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Abstract

For a semilinear biharmonic Dirichlet problem in the ball with supercritical power-type nonlin-
earity, we study existence/nonexistence, regularity and stability of radial positive minimal solutions.
Moreover, qualitative properties, and in particular the precise asymptotic behaviour near x = 0
for (possibly existing) singular radial solutions, are deduced. Dynamical systems arguments and a
suitable Lyapunov (energy) function are employed.

1 Introduction

Many papers have studied second order elliptic boundary value problems with supercritical growth.
We only mention the work by Brezis, Cazenave, Martel, Ramiandrisoa and Brezis, Vazquez [5, 6],
where the role of singular solutions, the change in the bifurcation diagrams in dependence on the
space dimension and the nonlinearity as well as many other interesting features were highlighted. In
these works, also many references to previous related important work can be found.

According to [14, Section 4.2 (c)], it is an important task to gain also a deeper understanding for
related higher order problems. Due to the lack of a general maximum principle and many other strong
tools typical for second order equations, up to now only relatively limited results have been available
for this case.

In [2] biharmonic Dirichlet problems with exponential nonlinearities could be studied to some
extent, while important questions concerning e.g. the existence of singular solutions are in general
still open. A first investigation of biharmonic Dirichlet problems with power-type nonlinearities was
done in [3]. It turned out, however, that the power case is technically much more involved than
the exponential case, where advantage could be taken of the extreme convexity properties of the
nonlinearity. It is the goal of the present paper to develop tools which enable us to prove analogues for
the results in [2] also for power-type nonlinearities. Moreover, we improve on some of the achievements
for the exponential case.

Let us now describe the scope of the present paper in some detail. We study the Dirichlet problem





∆2u = λ(1 + u)p, in B,
u > 0 in B,
u = |∇u| = 0 on ∂B,

(1)

∗Financial support by the Vigoni programme of CRUI (Rome) and DAAD (Bonn) is gratefully acknowledged.
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where B ⊂ R
n is the unit ball, λ > 0 is an eigenvalue parameter, n ≥ 5 and p > n+4

n−4 . The subcritical

case p < n+4
n−4 is by now “folklore”, where existence and multiplicity results are easily established by

means of variational methods. For the critical case p = n+4
n−4 (under Navier boundary conditions), we

refer to [3].
According to related work on second order equations and on the biharmonic Dirichlet problem

with exponential nonlinearity, we address questions concerning existence/nonexistence, smoothness
and stability of positive minimal solutions, characterization of radial singular solutions in terms of
critical points of associated dynamical systems, and some further qualitative properties of (possibly
existing) singular solutions. In the present work, a singular solution is always understood to be singular
at the origin x = 0.

The first of our results, a precise formulation of which is given in the next section, concerns
existence of “minimal” solutions. It is shown that there exists a limiting parameter λ∗ = λ∗(n, p) such
that one has existence of stable regular minimal solutions to (1) for λ ∈ (0, λ∗), while for λ > λ∗,
not even singular solutions exist. In second order problems this immediate switch from existence of
regular to nonexistence even of singular solutions is established by using suitable functions of possibly
existing singular solutions as bounded supersolutions, see [5]. Such techniques seem to fail completely
for fourth and higher order problems. Here, we employ dynamical systems arguments, and this is one
reason why we have to formulate our results in the ball. A second reason for this restriction is the
need to apply comparison principles which are known to fail in general domains but to hold in the
ball.

Further results concern qualitative properties of radial singular solutions. The precise blow-up
rate ∼ C|x|−4/(p−1) at x = 0 is determined and an explicit estimate from below is deduced. For this
purpose, in Section 4, we transform the differential equation in (1) into an autonomous system of
ordinary differential equations and apply subtle energy estimates. This technique has proved to be
very powerful for studying the precise asymptotic behaviour of entire solutions in R

n in [9]. Moreover,
a characterization of singular (resp. regular) radial solutions to (1) in terms of the corresponding
dynamical system is given. This system is shown to have two critical points, the unstable manifolds
of which are related to singular (resp. regular) radial solutions.

As in the case of an exponential nonlinearity, we cannot yet provide an analytical proof for the
existence of singular solutions. In that case, see [2], a computer assisted proof was given for dimensions
n = 5, . . . , 16. We are convinced that for selected values of n and p, the same should also work
in the present situation. However, since we have to consider not only countably many values of
n but also uncountably many of p, a computer assisted proof may not be suitable here and we
formulate the existence of singular solutions to (1) with a suitable parameter λs as an important and
presumably difficult open problem. Once the existence of singular solutions has been established,
further interesting questions concerning the singular parameter λs and the extremal parameter λ∗

arise: In which dimensions n and for which exponents p does one have λs = λ∗ so that one has a
singular extremal solution?

“Large” solutions of the differential equation ∆2u = λ(1+u)p are studied in a recent work of Diaz,
Lazzo, Schmidt [8]. The focus of their work, however, is different from ours, since they classify those
solutions of the differential equation, which converge to ∞ at ∂B.

The paper is organized as follows: In the next section, a precise formulation of our results is given.
In Section 3, the partial differential equation in (1) applied to radial functions is transformed into an
autonomous system of ordinary differential equations. A phase space analysis is performed in Section 4
in order to characterize singular and regular radial solutions to (1). Section 5 is devoted to proving
existence of regular minimal solutions, the stability of which is studied in Section 7. A refined use of
Lyapunov or energy functions in Section 6 will yield precise information of qualitative properties of
radial singular solutions.
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2 Main results

Definition 1. We say that u ∈ Lp(B) is a solution of (1) if u ≥ 0 and if for all ϕ ∈ C4(B) with
ϕ|∂B = |∇ϕ| |∂B = 0 one has

∫

B
u∆2ϕdx = λ

∫

B
(1 + u)pϕdx.

We call u singular if u 6∈ L∞(B), and regular if u ∈ L∞(B).
A radial singular solution u = u(r) of (1) is called weakly singular if limr→0 r

4/(p−1)u(r) ∈ [0,∞]
exists.

Weakly singular solutions display a somehow specified asymptotic behaviour at the origin. Below
we shall prove that any radial singular solution is weakly singular. Note that by standard regularity
theory for the biharmonic operator (see [1]), any regular solution u of (1) satisfies u ∈ C∞(B). Note
also that by the positivity preserving property of ∆2 in the ball [4] any solution of (1) is positive,
see also [2, Lemmas 16 and 18] for a generalized statement. This property is known to fail in general
domains. For this reason, we restrict ourselves to balls also in Theorems 1 and 2. Hence, the sub- and
supersolution method applies as well as monotone iterative procedures.

