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Abstract

We show that in the classical Hardy inequalities with optimal constants inW 1,p
0 (Ω), W 2,2

0 (Ω),
W 2,2∩W 1,2

0 (Ω), W 2,p∩W 1,p
0 (Ω) and also in further higher order Sobolev spaces remainder terms

may be added. Here Ω is any bounded domain. For the Hardy inequality in W 1,p
0 (1 < p <∞)

a further Lp-norm appears. The corresponding estimation constant behaves differently in the
cases p ≥ 2 and 1 < p < 2. In higher order Sobolev spaces besides the L2-norm (Lp-norm resp.)
further singularly weighted L2-norms (Lp-norms resp.) arise.

1 Introduction

Hardy’s inequality in dimensions n > 2

∀u ∈W 1,2
0 (Ω) :

∫
Ω
|∇u|2 dx ≥ (n− 2)2

4

∫
Ω

u2

|x|2
dx (1)

is one of the really classical Sobolev embedding inequalities, see [H, HLP]. Here and in what follows,
Ω ⊂ Rn is a bounded domain. Although we do not explicitly assume that 0 ∈ Ω, we always have
this particularly interesting case in mind. Closely related and proven analogously is the Lp-version

∀u ∈W 1,p
0 (Ω) :

∫
Ω
|∇u|p dx ≥

(
n− p
p

)p ∫
Ω

|u|p

|x|p
dx; (2)

here we assume n > p ≥ 1. With Rellich’s inequality in dimensions n > 4, see [R]:

∀u ∈W 2,2
0 (Ω) :

∫
Ω

(∆u)2 dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4
dx (3)
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and its generalizations to estimates for
∫

Ω |x|
−σ (∆u)2 dx, see Lemma 2 below, it is not difficult to

obtain Hardy inequalities in higher order Sobolev spaces W k,2
0 (Ω), where n > 2k. See e.g. [DH, Mi].

One has, if k = 2m even∫
Ω

(∆mu)2 dx ≥

(
2m∏
`=1

(n+ 4m− 4`)2

4

)∫
Ω

u2

|x|4m
dx (4)

and if k = 2m+ 1 is odd:∫
Ω
|∇∆mu|2 dx ≥

(
2m+1∏
`=1

(n+ 4m+ 2− 4`)2

4

)∫
Ω

u2

|x|4m+2
dx. (5)

Also for Rellich’s inequality there is an extension to the Lp-case (see [DH, p. 520], [Mi]), if n > 2p:

∀u ∈W 2,p
0 (Ω) :

∫
Ω
|∆u|p dx ≥

(
(n− 2p)(p− 1)n

p2

)p ∫
Ω

|u|p

|x|2p
dx. (6)

All the constants given here cannot be enlarged. For a more extensive survey and bibliography and
also for historical remarks we refer again to [DH].

Refined versions of Hardy inequalities like (1) seem to have appeared first in [Ma, Sect. 2.1.6,
Corr. 3]. They were applied by Brezis and Vazquez in [BV] among others to the Gelfand problem

−∆u = λ exp(u), u ≥ 0, u ∈W 1,2
0 (Ω), (7)

where λ is a positive parameter and for the dimension, n > 2 is assumed. There exists a λ∗ > 0, such
that for 0 ≤ λ ≤ λ∗, this problem is solvable, while for λ > λ∗ it is not. Further, for λ = 2(n− 2)
and Ω = B the unit ball, one has the singular solution

using = −2 log |x| ∈W 1,2
0 (B).

The linearization of (7) around this singular solution leads to the “Hardy-type” operator

Llinϕ = −∆ϕ− 2(n− 2)
|x|2

ϕ.

This operator is studied in [BV] in order to find out among others whether or not the singular
solution is also extremal in the sense that it corresponds to λ∗. For this purpose Brezis and
Vazquez employ the following Hardy inequality with optimal constant and a remainder term:

∀u ∈W 1,2
0 (Ω) :

∫
Ω
|∇u|2 dx ≥ (n− 2)2

4

∫
Ω

u2

|x|2
dx+ Λ2

(
en
|Ω|

)2/n ∫
Ω
u2 dx. (8)

Here n ≥ 2, and Λ2 denotes the first eigenvalue of the Laplace operator (the subscript 2 refers to
the p-Laplacian with p = 2, see Definition 1 below) in the two dimensional unit disk. Further en
and |Ω| denote the n-dimensional Lebesgue measure of the unit ball B ⊂ Rn and the domain Ω
respectively. The inequality (8) is shown by means of a “reduction of dimension”-technique, which
was implicitly used also already in [Ma, Sect. 2.1.6]. For further applications and variants of (8)
we refer to [VZ].

Remainder terms appear also in other Sobolev inequalities, and in the context of nonlinear
eigenvalue problems, see e.g. [BL, GG].

The goal of the present paper is to find remainder terms for all the Hardy inequalities (2), (3),
(4), (5) and (6) mentioned above. In a future paper we also want to address applications of these
refined Hardy inequalities.
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In Section 2 the W 1,p
0 -case is studied, corresponding to the p-Laplace operator. Carefully

exploiting the convexity properties of the function ξ 7→ ξp, we show that an extra Lp-norm may be
added. While for p ≥ 2 the constant for this remainder term is simply an eigenvalue of a certain
quasilinear boundary value problem, this constant has to be smaller for p < 2, and it vanishes,
when p↘ 1.

