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Abstract

We study existence and positivity properties for solutions of Cauchy problems for both linear
and semilinear parabolic equations with the biharmonic operator as elliptic principal part. The
self-similar kernel of the parabolic operator ∂t + ∆2 is a sign changing function and the solution
of the evolution problem with a positive initial datum may display almost instantaneous change of
sign. We determine conditions on the initial datum for which the corresponding solution exhibits
some kind of positivity behaviour. We prove eventual local positivity properties both in the linear
and semilinear case. At the same time, we show that negativity of the solution may occur also for
arbitrarily large given time, provided the initial datum is suitably constructed.

1 Introduction and results

Contrary to the second order heat equation, no general positivity preserving property (ppp in the

sequel) holds for the following Cauchy problem for fourth order parabolic equations

{
ut + ∆2u = 0 in R

n+1
+ := R

n × [0,∞)
u (x, 0) = u0(x) in R

n ,
(1)

where n ≥ 1 and u0 ∈ C0 ∩ L∞ (Rn). By ppp, we mean here that positivity of the initial datum u0

implies positivity (in space and time) for the solution u = u(x, t) of (1). In fact, no global ppp for

(1) may be expected at all, see [2, 4, 11]. This common feeling is based on observing the oscillatory

behaviour of the biharmonic heat kernel. However, a more careful analysis shows that, under suitable

assumptions, some restricted and somehow hidden versions of the ppp can be observed, see [10]. A

better understanding of the behaviour of the kernels will certainly allow to reach stronger versions of

the ppp. It is precisely the first goal of the present paper to analyze in some detail the biharmonic

heat kernels: we determine explicitly their power series expansion, we obtain a third order differential

equation satisfied by the kernels and we show that the kernels have infinitely many damped oscillations.

With these tools we are then able to reach the second goal of the present paper, a rather complete

description of versions of the ppp for (1).

All these observations are then applied to the corresponding nonlinear problem

{
ut + ∆2u = |u|p−1u in R

n+1
+

u (x, 0) = u0(x) in R
n (2)

where p > 1 + 4/n; the exponent 1 + 4/n is the analogue of the ”Fujita”-exponent (see [6, 15] and the

references therein), arising in second order semilinear Cauchy problems. Our third purpose is to extend
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the global existence result and the decay estimates obtained in [9] to the case where the initial datum

u0 has supercritical decay at infinity in order to show that in these cases, when u0 is positive and has

a suitable asymptotic profile, global solutions of (2) are eventually locally positive.

For the somehow related equation with positive nonlinearity ut + ∆2u = |u|p, it is known [5] that

solutions blow up in finite time in the sub-Fujita case 1 < p ≤ 1 + 4
n , provided the initial datum

has nonnegative integral over R
n. For the very same equation in the super-Fujita case p > 1 + 4

n ,

interesting and useful techniques were introduced by Galaktionov-Pohožaev [7] and Caristi-Mitidieri

[3]. Although the nonlinearity in (2) may change sign, in some parts of our proofs we take advantage

of these techniques.

The corresponding second order semilinear parabolic problem has been widely studied; in this case

and in contrast with our situation, powerful tools like strong maximum principles and construction of

auxiliary functions satisfying suitable differential inequalities are available. For an overview of these

results, we refer to the introduction in [9], to [15] and to references therein.

Let us now explain in some more detail, what is known about (1) and (2) and what we are going to

prove in the present work.

1.1 Positivity in the linear problem

For the biharmonic heat equation,

ut + ∆2u = 0 (t > 0), (3)

either in R
n or in a bounded smooth domain (then complemented with suitable boundary conditions)

no positivity preserving of the solution with respect to the initial datum holds true. In general, one

even has to expect instantaneous change of sign, see e.g. [2, 4, 11], which is a property of the differential

equation and can be observed independently of a possible choice of boundary data and independently

of whether it is considered in bounded or unbounded domains.

On the other hand, there exist bounded domains with boundary conditions such that the corresponding

elliptic first eigenvalue is simple and the first eigenfunction is of fixed sign and displays a nondegenerate

behaviour at the boundary, see [12] and references therein. In these domains and for each positive initial

datum, in dependence of this datum the solution of the initial boundary value problem is eventually

positive. This positivity comes up almost immediately, since the higher modes in the expansion with

respect to the eigenfunctions decay much faster than the fundamental mode.

In a previous note [10], a related result - i.e. eventual local positivity - was proved for the Cauchy

problem (1), assuming that the initial datum u0 is nonnegative and compactly supported. We consider

here initial data u0 which are not compactly supported and which display a given decay behaviour

as |x| → ∞. Not only we prove eventual local positivity for the solution to (1), but we also give

quantitative lower bounds.

We fix some arbitrary β ≥ 0 and consider the functional set

Cβ := {g ∈ C0(Rn; R+) : g(0) > 0 , g(x) = o(|x|β) as |x| → ∞} .

Our main positivity result for the linear Cauchy problem (1) is the following

Theorem 1. Let β ≥ 0 and let g ∈ Cβ. Let

u0(x) =
1

g(x) + |x|β .
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Let u = u(x, t) be the corresponding solution of (1) and K ⊂ R
n be a compact set.

(i) If β < n, then there exists C̃n,β > 0 such that

lim
t→+∞

tβ/4u(x, t) = C̃n,β ,

uniformly with respect to x ∈ K.

(ii) If β ≥ n and g(x) ≡ 1, then there exists D̃n,β > 0 such that

lim
t→+∞

tn/4(log t)−1 u(x, t) = D̃n,n if β = n

lim
t→+∞

tn/4 u(x, t) = D̃n,β if β > n ,
(4)

uniformly with respect to x ∈ K.

The constants C̃n,β and D̃n,β in Theorem 1 do not depend on K. What does depend on K is the

“speed of convergence”, namely how fast tβ/4u(x, t)− C̃n,β converges to 0 (and similarly for D̃n,β). Let

us also mention that when β ≥ n, then for any g ∈ Cβ (not necessarily constant) one still has that

limt→+∞ tβ/4u(x, t) = +∞ uniformly with respect to x ∈ K.

The quantitative positivity result of Theorem 1 provides strong enough information to be applied also

to the semilinear problem (2). At a first glance, this appears somehow unexpected, since the techniques

connected with the proof of Theorem 1 seem to be purely linear.

Theorem 1 does not clarify whether the eventual positivity for solutions of (1) is global or only local. It

is shown in [10] that if the initial datum u0 is compactly supported, then the negativity for the solution

of (1) always exists and shifts to infinity. This suggests that a similar phenomenon might occur for β

sufficiently large.

On the other hand, if u0 ≡ 1 then the solution of (1) is u (x, t) ≡ 1. This trivial example shows that if

β = 0, presumably one has global eventual positivity for (1). We show that – at least in the case n = 1

– this is also true if β is positive but sufficiently small, see Proposition 4 in the appendix.

In any case, the following result shows that in general, we cannot expect neither global positivity nor

uniform bounds for eventual positivity.

Theorem 2. Let β ∈ (0, n) . For any T > 1 there exists g ∈ Cβ such that if

u0(x) =
1

g(x) + |x|β

then, the corresponding solution u = u (x, t) of (1) satisfies u (xT , T ) < 0 for some xT ∈ R
n.

1.2 Global existence, decay and positivity in the nonlinear problem

We denote by b the biharmonic heat kernel, i.e. the fundamental solution of (3). Then, we introduce

the definition of solution of (2):

Definition 1. We say that u is a solution of (2) over [0, T ) if u ∈ C4,1 (Rn × (0, T )) , u is bounded

in R
n × [0, t] for any t ∈ (0, T ), u solves the equation in (2) in the classical sense in R

n × (0, T ) and

‖u (t) − b(t) ∗ u0‖L∞(Rn) → 0 as t → 0. We denote by T ∗ the supremum of all T ’s such that u is a

solution of (2) in [0, T ). Finally, we say that u is a global solution of (2) if T ∗ = +∞.
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For the nonlinear Cauchy problem (2) with initial data u0 as specified in Theorem 1, we shall construct

global solutions, where on the long term, the contribution of the initial datum dominates the nonlinear

term, provided β ∈ (4/(p − 1), n). This observation allows us to prove an eventual local positivity

property even for solutions of the nonlinear problem (2):

Theorem 3. Let p > 1 + 4/n, 4/(p− 1) < β < n and g ∈ Cβ. Then, for a > 0 small enough the initial

datum

u0 (x) =
a

g(x) + |x|β

admits a global solution, which is eventually locally positive. More precisely, for any compact set K ⊂ R
n

there exists TK > 0 such that u (x, t) > 0 for any x ∈ K and t ≥ TK .

In order to show this eventual local positivity result, we prove first an existence and decay result for

solutions of (2) covering the presumably full ranges for the exponent p and for the asymptotic decay of

the initial datum, where global existence may be expected. The limiting case β = 4/(p−1) was treated

in [9]. The precise estimates in the range β ∈
(

4
p−1 , n

)
, however, are crucial for proving positivity in

Theorem 3.