We also need the notion of minimal solution:

Definition 2. We call a solution u of (1) minimal if u ≤ v a.e. in B for any further solution v of
(1).

In order to state our results, we denote by λ1 > 0 the first eigenvalue for the biharmonic operator
with Dirichlet boundary conditions

{
∆2ϕ1 = λ1ϕ1 in B

ϕ1 =
∂ϕ1

∂n
= 0 on ∂B.

(2)

It is known from the positivity preserving property and Jentzsch’s (or Krein–Rutman’s) theorem that
λ1 is isolated and simple and that the corresponding eigenfunctions ϕ1 do not change sign.

Define
Λ := {λ > 0 : (1) admits a solution} ; λ∗ := supΛ.

It is well known that Λ is a bounded interval (see [2, 3]). Our first main result states that on the open
interior of this interval, i.e. for any 0 < λ < λ∗ = supΛ < ∞, problem (1) admits a regular minimal
solution u. Similarly as in second order problems, where much stronger tools are available, we are
able to prove the immediate switch from existence of a regular minimal solution to nonexistence even
of singular solutions. For biharmonic supercritical equations this was proved earlier [2, Theorem 1]
only for an exponential nonlinearity, where advantage could be taken of the extreme convexity of the
exponential. Here, much more refined arguments are needed.

Theorem 1. We have:

(i) For λ ∈ (0, λ∗) problem (1) admits a minimal regular solution. This solution is radially sym-
metric and strictly decreasing in r = |x|.

(ii) For λ = λ∗ problem (1) admits at least one not necessarily bounded solution.

(iii) For λ > λ∗ problem (1) admits no (not even singular) solutions.
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Moreover

λ∗ ∈
[
K0,

λ1

p

)
, (3)

where

K0 =
8

(p− 1)4
(
(n− 2)(n − 4)(p − 1)3 + 2(n2 − 10n + 20)(p − 1)2 − 16(n − 4)(p − 1) + 32

)
. (4)

For the proof see Section 5.
The regular minimal solution is stable:

Theorem 2. Assume λ ∈ (0, λ∗). Let uλ be the corresponding minimal solution of (1). Denote by
µ1(λ) the first eigenvalue of the linearized operator ∆2 − λp(1 + uλ)

p−1. Then, µ1(λ) > 0.

We remark that, obviously, this Theorem also holds in the subcritical and critical range, i.e. for
any p > 1. For a proof, see Section 7.

The notion of weakly singular radial solution is motivated from a somehow technical point of
view, because within this class, by definition, the asymptotic behaviour at the origin is in some sense
specified. Consequently, here and also in the previous work [2], a number of results can be proven
much more easily in this restricted class of singular solutions.

However, our next main result, which is proved using a suitable energy functional in Section 6,
states that:

Theorem 3. Any radial singular solution of (1) is weakly singular.

That means that in what follows we need no longer distinguish between weakly singular and general
radial singular solutions. The corresponding question for the Dirichlet problem with exponential
nonlinearity had to be left open in [2].

In Section 3 below we shall transform the differential equation in (1) for radial functions into an
autonomous system (17) having precisely two critical points O and P . With the help of these critical
points we can give a precise characterization of regular and singular solutions of (1).

Theorem 4. Let u = u(r) be a radial solution of (1) and let

W (t) = (w1(t), w2(t), w3(t), w4(t))

be the corresponding trajectory relative to (17). Then:
(i) u is regular (i.e. u ∈ L∞(B)) if and only if

lim
t→−∞

W (t) = O.

(ii) u is singular if and only if
lim

t→−∞
W (t) = P.

This result is proved in Section 4.
Again, by means of energy considerations, in Section 6 we can give an explicit estimate from below

for radial singular solutions and the corresponding singular parameter:

Theorem 5. Assume that us is a singular radial solution of (1) with parameter λs. Then, λs > K0

and

us(x) >

(
K0

λs

)1/(p−1)

|x|−4/(p−1) − 1. (5)

In particular, any radial solution to (1) for λ ≤ K0 is regular.
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3 An autonomous system

In radial coordinates r = |x|, the differential equation in (1) reads

u(4)(r)+
2(n− 1)

r
u′′′(r)+

(n− 1)(n − 3)

r2
u′′(r)− (n− 1)(n − 3)

r3
u′(r) = λ(1+u(r))p r ∈ [0, 1]. (6)

In order to make the results and techniques from [9] accessible to our present work, as there we put
first

U(x) := (u+ 1)(x/
4
√
λ) (x ∈ B 4

√
λ
(0)), u(x) = U(

4
√
λx) − 1 (x ∈ B).

For x ∈ B 4
√
λ
(0) one has

∆2U(x) = U(x)p. (7)

Our purpose here is to transform (7) first into an autonomous equation and, subsequently, into an
autonomous system. For some of the estimates which follow, it is convenient to rewrite the original
assumption p > n+4

n−4 as
(n− 4)(p − 1) > 8. (8)

Inspired by the proof of [22, Proposition 3.7] (see also [10, 13]) we set as in [9]

U(r) = r−4/(p−1) v(log r), r ∈ (0,
4
√
λ), v(t) = e4t/(p−1) U

(
et
)
, t ∈ (−∞,

1

4
log λ). (9)

We take from [9] that, after the change (9), equation (7) may be rewritten as

v(4)(t) +K3v
′′′(t) +K2v

′′(t) +K1v
′(t) +K0v(t) = vp(t) (t <

1

4
log λ), (10)

where the constants Ki = Ki(n, p) (i = 0, . . . , 3) are given by

K0 =
8

(p− 1)4

[
(n− 2)(n − 4)(p − 1)3 + 2(n2 − 10n + 20)(p − 1)2 − 16(n − 4)(p − 1) + 32

]
,

K1 = − 2

(p− 1)3

[
(n− 2)(n − 4)(p − 1)3 + 4(n2 − 10n + 20)(p − 1)2 − 48(n − 4)(p − 1) + 128

]
,

K2 =
1

(p− 1)2

[
(n2 − 10n + 20)(p − 1)2 − 24(n − 4)(p − 1) + 96

]
,

K3 =
2

p− 1

[
(n− 4)(p − 1) − 8

]
.