In Sections 3 and 4 we show that remainder terms∫
Ω
u2 dx, . . . ,

∫
Ω

u2

|x|2k−2
dx

may be added in (4) and (5), in Section 3 under Navier boundary conditions 0 = u = ∆u = . . .
on ∂Ω and in Section 4 under Dirichlet conditions 0 = u = ∇u = ∆u = . . . on ∂Ω. In Section 3
also a refinement of the Lp-version (6) of Rellich’s inequality is discussed for the case p ≥ 2. For
1 < p < 2 we expect a similar phenomenon as in W 1,p

0 , concerning the behaviour of the estimation
constants in the remainder terms.

As the class of functions is larger in Section 3, the constants in front of the remainder terms are
smaller than in Section 4. The constants which appear in Section 4 seem to be more natural, when
the order k of the Sobolev space becomes large. On the other hand, the reduction to the radially
symmetric case is more involved, because the symmetrization argument of Section 3 fails and
because iterative procedures will not give largest possible constants. For this reason it may be also
of interest in its own, how the result in W k,2

0 (B) for radial functions is extended to nonsymmetric
functions.

2 In W 1,p
0 , 1 < p < n

We are always restricted to 1 < p <∞, if not stated differently.

Definition 1. Let X := {v ∈ C1([0, 1]) : v′(0) = v(1) = 0} \ {0} and

Λp = inf
X

∫ 1
0 r

p−1|v′(r)|p dr∫ 1
0 r

p−1|v(r)|p dr
.

Remark. For all p > 1 we have Λp > 0 and if p ∈ N, then Λp is the first eigenvalue of −∆p in Rp.

Theorem 1. Let Ω ⊂ Rn be a bounded domain, p ∈ (1, n), and let en = |B1(0)| and |Ω| denote the
n-dimensional Lebesgue measure of the unit ball and of the domain Ω resp.

(a) If p ≥ 2, then for every u ∈W 1,p
0 (Ω) we have∫

Ω
|∇u|p dx ≥

(
n− p
p

)p ∫
Ω

|u|p

|x|p
dx+ Λp

(
en
|Ω|

)p/n ∫
Ω
|u|p dx. (9)

(b) If 1 < p < 2, then there exists a constant C = C(n, p) > 0 such that for every u ∈ W 1,p
0 (Ω)

there holds ∫
Ω
|∇u|p dx ≥

(
n− p
p

)p ∫
Ω

|u|p

|x|p
dx+ C ·

(
en
|Ω|

)p/n ∫
Ω
|u|p dx. (10)
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Remarks.

(i) Following the generalizations in [BV] and [VZ] we expect that also the p-th power of any
W 1,q-norm with q < p or of the Lr-norm of u with r < np

n−p may serve as a remainder term.
In that case the constants will be not so simple and less natural also for p ≥ 2.

(ii) If p = 1 and Ω = B1(0) the Hardy constant

n− 1 = inf
u∈W 1,1

0 (B1(0))\{0}

∫
|∇u| dx∫ |u|
|x| dx

is attained on any positive smooth and radially decreasing function u with u||x|=1 = 0. This
means that for p = 1 no remainder term may be added and shows that necessarily C(n, p)↘ 0
as p↘ 1.

(iii) For related inequalities with weights being the inverse of the distance from the boundary of
∂Ω we refer to [BM, MS].

To prove Theorem 1 we need the following elementary inequalities, which give a quantitative esti-
mate from below for the convexity behaviour of power-like functions. Similar inequalities in a more
general context but with smaller constants were obtained in [L].

Lemma 1. Let p ≥ 1 and ξ, η be real numbers such that ξ ≥ 0 and ξ − η ≥ 0. Then

(ξ − η)p + p ξp−1η − ξp ≥


|η|p, if p ≥ 2,

1
2
p(p− 1)

η2

(ξ + |η|)2−p , if 1 ≤ p ≤ 2.

Proof. By means of integration by parts or Taylor’s formula we find

(ξ − η)p + p ξp−1η − ξp = p(p− 1)η2

∫ 1

0
(1− t) (ξ − t η)p−2 dt. (11)

We assume first that p ≥ 2. If η ≤ 0 one has ξ− t η ≥ t |η| and the remainder term in (11) becomes

p(p− 1)η2

∫ 1

0
(1− t) (ξ − t η)p−2 dt ≥ p(p− 1)|η|p

∫ 1

0
(1− t) tp−2 dt = |η|p.

For η ≥ 0 we estimate ξ − t η ≥ (1− t) |η| and obtain

p(p− 1)η2

∫ 1

0
(1− t) (ξ − t η)p−2 dt ≥ p(p− 1)|η|p

∫ 1

0
(1− t)p−1 = (p− 1) |η|p ≥ |η|p.

Let now 1 ≤ p < 2, that means that p − 2 < 0. Here we estimate (ξ − t η)p−2 ≥ (ξ + |η|)p−2, and
there follows:

p(p− 1)η2

∫ 1

0
(1− t) (ξ − t η)p−2 dt ≥ p(p− 1)

η2

(ξ + |η|)2−p

∫ 1

0
(1− t) dt =

1
2
p(p− 1)

η2

(ξ + |η|)2−p .

�
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Proof of Theorem 1. After (Schwarz) symmetrization and rescaling we may assume that Ω is the
unit ball, which we simply denote with B = B1(0), and that u ∈ W 1,p

0 (Ω) is nonnegative, radially
symmetric and nonincreasing. We recall that symmetrization leaves Lq-norms of functions itself
unchanged, increases Lp-norms with the singular weight |x|−p (see e.g. [AL, Theorem 2.2]) and
decreases Lp-norms of the gradient (see [AL, Theorem 2.7]). By density we may further assume
that u is as smooth as needed.

So, in what follows we may write u(r), u′(r) = d
dru(r); it holds |∇u(x)| = |u′(r)| with r = |x|

and we have to find a lower bound for

I :=
∫ 1

0
rn−1|u′(r)|p dr −

(
n− p
p

)p ∫ 1

0
rn−p−1u(r)p dr.