Theorem 4. Let p > 1 + 4/n. There exists α > 0 such that if u0 satisfies

|u0 (x)| ≤ α

1 + |x|β

for some β ≥ 4/(p − 1), then there exists a global solution of (2). Moreover, there exists a constant

A = A (n, p, β) > 0 such that for any (x, t) ∈ R
n+1
+ we have

|u(x, t)| ≤





A
1+|x|β+tβ/4

if β ∈
[

4
p−1 , n

)

A

1+
|x|n

log(1+|x|)
+ tn/4

log(1+t)

if β = n

A
1+|x|n+tn/4 if β > n.

(5)

For any ε > 0 the constant A > 0 may be chosen independently of β ∈ [4/(p − 1), n − ε]∪ [n + ε,+∞).

Remark 1. The shape of u0 in the statements of Theorems 1 and 3 can be slightly modified. By using

the results in [10] one can see that the proof still works if we add to any such u0 some nonnegative

continuous compactly supported function.

2 Basic properties of the heat kernels

The kernel of the linear operator v 7→ vt + ∆2v in R
n is given by

b(x, t) = αn
fn(η)

tn/4
, η =

|x|
t1/4

,

fn(η) = η1−n

∫ ∞

0
e−s4

(ηs)n/2J(n−2)/2(ηs) ds ,

(6)

where Jν denotes the ν-th Bessel function and αn > 0 is a normalization constant. More precisely, if

ωn denotes the surface measure of the n-dimensional unit ball (so that ω1 = 2), then αn is given by

α−1
n = ωn

∫ ∞

0
rn−1fn(r) dr.
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Thanks to Galaktionov-Pohožaev [7], we know that these f -functions have exponential decay at infinity.

More precisely, for any integer n ≥ 1 there exist K = Kn > 0, µ = µn > 0 such that

|fn(η)| ≤ K exp
(
−µη4/3

)
for all η ≥ 0. (7)

Let us now recall the definition of the Gamma function and the power series expansion of the Bessel

function Jν :

Γ(y) =

∫ ∞

0
e−s sy−1 ds (y > 0) , Jν(y) =

∞∑

k=0

(−1)k(y/2)2k+ν

k! Γ(k + ν + 1)
(ν > −1). (8)

For these definitions and for further properties of Γ and Jν we refer to [1]. Here, we just recall the last

formula on p.13 in [1]:

Γ(x + ℓ) = (x + ℓ − 1)(x + ℓ − 2) · · · xΓ(x) for all x > 0 , ℓ ∈ N . (9)

Moreover, we will need the following property, obtained through the change of variable z = s4:
∫ ∞

0
e−s4

sα ds =
1

4

∫ ∞

0
e−z z−1+(α+1)/4 dz =

1

4
Γ

(
α + 1

4

)
(α > −1). (10)

The f -functions obey the following recurrence formula:

f ′
n(η) = −η fn+2(η) , for all n ≥ 1. (11)

This follows by direct computation:

d

dη
fn(η) =

d

dη

[∫ ∞

0
e−s4

sn−1(ηs)(2−n)/2J(n−2)/2(ηs) ds

]

{by [1, (4.6.2)]} = −
∫ ∞

0
e−s4

sn(ηs)(2−n)/2Jn/2(ηs) ds = −ηfn+2(η).

As a consequence of (11) we have the following recursion formula, which relates integrals of f -functions

in annuli of the corresponding space:
∫ r2

r1

rn−1fn(r) dr =

[
rn

n
fn(r)

]r2

r1

+
1

n

∫ r2

r1

rn+1fn+2(r) dr.

Next, we show that a representation of fn through power series is available:

Theorem 5. For any integer m ≥ 1, we have

f2m(η) =

∞∑

k=0

(−1)k
Γ
(

k+m
2

)

22k+m+1 k! (k + m − 1)!
η2k . (12)

For any nonnegative integer m, we have

f2m+1(η) =
2m

√
8π

∞∑

k=0

(−1)k
(k + m)! Γ

(
2k+2m+1

4

)

k! (2k + 2m)!
η2k . (13)

In particular, fn(0) > 0 for all n and

f1(η) =
1√
8π

∞∑

k=0

(−1)k
Γ
(

2k+1
4

)

(2k)!
η2k , f2(η) =

1

4

∞∑

k=0

(−1)k
Γ
(

k+1
2

)

[2k k!]2
η2k .
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Proof. Throughout this proof we use the convention that for any real numbers ak and any integer i:∏i−1
k=i ak = 1. By exploiting the power series expansion (8), for any integer n we find

fn(η) =

∞∑

k=0

(−1)k

k! Γ
(
k + n

2

)
22k−1+n/2

(∫ ∞

0
e−s4

s2k+n−1 ds

)
η2k .

By (9) we obtain

Γ
(
k +

n

2

)
= 2−k Γ

(n

2

) k−1∏

h=0

(n + 2h) for all k ∈ N

which, combined with (10), yields

fn(η) =
∞∑

k=0

(−1)k
Γ
(

2k+n
4

)

k! Γ
(

n
2

)
2k+1+n/2

∏k−1
h=0(n + 2h)

η2k . (14)

Assume now that n = 2m + 1 for some integer m ≥ 0. Then, recalling that Γ(1/2) =
√

π and using

again (9), we obtain

Γ
(n

2

)
= Γ

(
m +

1

2

)
= 2−m √

π

m−1∏

h=0

(2h + 1).

Moreover, as may be proved by induction over (m + k), one has

2k
m+k−1∏

h=0

(2h + 1) =
(2k + 2m)!

2m (k + m)!
for any integer m ≥ 0 .

Using these two identities, the denominator of the coefficient of η2k in (14) becomes

k! Γ
(n

2

)
2k+1+n/2

k−1∏

h=0

(n + 2h) =
√

8π k! 2k
m+k−1∏

h=0

(2h + 1) =
√

8π
k! (2k + 2m)!

2m (k + m)!
.

This proves (13).

On the other hand, if n = 2m for some integer m ≥ 1, then

Γ
(n

2

)
= Γ(m) = (m − 1)! and

k−1∏

h=0

(n + 2h) = 2k
k−1∏

h=0

(m + h)

so that

Γ
(n

2

) k−1∏

h=0

(n + 2h) = 2k (k + m − 1)!

and (12) follows by replacing into (14).

Basing upon Bessel’s equation, we deduce a third order ordinary differential equation for the function

fn, which will be essential for proving their positivity/oscillatory properties.

Theorem 6. For any integer n ≥ 1, the function fn solves the equation

f ′′′
n (η) +

n − 1

η
f ′′

n (η) − n − 1

η2
f ′

n (η) − η

4
fn (η) = 0. (15)
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Proof. In the proof of this lemma we use the following notation: keeping n ∈ N as space dimension

fixed, for any function g ∈ C2 ((0,∞)) we write

∆g (ρ) = g′′ (ρ) +
n − 1

ρ
g′ (ρ) for all ρ > 0. (16)

One may check by direct computation that the Bessel function J(n−2)/2 satisfies the identity

∆
(
ρ1−n/2J(n−2)/2

)
= −ρ1−n/2J(n−2)/2. (17)

If we put

F (ρ) = ρ1−n/2J(n−2)/2 (ρ) for all ρ > 0

then, by (6) and (17) we find

∆fn (η) = ∆

(∫ ∞

0
sn−1e−s4

F (ηs) ds

)
=

∫ ∞

0
sn−1e−s4

s2 (∆F ) (ηs) ds

= −
∫ ∞

0
sn−1e−s4

s2F (ηs) ds.

Using the divergence formula and (17) we obtain

(
∆fn (η)

)′
= −

∫ ∞

0
sn−1e−s4

s3F ′ (ηs) ds =
1

4ωn

∫

Rn

∇
(
e−|y|4

)
∇F (η |y|) dy

= − 1

4ωn

∫

Rn

e−|y|4η∆F (η |y|) dy =
1

4ωn

∫

Rn

e−|y|4ηF (η |y|) dy

=
η

4

∫ ∞

0
sn−1e−s4

F (ηs) ds =
η

4
fn (η) .

By (16) we immediately obtain (15).

2 4 6 8 10

0.2

0.4

0.6

0.8

Figure 1: The function f1

Finally, we show that the fn and so, the biharmonic heat kernel, has infinitely many oscillations:

Theorem 7. As η → ∞, the function η 7→ fn(η) changes sign infinitely many times.
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Proof. Assume first that n = 1 so that (15) reads

f ′′′
1 (η) =

η

4
f1 (η) . (18)

For contradiction assume that f1(η) ≥ 0 for η sufficiently large, say η ≥ η. Then, (18) states that also

f ′′′
1 (η) ≥ 0 for η ≥ η. This implies that f ′′

1 (η) admits a limit as η → ∞. In view of (7) this limit is

necessarily zero. And since f ′′
1 is non-decreasing, this means that f ′′

1 (η) ≤ 0 for η ≥ η. Therefore, f1 is

concave, nonnegative and vanishes at infinity in view of (7): this is impossible. Similarly, we reach a

contradiction if we assume that f1(η) ≤ 0 for η sufficiently large.