By using (8), it is not difficult to show that K1 = K3 = 0 if p = n+4
n−4 and that for n ≥ 5, p > n+4

n−4

K0 > 0 , K1 < 0 , K3 > 0. (11)

On the other hand, the sign of K2 depends on n and p. We emphasize that the sign of K1 and K3 is
due to assumption (8).

Finally, we put

z(t) := v(−t), t > −1

4
log λ. (12)

For z, we have the differential equation analogous to (10):

z(4)(t) −K3z
′′′(t) +K2z

′′(t) −K1z
′(t) +K0z(t) = zp(t) (t > −1

4
log λ). (13)

In order to study the possibly singular behaviour of u near r = 0, we have to investigate the behaviour

of z for t→ ∞. Equation (13) has two equilibrium points, namely 0 and K
1/(p−1)
0 . First we show that

once the solution converges to an equilibrium point, then all derivatives converge to 0 as t→ ∞.
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Proposition 1. Assume that z : [T0,∞) → R exists for some T0 and solves a constant coefficient
fourth order equation

z(4)(t) −K3z
′′′(t) +K2z

′′(t) −K1z
′(t) = f(z(t)) (t > −T0), (14)

where f ∈ C1(R) and where the coefficients may be considered as arbitrary real numbers Kj ∈ R.
Moreover, let z0 be such that f(z0) = 0 and assume that z satisfies limt→∞ z(t) = z0. Then, for
k = 1, . . . , 4, one also has:

lim
t→∞

z(k)(t) = 0. (15)

If f ∈ Ck0+1 in a neighbourhood of {z0}, then (15) holds true for all k < k0 + 4.

Proof. By assumption, we have for any q > 1 that

lim
t→∞

∫ t+3

t−2
|f(z(τ))|q dτ = 0, lim

t→∞
‖z( . ) − z0‖C0([t−2,t+3]) = 0.

We consider (14) as a fourth order “elliptic” equation and apply local Lq–estimates, which could
of course be directly obtained in a much easier way for the ordinary differential equation (14), and
conclude

lim
t→∞

‖z( . ) − z0‖W 4,q(t−1,t+2) = 0.

By combining now Sobolev embedding and classical local Schauder estimates we have that

lim
t→∞

‖z( . ) − z0‖C4,α(t,t+1) = 0.

The differential equation (14) finally shows the claim for any k in the given range. 2

We now write (10) as a system in R
4. We obtain from (9)

U ′(r)
r3

= r−4p/(p−1)

[
v′(t) − 4

p− 1
v(t)

]
(16)

so that

U ′(r) = 0 ⇐⇒ v′(t) =
4

p− 1
v(t) .

This fact suggests the definition

w1(t) = v(t) , w2(t) = v′(t) − 4

p− 1
v(t) , w3(t) = v′′(t) − 4

p− 1
v′(t) , w4(t) = v′′′(t) − 4

p− 1
v′′(t)

so that (10) becomes





w′
1(t) = 4

p−1w1(t) + w2(t)

w′
2(t) = w3(t)

w′
3(t) = w4(t)

w′
4(t) = C2w2(t) + C3w3(t) + C4w4(t) + wp1(t) ,

(17)

where

Cm = −
4∑

k=m−1

Kk4
k+1−m

(p − 1)k+1−m for m = 1, 2, 3, 4 with K4 = 1 . (18)
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This gives first that C1 = 0 so that the term C1w1(t) does not appear in the last equation of (17).
Moreover, we have the explicit formulae:

C2 = 2
(p−1)3

[
(n− 2)(n − 4)(p − 1)3 + 2(n2 − 10n + 20)(p − 1)2 − 16(n − 4)(p − 1) + 32

]
= p−1

4 K0,

C3 = − 1
(p−1)2

[
(n2 − 10n+ 20)(p − 1)2 − 16(n − 4)(p − 1) + 48

]
,

C4 = − 2
p−1

[
(n− 4)(p − 1) − 6

]
.

We recall the phase space analysis performed in [9]. System (17) has the two stationary points

(corresponding to v0 := 0 and vs := K
1/(p−1)
0 )

O
(
0, 0, 0, 0

)
and P

(
K

1/(p−1)
0 ,− 4

p− 1
K

1/(p−1)
0 , 0, 0

)
. (19)

Let us consider first the “regular point” O. The linearized matrix at O is

MO =




4
p−1 1 0 0

0 0 1 0
0 0 0 1
0 C2 C3 C4




and the characteristic polynomial is

λ 7→ λ4 +K3λ
3 +K2λ

2 +K1λ+K0 .

Then, according to MAPLETM, the eigenvalues are given by

λ1 = 2
p+ 1

p− 1
, λ2 =

4

p− 1
, λ3 =

4p

p− 1
− n, λ4 = 2

p+ 1

p− 1
− n.

Since we assume that p > n+4
n−4 >

n
n−4 >

n+2
n−2 , we have

λ1 > λ2 > 0 > λ3 > λ4.

This means that O is a hyperbolic point and that both the stable and the unstable manifolds are
two-dimensional.

Around the “singular point” P the linearized matrix of the system (17) is given by

MP =




4
p−1 1 0 0

0 0 1 0
0 0 0 1
pK0 C2 C3 C4


 . (20)

The corresponding characteristic polynomial is

ν 7→ ν4 +K3 ν
3 +K2 ν

2 +K1ν + (1 − p)K0

and the eigenvalues are given by

ν1 =
N1 +

√
N2 + 4

√
N3

2(p − 1)
, ν2 =

N1 −
√
N2 + 4

√
N3

2(p − 1)
,

ν3 =
N1 +

√
N2 − 4

√
N3

2(p − 1)
, ν4 =

N1 −
√
N2 − 4

√
N3

2(p − 1)
,
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where
N1 := −(n− 4)(p − 1) + 8, N2 := (n2 − 4n + 8)(p − 1)2,

N3 := (9n− 34)(n − 2) (p − 1)4 + 8(3n − 8)(n − 6) (p − 1)3

+(16n2 − 288n + 832) (p − 1)2 − 128(n − 6)(p − 1) + 256.

The stability of the stationary point P is described by the following

Proposition 2. Assume that p > n+4
n−4 .

