In both cases (41) gives

d2

dr2
u(1) > 0
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and hence a contradiction with (40). �

Proof of Theorem 5. We keep p ∈ [1, n
n−4 ) fixed as in the theorem.

Let B = B1(0) denote the unit ball, centered at the origin. By scaling and
Talenti’s comparison principle [40, Theorem 1] it suffices to prove that there
exists CB > 0 with

‖∆u‖22 ≥ S‖u‖22∗ +
1
CB

‖u‖2p (42)

for each u ∈ H2∩H1
0 (B), which is radially symmetric and radially decreasing

with respect to the origin (and hence positive). Let us set

Sλ,p = inf
u∈H2∩H1

0(B)
u radially decreasing

‖∆u‖22 − λ‖u‖2p
‖u‖22∗

.

If by contradiction (42) does not hold, one gets

∀λ > 0 : Sλ,p < S. (43)

Let us fix some λ ∈ (0, λ1,p), where

λ1,p := inf
u∈H2∩H1

0 (B)\{0}

‖∆u‖22
‖u‖2p

(44)

is the first positive eigenvalue of{
∆2u = λ‖u‖2−p

p |u|p−2u in B
u = ∆u = 0 on ∂B.

Arguing along the lines of [6] and [15], one finds a smooth positive radial
strictly decreasing solution of{

∆2u = u(n+4)/(n−4) + λ‖u‖2−p
p |u|p−2u in B

u = ∆u = 0 on ∂B.
(45)

On the other hand, for any positive radially decreasing solution of (45) one
has the following variant of Pohožaev’s identity:

λ

(
2− n(p− 2)

2p

)
‖u‖2p =

∫
∂B

(
∂u

∂r

)(
∂

∂r
(−∆u)

)
dS. (46)

As in the proof of Theorem 3, we conclude

λ‖u‖2p ≥ c(n, p)‖∆2u‖21 ≥ c(n, p) ‖u‖2p, (47)

as we have assumed that p < n/(n − 4). For λ > 0 sufficiently small, we
obtain a contradiction. �
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7. Appendix: Proof of Lemma 5

We prove the corresponding statement for the “free” functional

EΩ(u) =
1
2

∫
Ω

|∆u|2 dx− 1
2∗

∫
Ω

|u|2∗ dx

which is defined on the whole space H2 ∩H1
0 (Ω). More precisely, we have

Lemma 8. Let (uh) ⊂ H2 ∩ H1
0 (Ω) be a Palais–Smale sequence for EΩ

at level c ∈ R. Then either (uh) is relatively compact in H2 ∩ H1
0 (Ω) or

there exist k > 0 nonzero functions ûj ∈ D2,2(Ω0,j), j = 1, . . . , k, with
Ω0,j either the whole Rn or a half space, solving either (14) or (17) with
boundary condition (2) and a solution û0 ∈ H2 ∩ H1

0 (Ω) of (5) such that,
as h→∞:

uh ⇀ û0 in H2 ∩H1
0 (Ω),

‖∆uh‖22 → ‖∆û0‖22 +
k∑

j=1

‖∆ûj‖22, EΩ(uh) → EΩ(û0) +
k∑

j=1

EΩ0,j
(ûj).

In the second order situation, the corresponding result is due Struwe
[37]. Related generalisations of the Struwe compactness lemma to higher
order problems can be found in [1,3,11,19]. However, none of these applies
directly to our situation. A particular difficulty here arises from the existence
of the boundary ∂Ω in combination with Navier boundary conditions.

Proof of Lemma 8.
Step I. Reduction to the case uh ⇀ 0.

By well known arguments [6] we know that there exists u ∈ H2∩H1
0 (Ω)

such that uh ⇀ u (up to a subsequence) and E′
Ω(u) = 0, namely u solves

(5). Moreover, by the Brezis–Lieb lemma we infer that (uh − u) is again a
Palais–Smale sequence for E. Therefore we may assume that

uh ⇀ 0, E(uh) → c ≥ 2
n
Sn/4. (48)

Indeed, if c < 2
nS

n/4, then we are in the compactness range of E and by
arguing as in [6], uh → 0 up to a subsequence. In this case the statement
follows with k = 0.