Similarly as in [BV] a suitable transformation “reduces” the dimension and replaces not only the
partial integration, which is usually performed to show Hardy inequalities, but also uncovers a
remainder term. We set

v(r) := r(n/p)−1 u(r), u(r) = r1−(n/p) v(r), (12)

so that
u′(r) = −n− p

p
r−n/p v(r) + r1−(n/p) v′(r).

Since u is radially non-increasing we have for r ∈ (0, 1]:

n− p
p
· v(r)
r
≥ v′(r), (13)

and the expression I to be estimated becomes

I =
∫ 1

0
rp−1

(
n− p
p
· v(r)
r
− v′(r)

)p
dr −

(
n− p
p

)p ∫ 1

0

v(r)p

r
dr.

By (13) we may apply Lemma 1 with

ξ =
n− p
p
· v(r)
r

and η = v′(r).

For p ≥ 2 we conclude by virtue of v(0) = v(1) = 0:

I ≥ −p
(
n− p
p

)p−1 ∫ 1

0
v(r)p−1 · v′(r) dr +

∫ 1

0
rp−1|v′(r)|p dr

≥ Λp
∫ 1

0
rp−1v(r)p dr = Λp

∫ 1

0
rn−1u(r)p dr

and (9) follows.
The case 1 < p < 2 requires greater effort. Again by Lemma 1 and observing

∫ 1
0 v

p−1 ·v′ dr = 0,
it follows that

I ≥ 1
2
p(p− 1)

∫ 1

0

rp−1|v′(r)|2(
n−p
p ·

v(r)
r + |v′(r)|

)2−p dr. (14)

In order to estimate this term from below we have to introduce a further regularizing factor rε,
where ε > 0 will be chosen below in dependence on n and p. As a consequence we will miss Λp as

5



a constant for the remainder term. Application of Hölder’s inequality yields(∫ 1

0
rε+p−1|v′(r)|p dr

)2/p

=

∫ 1

0

rp(p−1)/2|v′(r)|p(
n−p
p ·

v(r)
r + |v′(r)|

)(2−p)p/2

(
rε+(p−1)(2−p)/2

(
n− p
p
· v(r)
r

+ |v′(r)|
)(2−p)p/2

)
dr


2
p

≤

∫ 1

0

rp−1|v′(r)|2(
n−p
p ·

v(r)
r + |v′(r)|

)2−p dr

(∫ 1

0
r2ε/(2−p)rp−1

(
n− p
p
· v(r)
r

+ |v′(r)|
)p

dr

) 2−p
p

(15)

For the second integral we find by means of a Hardy inequality in “dimension (p + ε)”, which is
proved for radial functions as in any “integer dimension”:∫ 1

0
r2ε/(2−p)rp−1

(
n− p
p
· v(r)
r

+ |v′(r)|
)p

dr

≤ 2p−1

(
n− p
p

)p ∫ 1

0
rε+p−1

(
v(r)
r

)p
dr + 2p−1

∫ 1

0
rε+p−1|v′(r)|p dr

≤ 2p−1

((
n− p
ε

)p
+ 1
)∫ 1

0
rε+p−1|v′(r)|p dr

where we have also used the inequality (a + b)p ≤ 2p−1(ap + bp) (∀a, b ≥ 0) and the fact that
r2ε/(2−p) < rε for all r ∈ (0, 1). Combining this estimate with (15), inserting the result into (14)
and choosing for the sake of simplicity

ε := 2− p, (16)

we arrive at:

I ≥ 1
2
p(p− 1)2(p−1)(p−2)/p

((
n− p
2− p

)p
+ 1
)(p−2)/p ∫ 1

0
r|v′(r)|p dr. (17)

On the other hand, by means of the embedding

C0(p) := inf
X

∫ 1
0 r|v

′(r)|p dr(∫ 1
0 r|v(r)|p(3−p) dr

)1/(3−p) (18)

we have the following inequalities:∫ 1

0
rn−1u(r)p dr =

∫ 1

0
rp−1v(r)p dr =

∫ 1

0
r−(p−2)2/(3−p)

(
r1/(3−p)v(r)p

)
dr

≤
(∫ 1

0
rp−2 dr

)(2−p)/(3−p)(∫ 1

0
rvp(3−p) dr

)1/(3−p)

≤
(

1
p− 1

)(2−p)/(3−p)
C0(p)−1

∫ 1

0
r|v′(r)|p dr.

We insert this estimate into (17) and obtain finally∫
B
|∇u|p dx ≥

(
n− p
p

)p ∫
B

|u|p

|x|p
dx+ C(n.p)

∫
B
|u|p dx

6



with

C(n.p) =
1
2
p (p− 1)1+(2−p)/(3−p) 2(p−1)(p−2)/p

((
n− p
2− p

)p
+ 1
)(p−2)/p

C0(p). (19)

�

Remark. Applying the a-priori estmates for the p-Laplace operator of [To] and [E] to the Euler-
Lagrange equations corresponding to (18) one could show that C0(p) → Λ2 as p ↗ 2. Together
with the formula (19) for C(n, p) this would yield the convergence of C(n, p) in Theorem 1 to Λ2

as p↗ 2, provided n ≥ 3.
The following result shows that Theorem 1 (b) is sharp in so far, as Λp cannot be chosen as a

constant for the remainder term, if p ∈ (1, 2).

Proposition 1. Let Ω = B ⊂ Rn (n ≥ 2) be the unit ball. For any p ∈ (1, 2) there is a nonnegative
radially nonincreasing function up ∈W 1,p

0 (B) such that∫
B
|∇up|p dx <

(
n− p
p

)p ∫
B

|up|p

|x|p
dx+ Λp

∫
B
|up|p dx.