(i) We have ν1, ν2 ∈ R and ν2 < 0 < ν1.
(ii) For 5 ≤ n ≤ 12 we have ν3, ν4 6∈ R and Re ν3 = Re ν4 < 0.
(iii) For n ≥ 13 there exists pc >

n+4
n−4 such that:

if p < pc, then ν3, ν4 6∈ R and Re ν3 = Re ν4 < 0.
if p = pc, then ν3, ν4 ∈ R and ν4 = ν3 < 0.
if p > pc, then ν3, ν4 ∈ R and ν4 < ν3 < 0. The number pc is the unique value of p > n+4

n−4 such
that

−(n− 4)(n3 − 4n2 − 128n + 256)(p − 1)4 + 128(3n − 8)(n − 6)(p − 1)3

+256(n2 − 18n+ 52)(p − 1)2 − 2048(n − 6)(p − 1) + 4096 = 0.

The function n 7→ pc is strictly decreasing and approaches 1 as n→ ∞.

According to Proposition 2, in all cases we have

ν1 > 0, ν2 < 0, Re ν3 = Re ν4 < 0.

This means that P has a three dimensional stable manifold and a one dimensional unstable manifold
(as in the exponential case, see [2, Sect. 3.1]).

4 Characterization of regular and weakly singular solutions

Now, we are in position to give a precise formulation of Theorem 4. According to Theorem 3, to be
proved below, we may restrict ourselves to weakly singular solutions.

Theorem 6. Let u = u(r) be a radial solution of (1) and let

W (t) = (w1(t), w2(t), w3(t), w4(t))

be the corresponding trajectory relative to (17). Then:
(i) u is regular (i.e. u ∈ L∞(B)) if and only if

lim
t→−∞

W (t) = O.

(ii) u is weakly singular if and only if

lim
t→−∞

W (t) = P.

As a first step in proving this theorem we show that there are only a few possible values for
limt→−∞ v(t), provided the limit exists. The following proposition holds independently of the signs
of the coefficients Ki.
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Proposition 3. Let v be a positive solution of (10) on (−∞, 1
4 log λ) and assume that there exists

L ∈ [0,+∞] such that
lim

t→−∞
v(t) = L .

Then, L ∈ {0,K1/(p−1)
0 }.

Proof. This is almost the same as in [9, Proposition 5]. We remark that there the arguments are not
affected by reversing the time or – equivalently – changing the sign of the coefficients K1 and K3. For
the reader’s convenience, we give the proof in Section A of the appendix. 2

Proof of Theorem 6. (i) Assuming that W corresponds to a regular solution, it is obvious that
limt→−∞W (t) = O. Let us now conversely assume that limt→−∞W (t) = O; we have to prove that
the corresponding solution u of (1) is regular. We calculate the eigenvectors of MO corresponding to
the positive eigenvalues i.e. spanning the unstable manifold. These are

~W1 =

(
1, 2, 4

p + 1

p − 1
, 8

(
p+ 1

p− 1

)2
)

for λ1 = 2
p+ 1

p− 1
;

~W2 = (1, 0, 0, 0) for λ2 =
4

p− 1
.

Since λ1 > λ2, all trajectories approaching O as t → −∞ are tangent to ~W2 except one, which is
tangent to ~W1 (see Theorem IX.6.2 in [12]).

But for a solution to (1), the latter case cannot occur, since one always has u(r) > 0, u′(r) ≤ 0,
i.e. w1 > 0, w2 ≤ 0. So, for any solution of (1), we may conclude that ru′(r) = o(u(r)) for r ց 0.
That means that for any ε > 0 and r > 0 close enough to 0 we have

−ε < ru′(r)
u(r)

≤ 0.

Integration yields that for r ց 0
0 ≤ u(r) ≤ Cr−ε.

Using this information, the differential equation, and limt→∞W (t) = 0, i.e.

r4/(p−1)u(r) → 0, r1+4/(p−1)u′(r) → 0, r2+4/(p−1)∆u(r) → 0, r3+4/(p−1) (∆u)′ (r) → 0,

successive integration of (1) shows that

(∆u)′ (r) = O(1), ∆u(r) = O(1), u′(r) = O(1), u(r) = O(1)

for r ց 0. This shows that u is regular.
(ii) Let W belong to a weakly singular solution. Then, by definition, part (i), and Propositions 1
and 3, we see that limt→−∞W (t) = P . The converse conclusion is obvious. 2

5 Regular minimal solutions

The main goal here is to prove the most difficult part of Theorem 1, namely the immediate switch
from existence of regular minimal solutions to nonexistence even of singular solutions.
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Theorem 7. Assume that us is a solution of (1) with parameter λs. Then, for any λ ∈ (0, λs), the
Dirichlet problem (1) has a regular radially decreasing minimal solution.

We start by proving the following

Lemma 1. Let u be a radial solution of the Dirichlet problem (1), and define the corresponding funtions
U = U(r) and v = v(t) according to (7) and (9) respectively for r ∈ (0, 4

√
λ) and t ∈ (−∞, 1

4 log λ).
Then, v is bounded.

Proof. For contradiction, assume that v is not bounded. In view of Proposition 3 we may exclude
that the limit as t→ −∞ exists and equals +∞. Hence we assume that

0 ≤ lim inf
t→−∞

v(t) < lim sup
t→−∞

v(t) = +∞.

This shows that there exists a sequence tk → −∞ of local maxima for v such that for all k

lim
k→+∞

v(tk) = +∞, v′(tk) = 0. (21)

Define
λk = vp−1(tk) (22)

so that
lim

k→+∞
λk = +∞.

Since (10) is an autonomous equation the translated function

ṽk(t) = v(t+ tk −
1

4
log λk), t ∈ (−∞,

1

4
log λ− tk +

1

4
log λk)

also solves (10). In particular, the function

Ũk(r) = r−4/(p−1)ṽk(log r)

is a radial solution of the equation (7) which satisfies the conditions

Ũk(
4
√
λk) = λ

−1/(p−1)
k ṽk(

1

4
log λk) = λ

−1/(p−1)
k v(tk) = 1 (23)

and by (16), (21), (22)

Ũ ′
k(

4
√
λk) = − 4

p− 1
λ
−1/4
k < 0. (24)

Next, we define the radial function

uk(r) = Ũk(
4
√
λkr) − 1 = λ

−1/(p−1)
k e4tk/(p−1)U

(
retk

)
− 1 (25)

so that by (23) and (24) we have





∆2uk = λk(1 + uk)
p, uk > 0 in B,

uk = 0 on ∂B,

−∂uk
∂n

=
4

p− 1
> 0 on ∂B.

10



This boundary value problem is solved in a weak sense, since U is a weak solution of (7). One should
observe that one also has a comparison principle in B with respect to the boundary datum − ∂u

∂n , see
[11].