Assume now that n = 2. By putting g(t) = f2(e
t), (15) becomes

d

dt

(
e−2tg′′(t)

)
=

e2t

4
g(t) . (19)

For contradiction, assume that g(t) ≥ 0 for t sufficiently large, say t ≥ T . Then, with the same

argument used above we exclude that g′′(t) ≤ 0 for all t ≥ T . Take τ > T such that g′′(τ) > 0 and

integrate (19) over [τ, t] for any t ≥ τ :

e−2tg′′(t) ≥ e−2τg′′(τ) =⇒ g′′(t) ≥ e−2τg′′(τ)e2t

showing that g′′(t) → +∞ as t → ∞. But then also g(t) → +∞ as t → ∞, contradicting (7). Similarly

one reaches a contradiction by assuming that g(t) ≤ 0 for t sufficiently large.

The statement is so proved for n = 1 and n = 2. This means that f1 and f2 have an increasing sequence

of local maxima and of local minima. Hence, for larger values of n it suffices to recall (11) and to argue

by induction.

Remark 2. In order to gain a more precise impression of the asymptotic behaviour of the f -function

for η → ∞, we define

g(y) := fn

(
y3/4

)
, fn(η) = g

(
η4/3

)
, η = y3/4 ≥ 0.

So, we have

f ′
n(η) =

4

3
η1/3g′

(
η4/3

)

f ′′
n(η) =

16

9
η2/3g′′

(
η4/3

)
+

4

9
η−2/3g′

(
η4/3

)

f ′′′
n (η) =

64

27
ηg′′′

(
η4/3

)
+

16

9
η−1/3g′′

(
η4/3

)
− 8

27
η−5/3g′

(
η4/3

)
.

In terms of g, the differential equation (15) for fn reads:

g(y) =
256

27
g′′′(y) +

64

9
n

g′′(y)

y
− 32

27
(3n − 2)

g′(y)

y2
. (20)

According to [13, Chapter X], the asymptotic behaviour of solutions to the “almost autonomous”

equation (20) is to a “certain extent” determined by the corresponding autonomous equation

h(y) =
256

27
h′′′(y). (21)

Bounded solutions to (21) are given by

h(y) = γ exp

(
− 3

16
3
√

2y

)
cos

(
3

16

√
3

3
√

2y + δ

)
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where γ > 0 and δ ∈ R. So, we expect the following asymptotic behaviour of fn(η):

(γ + o(1)) exp

(
− 3

16
3
√

2η4/3

)
cos

(
3

16

√
3

3
√

2η4/3 + δ + o(1)

)

for suitable constants γ and δ. Numerical experiments strongly support validity of such an asymptotic

expansion while on the other hand, [13, Chapter X.13–X.17] does not directly yield such a statement.

3 Linear decay and proof of Theorem 1

The solution u of the linear Cauchy problem (1) is given by

u(x, t) = αnt−n/4

∫

Rn

u0(x − y)fn

( |y|
t1/4

)
dy , (x, t) ∈ R

n+1
+ . (22)

With the change of variables y = t1/4z, we obtain

u(x, t) = αn

∫

Rn

u0(x − t1/4z)fn(|z|) dz = αnt−β/4

∫

Rn

fn(|z|)
t−β/4g(x − t1/4z) + |z − t−1/4x|β dz . (23)

We distinguish two cases.

3.1 The case β < n

We first prove

Lemma 1. Let K ⊂ R
n be a compact subset and let 0 ≤ β < n. Then, there exists Cn,β ∈ R such that

lim
t→+∞

tβ/4u(x, t) = αnωnCn,β ,

the limit being uniform with respect to x ∈ K. In particular, Cn,0 = (ωnαn)−1.

Proof. By (7) and since β < n and g ∈ Cβ, we may apply Lebesgue’s Theorem and exploit local uniform

convergence in R
n \ {0} to obtain

lim
t→+∞

(∫

Rn

fn(|z|)
t−β/4g(x − t1/4z) + |z − t−1/4x|β dz

)
=

∫

Rn

fn(|z|)
|z|β dz = ωn

∫ ∞

0
ηn−1−βfn(η) dη.

Hence, if we put

Cn,β :=

∫ ∞

0
ηn−1−βfn(η) dη , (24)

the statement follows by replacing into (23).

By Lemma 1, the proof of Theorem 1 (in the case β < n) will be complete once we show:

Proposition 1. For all integer n ≥ 1 and all β ∈ [0, n) we have Cn,β > 0.

Since the proof of Proposition 1 is quite involved we postpone it to the next section.
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3.2 The case β ≥ n

Here we cannot apply Lebesgue’s Theorem as in Lemma 1 because we must isolate the singularity.

More precisely, if γ > 0 denotes the least zero of fn, we split the integral in (23) as follows:

tβ/4u(x, t)

αn
=

∫

Rn

fn(|z|)
t−β/4 + |z − t−1/4x|β dz =

∫

|z−t−1/4x|>γ
+

∫

|z−t−1/4x|<γ
=: I1(t) + I2(t)

and we estimate the two integrals. In view of (7), to I1 we may apply Lebesgue’s Theorem and obtain

lim
t→+∞

I1(t) =

∫

|z|>γ

fn(|z|)
|z|β dz = δn,β ∈ R . (25)

The estimate of I2 appears slightly more delicate. With the change of variables y = t−1/4x − z, we

obtain

I2(t) =

∫

|y|<γ

fn(|t−1/4x − y|)
t−β/4 + |y|β dy =

∫

|y|<γ

fn(|y|) + o(1)

t−β/4 + |y|β dy = ωn

∫ γ

0
rn−1 fn(r)

t−β/4 + rβ
dr + o(I2(t))

so that, with the change of variables r = t−1/4s, we obtain

(1 + o(1))I2(t) = ωn t(β−n)/4

∫ γt1/4

0
sn−1fn(t−1/4s)

1 + sβ
ds .

If β = n the last equality implies I2(t) ∼ Dn,n log t as t → ∞, whereas if β > n it implies I2(t) ∼
Dn,βt(β−n)/4 as t → ∞, for suitable positive constants Dn,β. By combining these estimates with (25),

we readily obtain (4).

4 Proof of Proposition 1

The proof of Proposition 1 is somehow inductive. It needs a statement for large β in order to be started

and two recursion formulae in order to be continued.

Lemma 2. For all integer n ≥ 4 and all β ∈ (n+1
2 , n) we have Cn,β > 0.

Proof. According to (6), we may rewrite Cn,β in (24) as

Cn,β =

∫ ∞

0
η−β

∫ ∞

0
e−s4

(ηs)n/2J(n−2)/2(ηs) ds dη . (26)

Absolute integrability with respect to η near ∞ is ensured by the condition β > (n+1)/2. Observe that√
ρJ(n−2)/2(ρ) is bounded at ∞ and that ρ1−n/2J(n−2)/2(ρ) is bounded near ρ = 0. For every η > 0,

with the change of variable s = z/η we obtain

∫ ∞

0
e−s4

(ηs)n/2J(n−2)/2(ηs) ds =
1

η

∫ ∞

0
e−z4/η4

zn/2J(n−2)/2(z) dz

which, inserted into (26), yields

Cn,β =

∫ ∞

0
η−β−1

∫ ∞

0
e−z4/η4

zn/2J(n−2)/2(z) dz dη .
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By Fubini’s Theorem we then get

Cn,β =

∫ ∞

0
zn/2J(n−2)/2(z)

∫ ∞

0

e−z4/η4

ηβ+1
dη dz . (27)

For every z > 0, with the change of variable η = z/s we obtain

∫ ∞

0

e−z4/η4

ηβ+1
dη =

1

zβ

∫ ∞

0
e−s4

sβ−1 ds .

Inserting this into (27) shows that

Cn,β = γn,β

∫ ∞

0
z

n−1
2

−β √
z J(n−2)/2(z) dz (28)

with

γn,β =

∫ ∞

0
e−s4

sβ−1 ds =
1

4
Γ

(
β

4

)
> 0

where the second equality follows from (10). Then, we argue as in [10, Lemma 1]: since the map

z 7→ z
n−1

2
−β is decreasing, we may apply the Lorch-Szegö Theorem [1, Corollary 4.15.2] to (28) in order

to show that Cn,β > 0. Here we use n ≥ 4 so that for the index of the Bessel function, we have that
n−2

2 > 1
2 .

Lemma 3. For any n ≥ 1 and β ∈ [0, n) we have

Cn+2,β = (n − β)Cn,β. (29)

For any n ≥ 3 and β ∈ [0, n − 2) we have

Cn,β = 4(β + 2)(n − 2 − β)Cn+2,β+4. (30)

Proof. By (11) and integration by parts (recall (7)) we have

Cn+2,β =

∫ ∞

0
ηn+1−βfn+2 (η) dη = −

∫ ∞

0
ηn−βf ′

n (η) dη

= (n − β)

∫ ∞

0
ηn−β−1fn (η) dη = (n − β)Cn,β .

This proves (29).

By exploiting the differential equation for fn, see Theorem 6, we have

Cn,β =

∫ ∞

0
ηn−1−βfn (η) dη

= 4

∫ ∞

0
ηn−2−βf ′′′

n (η) dη (31)

+4(n − 1)

∫ ∞

0
ηn−3−βf ′′

n (η) dη − 4(n − 1)

∫ ∞

0
ηn−4−βf ′

n (η) dη.