Proof. We fix p ∈ (1, 2), n ≥ 2. Let v ∈ C1([0, 1]) be a nonnegative radially nonincreasing “first
eigenfunction” for Λp defined in Definition 1, i.e.∫ 1

0
rp−1|v′(r)|p dr = Λp

∫ 1

0
rp−1v(r)p dr, v′(0) = v(1) = 0.

According to (12) we consider
u(r) := r1−(n/p)v(r);

this function, however, will not be in W 1,p
0 (B). So, for ε ∈

(
0, n−pp

)
we introduce functions, which

are regularized around 0:

vε(r) := rεv(r); uε(r) := r1−(n/p)vε(r) = rε+1−(n/p) v(r);

and we want to estimate the following expression from above:∫ 1

0
rn−1|u′ε(r)|p dr −

(
n− p
p

)p ∫ 1

0
rn−p−1uε(r)p dr

=
∫ 1

0
rp−1

(
n− p
p
· vε(r)

r
− v′ε(r)

)p
dr −

(
n− p
p

)p ∫ 1

0
r−1vε(r)p dr =: Iε.

Here we observe that for ε ≤ (n− p)/p

v′ε(r) = rε v′(r) + εrε
v(r)
r
≤ εvε(r)

r
≤ n− p

p
· vε(r)

r
.

That means first that uε is nonincreasing and further that for all r, ξ := n−p
p ·

vε(r)
r and η := v′ε(r)

are in the region which was considered in Lemma 1. A close look at its proof shows that for ξ ≥ 0,
ξ ≥ η and p < 2:

(ξ − η)p ≤ −pξp−1η + ξp + |η|p,

and equality holds only if ξ = 0 or η = 0. As on any compact interval ⊂ (0, 1], vε and v′ε converge
uniformly to v and v′ resp., we find an interval [r0, r1] ⊂ (0, 1] such that we have ξ = n−p

p ·
vε(r)
r and

7



η = v′ε(r) in a suitable compact subset of (0,∞) × (−∞, 0) for ε small enough, say ε < ε̄. Hence
there is a number δ > 0 such that we have on [r0, r1] uniformly in ε < ε̄:(
n− p
p
· vε(r)

r
− v′ε(r)

)p
+ p

(
n− p
p

)p−1(vε(r)
r

)p−1

v′ε(r)−
(
n− p
p

)p(vε(r)
r

)p
−|v′ε(r)|p ≤ −δ.

On the whole interval [0, 1] the l.h.s. of this expression is at least nonpositive. We conclude that
we have a positive constant c0 = c0(p, r0, r1) such that for all ε < ε̄:

Iε ≤ −δ
∫ r1

r0

rp−1 dr − p
(
n− p
p

)p−1 ∫ 1

0
v′ε(r)vε(r)

p−1 dr +
∫ 1

0
rp−1|v′ε(r)|p dr

≤ −c0δ −
(
n− p
p

)p−1

(vε(1)p − vε(0)p) +
∫ 1

0
rp−1|v′(r)|p dr

+p
∫ 1

0
rp−1

(
|v′(r)|p−1 + |v′ε(r)|p−1

)
|v′ε(r)− v′(r)| dr

≤ −c0δ + Λp
∫ 1

0
rp−1|vε(r)|p dr + C

∫ 1

0
rp−1 (1− rεp) dr

+C
∫ 1

0
rp−1

(
1 + εp−1r(ε−1)(p−1)

) (
(1− rε) + εrε−1

)
dr

≤ −c0δ + Λp
∫ 1

0
rn−1|uε(r)|p dr +O

(
εp−1

)
< Λp

∫ 1

0
rn−1|uε(r)|p dr

for ε small enough; up(x) := uε(|x|) satisfies the stated reverse inequality. �

3 In higher order Sobolev spaces under Navier boundary condi-
tions

Also here a similar “reduction of dimension”-technique as in [BV] and as in the preceding section
will be employed.

Let p ≥ 2; in the sequel we make use of some “lower dimensional” Laplacians: for all smooth
radially symmetric function v = v(r) we denote

∆ϑv := v′′ +
ϑ− 1
r

v′ where ϑ = ϑ(p) = 4 +
n(p− 2)

p
.

Then we define the “generalized eigenvalues”

Definition 2. Let X = {v ∈ C1([0, 1]) : v′(0) = v(1) = 0, v 6≡ 0} and let

λ = inf
X

∫ 1
0 r|v

′(r)|2 dr∫ 1
0 rv(r)2 dr

and Λϑ = inf
X

∫ 1
0 r

2p−1|∆ϑv(r)|p dr∫ 1
0 r

2p−1|v(r)|p dr
.

This notation should not be confused with that of Section 2: we also point out that λ does not
depend on p.

In the W 2,p setting, the best Hardy constant is Cpp (see [DH, Theorem 12], [Mi, Theorem 3.1]),
where

Cp =
(n− 2p)(p− 1)n

p2
.
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We can now state

Theorem 2. Let p ≥ 2, let Ω ⊂ Rn (n ≥ 2p) be a bounded domain and denote as above by |Ω| its
n-dimensional Lebesgue measure and by en = |B|, where B = B1(0) is the unit ball. Then for any
u ∈W 2,p ∩W 1,p

0 (Ω) one has:∫
Ω
|∆u|p dx ≥

(
(n− 2p)(p− 1)n

p2

)p ∫
Ω

|u|p

|x|2p
dx (20)

+
4(p− 1)p(n− 2p)p−1np−1

p2p−1
λ

(
en
|Ω|

)2/n ∫
Ω

|u|p

|x|2p−2
dx+ Λϑ

(
en
|Ω|

)2p/n ∫
Ω
|u|p dx.