This shows that uk is a weak supersolution for the problem

{
∆2u = λk(1 + u)p, u > 0 in B,
u = |∇u| = 0 on ∂B.

(26)

By standard arguments, see for example Lemma 3.3 in [3], we infer that for any λk problem (26)
admits a weak solution. Since λk → +∞ this contradicts the nonexistence of solutions of (1) for large
λ (see the proof of Theorem 3 in [2] for more details). This completes the proof of the lemma. 2

Proof of Theorem 7. Suppose now that us is a solution of (1) corresponding to λ = λs. After possibly
replacing us by the minimal solution of (1) corresponding to λ = λs, we may assume that us is radial.
We look for a regular solution of (1) for a fixed λ ∈ (0, λs). Put u0 = us and define u1 = λ

λs
u0 so that

u1 solves ∫

B
u1∆

2ϕ dx = λ

∫

B
(1 + u0)

pϕ dx ∀ϕ ∈ C4(B) ∩H2
0 (B).

We define by iteration uk as the unique solution of

∫

B
uk∆

2ϕ dx = λ

∫

B
(1 + uk−1)

pϕ dx ∀ϕ ∈ C4(B) ∩H2
0 (B). (27)

By the weak comparison principle (see Lemma 16 in [2]) we deduce that

0 < umin ≤ uk ≤ uk−1 ∀k ≥ 1, (28)

where umin denotes the minimal solution of (1) with respect to the parameter λ. By monotone
convergence it follows that there exists u ∈ Lp(B) such that uk → u in Lp(B) as k → ∞, u ≥ umin.
Moreover, passing to the limit in (27) we have

∫

B
u∆2ϕ dx = λ

∫

B
(1 + u)pϕ dx ∀ϕ ∈ C4(B) ∩H2

0 (B).

Fix ϑ ∈ ( λλs
, 1) and introduce a strictly increasing sequence {ϑk} with λ

λs
< ϑk < ϑ for any k ≥ 1.

Note that for any α > 0 and for any β > α there exists γ > 0 such that for all s ≥ 0

(1 + αs)p ≤ βp(1 + s)p + γ. (29)

By (29) there exists C1 > 0 such that for all ϕ ∈ C4(B), ϕ ≥ 0, ϕ = |∇ϕ| = 0 on ∂B

∫

B
u2∆

2ϕ dx = λ

∫

B
(1 + u1)

pϕ dx = λ

∫

B

(
1 +

λ

λs
u0

)p
ϕ dx

≤
∫

B
λ [ϑp1(1 + u0)

p + C1]ϕ dx =

∫

B
(ϑp1u1 + λC1ψ)∆2ϕ dx,

where ψ is the unique solution of the Dirichlet problem

{
∆2ψ = 1 in B,
ψ = |∇ψ| = 0 on ∂B.

11



The weak comparison principle yields

u2 ≤ ϑp1u1 + λC1ψ ≤ ϑ1u1 + λC1ψ.

Iterating this procedure we prove that for any k ≥ 1 there exists Ck > 0 such that

uk+1 ≤ ϑkuk + λCkψ. (30)

Since we chose λ
λs
< ϑk < ϑ < 1 for any k ≥ 1, by (30) it follows that

uk ≤ (ϑ)ku0 +Dk ∀k ≥ 1 (31)

for a suitable Dk > 0. Therefore, for any ε > 0 there exists k such that (ϑ)k < ε and hence by (28)
and (31) we have

0 ≤ u ≤ uk ≤ εu0 +Dk. (32)

Making use of (9), (32), and Lemma 1 we deduce that for any ε > 0

0 ≤ lim sup
r→0+

r4/(p−1)u(r) ≤ lim sup
r→0+

(εr4/(p−1)u0(r) + r4/(p−1)Dk) = εL,

where L = lim supr→0+ r4/(p−1)u0(r) < +∞. This proves that

lim
r→0+

r4/(p−1)u(r) = 0.

Finally by (9), Proposition 1 and Theorem 4 we conclude that u ∈ L∞(B).
The minimal solution umin may now be obtained by means of an iterative procedure starting with

0. Radial symmetry is so obvious. For monotonicity we refer to [7, Lemma 2.2] or [21, Proposition 1].
2

Proof of Theorem 1. First, we remark that (i) and (iii) are proved by Theorem 7. As for (ii), i.e.
existence of a possibly singular solution for the extremal parameter λ∗, we can proceed as outlined in
[2, Lemma 22]. By means of a generalized Pohožaev identity one can obtain uniform bounds for the
minimal regular solutions to (1) (λ ∈ (0, λ∗)) in H2

0 (B)∩Lp+1(B), which allow to perform a monotone
limit as λր λ∗.

Alternatively, one may refer to [3, Proposition 3.6] and Theorem 2 the proof of which requires only
Theorem 7. In [3], Navier instead of Dirichlet boundary conditions are considered. However, since
here we are working in the ball, no changes in the argument are needed.

It remains to prove the estimate (3) for λ∗. The explicit singular solution of the differential equation

u(x) := |x|−4/(p−1) − 1

is also a weak supersolution for (1) with parameter λ = K0. To see this one observes that u is only
weakly singular near the origin, and that also for biharmonic equations, one has a kind of Hopf lemma
for the boundary data, see [11]. This shows λ∗ ≥ K0.

In order to show λ∗ < λ1/p, we multiply (1) by the positive first eigenfunction ϕ1 of (2) and obtain

λ1

∫

B
uϕ1 dx =

∫

B
u∆2ϕ1 dx = λ

∫

B
(1 + u)pϕ1 dx > pλ

∫

B
uϕ1 dx,

thereby proving the desired inequality. �
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6 Energy considerations

Let u be a radial singular solution of (1), and let v = v(t) be the corresponding function defined in
(9). Let z(t) = v(−t) so that z(t) solves the equation (13) for t > −1

4 log λ.
The following energy functional

E(t) :=
1

p+ 1
z(t)p+1 − K0

2
z(t)2 − K2

2
|z′(t)|2 +

1

2
|z′′(t)|2 (33)

will help to show that every singular solution is weakly singular, i.e. to prove Theorem 3. Moreover,
in the second part of this section, we shall specify the asymptotic behaviour of any (weakly) singular
solution near r = 0, i.e. of z(t) for t→ ∞.

The first result is analogous to Proposition 1.

Lemma 2. Let z :
(
−1

4 log λ,∞
)
→ R be the solution of (13) corresponding to a radial singular

solution of (1). Then, for k = 1, . . . , 4 the functions z and z(k) are bounded in
(
−1

4 log λ,∞
)
.