Note that the last integral in (31) is well defined since β < n−2 and by Theorem 5 we have f ′
n (η) ∼ cη

as η → 0.
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By (11) we have
∫ ∞

0
ηn−4−βf ′

n (η) dη = −
∫ ∞

0
ηn−3−βfn+2 (η) dη = −Cn+2,β+4. (32)

Hence, after an integration by parts and using again (7), (11) and the fact that f ′
n (η) ∼ cη as η → 0,

we get
∫ ∞

0
ηn−3−βf ′′

n (η) dη =
[
ηn−3−βf ′

n (η)
]∞
0

− (n − 3 − β)

∫ ∞

0
ηn−4−βf ′

n (η) dη

= (n − 3 − β) Cn+2,β+4. (33)

With the aid of (33) and integration by parts we obtain
∫ ∞

0
ηn−2−βf ′′′

n (η) dη =
[
ηn−2−βf ′′

n (η)
]∞
0

− (n − 2 − β)

∫ ∞

0
ηn−3−βf ′′

n (η) dη

= −(n − 2 − β) (n − 3 − β)Cn+2,β+4. (34)

Combining (31)-(34) the proof of (30) follows.

We are now ready to prove Proposition 1. We prove it separately in the cases where n is odd or even.

Proof of Proposition 1 for odd integers. By Lemma 2 we have

C9,β > 0 for all β ∈ (5, 9) . (35)

In turn, by (35) and (30) we have C7,β > 0 for any β ∈ (1, 5) while by Lemma 2 it follows that C7,β > 0

for any β ∈ (4, 7). This yields

C7,β > 0 for all β ∈ (1, 7) . (36)

Then, according to (36) and (30), we obtain C5,β > 0 for any β ∈ [0, 3) and according to (36) and (29)

we obtain C5,β > 0 for any β ∈ (1, 5). This yields

C5,β > 0 for all β ∈ [0, 5) . (37)

By (37) and (29) we also have for n = 1, 3

Cn,β > 0 for all β ∈ [0, n) .

It remains to consider odd dimensions n ≥ 5. It is already proved for n = 5 in view of (37). Suppose

by induction that the conjecture is true for some odd integer n ≥ 5. By (29) we have Cn+2,β > 0 for

any β ∈ [0, n) and by Lemma 2 we deduce that Cn+2,β > 0 for any β ∈
(

n+3
2 , n + 2

)
. Since n > n+3

2

for any n ≥ 4, this proves that

Cn+2,β > 0 for all β ∈ [0, n + 2) .

The proof of Proposition 1 for odd integers is now complete. �

Proof of Proposition 1 for even integers. By Lemma 2 we have

C8,β > 0 for all β ∈ (9/2, 8) . (38)

By (38) and (30) we have C6,β > 0 for any β ∈ (1/2, 4) while by Lemma 2 it follows that C6,β > 0 for

any β ∈ (7/2, 6). This yields

C6,β > 0 for all β ∈ (1/2, 6) . (39)
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According to (39) and (30) we obtain C4,β > 0 for any β ∈ [0, 2) while according to (39) and (29) we

obtain C4,β > 0 for any β ∈ (1/2, 4). This yields

C4,β > 0 for all β ∈ [0, 4) . (40)

By (40) and (29) we also have

C2,β > 0 for all β ∈ [0, 2) .

It remains to consider even dimensions n ≥ 4. This proof by induction is performed exactly as in the

case of odd n. The proof of Proposition 1 is so complete also for even integers. �

5 Proof of Theorem 2

Let β ∈ (0, n) and T > 1 be fixed. According to Theorem 7 we know that fn is changes sign infinitely

many times. Let γ1 < γ2 be the first two zeroes of fn so that we have

fn (η) > 0 for all η ∈ (0, γ1) and fn (η) < 0 for all η ∈ (γ1, γ2) .

Let d > 0 and 0 < δ < (γ2 − γ1) /2 be such that

fn (η) < −d for all η ∈ (γ1 + δ, γ2 − δ) . (41)

Put b = (γ2 − γ1) /2 and a = b − δ and define for a fixed M > 1

g (x) =





1 if |x| ≤ a

1 + M−1
b−a (|x| − a) if a < |x| < b

M if |x| ≥ b.

If

u0(x) =
1

g(x) + |x|β

then by (22) the corresponding solution u = u(x, t) of (1) reads

u (x, t)

αn
= t−n/4

∫

Rn

u0(x − y)fn

( |y|
t1/4

)
dy =

∫

Rn

fn (|z|)
g
(
|x − t1/4z|

)
+ |x − t1/4z|β dz.

By (7) and (41) we have

u (x, t)

αn
<

∫

{γ1+δ<|z|<γ2−δ}

−d

g
(
|x − t1/4z|

)
+ |x − t1/4z|β dz (42)

+K

∫

{|z|<γ1}∪{|z|>γ2}

e−µ|z|4/3

g
(
|x − t1/4z|

)
+ |x − t1/4z|β dz.

Take x0 ∈ R
n such that |x0| = (γ1 + γ2) /2 and put R = T−1/4a and xT = T 1/4x0. Then by (42) we

have

u (xT , T )

αn
<

∫

BR(x0)

−d

g
(
T 1/4 |x0 − z|

)
+ T β/4 |x0 − z|β

dz

+K

∫

{|z|<γ1}

1

g
(
|x − t1/4z|

) dz + K

∫

{|z|>γ2}

e−µ|z|4/3

g
(
|x − t1/4z|

) dz. (43)

13



Note that if z ∈ BR (x0), then

T 1/4 |x0 − z| < RT 1/4 = a and g
(
T 1/4 |x0 − z|

)
= 1. (44)

On the other hand if |z| < γ1, then

|x0 − z| > |x0| − |z| >
γ1 + γ2

2
− γ1 = b.

Since T > 1 we also have T 1/4 |x0 − z| > b and

g
(
T 1/4 |x0 − z|

)
= M. (45)

Similarly for |z| > γ2 we have

|x0 − z| > |z| − |x0| > γ2 −
γ1 + γ2

2
= b

and

g
(
T 1/4 |x0 − z|

)
= M. (46)

Inserting (44)-(46) into (43) we obtain

u (xT , T )

αn
< − ωnRnd

n (1 + aβ)
+

Kωnγn
1

nM
+

K

M

∫

{|z|>γ2}
e−µ|z|4/3

dz.

It is clear that if we choose M sufficiently large then u (xT , T ) < 0.

6 Proof of Theorems 3 and 4

Let u0 be a function such that

|u0 (x)| ≤ α

1 + |x|β
(47)

for some α > 0. Let u be a solution of the integral equation

u(t) = b (t) ∗ u0 +

∫ t

0
b (t − s) ∗ |u|p−1 u (s) ds. (48)

By a contraction mapping argument (see [14] Section 3.3), we know that (48) admits a unique solution

u(t) defined in the maximal interval of existence [0, T ∗) with 0 < T ∗ ≤ +∞ and such that u ∈
C0 ∩ L∞ (Rn × [0, T ]) for any T ∈ (0, T ∗). Moreover, it is well known (see Proposition A4 in [6]) that

any bounded solution of the integral equation (48) is a solution of (2).

In order to overcome the difficulties which arise from the oscillatory behaviour of the kernel b (see also

Theorem 7 above), Galaktionov and Pohožaev [7] introduced the following majorizing kernel b̃(x, t):

b̃(x, t) = θnt−n/4 exp
(
−µη4/3

)

with µ as in (7) and

θ−1
n = ωn

∫ ∞

0
rn−1 exp

(
−µr4/3

)
dr.

From this definition we have

|b (x, t)| ≤ Dnb̃ (x, t) (49)
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for a suitable constant Dn > 0. Let v0 be defined by

v0 (x) = Dn |u0 (x)| . (50)

Besides (48), we also consider the integral equation

v(t) = b̃ (t) ∗ v0 + Dn

∫ t

0
b̃ (t − s) ∗ vp (s) ds. (51)

If v is a solution of (51), by (49) and (50) we infer that

|u(x, t)| ≤ v (x, t) (52)

as long as v(t) exists. In particular, the maximal interval of existence for (48) contains the corresponding

interval for (51).

We define the operator

B̃v(x, t) = b̃ (t) ∗ v0 + Dn

∫ t

0
b̃ (t − s) ∗ |v (s) |p−1v (s) ds (53)

over the space C0 ∩ L∞ (Rn × [0, T ]) =: C0
b (Rn × [0, T ]) for any T > 0. Since the initial datum

v0 = v0(x) is nonnegative, any fixed point v = v(x, t) of the operator B̃ is a nonnegative function so

that v also satisfies (51).

As for the “linear” contribution of the initial datum to B̃ in (53), we have

0 ≤ b̃ (t) ∗ v0 = θn

∫

Rn

t−n/4e
−µ

„

|x−y|4

t

«1/3

Dn |u0(y)| dy

≤ Dnθnα

∫

Rn

t−n/4e
−µ

„

|y|4

t

«1/3

1

1 + |x − y|β
dy =: DnθnαG1 (x, t) . (54)

Here, any β ≥ 0 makes sense. Next, we estimate the second term in the right hand side of (53). Let

M > 0 and let v ∈ C0
(
R

n+1
+

)
be such that

0 ≤ v (x, t) ≤ M

1 + |x|β + tβ/4
for all (x, t) ∈ R

n+1
+ .