Proof. Step 1. By scaling it suffices to consider |Ω| = en. We show first that we may restrict
ourselves to Ω = B and radial superharmonic functions u(r). For this purpose we assume that
(20) has already been shown in this setting, and let now Ω be arbitrary with |Ω| = en and u ∈
W 2,p ∩W 1,p

0 (Ω). We define f = −∆u, let w ∈W 2,p ∩W 1,p
0 (B) be a (radial) strong solution of{

−∆w = f∗ in B,

w = 0 on ∂B,

where f∗ ≥ 0 denotes the Schwarz symmetrization of f . By [Ta, Theorem 1] we know that
w ≥ u∗ ≥ 0, so that∫

Ω
|∆u|p dx =

∫
Ω
|f |p dx =

∫
B

(f∗)p dx =
∫
B
|∆w|p dx∫

B

|w|p

|x|α
dx ≥

∫
B

|u∗|p

|x|α
dx ≥

∫
Ω

|u|p

|x|α
dx, α ∈ {0, 2p− 2, 2p};

for the last inequality we again refer to [AL, Theorem 2.2]. Assuming (20) in the radial superhar-
monic setting, the same follows for any domain Ω and any u ∈W 2,p ∩W 1,p

0 (Ω).

Step 2. We assume now that Ω = B and that u is superharmonic radially symmetric: u = u(r),
r = |x|. Similarly as in (12) we introduce the transformation

v(r) := r(n/p)−2u(r), u(r) = r2−(n/p)v(r),

so that
−∆u(r) = r−n/p

(
−r2∆ϑv(r) + Cpv(r)

)
≥ 0,

and a “lower dimensional Laplacian” of v arises. This allows us to apply Lemma 1 (with ξ = Cpv
and η = r2∆ϑv) and to obtain

Ip :=
∫ 1

0
rn−1 (−∆u)p dr − Cpp

∫ 1

0
rn−2p−1|u|p dr

=
∫ 1

0
r−1

[(
Cpv − r2∆ϑv

)p − (Cpv)p
]
dr

≥
∫ 1

0
r−1

(
−pCp−1

p vp−1r2∆ϑv + r2p|∆ϑv|p
)
dr

= −pCp−1
p

∫ 1

0
rvp−1v′′ dr +

∫ 1

0
r2p−1|∆ϑv|p dr,

9



where we have used the boundary datum u(1) = v(1) = 0. With an integration by parts and using
the identity vp−2|v′|2 = 4

p2 |(vp/2)′|2 we get

−
∫ 1

0
rvp−1v′′ dr = (p− 1)

∫ 1

0
rvp−2|v′|2 dr =

4(p− 1)
p2

∫ 1

0
r|(vp/2)′|2 dr.

Therefore, recalling the definition of λ and Λϑ, we infer

Ip ≥
4(p− 1)

p
Cp−1
p λ

∫ 1

0
r|v|p dr + Λϑ

∫ 1

0
r2p−1|v|p dr

=
4(p− 1)

p
Cp−1
p λ

∫ 1

0
rn−1 |u|p

r2p−2
dr + Λϑ

∫ 1

0
rn−1|u|p dr,

thereby completing the proof of Theorem 2. �

Remark. In the case 1 < p < 2, by arguing as in the previous section, one obtains a statement
similar to Theorem 1 (b) with a “smaller” remainder term.

In order to avoid tedious calculations, from now on we deal only with the Hilbert case p = 2,
the case p > 2 being similar. To make more precise the statements we introduce some further
notations.

Definition 3. Let X = {v ∈ C1([0, 1]) : v′(0) = v(1) = 0, v 6≡ 0} and for n ∈ N let

Λ(n) = inf
X

∫ 1
0 r

n−1|v′(r)|2 dr∫ 1
0 r

n−1v(r)2 dr
.

Again, this notation should not be confused with the previous ones.

Proposition 2. Let B ⊂ R
n be the unit ball. The first eigenvalue λ0 of the following Navier

boundary value problem {
∆2u = λu in B,
u = ∆u = 0 on ∂B,

satisfies

Λ(n)2 = λ0 = inf
u∈W 2,2∩W 1,2

0 (B)\{0}

∫
B (∆u)2 dx∫
B u

2 dx
.

Proof. The first equality is due to the fact that the biharmonic operator u 7→ ∆2u under Navier
boundary conditions u = ∆u = 0 on ∂B is actually the square of the Laplacian under Dirichlet
conditions. For the second equality, see e.g. [V, Lemma B3]. �

With these notations we obtain directly from Theorem 2:

Corollary 1. Let Ω ⊂ R
n, n ≥ 4, be a bounded domain and denote as above by |Ω| its n-

dimensional Lebesgue measure and by en = |B|, where B = B1(0) is the unit ball. Then for any
u ∈W 2,2 ∩W 1,2

0 (Ω) one has:∫
Ω

(∆u)2 dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4
dx

+
n(n− 4)

2
Λ(2)

(
en
|Ω|

)2/n ∫
Ω

u2

|x|2
dx+ Λ(4)2

(
en
|Ω|

)4/n ∫
Ω
u2 dx.