Proof. By Lemma 1 it follows immediately that z(t) = v(−t) is bounded in
(
−1

4 log λ,∞
)
. Put

I =
(
−1

4 log λ,∞
)

and t0 = −1
4 log λ. Then, zp(t) − K0z(t) is bounded in I and hence, by local

Lq–estimates for fourth order elliptic equations, we infer that for any q > 1 there exists a constant
Cq > 0 such that for any t > t0 + 1 we have

‖z( . )‖W 4,q(t−1,t+2) ≤ Cq ‖z‖L∞(I) .

By combining Sobolev embeddings and local Schauder estimates we conclude that there exists a
positive constant independent of t, still denoted by Cq, such that

‖z( . )‖C4,α(t,t+1) ≤ Cq ‖z‖L∞(I) .

2

Arguing as in [9], in the next four lemmas we prove some summability properties for the function
z and its derivatives.

Lemma 3. Let t0 = −1
4 log λ. Then

∫ ∞

t0

|z′(s)|2ds+

∫ ∞

t0

|z′′(s)|2ds <∞.

Proof. Let E(t) be the function defined in (33). For any t > t0 we obtain by integration by parts and
exploiting (13)

E(t) − E(t0) =

∫ t

t0

E′(s) ds =

∫ t

t0

(
zpz′ −K0zz

′ −K2z
′z′′ + z′′z′′′

)
ds

= z′(t)z′′′(t) − z′(t0)z
′′′(t0) +

∫ t

t0

z′
(
zp −K0z −K2z

′′ − z(4)
)
ds

= z′(t)z′′′(t) − z′(t0)z
′′′(t0) +

∫ t

t0

z′
(
−K3z

′′′ −K1z
′) ds

= z′(t)z′′′(t) − z′(t0)z
′′′(t0) −K3z

′(t)z′′(t) +K3z
′(t0)z

′′(t0)

+

∫ t

t0

(
K3z

′′(s)2 −K1z
′(s)2

)
ds. (34)
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By Lemma 2 it follows that E(t) and the functions z′(t), z′′(t), z′′′(t) are bounded in I = (t0,∞), while
around t0, they are obviously smooth. This together with (34) and the fact that K3 > 0,K1 < 0
proves the claim. 2

Lemma 4. We have ∫ ∞

t0

|z′′′(s)|2ds <∞.

Proof. We multiply the equation (13) by z′′ and integrate over (t0, t) to obtain

∫ t

t0

(
z(4)(s) −K3z

′′′(s) +K2z
′′(s) −K1z

′(s) +K0z(s)
)
z′′(s) ds =

∫ t

t0

zp(s)z′′(s) ds. (35)

First, we prove that all the lower order terms in the integral identity (35) are bounded. By Lemmas
2,3, and integration by parts we have

∣∣∣∣
∫ t

t0

z(s)z′′(s) ds

∣∣∣∣ ≤ |z(t)z′(t)| + |z(t0)z′(t0)| +
∫ t

t0

|z′(s)|2ds = O(1) as t→ ∞. (36)

By Lemma 3 and Hölder’s inequality we have

∣∣∣∣
∫ t

t0

z′(s)z′′(s) ds

∣∣∣∣ ≤
(∫ t

t0

|z′(s)|2ds
)1/2(∫ t

t0

|z′′(s)|2ds
)1/2

= O(1) as t→ ∞. (37)

By Lemma 2, integration by parts, and arguing as in (37), we obtain

∣∣∣∣
∫ t

t0

zp(s)z′′(s) ds

∣∣∣∣ ≤ |zp(t)z′(t)| + |zp(t0)z′(t0)| +
∣∣∣∣
∫ t

t0

pzp−1(s)z′(s)2 ds

∣∣∣∣ = O(1) as t→ ∞. (38)

Using again Lemma 2 we conclude that

∣∣∣∣
∫ t

t0

z′′′(s)z′′(s) ds

∣∣∣∣ ≤
1

2
|z′′(t)|2 +

1

2
|z′′(t0)|2 = O(1) as t→ ∞. (39)

Finally, after integration by parts we infer that

∫ t

t0

|z′′′(s)|2ds = z′′′(t)z′′(t) − z′′′(t0)z
′(t0) −

∫ t

t0

z(4)(s)z′′(s) ds = O(1) as t→ ∞

in view of Lemmas 2, 3, and (35)-(39). This completes the proof of the lemma. 2

Lemma 5. We have ∫ ∞

t0

|z(4)(s)|2ds <∞.

Proof. We multiply the equation (13) by z(4) and integrate over (t0, t) to obtain

∫ t

t0

|z(4)(s)|2ds =

∫ t

t0

(
zp(s) −K0z(s) +K1z

′(s) −K2z
′′(s) +K3z

′′′(s)
)
z(4)(s) ds. (40)

Arguing as in the proof of Lemma 4 one can easily prove that the right hand side of (40) remains
bounded as t→ ∞. This completes the proof of the lemma. 2
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Lemma 6. We have ∫ ∞

t0

z2(s)|zp−1(s) −K0|2ds <∞.

Proof. Using the differential equation (13) we obtain

[
z(4)(s) −K3z

′′′(s) +K2z
′′(s) −K1z

′(s)
]2

= z2(s)|zp−1(s) −K0|2.

The proof of the lemma follows immediately from Lemmas 3-5. 2

Proof of Theorem 3. Let W = (w1, w2, w3, w4) be the solution of the dynamical system (17) corre-
sponding to a radial singular solution u of (1), and let P and O be the stationary points introduced
in (19). In view of Lemmas 3-6 we infer that at least one of the two alternatives holds true

∃ {σk} s.t. σk+1 < σk, lim
k→∞

σk = −∞, lim
k→∞

W (σk) = P ; (41)

or
∃ {σk} s.t. σk+1 < σk, lim

k→∞
σk = −∞, lim

k→∞
W (σk) = O. (42)

Arguing as in Proposition 7 in [9] we conclude that

lim
t→−∞

W (t) = P

or
lim

t→−∞
W (t) = O

respectively in the cases (41) and (42). In view of Theorem 6 we may exclude the second case since it
would imply that u is a regular solution. Therefore, only the first case may occur and hence, Theorem
6 implies that u is a weakly singular solution. �

The energy functional defined above in (33) will also help to specify the behaviour of (weakly)
singular solutions of (1) near r = 0. To this end we may assume that

lim
t→∞

z(t) = K
1/(p−1)
0 . (43)

Lemma 7. Let us be a weakly singular solution of (1) with parameter λs and z(t) : (−1
4 log λs,∞) →

(0,∞) the corresponding solution of (13). Then, it cannot happen that z′(t0) = 0 for some t0.