Then, we have

0 ≤
∫ t

0
b̃ (t − s) ∗ vp (s) ds = θn

∫ t

0

∫

Rn

s−n/4e
−µ

„

|y|4

s

«1/3

vp(x − y, t − s) dyds

≤ θnMp

∫ t

0

∫

Rn

s−n/4e
−µ

„

|y|4

s

«1/3

1[
1 + (t − s)β/4 + |x − y|β

]p dyds =: θnMpG2 (x, t) . (55)

In the following two propositions we formulate precise decay estimates for G1 (x, t) and G2 (x, t).

Proposition 2. Let β ≥ 0. Let G1 be the function introduced in (54) . There exists a constant C1 =

C1 (n, β) > 0 such that for all (x, t) ∈ R
n
+ we have

G1 (x, t) ≤





C1

1+|x|β+tβ/4
if β ∈ [0, n)

C1

1+ |x|n

log(1+|x|)
+ tn/4

log(1+t)

if β = n

C1

1+|x|n+tn/4 if β > n.

(56)
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Moreover, for any ε > 0 the constant C1 may be chosen independently of β ∈ [0, n − ε] ∪ [n + ε,+∞).

Proposition 3. Let p > 1 + 4/n and β ≥ 4
p−1 . Let G2 be the function introduced in (55) . There exists

a constant C2 = C2 (n, p, β) > 0 such that for all (x, t) ∈ R
n
+ we have

G2 (x, t) ≤





C2

1+|x|βp−4+t(βp/4)−1
if β ∈

[
4

p−1 , n+4
p

)

C2

1+
|x|n

log(1+|x|)
+ tn/4

log(1+t)

if β = n+4
p

C2

1+|x|n+tn/4 if β > n+4
p .

(57)

Moreover, for any ε > 0 the constant C2 may be chosen independently of β ∈
[

4
p−1 , n+4

p − ε
]
∪

[
n+4

p + ε,+∞
)

.

The proofs of Propositions 2 and 3 are postponed to Sections 8 and 9, respectively.

6.1 Proof of Theorem 4 in the case β ∈
[

4
p−1

, n
)

We fix β0 ∈ [4/(p − 1), n) arbitrary and remark that the following arguments are uniform in β ∈
[4/(p− 1), β0]. We proceed as in [9]. Let M > 0 to be fixed below. For any T > 0 we introduce the set

ST =

{
v ∈ C0 (Rn × [0, T ]) : 0 ≤ v (x, t) ≤ M

1 + |x|β + tβ/4

}
.

It is clear that the set ST is a nonempty, closed and convex subset of the Banach space C0
b (Rn × [0, T ])

of continuous and bounded functions in R
n × [0, T ].

We show that, for any T > 0, ST is an invariant set for B̃, i.e.

B̃ST ⊂ ST

for a suitable choice of M > 0 and α > 0 in (47).

Note that for any β ∈
(

4
p−1 , n

)
the exponents of t which appear in (57) are strictly larger than β/4

which appears in (56), while they are equal for β = 4/(p − 1). Hence, we have

G2 (x, t) ≤ C̃2

1 + |x|β + tβ/4
(58)

with a suitable constant C̃2 = C̃2 (n, p, β) > 0. To see that C̃2 may be chosen independently of

β ∈
[

4
p−1 , β0

]
, we observe that in (55), β may be replaced by β̃ := β+4

p ≤ β0+4
p < n+4

p . Applying

Proposition 3 to this β̃ yields (58) with C̃2 to be chosen uniformly for β̃ ∈
[

4
p−1 , β0+4

p

]
, i.e. independently

of β ∈
[

4
p−1 , β0

]
.

Therefore, inserting (56) and (58) into (54) and (55), we obtain

B̃v (x, t) ≤ DnθnαC1 + θnDnMpC̃2

1 + |x|β + tβ/4
=

M

1 + |x|β + tβ/4
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for

M =
(
C̃2θnDnp

)−1/(p−1)

and

α =
p − 1

D
p/(p−1)
n θ

p/(p−1)
n C1C̃

1/(p−1)
2 pp/(p−1)

.

The rest of the proof is based on an application of the Schauder fixed point Theorem as in the proof of

Theorem 1 in [9]. With this procedure we find a function v ∈ C0
(
R

n+1
+

)
such that B̃v = v and

0 ≤ v (x, t) ≤ M

1 + |x|β + tβ/4
for all (x, t) ∈ R

n+1
+ .

By (52) we conclude that (48) admits a solution u ∈ C0(Rn+1
+ ) such that

0 ≤ |u(x, t)| ≤ v (x, t) for all (x, t) ∈ R
n+1
+ .

Finally by Propositions 2 and (58) we infer that the constants C1 and C̃2 may be chosen independently

of β ∈
[

4
p−1 , β0

]
so that also α and M may be chosen independently of β ∈

[
4

p−1 , β0

]
.

So, Theorem 4 is proved for β ∈ [4/(p − 1), n).

6.2 Proof of Theorem 4 in the case β ≥ n

If β > n, for suitable M we work within the set

ST =

{
v ∈ C0 (Rn × [0, T ]) : 0 ≤ v (x, t) ≤ M

1 + |x|n + tn/4

}
,

while for β = n we put

ST =



v ∈ C0 (Rn × [0, T ]) : 0 ≤ v (x, t) ≤ M

1 + |x|n
log(1+|x|) + tn/4

log(1+t)



 .

This yields the proof of Theorem 4 in the case β ≥ n exactly as in the case 4
p−1 ≤ β < n. �

6.3 Proof of Theorem 3

Let u (x, t) be the global solution of (2) with the initial condition u0 as in the statement of Theorem

3. Provided a is sufficiently small, this global solution exists in view of Theorem 4. Moreover, by (5),

(55) and Proposition 3 we infer that for any ε > 0 there exists t1 > 0 (independent of x) such that

∣∣∣∣
∫ t

0
b (t − s) ∗ |u|p−1 u (s) ds

∣∣∣∣ ≤ Dn

∫ t

0
b̃ (t − s) ∗ |u(s)|p ds

≤ DnθnApG2 (x, t) ≤ εt−β/4 for all t > t1 and x ∈ R
n. (59)

This fact occurs since for any 4/(p − 1) < β < n we have β/4 < min {(βp/4) − 1, n/4} .

On the other hand, by Theorem 1 we deduce that for any compact set K ⊂ R
n and for any ε > 0 there

exists t2 > 0 (independent of x ∈ K) such that

b (t) ∗ u0 ≥
(
aC̃n,β − ε

)
t−β/4 for all t > t2 and x ∈ K. (60)
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Combining (59)-(60) we infer that

u (x, t) = b (t) ∗ u0 +

∫ t

0
b (t − s) ∗ |u|p−1 u (s) ds ≥

(
aC̃n,β − 2ε

)
t−β/4 for all t > t3 and x ∈ K

with t3 = max {t1, t2} . Since C̃n,β > 0 we may choose ε > 0 small enough such that aC̃n,β − 2ε > 0.

This proves the eventual local positivity of u. �

7 Some technical lemmas

We recall here the trivial inequalities

min

{
1

a
,
1

b

}
≤ 2

a + b
for all a, b > 0. (61)

For any m ∈ N and q > 0 there exist γ1, γ2 > 0 such that

γ1

(
m∑

i=1

αi

)q

≤
m∑

i=1

αq
i ≤ γ2

(
m∑

i=1

αi

)q

for all αi ≥ 0, i = 1, ...,m. (62)

We provide some technical estimates which will be fundamental for our results.

Lemma 4. Let p > 1 + 4/n and β ∈
[

4
p−1 , n+4

p

)
. There exists a constant C = C (n, p, β) such that for

n ≥ 2 we have

Γ1,n :=

∫ ∞

0

1

(1 + w2)n/2

∫ 3/T

0
ρn−5e−µρ4/3

∫ Tρ

0

σ3

[
T 3

ρ (Tρ − σ) + (σ − 1)4 + σ2

(1+w2)2

]βp
4

dσ dρ dw ≤ C.

(63)

For n = 1 and any T > 0 we have

Γ1,1 :=

∫ 3/T

0
z−4e−µz4/3

∫ Tz

0

σ3

[
T 3

z (Tz − σ) + (σ − 1)4
]βp

4

dσ dz ≤ C. (64)

Moreover, for any β1 ∈
(

4
p−1 , n+4

p

)
the constant C may be chosen independently of β ∈

[
4

p−1 , β1

]
.

Proof. The estimates (63) and (64) may be obtained with the same procedure introduced in the proof

of Lemmas 1 to 4 in [9]. There, the integral was split as follows:

∫ ∞

0

∫ 1/(2T )

0

∫ Tρ

0
+

∫ ∞

0

∫ 3/T

1/(2T )

∫ Tρ/2

0
+

∫ ∞

0

∫ 1/T

1/(2T )

∫ Tρ

Tρ/2
+

∫ ∞

0

∫ 3/T

1/T

∫ Tρ

Tρ/2
.