10



Combining this result with the original extended Hardy inequality of Brezis-Vazquez (8) already
mentioned in the introduction, we have for third order Sobolev spaces:

Theorem 3. Let Ω ⊂ Rn, n ≥ 6, be a bounded domain. Then for any u ∈ W 3,2 ∩W 1,2
0 (Ω) with

∆u = 0 on ∂Ω, i.e. ∆u ∈W 1,2
0 (Ω), one has:∫

Ω
|∇∆u|2 dx ≥ (n+ 2)2(n− 2)2(n− 6)2

64

∫
Ω

u2

|x|6
dx

+
1
16
(
3(n− 2)4 + 8(n− 2)2 + 16

)
Λ(2)

(
en
|Ω|

)2/n ∫
Ω

u2

|x|4
dx

+
(

(n− 2)2

4
Λ(4)2 +

n(n− 4)
2

Λ(2)2

)(
en
|Ω|

)4/n ∫
Ω

u2

|x|2
dx

+ Λ(2) Λ(4)2

(
en
|Ω|

)6/n ∫
Ω
u2 dx.

Proof. First we may reduce to Ω = B and the radial setting by combining the argument from the
proof of Theorem 2 and [AL, Theorem 2.7].

The application of the Brezis-Vazquez inequality (8) reduces the order of terms by one:∫ 1

0
rn−1 |∇∆u|2 dr ≥ (n− 2)2

4

∫ 1

0
rn−3 (∆u)2 dr + Λ(2)

∫ 1

0
rn−1 (∆u)2 dr.

The second term will be estimated directly with help of Corollary 1, while for the singular term∫ 1

0
rn−3 (∆u)2 dr

we have to extend that proof by means of the transformation

v(r) := r(n/2)−3 u(r), u(r) = r3−(n/2) v(r),

so that ∫ 1

0
rn−3 (∆u)2 dr − (n+ 2)2(n− 6)2

16

∫ 1

0
rn−7 u2 dr

=
∫ 1

0
r3

(
∆4v +

2
r
v′
)2

dr − (n+ 2)(n− 6)
2

∫ 1

0
r

(
v′′ +

5
r
v′
)
v dr

=
∫ 1

0
r3 (∆4v)2 dr + 4

∫ 1

0
r2 (∆4v) v′ dr

+4
∫ 1

0
r
(
v′
)2
dr +

(n+ 2)(n− 6)
2

∫ 1

0
r (−∆2v) v dr

=
∫ 1

0
r3 (∆4v)2 dr + 2

[
r2v′(r)2

]1
0

+
1
2
(
(n− 2)2 + 8

) ∫ 1

0
r (−∆2v) v dr

≥ Λ(4)2

∫ 1

0
r3v2 dr +

1
2
(
(n− 2)2 + 8

)
Λ(2)

∫ 1

0
rv2 dr

= Λ(4)2

∫ 1

0
rn−3u2 dr +

1
2
(
(n− 2)2 + 8

)
Λ(2)

∫ 1

0
rn−5u2 dr.

Note that only u(1) = v(1) = 0 was needed. Collecting terms yields the stated inequality. �

In order to iterate further we quote from [DH, Theorem 12], [Mi, Theorem 3.3]:

11



Lemma 2. Let Ω ⊂ Rn be a sufficiently smooth bounded domain and σ < n − 4. Then for every
u ∈ C2(Ω̄) with u|∂Ω = 0 we have∫

Ω

(∆u)2

|x|σ
dx ≥ (n− 4− σ)2(n+ σ)2

16

∫
Ω

u2

|x|σ+4
dx.

We emphasize that it is sufficient to have u|∂Ω = 0.

With help of this result it is not difficult to see that there are remainder terms in Hardy inequalities
of arbitrary order.

Corollary 2. Let Ω ⊂ Rn be a sufficiently smooth domain and let k ∈ N, 2k ≤ n. Then there
exist constants c1, . . . , ck, depending only on k, n and |Ω|, such that for every u ∈ W 2,k(Ω) with
∆ju|∂Ω = 0 for j ∈ N0 and 2j < k there holds:

(a) if k even, k = 2m, m ∈ N:

∫
Ω

(∆mu)2 dx ≥ 1
42m

 2m∏
j=1

(n+ 4(m− j))2

∫
Ω

u2

|x|4m
dx+

2m∑
`=1

c`

∫
Ω

u2

|x|4m−2`
dx;

(b) if k odd, k = 2m+ 1, m ∈ N0:

∫
Ω
|∇∆mu|2 dx ≥ 1

42m+1

2m+1∏
j=1

(n+ 4m+ 2− 4j)2

∫
Ω

u2

|x|4m+2
dx

+
2m+1∑
`=1

c`

∫
Ω

u2

|x|4m+2−2`
dx.

The existence of some constants c1, . . . , ck as above is easily shown, of particular interest would be
their respective largest possible value. But already the proof of Theorem 3 indicates that iterative
methods under Navier boundary conditions 0 = u = ∆u = . . . on ∂Ω yield constants which cannot
be easily given in closed form and which presumably will not be optimal.

One may hope that things will improve under the more restrictive Dirichlet conditions, i.e.
u ∈W k,2

0 (Ω). This will be discussed in the following section.

4 In higher order Sobolev spaces under Dirichlet boundary con-
ditions

Our first goal will be to adapt Corollary 1, i.e. Theorem 2 in the case p = 2, to Dirichlet conditions,
i.e. to the space W 2,2

0 (Ω) instead of W 2,2∩W 1,2
0 (Ω). At least when Ω is a ball or “close” to a ball the

estimation constants will be considerably larger. On the other hand the symmetrization argument
in the proof of Theorem 2 fails: the function w used in that proof is not in the class W 2,2

0 (B) to
be considered here. We overcome this difficulty by a relatively involved argument, which bases on
positivity properties of Green functions and seems to work only in the Hilbert space case p = 2
and if Ω is replaced with the circumscribed ball.