Proof. Assume for contradiction that z′(t0) = 0. Then, by (16), we have that z′(−1
4 log λs) 6= 0 and

hence, z is not a constant. For any t > t0 we obtain by arguing as in Lemma 3

E(t) − E(t0) = z′(t)z′′′(t) −K3z
′(t)z′′(t) +

∫ t

t0

(
K3z

′′(s)2 −K1z
′(s)2

)
ds.

Letting t→ ∞ and observing Proposition 1 yields

E(∞) − E(t0) =

∫ ∞

t0

(
K3z

′′(s)2 −K1z
′(s)2

)
ds > 0;

⇒ − p− 1

2(p+ 1)
K

(p+1)/(p−1)
0 >

1

p+ 1
z(t0)

p+1 − K0

2
z(t0)

2 +
1

2
|z′′(t0)|2

≥ min
ζ≥0

(
ζp+1

p+ 1
− K0

2
ζ2

)
= − p− 1

2(p + 1)
K

(p+1)/(p−1)
0 ,
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a contradiction. 2

Proof of Theorem 5. We know from (16) that

v′(
1

4
log λs) =

4

p− 1
v(

1

4
log λs) > 0

so that

z′(−1

4
log λs) < 0.

The previous lemma then shows that for all t ≥ −1
4 log λs

z′(t) < 0 ⇒ z(t) > K
1/(p−1)
0

and
U(x) > K

1/(p−1)
0 |x|−4/(p−1)

so that

us(x) >

(
K0

λs

)1/(p−1)

|x|−4/(p−1) − 1.

Moreover, we have in particular 0 = us(1) so that

λs > K0.

2

Remark. With a completely analogous proof, one can show for any (weakly) singular radial solution
us of the Dirichlet problem for the biharmonic equation ∆2us = λs exp(us) that λs > 8(n− 2)(n− 4)
and that

us(x) > −4 log |x| + log
8(n − 2)(n − 4)

λs
.

This complements [2, Theorem 4].

7 Stability of the minimal regular solution

In this section we shall give the proof of Theorem 2.
Let λ ∈ (0, λ∗), and let uλ be the corresponding minimal solution. By Theorem 7 we know that

uλ is a regular solution. Consider the following weighted η-eigenvalue problem
{

∆2ψ = ηλp(1 + uλ)
p−1ψ in B,

ψ = |∇ψ| = 0 on ∂B
(44)

and let

η1(λ) = inf
ψ∈H2

0
(B)\{0}

∫

B
|∆ψ|2 dx

λ

∫

B
p(1 + uλ)

p−1ψ2 dx
(45)

be the corresponding first eigenvalue. Since uλ ∈ L∞(B), by compactness of the embedding H2
0 (B) ⊂

L2(B) we infer that the minimum in (45) is achieved. Note that by the Lagrange multiplier method
any minimizer ψ1 of η1(λ) solves (44) with η = η1(λ).
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Since uλ is a regular solution of (1), by Lq–estimates for fourth order elliptic equations and Schauder
estimates we infer that both uλ and ψ1 are classical solutions of (1) and (44), respectively. In the next
lemma we show that ψ1 does not change sign in B.

Lemma 8. Let ψ1 be a minimizer for η1(λ). Then, ψ1 > 0 in B up to a constant multiple.

Proof. Assume for contradiction that ψ1 is a sign changing minimizer for η1(λ) and consider the
problem {

∆2w = η1(λ)λp(1 + uλ)
p−1|ψ1| in B,

w = |∇w| = 0 on ∂B.
(46)

By Boggio’s maximum principle [4], we deduce that w > |ψ1| in B and hence

∫

B
|∆w|2 dx = η1(λ)

∫

B
λp(1 + uλ)

p−1|ψ1|w dx < η1(λ)

∫

B
λp(1 + uλ)

p−1w2 dx

so that ∫

B
|∆w|2 dx

λ

∫

B
p(1 + uλ)

p−1w2 dx

< η1(λ).

This contradicts the definition of η1(λ). Therefore, ψ1 is a function of constant sign and hence, up to
a constant multiple, we may assume that ψ1 ≥ 0 in B. The strict positivity of ψ1 follows from (44)
and Boggio’s maximum principle [4]. 2

Lemma 9. Let η1(λ) be the first eigenvalue of (44). Then η1(λ) > 1.

Proof. Fix λ ∈ (λ, λ∗) and consider the corresponding minimal solution uλ of (1). Since uλ, uλ are
minimal solutions for the respective problems we have that uλ ≤ uλ in B. Boggio’s maximum principle
yields uλ < uλ in B. By Lemma 8 we may fix a positive minimizer ψ1 of (45). Convexity of s 7→ (1+s)p

yields

η1(λ)

∫

B
(uλ − uλ)λp(1 + uλ)

p−1ψ1 dx =

∫

B
(uλ − uλ)∆

2ψ1 dx =

∫

B

[
λ(1 + uλ)

p − λ(1 + uλ)
p
]
ψ1 dx

> λ

∫

B

[
(1 + uλ)

p − (1 + uλ)
p
]
ψ1 dx ≥ λ

∫

B
p(1 + uλ)

p−1(uλ − uλ)ψ1 dx.

This proves that η1(λ) > 1. 2

Proof of Theorem 2. Consider now the first eigenvalue µ1(λ) for the linearized operator ∆2 − λp(1 +
uλ)

p−1. We have

µ1(λ) = inf
w∈H2

0
(B)\{0}

∫

B
|∆w|2 dx− λ

∫

B
p(1 + uλ)

p−1w2 dx
∫

B
w2 dx

.

For any w ∈ H2
0 (B) we have

∫

B
|∆w|2dx− λ

∫

B
p(1 + uλ)

p−1w2 dx ≥
(

1 − 1

η1(λ)

)∫

B
|∆w|2 dx ≥ λ1

(
1 − 1

η1(λ)

)∫

B
w2 dx,
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where λ1 denotes the first eigenvalue of (2). Lemma 9 now yields

µ1(λ) ≥ λ1

(
1 − 1

η1(λ)

)
> 0.