Assuming (48) and arguing as for the proof of [37, (3.2), p.187] we deduce∫
Ω

|∆uh|2 dx ≥ Sn/4 + o(1). (49)

Let L ∈ N be such that B2(0) is covered by L balls of radius 1. By continuity
of the maps

R 7→ sup
y∈Ω

∫
BR−1 (y)∩Ω

|∆uh|2 dx, y 7→
∫

BR−1 (y)∩Ω

|∆uh|2 dx
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and (49), for h large enough one finds Rh > 2/diam(Ω) and xh ∈ Ω such
that∫

B
R
−1
h

(xh)∩Ω

|∆uh|2 dx = sup
y∈Ω

∫
B

R
−1
h

(y)∩Ω

|∆uh|2 dx =
1

2L
Sn/4. (50)

When passing to a suitable subsequence, three cases may now occur:
Case I. Rh ↗ +∞ and (Rhd(xh, ∂Ω)) is bounded;
Case II. (Rhd(xh, ∂Ω)) → +∞;
Case III. (Rh) is bounded.

Step II. Preliminaries for Case I.
For every x ∈ Rn let us denote by x′ its projection onto Rn−1, so that

x = (x′, xn). Since d(xh, ∂Ω) → 0, up to a subsequence xh → x0 ∈ ∂Ω and
%h := Rhd(xh, ∂Ω) → %. Moreover, for sufficiently large h (say h ≥ h) there
exists a unique yh ∈ ∂Ω such that d(xh, ∂Ω) = |yh − xh|.

For all h ≥ h, up to a rotation and a translation, we may assume that
yh = 0 and that the tangent hyperplane H to ∂Ω at 0 has equation xn = 0
so that xh−yh ⊥ H. Then, by the smoothness of ∂Ω, there exist an (n−1)–
dimensional ball Bσ(0) of radius σ > 0 (independent of h) and smooth maps
ψh : Bσ(0) → R such that in local orthonormal coordinate systems over the
tangent hyperplanes at yh, we have:

∂Ω ∩
(
Bσ(0)× [−σ, σ]

)
=
{
(x′, ψh(x′)) : x′ ∈ Bσ(0)

}
. (51)

Furthermore, there exists C > 0 (independent of h) such that

|ψh(x′)| ≤ C|x′|2, |∇ψh(x′)| ≤ C|x′|, |D2ψh(x′)| ≤ C ∀x′ ∈ Bσ(0).
(52)

We now rescale the domain Ω by setting

Ωh = Rh

(
Ω − xh

)
,

so that xh is mapped into the origin 0 while the origin is mapped into
(0,−%h) and (51) becomes

∂Ωh ∩
(
BσRh

(0)× [−σRh − %h, σRh − %h]
)

=

=
{(

x′, Rhψh

(
x′

Rh

)
− %h

)
: x′ ∈ BσRh

(0)
}
.

Let us set

ωh =

{
(x′, x) ∈ Rn : x′ ∈ BRhσ(0),

Rhψh

(
x′

Rh

)
− %h < xn < Rhψh

(
x′

Rh

)
− %h +Rhδ

}
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where δ > 0 and sufficiently small to have ωh ⊂ Ωh. Consider the injective
map

χh : BRhσ(0)× [−Rhδ,Rhδ] → Rn

(x′, xn) 7→
(
x′, Rhψh

(
x′

Rh

)
+ xn − %h

)
and its inverse χ−1

h . We observe that χh

(
BRhσ(0)× [0, Rhδ]

)
= ωh and

that χh is bijective on these sets. Thanks to (52), after some computations,
one sees that (χh) converges in C2

loc({xn ≥ 0}) to the translation by the
vector (0,−%). Therefore,

Ω0 = {(x′, xn) ∈ Rn : xn > −%}
is the local uniform limit of (Ωh). In particular, for every ϕ ∈ C∞

c (Ω0) we
also have that ϕ ∈ C∞

c (Ωh) for sufficiently large h. This will be used below.
Let us now set

vh(x) = R
4−n

2
h uh

(
xh +

x

Rh

)
, (53)

so that vh ∈ H2 ∩ H1
0 (Ωh). By boundedness of (uh) we infer that there

exists C > 0 such that ‖vh‖H2(Ωh) ≤ C. Let 1Ωh
denote the characteristic

function of Ωh, then the sequence (1Ωh
vh) is bounded in D1,2n/(n−2)(Rn)

(and in L2∗(Rn)) so that, up to a subsequence, we have

1Ωh
vh ⇀ v0 in D1,2n/(n−2) ∩ L2∗(Rn) (54)

where supp(v0) ⊆ Ω0 and v0|xn=−% = 0. Moreover, as (1Ωh
D2vh) is bounded

in L2(Rn), by weak continuity of distributional derivatives, we deduce∫
Ωh

D2
ijvh ϕdx→

∫
Ω0

D2
ijv0 ϕdx

for all ϕ ∈ C∞
c (Ω0) and i, j = 1, . . . , n. In particular, v0 has in Ω0 second

order weak derivatives.