Most delicate are the integrals

∫ ∞

0

∫ 1/T

1/(2T )

∫ Tρ

Tρ/2
and

∫ ∞

0

∫ 3/T

1/T

∫ Tρ

Tρ/2
,

where the σ-integral is divided further by a ρ dependent polynomial of order 8. This enables us to

find suitable estimates for terms which become strongly singular for certain values of ρ. The condition

β < n+4
p is used in order to ensure finiteness of certain integrals which arise in the course of our

estimates.
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Lemma 5. Let p > 1 + 4/n and β ∈
[

4
p−1 , n

)
. There exists a constant C = C (n, p, β) such that:

– for n ≥ 2 and for any T > 0 we have

Γ2,n :=

∫ ∞

0

1

(1 + w2)n/2

∫ ∞

3/T
ρn−5e−µρ4/3

∫ Tρ

0

σ3

[
T 3

ρ (Tρ − σ) + (σ − 1)4 + σ2

(1+w2)2

]βp
4

dσ dρ dw ≤ C;

(65)

– for n = 1 and for any T > 0 we have

Γ2,1 :=

∫ ∞

3/T
z−4e−µz4/3

∫ Tz

0

σ3

[
T 3

z (Tz − σ) + (σ − 1)4
]βp

4

dσ dz ≤ C. (66)

Moreover, for any β1 ∈
(

4
p−1 , n

)
the constant C may be chosen independently of β ∈

[
4

p−1 , β1

]
.

Proof. Proceeding as in the proof of Lemma 5 in [9] we arrive at

Γ2,n ≤ C +
C

T n−4+βp

∫ ∞

3
τn−5+ βp

4 e−µ( τ
T )

4/3

dτ =: C + Cg(T ) (67)

for any n ≥ 1. We need to prove that the function g = g(T ) defined above is bounded for T ∈ (0,∞) .

Since g is continuous in (0,∞) we have only to prove that g remains bounded as T → 0 and T → ∞.

If T < 1 we have

g(T ) =
1

T n−4+βp

∫ ∞

3
τn−5+ βp

4 e−
µ
2 ( τ

T )
4/3

e−
µ
2 ( τ

T )
4/3

dτ

≤ e−
µ
2 ( 3

T )
4/3

T n−4+βp

∫ ∞

3
τn−5+ βp

4 e−
µ
2
τ4/3

dτ = C
e−

µ
2 ( 3

T )
4/3

T n−4+βp
.

The last term tends to 0 as T → 0.

If T > 1 we split the integral in (67) as follows

g(T ) =
1

T n−4+βp

[∫ 3T α

3
τn−5+ βp

4 e−µ( τ
T )

4/3

dτ +

∫ ∞

3T α

τn−5+ βp
4 e−µ( τ

T )
4/3

dτ

]

for some α > 1 which will be fixed below. Since

τ ≤ 3Tα =⇒ 1

T
≤ C

τ1/α

and

τ ≥ 3Tα =⇒ τ

T
≥ 31/ατ

α−1
α ,

we have

g(T ) ≤ C

∫ 3T α

3

τn−5+ βp
4

τ
n−4+βp

α

dτ +
C

T n−4+βp

∫ ∞

3
τn−5+ βp

4 e−µCτ
4(α−1)

3α dτ.

If we choose α > 1 sufficiently close to 1 then τn−5+ βp
4
−n−4+βp

α ∈ L1 (3,∞) so that g(T ) remains bounded

when T → ∞. This completes the proof of the lemma.
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8 Proof of Proposition 2

We proceed along the lines of the proof of [9, Proposition 2]. We make the change of variables y = t1/4z

to obtain

G1 (x, t) =

∫

Rn

e−µ|z|4/3

1 +
∣∣x − t1/4z

∣∣β dz.

We start with the following

Lemma 6. There exists a constant K1 = K1(n, β) > 0 such that for all |x| ≤ 1 and t ≥ 0 we have

G1 (x, t) ≤





K1

1+|x|β+tβ/4
if β ∈ [0, n)

K1

1+|x|n+ tn/4

log(1+t)

if β = n

K1

1+|x|n+tn/4 if β > n.

(68)

Moreover, for any ε > 0 the constant K1 may be chosen independently of β ∈ [0, n − ε] ∪ [n + ε,+∞) .

Proof. For |x| ≤ 1 and t ≥ 0 we immediately obtain

G1 (x, t) ≤
∫

Rn

e−µ|z|4/3

dz ≤ A1

1 + |x|β
. (69)

with a suitable constant A1 = A1(n, β) > 0.

If β ∈ [0, n) then following closely the proof of Lemma 6 in [9] we obtain

G1 (x, t) ≤ A2t
−β/4 for all (x, t) ∈ R

n
+, (70)

where A2 = A2(n, β) > 0.

If β = n then for any (x, t) ∈ R
n
+ we have

G1 (x, t) ≤ t−n/4

[∫

|z−t−1/4x|≤1

1

t−n/4 +
∣∣z − t−1/4x

∣∣n dz +

∫

|z−t−1/4x|>1
e−µ|z|4/3

dz

]

≤ t−n/4

[∫

|w|≤1

1

t−n/4 + |w|n dw +

∫

Rn

e−µ|z|4/3

dz

]
≤ A3t

−n/4 [1 + log (1 + t)] , (71)

where A3 = A3(n) > 0.

If β > n then for x ∈ R
n and t > 1 , we have

G1 (x, t) ≤ t−β/4

[∫

|z−t−1/4x|≤1

1

t−β/4 +
∣∣z − t−1/4x

∣∣β dz +

∫

|z−t−1/4x|>1
e−µ|z|4/3

dz

]

≤ t−β/4

[∫

|w|≤1

1

t−β/4 + |w|β
dw +

∫

Rn

e−µ|z|4/3

dz

]
.

After the change of variables w = t−1/4η we obtain

G1 (x, t) ≤ t−β/4

[
tβ/4−n/4

∫

Rn

1

1 + |η|β
dη +

∫

Rn

e−µ|z|4/3

dz

]
≤ A4t

−n/4
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with A4 = A4 (n, β) > 0.

On the other hand, for |x| ≤ 1 and t ∈ [0, 1] the first inequality in (69) holds true so that for any x ∈ R
n

and t > 0 we have

G1 (x, t) ≤ A5t
−n/4. (72)

for A5 = A5 (n, β) > 0.

Combining (69) with (70) if β ∈ [0, n), with (71) if β = n and with (72) if β > n, by (61) we immediately

obtain (68).

Assuming now |x| > 1 we prove:

Lemma 7. There exists a constant K2 = K2(n, β) > 0 such that for all |x| > 1 and t ≥ 0 we have

G1 (x, t) ≤





K2

1+|x|β+tβ/4
if β ∈ [0, n)

K2

1+ |x|n

log(1+|x|)
+ tn/4

log(1+t)

if β = n

K2

1+|x|n+tn/4 if β > n.

(73)

Moreover, for any ε > 0 the constant K2 may be chosen independently of β ∈ [0, n − ε] ∪ [n + ε,+∞) .

Proof. For β ∈ [0, n) the proof of (73) is exactly the same as in the proof of Lemma 7 in [9].

In the rest of this proof we assume β ≥ n. We proceed as in the proof of [3, Lemma 2.2]. Given R > 1/2,

let |x| > R such that

G1(x, t) =

∫

Rn

t−n/4 e
−µ

„

|x−y|4

t

«1/3

1 + |y|β
dy

=

∫

|y|>R
t−n/4 e

−µ

„

|x−y|4

t

«1/3

1 + |y|β
dy +

∫

|y|≤R
t−n/4 e

−µ

„

|x−y|4

t

«1/3

1 + |y|β
dy

≤ C(n)

1 + Rβ
+

∫

|y|≤R

1

|x − y|n

(
|x − y|4

t

)n/4
e
−µ

„

|x−y|4

t

«1/3

1 + |y|β
dy. (74)

Since we have

|x − y| ≥ |x| − |y| ≥ |x| − R > 0 for |y| ≤ R, |x| > R

and

zn/4e−µz1/3 ≤ C(n)e−(µ/2)z1/3
for all z ≥ 0,

by (74) we obtain

G1(x, t) ≤ C (n)

1 + Rn
+

C (n)

(|x| − R)n

∫

|y|≤R

e
−(µ/2)

„

|x−y|4

t

«1/3

1 + |y|β
dy

≤ C (n)

1 + Rn
+

C (n)

(|x| − R)n

∫

|y|≤R

1

1 + |y|β
dy.
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If β = n, we infer

G1 (x, t) ≤ C (n)

1 + Rn
+

C (n)

(|x| − R)n
log (1 + R) .

If β > n, we find that

G1 (x, t) ≤ C (n)

1 + Rn
+

C (n, β)

(|x| − R)n
.

Choosing R = |x| /2, then for any |x| > 1 and t ≥ 0 we obtain with a suitable constant C (n, β)

G1 (x, t) ≤





C(n,β)
1+|x|n log (1 + |x|) if β = n

C(n,β)
1+|x|n if β > n.

