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Abstract

The biharmonic supercritical equation ∆2u = |u|p−1u, where n > 4 and p > (n + 4)/(n − 4),
is studied in the whole space R

n as well as in a modified form with λ(1 + u)p as right-hand-side
with an additional eigenvalue parameter λ > 0 in the unit ball, in the latter case together with
Dirichlet boundary conditions. As for entire regular radial solutions we prove oscillatory behaviour
around the explicitly known radial singular solution, provided p ∈ ((n + 4)/(n − 4), pc), where
pc ∈ ((n + 4)/(n − 4),∞] is a further critical exponent, which was introduced in a recent work by
Gazzola and the second author. The third author proved already that these oscillations do not
occur in the complementing case, where p ≥ pc.

Concerning the Dirichlet problem we prove existence of at least one singular solution with
corresponding eigenvalue parameter. Moreover, for the extremal solution in the bifurcation diagram
for this nonlinear biharmonic eigenvalue problem, we prove smoothness as long as p ∈ ((n+4)/(n−
4), pc).

1 Introduction and main results

In the present paper we consider qualitative properties of entire radial solutions (defined and regular
in the whole space) of the supercritical biharmonic equation

∆2u = |u|p−1u in R
n, (1)

where n ≥ 5 and p > n+4
n−4 . An important role is played by the explicitly known entire solution

us(r) = K
1/(p−1)
0 r−4/(p−1), (2)

where

K0 =
4

p − 1

(
4

p − 1
+ 2

)(
n − 2 − 4

p − 1

)(
n − 4 − 4

p − 1

)
. (3)

It was shown in [5, 8] that positive regular entire solutions to (1) exist and that asymptotically they
behave like the singular solution us:

lim
r→∞

u(r)

us(r)
= 1.

Moreover, for n > 12 a further critical exponent pc ∈
(

n+4
n−4 ,∞

)
was introduced being in that interval

the unique solution of the following polynomial equation:

pc ·
4

pc − 1
·
(

4

pc − 1
+ 2

)
·
(

n − 2 − 4

pc − 1

)
·
(

n − 4 − 4

pc − 1

)
=

n2(n − 4)2

16
. (4)
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The third author [9] proved in particular that in the “supercritical case”, i.e

p ≥ pc

the convergence of u to us is monotone, i.e. ∀r : u(r) < us(r). Here, we study the reverse case:

Theorem 1. Let pc ∈ ((n + 4)/(n − 4),∞) be the number, which is defined by (4) for n ≥ 13. We
assume that

n + 4

n − 4
< p < pc if n ≥ 13,

n + 4

n − 4
< p < ∞ if 5 ≤ n ≤ 12.

Let r 7→ u(r) be a radial entire solution to (1). Then, as r → ∞, u(r) oscillates infinitely many times
around the singular solution us(r).

We study also existence of singular solutions as well as qualitative properties of positive solutions
of the corresponding Dirichlet problem





∆2u = λ(1 + u)p in B,
u > 0 in B,
u = |∇u| = 0 on ∂B,

(5)

where B ⊂ R
n is the unit ball, λ > 0 is an eigenvalue parameter and again n ≥ 5 and p > n+4

n−4 . In [7]
(see also [2]) it was proved that there exists an extremal parameter λ∗ such that for λ ∈ [0, λ∗) one
has a minimal solution which is regular, while not even a weak solution does exist for λ > λ∗. On
the extremal parameter λ = λ∗, an extremal solution u∗ ∈ H2

0 (B)∩Lp(B) exists as monotone limit of
the minimal solutions. It is expected that also in the Dirichlet problem, a singular (i.e. unbounded)
solution uσ corresponding to a suitable singular parameter λσ exists and will play an important role
as far as the shape of the bifurcation diagram for (5) is concerned. However, in [7] we had to leave
open even the existence of a singular solution which will be proved in the present paper:

Theorem 2. Let n > 4 and p > (n + 4)/(n− 4). Then, there exists a parameter λσ > 0 such that for
λ = λσ, problem (5) admits a radial singular solution.

Moreover, in [7] we left open whether the extremal solution u∗ introduced above is singular (un-
bounded) or regular (bounded). The corresponding question has been settled for the exponential
nonlinearity by Davila, Dupaigne, Guerra and Montenegro [6] thereby developing the previous work
[1]. Here, taking advantage of an idea in [6], we prove regularity of the extremal solution of the
problem with power-type nonlinearity in the “subcritical” range.

Theorem 3. Let pc ∈ ((n + 4)/(n − 4),∞) be the number, which is defined by (4) for n ≥ 13. We
assume that

n + 4

n − 4
< p < pc if n ≥ 13,

n + 4

n − 4
< p < ∞ if 5 ≤ n ≤ 12.

Let u∗ ∈ H2
0 (B)∩Lp(B) be the extremal radial solution of (5) corresponding to the extremal parameter

λ∗, which is obtained as monotone limit of the minimal regular solutions for λ ր λ∗. Then, u∗ is
regular.