As the technical difficulties to obtain best possible constants increase rapidly with the order
k of the space W k,2

0 (Ω), we give a complete discussion only for the improved Hardy inequality in

12



W 2,2
0 (Ω). For the general case we only give a conjecture to show the expected behaviour of the

remainder terms, when the order of spaces become arbitrarily large.
In this section also eigenvalues of biharmonic and more general polyharmonic operators will

play an important role.

Definition 4. Let B ⊂ Rn denote again the unit ball and let

Λ
(

(−∆)k , n
)

=


inf

Wk,2
0 (B)\{0}

∫
B (∆mu)2 dx∫

B u
2 dx

, k = 2m, m ∈ N;

inf
Wk,2

0 (B)\{0}

∫
B |∇∆mu|2 dx∫

B u
2 dx

, k = 2m+ 1, m ∈ N0.

Remark. The notation Λ(n) of Section 3 is a special case by Λ(n) = Λ ((−∆) , n).

Taking into account Proposition 2 we immediately see Λ
(

(−∆)2 , n
)
≥ Λ(−∆, n)2. With help

of qualitative properties of first eigenfunctions in particular under Navier boundary conditions,
also strict inequality can be shown. Moreover the ratio of these eigenvalues is rather large, by
elementary calculations one finds e.g. Λ

(
(−∆)2 , 1

)
= 31.285243 . . . while Λ ((−∆) , 1)2 = π4/16 =

6.088068 . . .. For n = 4, the case which is needed below, a rough estimate according to [PS, p. 57]
gives Λ

(
(−∆)2 , 4

)
≥ j2

1 j
2
2 = 387.23 . . . while Λ ((−∆) , 4)2 = j4

1 = 215.56 . . ..

Theorem 4. Let Ω ⊂ Rn, n ≥ 4, be a bounded domain, Ω ⊂ BR(0). Then for every u ∈ W 2,2
0 (Ω)

one has:∫
Ω

(∆u)2 dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4
dx

+
n(n− 4)

2
Λ (−∆, 2)R−2

∫
Ω

u2

|x|2
dx+ Λ

(
(−∆)2, 4

)
R−4

∫
Ω
u2 dx. (21)

Proof. By trivial extension we have W 2,2
0 (Ω) ↪→W 2,2

0 (BR(0)), after suitable scaling we may assume
that Ω = B.

If u is additionally radially symmetric, we proceed as in Step 2 of the proof of Theorem 2 with
p = 2. In its last conclusion we may instead exploit that u satisfies homogeneous Dirichlet boundary
conditions and replace Λϑ|ϑ=4 = Λ(4)2 = Λ (−∆, 4)2 with Λ

(
(−∆)2 , 4

)
, thereby proving (21) for

radial u.
It remains to extend (21) to arbitrary functions u ∈W 2,2

0 (B). The idea is that the formal Euler-
Lagrange equation for a minimum problem associated with (21) and with the eigenvalue parameter
in front of the

∫
B u

2 dx-term is linear and has only radial coefficients. Hence radialization of any
solution would give again a solution. That the latter solution is not the trivial one has to be avoided
e.g. with starting with a positive solution. Hence a minimizer could be chosen radial. However,
the mentioned eigenvalue problem is “critical” in so far, as the infimum may not be attained.

For that reason we consider for ` ∈ N a sequence of relaxed minimum problems:

µ` := inf
W 2,2

0 (B)\{0}

F`(v)∫
B v

2 dx
,
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where

F`(v) =
∫
B

(∆v)2 dx− n2(n− 4)2

16

(
1− 1

`

)∫
B

v2

|x|4
dx

− n(n− 4)
2

Λ (−∆, 2)
(

1− 1
`

)∫
B

v2

|x|2
dx.

As we may already use Corollary 1 we have F`(v) ≥ 1
`

∫
B (∆v)2 dx for every v ∈ W 2,2

0 (B). That
means that for every minimizing sequence vk ∈W 2,2

0 (B) with
∫
B v

2
k dx = 1 and limk→∞ F`(vk) = µ`,

we have boundedness of
(
‖uk‖W 2,2

0 (B)

)
k∈N

. After selecting a subsequence we may assume that

uk ⇀ u ∈W 2,2
0 (B) and uk → u strongly in L2(B). The bilinear form

F`(v, w) :=
∫
B

∆v ·∆w dx− n2(n− 4)2

16

(
1− 1

`

)∫
B

v · w
|x|4

dx

− n(n− 4)
2

Λ (−∆, 2)
(

1− 1
`

)∫
B

v · w
|x|2

dx

associated with F`(v) defines a scalar product on W 2,2
0 (B), which by

1
`

∫
B

(∆v)2 dx ≤ F`(v, v) ≤
∫
B

(∆v)2 dx = ‖v‖
W 2,2

0 (B)

gives an equivalent norm. If we consider just for the following argument W 2,2
0 (B) with F`( . , . ) as

scalar product, then lower semicontinuity of the corresponding norm in the weak topology gives

µ` = lim inf
k→∞

F`(vk) ≥ F`(v).

We have further
1 = lim

k→∞

∫
B
v2
k dx =

∫
B
v2 dx.