Combining this estimate with (71), (72) and (61), we obtain (73) also for β ≥ n.

The proof of Proposition 2 follows combining the estimates of Lemmas 6 and 7.

9 Proof of Proposition 3

With the change of variables y = s1/4z we obtain

G2 (x, t) =

∫ t

0

∫

Rn

e−µ|z|4/3

[
1 + (t − s)β/4 +

∣∣x − s1/4z
∣∣β
]p dzds. (75)

We start with the following time decay estimate.

Lemma 8. Let p > 1+4/n. Then, there exists a constant B1 = B1 (n, p, β) > 0 such that for all x ∈ R
n

and t > 0 we have

G2 (x, t) ≤





B1t
−βp

4
+1 if β ∈

[
4

p−1 , n+4
p

)

B1t
−n/4 [1 + log (1 + t)] if β = n+4

p

B1t
−n/4 if β > n+4

p .

(76)

Moreover, for any ε > 0 the constant B1 may be chosen independently of β ∈
[

4
p−1 , n+4

p − ε
]
∪

[
n+4

p + ε,+∞
)

.

Proof. We split the integral in the right hand side of (75) in the following way

G2(x, t) ≤
∫ t

0

∫

|z−s−1/4x|≤1/2
+

∫ t

0

∫

|z−s−1/4x|>1/2
= I1 + I2.
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In the rest of this proof, we denote C = C(n, p, β). If we put w = z − s−1/4x then, making use of (62),

we find for the integral defined by I1:

I1 =

∫ t

0

∫

|z−s−1/4x|≤1/2

e−µ|z|4/3

[
1 + (t − s)β/4 + sβ/4

∣∣z − s−1/4x
∣∣β
]p dzds

≤
∫ t

0

∫

|w|≤1/2

1[
1 + (t − s)β/4 + sβ/4 |w|β

]p dw ds

≤ C

∫ t

0

∫

|w|≤1/2

1
(
1 + t − s + s |w|4

)βp
4

dwds = C

∫

|w|≤1/2

∫ t

0

1
(
1 + t − s + s |w|4

)βp
4

dsdw

≤ C

∫

|w|≤1/2

1
(
1 − |w|4

)(
1 + t |w|4

) pβ
4
−1

dw. (77)

We distinguish the three cases 4
p−1 ≤ β < n+4

p , β = n+4
p , β > n+4

p .

If 4
p−1 ≤ β < n+4

p , then |w|−pβ+4 /
(
1 − |w|4

)
∈ L1

(
B1/2 (0)

)
so that by (77) we obtain

I1 ≤ C

t
βp
4
−1

∫

|w|≤1/2

|w|−βp+4

(
1 − |w|4

) dw ≤ C

t
βp
4
−1

. (78)

If β = n+4
p , by (77) we have

I1 ≤ C

∫

|w|≤1/2

1
(
1 + t |w|4

)n/4
dw ≤ C

tn/4

∫

|w|≤1/2

1
(

1
t + |w|4

)n/4
dw ≤ C [1 + log (1 + t)]

tn/4
. (79)

Finally, if β > n+4
p by (77) and the change of variables η = t1/4w we infer that

I1 ≤ C

tn/4

∫

|η|≤t1/4/2

1
(
1 + |η|4

)βp
4
−1

dη ≤ C

tn/4

∫

Rn

1
(
1 + |η|4

)βp
4
−1

dη. (80)

Next, we consider the integral I2. By (62) we have

I2 ≤
∫ t

0

∫

|z−s−1/4x|>1/2

e−µ|z|4/3

[
(t − s)β/4 + sβ/4

∣∣z − s−1/4x
∣∣β
]p dzds

≤
∫ t

0

∫

|z−s−1/4x|>1/2

e−µ|z|4/3

[
(t − s)β/4 +

(
s
16

)β/4
]p dzds

≤ C

∫

Rn

e−µ|z|4/3

dz ·
∫ t

0

1
(
t − s + s

16

)βp
4

ds ≤ C

t
βp
4
−1

.

Combining this estimate with (78), (79), (80) we obtain (76).

We now study the decay of G2 (x, t) with respect to x.

23



Lemma 9. Let p > 1 + 4/n and β ≥ 4/(p − 1). Then, there exists a constant B2 = B2 (n, p, β) > 0

such that

G2 (x, t) ≤ B2

1 + |x|βp−4
for all |x| ≤ 1, for all t ≥ 0.

Moreover, the constant B2 may be chosen independently of β.

Proof. See the proof of Lemma 9 in [9].

Lemma 10. Let p > 1 + 4/n and β ∈
[

4
p−1 , n+4

p

)
. Then, there exists a constant B3 = B3 (n, p, β) > 0

such that

G2 (x, t) ≤ B3

1 + |x|βp−4
for all |x| > 1, for all t ≥ 0. (81)

Moreover, for any β1 ∈
(

4
p−1 , n+4

p

)
the constant B3 may be chosen independently of β ∈

[
4

p−1 , β1

]
.

Proof. Define F2 (x, t) =
(
1 + |x|βp−4

)
G2 (x, t) . We will show that F2 is bounded in R

n+1
+ . We distin-

guish the cases n ≥ 2 and n = 1.

The case n ≥ 2. The argument is almost the same as in the proof of Lemma 10 in [9]. We obtain for

any |x| > 1 and t ≥ 0

F2 (x, t) ≤ C

∫ ∞

0

1

(1 + w2)n/2

∫ ∞

0
ρn−5e−µρ4/3

∫ Tρ

0

σ3

[
T 3

ρ (Tρ − σ) + (σ − 1)4 + σ2

(1+w2)2

]βp
4

dσ dρ dw.

(82)

We split the integral in the right hand side of (82) in the following way

∫ ∞

0

∫ 3/T

0

∫ Tρ

0
+

∫ ∞

0

∫ ∞

3/T

∫ Tρ

0
.

By Lemmas 4 and 5 we infer that F2 (x, t) is bounded for |x| > 1 and t ≥ 0. This implies (81).

The case n = 1. We argue again as in Lemma 10 in [9] to obtain for any |x| > 1 and t ≥ 0

F2 (x, t) ≤ C

∫ ∞

0
z−4e−µz4/3

∫ Tz

0

σ3

[
T 3

z (Tz − σ) + (σ − 1)4
]βp

4

dσ dz. (83)

As above, we split the integral in the right hand side of (83) into

∫ 3/T

0

∫ Tz

0
+

∫ ∞

3/T

∫ Tz

0
.

Again, by Lemmas 4 and 5 we infer that F2 (x, t) is bounded for |x| > 1 and t ≥ 0. This implies (81)

also for n = 1.

Lemma 11. Let p > 1 + 4/n and β ≥ n+4
p . Then, there exists a constant B4 = B4 (n, p, β) > 0 such

that for all |x| > 1 and t ≥ 0, we have:

G2 (x, t) ≤





B4

1 + |x|n if β > n+4
p

B4
log (1 + |x|)

1 + |x|n if β = n+4
p .
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Moreover, for any β1 > n+4
p the constant B4 may be chosen independently of β ∈

[
β1,∞

)
.

Proof. Define F2 (x, t) = (1 + |x|n)G2 (x, t). We split the corresponding integral expression as follows:

F2 (x, t) =

∫ t

0

∫

|x−s1/4z|≥ |x|
2

(1 + |x|n) exp
(
−µ|z|4/3

)
(
1 + (t − s)β/4 + |x − s1/4z|β

)p dz ds

+

∫ t

0

∫

|x−s1/4z|< |x|
2

(1 + |x|n) exp
(
−µ|z|4/3

)
(
1 + (t − s)β/4 + |x − s1/4z|β

)p dz ds =: F2,1 (x, t) + F2,2 (x, t) .

In what follows, we repeatedly use (62). As for the the first term, we have

F2,1 (x, t) ≤ C

∫ t

0

∫

|x−s1/4z|≥ |x|
2

(1 + |x|n) exp
(
−µ|z|4/3

)

(1 + t − s + |x|4)βp/4
dz ds

≤ C(1 + |x|n)
[
1 + t − s + |x|4)1−βp/4

]t
0

≤ C(1 + |x|)n+4−βp ≤ C,

where we used the fact that n + 4 − βp ≤ 0.

As for the second integral, we observe that

|x − s1/4z| <
|x|
2

⇒ |z| >
|x|

2s1/4
.

Taking into account that for any α ≥ 0 there exists Cα > 0 such that ηα exp(−η) ≤ Cα for all η ≥ 0,

we conclude that

F2,2 (x, t) ≤ C

∫ t

0

( |x|4
s

)n/4 ∫

|w|<|x|/2
exp

(
− µ

24/3

( |x|4
s

)1/3
)

1

(1 + t − s + |w|4)βp/4
dw ds

≤ C

∫ |x|/2

0

∫ t

0

ρn−1

(1 + t − s + ρ4)βp/4
ds dρ

= C

∫ |x|/2

0
ρn−1

[(
1 + t − s + ρ4

)1−βp/4
]t
0

dρ

≤ C

∫ |x|/2

0
ρn−1(1 + ρn)(4−βp)/n dρ

=





C [log(1 + ρn)]
|x|/2
0 ≤ C log(1 + |x|) if β =

n + 4

p

C
[
−(1 + ρn)(n+4−βp)/n

]|x|/2

0
≤ C < ∞ if β >

n + 4

p
,

thereby proving the claim.