Related results for the corresponding second order problems were obtained e.g. in [3, 4, 10, 11].
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2 Entire solutions: The corresponding autonomous system

Here we study qualitative properties of entire radial solutions r 7→ u(r) to (1) and shall prove Theo-
rem 1. We put

v(s) := e4s/(p−1)u(es) (s ∈ R), u(r) = r−4/(p−1)v(log r) (r > 0). (6)

According to [8, 9], (1) is then equivalent to
(

∂s −
4

p − 1
+ n − 4

)(
∂s −

4

p − 1
+ n − 2

)(
∂s −

4

p − 1
− 2

)(
∂s −

4

p − 1

)
v(s) = |v(s)|p−1v(s),

(7)
s ∈ R. In order to write this as an autonomous system, we define





w1(s) = v(s)

w2(s) =
(
∂s − 4

p−1

)
w1(s)

w3(s) =
(
∂s − 4

p−1 − 2
)

w2(s)

w4(s) =
(
∂s − 4

p−1 + n − 2
)

w3(s).

(8)

Equation (7) is equivalent to the following system:




w′
1(s) = 4

p−1w1 + w2,

w′
2(s) =

(
4

p−1 + 2
)

w2 + w3,

w′
3(s) =

(
4

p−1 − (n − 2)
)

w3 + w4,

w′
4(s) = |w1(s)|p−1w1(s) +

(
4

p−1 − (n − 4)
)

w4.

(9)

In order to perform the stability analysis around the singular solution us(r) = K
1/(p−1)
0 r−4/(p−1), i.e.

v(s) = K
1/(p−1)
0 , we have to linearize (9) around the vector

w(0) := K
1/(p−1)
0

(
1,− 4

p − 1
,

4

p − 1

(
4

p − 1
+ 2

)
,

(
n − 2 − 4

p − 1

)
4

p − 1

(
4

p − 1
+ 2

))

and come up with the system w′(s) = M ◦ w(s) where

M :=




4
p−1 1 0 0

0 4
p−1 + 2 1 0

0 0 4
p−1 − (n − 2) 1

pK0 0 0 4
p−1 − (n − 4)


 .

The corresponding characteristic polynomial is given by

P (ν) =

(
ν − 4

p − 1
+ n − 4

)(
ν − 4

p − 1
+ n − 2

)(
ν − 4

p − 1
− 2

)(
ν − 4

p − 1

)
− pK0.

According to [8], the eigenvalues are given by

ν1 =
N1 +

√
N2 + 4

√
N3

2(p − 1)
, ν2 =

N1 −
√

N2 + 4
√

N3

2(p − 1)
,

ν3 =
N1 +

√
N2 − 4

√
N3

2(p − 1)
, ν4 =

N1 −
√

N2 − 4
√

N3

2(p − 1)
,
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where
N1 := −(n − 4)(p − 1) + 8, N2 := (n2 − 4n + 8)(p − 1)2,

N3 := (9n − 34)(n − 2) (p − 1)4 + 8(3n − 8)(n − 6) (p − 1)3

+(16n2 − 288n + 832) (p − 1)2 − 128(n − 6)(p − 1) + 256.

One has ν1, ν2 ∈ R and ν2 < 0 < ν1. For any 5 ≤ n ≤ 12 we have ν3, ν4 6∈ R and Re ν3 = Re ν4 < 0.
For any n ≥ 13 and p < pc, ν3, ν4 6∈ R and Re ν3 = Re ν4 < 0, while ν3, ν4 ∈ R and ν4 ≤ ν3 < 0 if
p ≥ pc. In any case,

ν2 < Re ν3/4 < 0 < ν1.

The stable manifold of w(0), where the trajectory of any w corresponding to an entire regular solution
is contained in, is tangential to the span of the eigenvectors corresponding to ν2, ν3, ν4. In [8] the
following strategy to prove Theorem 1 was outlined: in the “subcritical” setting n+4

n−4 < p < pc, any

such trajectory oscillates around w(0) infinitely many times except those which are tangential to the
eigenvector corresponding to ν2. We show that the latter can not correspond to an entire regular
solution.

Proposition 1. Let w( . ) be a solution of (9) in the stable manifold of w(0) being tangential to the
eigenvector corresponding to ν2. Then the corresponding solution u of (1) is singular or even not
defined for all r > 0.

In order to prove this proposition we need the following crucial observation on the sign of the
components of an eigenvector corresponding to ν2:

Lemma 1. One eigenvector of M corresponding to ν2 is given by t = (t1, t2, t3, t4) with

t1 = 1 > 0,

t2 =

(
ν2 −

4

p − 1

)
< 0,

t3 =

(
ν2 − 2 − 4

p − 1

)(
ν2 −

4

p − 1

)
> 0,

t4 =

(
ν2 + n − 2 − 4

p − 1

)(
ν2 − 2 − 4

p − 1

)(
ν2 −

4

p − 1

)
< 0.