Hence F`(v) = µ`, and v ∈W 2,2
0 (B) is an optimal (nontrivial) function for µ`. Consequently v is a

weak solution of the Euler-Lagrange equation ∆2v =
(

1− 1
`

)
n2(n− 4)2

16
v

|x|4
+
(

1− 1
`

)
n(n− 4)

2
Λ(−∆, 2)

v

|x|2
+ µ`v in B,

v = ∇v = 0 on ∂B.
(22)

Next we show that v is of fixed sign. Assume by contradiction that there are subsets B+, B− ⊂ B
both with positive measure such that v > 0 on B+ and v < 0 on B−. We may now apply a
decomposition method explained in detail in [GG, Section 3], cf. also [Mo]. Let

K =
{
u ∈W 2,2

0 (B) : u ≥ 0
}

be the closed convex cone of nonnegative functions and

K∗ =
{
u∗ ∈W 2,2

0 (B) : (u∗, u) ≤ 0 for all u ∈ K
}

the dual cone. Here (u∗, u) =
∫
B (∆u∗) (∆u) dx is the standard scalar product in W 2,2

0 (B). K∗ is
the cone of all weak subsolutions of the biharmonic equation in B under Dirichlet conditions. By
a comparison result of Boggio [Bo, p. 126] the elements of K∗ are nonpositive. We decompose

v = v1 + v2, v1 ∈ K, v2 ∈ K∗, v1 ⊥ v2.
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As 0 6≡ v1 ≥ 0, 0 6≡ v2 ≤ 0, replacing v = v1 + v2 with v1 − v2 ≥ 0 yields

F`(v1 + v2) > F`(v1 − v2),
∫
B

(v1 + v2)2 dx <

∫
B

(v1 − v2)2 dx,

contradicting the minimality of F`(v)/
∫
B v

2 dx.
Hence we may assume 0 6≡ v ≥ 0. Considering polar coordinates x = rξ, r ∈ [0, 1], |ξ| = 1 and

integrating the Euler-Lagrange equation (22) over {|ξ| = 1} shows that

w(r) :=
1
n en

∫
|ξ|=1

v(r ξ) dω(ξ) ∈W 2,2
0 (B)

is a radial weak solution of (22). By virtue of 0 6≡ v ≥ 0, we also have 0 6≡ w ≥ 0. As we may
already use the Hardy inequality (21) for the radial function w we may conclude:

µ` =
F`(w)∫
B w

2 dx
>

∫
B (∆w)2 dx− n2(n−4)2

16

∫
B

w2

|x|4 dx−
n(n−4)

2 Λ (−∆, 2)
∫
B

w2

|x|2 dx∫
B w

2 dx

≥ λ
(
(−∆)2, 4

)
.

To sum up, we have shown that for any ` ∈ N one has for every u ∈W 2,2
0 (B):∫

B
(∆u)2 dx ≥

(
1− 1

`

)
n2(n− 4)2

16

∫
B

u2

|x|4
dx

+
(

1− 1
`

)
n(n− 4)

2
Λ (−∆, 2)

∫
B

u2

|x|2
dx+ Λ

(
(−∆)2, 4

) ∫
B
u2 dx.

Letting `→∞, the stated Hardy inequality (21) follows. �

We conclude with some remarks concerning general higher order Sobolev spaces. We recall that
W k,2

0 (Ω) is equipped with the norm

‖u‖2
Wk,2

0 (Ω)
=


∫

Ω
(∆mu)2 dx, if k = 2m, m ∈ N;∫

Ω
|∇∆mu|2 dx, if k = 2m+ 1, m ∈ N0.

We expect the following result:

Conjecture 1. Let Ω ⊂ Rn be a bounded domain, Ω ⊂ BR(0). Let k ∈ N , n ≥ 2k. Then for all
u ∈W k,2

0 (Ω) there holds:

‖u‖2
Wk,2

0 (Ω)
≥

k∑
j=0

1
4j

(
k

j

){ j∏
`=1

((n+ 2k − 4`)(n− 2k − 4 + 4`))

}

·Λ
(

(−∆)k−j , 2k − 2j
)
R2j−2k

∫
Ω

u2

|x|2j
dx (23)

with the convention that Λ((−∆)0, 0) = 1.

In the radial setting the terms

Λ
(

(−∆)k−j , 2k − 2j
) ∫

B

u2

|x|2j
dx
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originate from

nen

∫ 1

0
r2k−2j−1

(
∆(k−j)/2

2k−2j v
)2

dr

if k − j is even, and from

nen

∫ 1

0
r2k−2j−1

((
∆(k−j−1)/2

2k−2j v
)′)2

dr

if k − j is odd. Here ∆2k−2j is the radial Laplacian in dimension 2k − 2j. The radial functions u
and v are related by means of the transformation

v(r) = r(n/2)−ku(r), u(r) = rk−(n/2)v(r).

In Conjecture 1 as well as in the proof of Theorem 4 we simply used for these terms eigenvalue
estimates. One may also wish to use Hardy-like inequalities in order to have largest possible
constants in front of the most singular remainder terms. The following Lemma may be applied,
because we assume every function to satisfy homogeneous Dirichlet boundary conditions.

Lemma 3.

(a) Let k ≥ 2, j ≥ 1, v ∈ C2([0, 1]) with v′(1) = 0. Then:∫ 1

0
rk (∆jv)2 dr ≥ (k + 1− 2j)2

4

∫ 1

0
rk−2

(
v′
)2
dr.

(b) Let k ≥ 2, v ∈ C1([0, 1]) with v(1) = 0. Then:∫ 1

0
rk
(
v′
)2
dr ≥ (k − 1)2

4

∫ 1

0
rk−2v2 dr.

To illustrate how the application of this elementary and well-known Lemma shifts less singular
remainder terms to more singular ones, we modify the proof of Theorem 4 and obtain:

Corollary 3. Let Ω ⊂ Rn, n ≥ 4, be a bounded domain, Ω ⊂ BR(0). Then for every u ∈ W 2,2
0 (Ω)

one has: ∫
Ω

(∆u)2 dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4
dx

+
1
2

(n(n− 4) + 8) Λ (−∆, 2)R−2

∫
Ω

u2

|x|2
dx.
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