This completes the proof of the theorem. �

For 1 < p ≤ n+4
n−4 , we may define the action functional Jλ associated with the Euler-Lagrange

equation (1)

Jλ(u) =
1

2

∫

B
|∆u|2 dx− λ

p+ 1

∫

B
|1 + u|p+1 dx ∀u ∈ H2

0 (B).

Since for u ∈ H2
0 (B)

J ′′
λ(u) = ∆2 − λp|1 + u|p−1 in L(H2

0 (B);H−2(B)),

by Theorem 2 we immediately obtain

Corollary 1. Let 1 < p ≤ n+4
n−4 and λ ∈ (0, λ∗). Then, the corresponding minimal solution uλ is a

local minimum for the functional Jλ.

By Theorem 2 and [3, Proposition 3.6] we immediately obtain that Theorem 1 holds true for any
superlinear exponent p > 1. Moreover, for subcritical and critical 1 < p ≤ n+4

n−4 , according to the
related result [3, Theorem 2.2], we expect the existence of two distinct solutions for λ ∈ (0, λ∗).

Appendix

A Proof of Proposition 3

In order to avoid confusion with respect to the time direction we switch to the solution z of (13):

z(4)(t) −K3z
′′′(t) +K2z

′′(t) −K1z
′(t) +K0z(t) = zp(t) (t > −1

4
log λ).

For contradiction, assume first that L is finite and L 6∈ {0,K1/(p−1)
0 }. Then, zp(t) −K0z(t) → α :=

Lp −K0L 6= 0 and for all ε > 0 there exists T > 0 such that

α− ε ≤ z(4)(t) −K3z
′′′(t) +K2z

′′(t) −K1z
′(t) ≤ α+ ε ∀t ≥ T . (47)

Take ε < |α| so that α− ε and α+ ε have the same sign and let

δ := sup
t≥T

|z(t) − z(T )| <∞.

Integrating (47) over [T, t] for any t ≥ T yields

(α− ε)(t− T ) + C − |K1|δ ≤ z′′′(t) −K3z
′′(t) +K2z

′(t) ≤ (α+ ε)(t− T ) +C + |K1|δ ∀t ≥ T ,

where C = C(T ) is a constant containing all the terms z(T ), z′(T ), z′′(T ) and z′′′(T ). Repeating twice
more this procedure gives

α− ε

6
(t− T )3 +O(t2) ≤ z′(t) ≤ α+ ε

6
(t− T )3 +O(t2) as t→ ∞ .

18



This contradicts the assumption that z admits a finite limit as t→ +∞.
Next, we exclude the case L = +∞. For contradiction, assume that

lim
t→+∞

z(t) = +∞. (48)

Then, there exists T ∈ R such that

z(4)(t) −K3z
′′′(t) +K2z

′′(t) −K1z
′(t) ≥ zp(t)

2
∀t ≥ T .

Moreover, by integrating this inequality over [T, t] (for t ≥ T ), we get

z′′′(t) −K3z
′′(t) +K2z

′(t) −K1z(t) ≥
1

2

∫ t

T
zp(s)ds+ C ∀t ≥ T , (49)

where C = C(T ) is a constant containing all the terms z(T ), z′(T ), z′′(T ) and z′′′(T ). From (48) and
(49) we deduce that there exists T ′ ≥ T such that α := z′′′(T ′)−K3z

′′(T ′) +K2z
′(T ′)−K1z(T

′) > 0.
Since (10) is autonomous, we may assume that T ′ = 0. Therefore, we have

z(4)(t) −K3z
′′′(t) +K2z

′′(t) −K1z
′(t) ≥ zp(t)

2
∀t ≥ 0 , (50)

z′′′(0) −K3z
′′(0) +K2z

′(0) −K1z(0) = α > 0 . (51)

We may now apply the test function method developed by Mitidieri-Pohožaev [16]. More precisely,
fix T1 > T > 0 and a nonnegative function φ ∈ C4

c [0,∞) such that

φ(t) =

{
1 for t ∈ [0, T ]
0 for t ≥ T1 .

In particular, these properties imply that φ(T1) = φ′(T1) = φ′′(T1) = φ′′′(T1) = 0. Hence, multiplying
inequality (50) by φ(t), integrating by parts, and recalling (51) yields

∫ T1

0
[φ(4)(t) +K3φ

′′′(t) +K2φ
′′(t) +K1φ

′(t)]z(t)dt ≥ 1

2

∫ T1

0
zp(t)φ(t)dt + α . (52)

We now apply Young’s inequality in the following form: for any ε > 0 there exists C(ε) > 0 such that

zφ(i) = zφ1/p φ
(i)

φ1/p
≤ εzpφ+ C(ε)

|φ(i)|p/(p−1)

φ1/(p−1)
, φ(i) =

diφ

dti
(i = 1, 2, 3, 4).

Then, provided ε is chosen sufficiently small, (52) becomes

C
4∑

i=1

∫ T1

0

|φ(i)(t)|p/(p−1)

φ1/(p−1)(t)
dt ≥ 1

4

∫ T

0
zp(t)dt + α (53)

where C = C(ε,Ki) > 0. We now choose φ(t) = φ0(
t
T ), where φ0 ∈ C4

c ([0,∞), φ0 ≥ 0 and

φ0(τ) =

{
1 for τ ∈ [0, 1]
0 for τ ≥ τ1 > 1 .

As noticed in [16], there exists a function φ0 in such class satisfying moreover

∫ τ1

0

|φ(i)
0 (τ)|p/(p−1)

φ
1/(p−1)
0 (τ)

dτ =: Ai <∞ (i = 1, 2, 3, 4).
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Then, thanks to a change of variables in the integrals, (53) becomes

C
4∑

i=1

AiT
1−ip/(p−1) ≥ 1

4

∫ T

0
zp(t)dt + α ∀T > 0.

Letting T → ∞, the previous inequality contradicts (48). 2
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[19] S.I. Pohožaev, Solvability of an elliptic problem in R
n with a supercritical index of nonlinearity,

Dokl. Akad. Nauk SSSR 313, 1990, 1356-1360, english translation in Soviet Math. Dokl. 42, 1991,
215-219

[20] W. Reichel, Uniqueness results for semilinear polyharmonic boundary value problems on confor-
mally contractible domains I & II, J. Math. Anal. Appl. 287, 2003, 61-74 & 75-89

[21] R. Soranzo, A priori estimates and existence of positive solutions of a superlinear polyharmonic
equation, Dyn. Syst. Appl. 3, 1994, 465-487

[22] X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc. 337,
1993, 549-590

21