The proof of Proposition 3 follows combining the estimates of Lemmas 8-11.

A Appendix: polynomial approximations of the heat kernels

By Theorem 5, we may rewrite the f -function as

fn(η) = cn

∞∑

k=0

(−1)kakη
2k,
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where

ak =





(k+m)!Γ( 2k+2m+1
4 )

k!(2k+2m)! if n = 2m + 1 is odd,

Γ(k+m
2 )

22k+m+1k!(k+m−1)!
if n = 2m is even;

and

cn =

{
2m√
8π

if n = 2m + 1 is odd,

1 if n = 2m is even.

Moreover, for our purposes, the quotient of two consecutive coefficients

bk :=
ak+1

ak

will be important. We first prove

Lemma 12. For any integer n ≥ 1, the sequence (bk)k∈N
is strictly decreasing.

Proof. Consider first the case where the space dimension is odd, namely n = 2m + 1 for some integer

m ≥ 0. Then, we have

bk+1

bk
=

ak+2ak

a2
k+1

=
(k + 1)(2k + 2m + 1)Γ

(
2k+2m+5

4

)
Γ
(

2k+2m+1
4

)

(k + 2)(2k + 2m + 3)Γ
(

2k+2m+3
4

)2

=
(k + 1)Γ

(
2k+2m+5

4

)2

(k + 2)Γ
(

2k+2m+3
4

)
Γ
(

2k+2m+7
4

) <
k + 1

k + 2
< 1

due to the log–convexity of the Gamma–function.

Similarly, when the space dimension is even, namely n = 2m for some integer m ≥ 1, we have

bk+1

bk
=

(k + 1)Γ
(

k+m+2
2

)2

(k + 2)Γ
(

k+m+1
2

)
Γ
(

k+m+3
2

) <
k + 1

k + 2
< 1

where we used again the log–convexity of the Gamma–function.

For K ∈ N0, we define the following approximations for the f -functions:

FK(η) = cn

K∑

k=0

(−1)kakη
2k .

We do not indicate the dependence of FK on n by an additional index. We are now ready to prove

polynomial approximations of the f -functions:

Lemma 13. Let n ≥ 1 and assume that K ∈ N is even. Then, for 0 ≤ η ≤ 1√
bK

one has

FK−1(η) ≤ fn(η) ≤ FK(η).

Moreover, we have the following error estimates:

for all |η| ≤ 1√
bK

: max{|fn(η) − FK(η)|, |fn(η) − FK−1(η)|} ≤ |FK−1(η) − FK(η)| = cnaKη2K .
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Proof. One certainly has fn(η) ≤ FK(η), if for all even k ≥ K one has that

ak+2η
2k+4 − ak+1η

2k+2 ≤ 0 ⇔ η2 ≤ 1

bk+1

which, thanks to Lemma 12, is equivalent to

η2 ≤ 1

bK+1
.

Similarly, one has FK−1(η) ≤ fn(η), provided for all odd k ≥ K − 1

ak+1η
2k+2 − ak+2η

2k+4 ≥ 0 ⇔ η2 ≤ 1

bk+1
⇔ η2 ≤ 1

bK
.

This completes the proof.

We now show how this polynomial approximation may be used to determine some quantitative prop-

erties of the f -function in space dimension n = 1, where it takes a particularly simple form:

f1(η) =

√
2

π

∫ ∞

0
e−s4

cos(ηs) ds.

We first refine (7) by estimating its modulus in a quantitative way:

Lemma 14. For any η ≥ 0, the following holds

1

c1
|f1(η)| = 4

∣∣∣∣
∫ ∞

0
e−s4

cos(ηs) ds

∣∣∣∣ ≤ 4.4 exp
(
−0.15η4/3

)
.

Proof. We have

1

c1
f1(η) = 2

∫

R

e−s4
cos(ηs) ds =

∫

R

e−s4
eiηs ds +

∫

R

e−s4
e−iηs ds = 2

∫

R

e−s4
eiηs ds,

where we used the change of variables s 7→ −s. By Cauchy’s Theorem we have for any real ε > 0:
∫

R

e−s4
eiηs ds =

∫

R

e−(s+iε)4eiη(s+iε) ds ,

∣∣∣∣
∫

R

e−s4
eiηs ds

∣∣∣∣ ≤ e−ηε

∫

R

e−s4
e6ε2s2

e−ε4 ≤ e−ηεe17ε4

∫

R

e−s4/2 ds.

Choosing ε = (η/34)1/3 so that 17ε3 = η/2 yields

∣∣∣∣
∫

R

e−s4
eiηs ds

∣∣∣∣ ≤
(∫

R

e−s4/2 ds

)
exp

(
−η4/3/

(
2

3
√

34
))

≤ 2.2 exp
(
−0.15η4/3

)
.

The last inequality follows from the fact that

∫

R

e−s4/2 ds = 2

∫ ∞

0
e−s4/2 ds =

4
√

2

2
Γ

(
1

4

)
= 2.1558...

which, in turn, follows by arguing as for (10).

We prove a crucial positivity property for f1:
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Lemma 15. For any positive nonincreasing function h : (0,∞) → [0,∞) satisfying
∫

0
h(η)dη < +∞

we have ∫ ∞

0
h(η)f1(η) dη > 0.

Proof. Note first that by Lemma 14 and under the assumptions on h, we have hf1 ∈ L1(0,∞). Then,

we apply Lemma 13 with K = 6 so that, for |η| ≤ 10:

F5(η) ≤ f1(η) ≤ F6(η).

F5 has its first zero beyond 3.43, F6 before 3.46, so that f1 has its first zero in the interval [3.43, 3.46].

We conclude by means of explicit calculations and Lemma 14

1

c1

∫ ∞

0
h(η)f1(η) dη =

1

c1

∫ 3.43

0
h(η)f1(η) dη +

1

c1

∫ ∞

3.43
h(η)f1(η) dη

≥ h(3.43)

(
1

c1

∫ 3.43

0
F5(η) dη − 1

c1

∫ ∞

3.43
|f1(η)| dη

)

≥ h(3.43)

(
6.93 − 4.4

∫ ∞

3.43
exp

(
−0.15η4/3

)
dη

)

≥ h(3.43)

(
6.93 − 4.4

3
√

3.43

∫ ∞

3.43
η1/3 exp

(
−0.15η4/3

)
dη

)

≥ h(3.43) (6.93 − 6.72) > 0.

For suitable profiles h, the monotonicity assumption in the previous lemma may be relaxed.

Lemma 16. There exists β0 > 0 such that if 0 < β < β0, then
∫

R

f1(|η|)|ξ − η|−β dη > 0 for all ξ ∈ R. (84)

Proof. Let γ1 be the smallest positive zero of f1 and take β ≤ 1/2. Let g(η) = 4.4c1 · exp
(
−0.15η4/3

)

so that by Lemma 14, we have |f1(|η|)| ≤ g(η). We choose ξ0 > 0 large enough so that

ξ0 ≥ 2γ1 and for all ξ ≥ ξ0 : 4ξg(ξ/2) ≤ 0.1c1.

First, we consider ξ ≥ ξ0 and split the integral over R in (84) into
∫ −γ1

−∞
+

∫ γ1

−γ1

+

∫ ξ/2

γ1

+

∫ 2ξ

ξ/2
+

∫ ∞

2ξ
.

We obtain by making use of the approximations for
∫

f1 and
∫

g from Lemma 15:
∫

R

f1(|η|)|ξ − η|−β dη ≥ −|ξ|−β

∫ −γ1

−∞
g(η) dη + 2(3/2)−β |ξ|−β

∫ γ1

0
f1(η) dη

−(|ξ|/2)−β

∫ ∞

γ1

g(η) dη − 2g(ξ/2)

∫ ξ

0
η−β dη

≥
(

2(3/2)−β

∫ γ1

0
f1(η) dη − (1 + 2β)

∫ ∞

γ1

g(η) dη − 4|ξ|g(ξ/2)

)
|ξ|−β

≥ c1

(
2(3/2)−β6.93 − (1 + 2β)6.72 − 0.1

)
|ξ|−β > 0
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uniformly in ξ ≥ ξ0 for β close enough to 0. The same estimate holds for ξ ≤ −ξ0. Finally, for

ξ ∈ [−ξ0, ξ0], we have uniform convergence of

∫

R

f1(|η|)|ξ − η|−β dη →
∫

R

f1(|η|)dη = α−1
1 > 0 as β → 0.

Therefore, the existence of β0 > 0 as in the statement follows.

As an immediate consequence we have even global positivity for a special class of initial data:

Proposition 4. We assume that n = 1 and u0(x) = |x|−β . For β > 0 sufficiently small, the corre-

sponding solution of (1) given by (23) is positive in R
2
+.

Acknowledgement. We are grateful to a referee of [9], who suggested to study not only the limiting

case β = 4/(p − 1) but the full range β ≥ 4/(p − 1) and the dependence of the decay properties on β.
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