Step III. The limiting function v0 in (54) solves (5) in Ω0.
Fix ϕ ∈ C∞

c (Ω0), then for h large enough we have supp(ϕ) ⊂ Ωh. Define
ϕh ∈ C∞

c (Ω) by setting

ϕh(x) = R
n−4

2
h ϕ

(
Rh(x− xh)

)
.

Therefore, (D2ϕh) being bounded in L2(Ω) and taking into account (53),
one obtains

o(1) =E′
Ω(uh)(ϕh) = R

n
2
h

∫
Ω

∆uh∆ϕ
(
Rh(x− xh)

)
dx

−R
n−4

2
h

∫
Ω

|uh|2∗−2uhϕ
(
Rh(x− xh)

)
dx

=
∫

Rn

∆vh∆ϕdx−
∫

Rn

|vh|2∗−2vhϕdx

=
∫

Rn

∆v0∆ϕdx−
∫

Rn

|v0|2∗−2v0ϕdx+ o(1).



24 Filippo Gazzola et al.

Then v0 ∈ D2,2(Ω0) solves (5) in distributional sense. The delicate point is
to see that ∆v0 = 0 on ∂Ω0. To this end, let ϕ ∈ C2

c (Rn) with ϕ = 0 on
∂Ω0 and define

ϕh(x) = ϕ
(
χ−1

h (x)− (0, %)
)
.

Notice that for h large enough, also ϕh ∈ C2
c (Rn) with ϕh = 0 on ∂Ωh.

Taking into account that (χ−1
h ) tends to the translation by (0, %), we obtain

ϕh → ϕ in C2(Rn) and∫
Ω0

(∆v0∆ϕ − |v0|2∗−2v0ϕ) dx = lim
h

∫
Ωh

(∆vh∆ϕh − |vh|2∗−2vhϕh) dx

= lim
h

∫
Ω

[
∆uh∆

(
R

n−4
2

h ϕh(Rh(x− xh))
)
−

− |uh|2∗−2uhR
n−4

2
h ϕh(Rh(x− xh))

]
dx

= lim
h
E′

Ω(uh)
(
R

n−4
2

h ϕh(Rh(x− xh))
)

= 0.

Therefore, by extending any given ϕ ∈ H1
0 ∩H2 (Ω0) oddly with respect to

xn−% as a function of H2(Rn) and then by approximating it by a sequence
of C2 functions (ϕk) with ϕk = 0 on ∂Ω0, we get

∀ϕ ∈ H1
0 ∩H2(Ω0) :

∫
Ω0

∆v0∆ϕdx =
∫

Ω0

|v0|2∗−2v0ϕdx,

which, as pointed out in [4, p. 221] implies that v0 is also a strong solution
of (5) in Ω0.

Step IV. The limiting function v0 in (54) is nontrivial.
Let ϕ ∈ C∞

c (Rn) such that Ω0 ∩ suppϕ 6= ∅; then for h large enough, we
may define

ṽ0,h : Ωh ∩ supp(ϕ) → R, ṽ0,h(x) = v0
(
χ−1

h (x)− (0, %)
)
. (55)

Since v0 ∈ C2(Ω0), v0 = ∆v0 = 0 on ∂Ω0 and (χh) converges to the
translation by the vector (0,−%), we get as h→ +∞

‖1Ω0v0 − 1Ωh
ṽ0,h‖L2(supp(ϕ)) = o(1),

‖1Ω0v0 − 1Ωh
ṽ0,h‖L2∗ (supp(ϕ)) = o(1)

‖1Ω0∇v0 − 1Ωh
∇ṽ0,h‖L2(supp(ϕ)) = o(1),

‖1Ω0∆v0 − 1Ωh
∆ṽ0,h‖L2(supp(ϕ)) = o(1).

(56)

To symplify the notations, in what follows we omit the 1Ωh
in front of

vh,∇vh,∆vh and 1Ω0 in front of v0,∇v0,∆v0. Then by (56) and some com-
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putations, one obtains, as h→ +∞∫
Rn

|∆(ϕv0 − ϕvh)|2 dx =
∫

Ωh∩supp(ϕ)

|∆(ϕṽ0,h − ϕvh)|2 dx+ o(1)

≥ S

(∫
Ωh∩supp(ϕ)

|ϕ(ṽ0,h − v0)|2∗ dx

)2/2∗

+ o(1)

≥ S

(∫
Rn

|ϕ(v0 − vh)|2∗ dx
)2/2∗

+ o(1).

By compact embedding one has vh → v0 in L2
loc(Rn) and thanks to an

integration by parts one gets

‖∇(ϕ(vh − v0))‖2 ≤ ‖ϕ(vh − v0)‖2‖∆(ϕ(vh − v0))‖2

and therefore ∇vh → ∇v0 in L2
loc(Rn). Hence the previous inequality yields∫

Rn

ϕ2|∆(v0 − vh)|2 dx ≥ S

(∫
Rn

|ϕ|2∗ |v0 − vh|2∗ dx
)2/2∗

+ o(1),

which implies ∫
Rn

ϕ2 dµ ≥ S

(∫
Rn

|ϕ|2∗ dν
)2/2∗

,

where dµ and dν denote respectively the weak∗ limits of |∆(v0 − vh)|2 and
|v0 − vh|2∗ in the sense of measures.

The rest of this step – to show v0 6≡ 0 – is now very closely along the lines
of [1, Lemma 2] and [38, p. 173]. We emphasize that here, the normalization
condition (50) is exploited.

Step V. In Case II, a solution of (14) appears.
This follows by arguing as in [1], see also [37]. After rescaling as in (53),

(vh) converges to a solution of (14).

Step VI. Case III cannot occur.
By contradiction, assume that (Rh) is bounded. Then, being Rh >

2/diam(Ω), we may assume that, up to a subsequence,

xh → x0 ∈ Ω, Rh → R0 > 0.

Let us set Ω0 = R0(Ω − x0) and

vh = R
4−n

2
0 uh

(
x0 +

x

R0

)
.

As in Case I (with the obvious simplifications), one gets for a subsequence
vh ⇀ v0 ∈ H2∩H1

0 (Ω0) and that v0 6≡ 0 solves (5) in Ω0. But this is absurd
since uh ⇀ 0.
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Step VII. Conclusion.
If (uh) is a Palais–Smale sequence for EΩ , then by Step I its weak limit

û0 solves (5). By Steps III, IV and V the “remaining part” (uh−û0) suitably
rescaled gives rise to a nontrivial solution v0 of (14) (if Case II occurs) or (17)
(if Case I occurs). With help of this solution, we construct from (uh− û0) a
new Palais–Smale sequence (wh) for EΩ in H2 ∩H1

0 (Ω) at a strictly lower
energy level. In the case where we find the solution v0 in the whole space,
one proceeds precisely as in [37], cf. also [1]. In the case that v0 is a solution
of (17) in a half space Ω0 we again have to use the locally deformed versions
ṽ0,h in Ωh of v0. These have been defined in (55). Let ϕ ∈ C∞

c (Rn) be any
cut–off function with 0 ≤ ϕ ≤ 1, ϕ = 1 in B1(0) and ϕ = 0 outside B2(0).
We put

wh(x) := (uh − û0)(x)−R
(n−4)/2
h ṽ0,h

(
Rh(x− xh)

)
ϕ
(√

Rh(x− xh)
)
.

First we remark that wh is indeed well defined as ϕ = 0 for Rh|x − xh| ≥
2
√
Rh and as the domain of definition of ṽ0,h grows at rate Rh. Further we

notice that χh and χ−1
h converge uniformly to translations even on BRh

(0).
For this reason we have

ṽ0,h(·)ϕ
(

·√
Rh

)
→ v0 in D2,2(Ω0)

and also in D1,2n/(n−2)(Ω0) and in L2∗(Ω0). Hence, we have

EΩ(wh) = EΩ(uh)− EΩ(û0)− EΩ0(v0) + o(1)

and E′
Ω(wh) → 0 strongly in

(
H2 ∩H1

0 (Ω)
)∗. Now, the same procedure

from Steps II to VI is applied to (wh) instead of (uh − û0). As v0 6≡ 0 and
hence

EΩ0(v0) ≥
2
n
Sn/4,

this procedure stops after finitely many iterations. �
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