Proof. Since ν2 < 0 we only have to show that

0 > ν2 + n − 2 − 4

p − 1
=

n

2
− 1

2(p − 1)

√
N2 + 4

√
N3 (10)

the latter being equivalent to proving that

N3 > (n − 2)2(p − 1)4.

Indeed, by using the supercriticality assumption (n − 4)(p − 1) > 8, we have

N3 − (n − 2)2(p − 1)4 = 8(n − 2)(n − 4)(p − 1)4 + 8(3n2 − 26n + 48)(p − 1)3

+16(n2 − 18n + 52)(p − 1)2 − 128(n − 6)(p − 1) + 256

= 8p(p + 1)((n − 2)(p − 1) − 4)((n − 4)(p − 1) − 4) > 0.
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This proves (10) and hence the lemma. 2

Proof of Proposition 1. Let w( . ) be a solution to (9) being tangential for s → ∞ to the eigenvector t
from the previous lemma. We may assume that w( . ) exists on the whole real line R because otherwise,

nothing is to be proved. We put z1(s) = w1(s) − w
(0)
1 and further

z1(s) = w1(s) − w
(0)
1 = v(s) − K

1/(p−1)
0 ,

z2(s) = w2(s) − w
(0)
2 =

(
∂s −

4

p − 1

)
z1(s),

z3(s) = w3(s) − w
(0)
3 =

(
∂s −

4

p − 1
− 2

)
z2(s),

z4(s) = w4(s) − w
(0)
4 =

(
∂s −

4

p − 1
+ n − 2

)
z3(s),

so that
(

∂s −
4

p − 1
+ n − 4

)
z4(s) = |v(s)|p−1v(s) − K

p/(p−1)
0 = |w1(s)|p−1w1(s) − |w(0)

1 |p−1w
(0)
1 .

Writing this more systematically yields




z′1(s) = 4
p−1z1(s) + z2(s),

z′2(s) =
(

4
p−1 + 2

)
z2(s) + z3(s),

z′3(s) =
(

4
p−1 − (n − 2)

)
z3(s) + z4(s),

z′4(s) = |w1(s)|p−1w1(s) − |w(0)
1 |p−1w

(0)
1 +

(
4

p−1 − (n − 4)
)

z4(s).

(11)

According to whether z( . ) approaches the origin from “above” or “below” we distinguish two cases.

First case. There exists s0 large enough such that

z1(s0) > 0, z2(s0) < 0, z3(s0) > 0, z4(s0) < 0. (12)

On any interval [s, s0] where z1( . ) = w1( . ) − w
(0)
1 ≥ 0, we must then have

(
∂s + (n − 4) − 4

p − 1

)
z4(s) = |w1(s)|p−1w1(s) − |w(0)

1 |p−1w
(0)
1 ≥ 0.

This makes e

“

(n−4)− 4
p−1

”

s
z4(s) increasing on [s, s0], and so (12) implies that

e

“

(n−4)− 4
p−1

”

s
z4(s) ≤ e

“

(n−4)− 4
p−1

”

s0z4(s0) < 0

on [s, s0]. In particular, z4(s) < 0 throughout the interval, and we have
(

∂s + (n − 2) − 4

p − 1

)
z3(s) = z4(s) < 0.

This makes e

“

(n−2)− 4
p−1

”

s
z3(s) decreasing on [s, s0], so we similarly find that

e

“

(n−2)− 4
p−1

”

s
z3(s) ≥ e

“

(n−2)− 4
p−1

”

s0z3(s0) > 0
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by (12). Since
(
∂s − 2 − 4

p−1

)
z2(s) = z3(s) > 0, the exact same argument leads us to

e

“

−2− 4
p−1

”

s
z2(s) ≤ e

“

−2− 4
p−1

”

s0z2(s0) < 0

by (12), hence
(
∂s − 4

p−1

)
z1(s) = z2(s) < 0 and we finally get

e−
4

p−1
sz1(s) ≥ e−

4
p−1

s0z1(s0) > 0.

That is, z1(s) > 0 on any interval [s, s0] where z1(s) ≥ 0, so it is impossible for z1(s) to become 0 at
some s < s0. Hence ∀s ≤ s0 : z1(s) > 0. For the original solution this means that for r ≤ r0, u( . )
lies above the singular solution. This means that u( . ) itself is singular at r = 0.

Second case. There exists s0 large enough such that

z1(s0) < 0, z2(s0) > 0, z3(s0) < 0, z4(s0) > 0. (13)

On any interval [s, s0] where z1( . ) = w1( . ) − w
(0)
1 ≤ 0, we must then have

(
∂s + (n − 4) − 4

p − 1

)
z4(s) = |w1(s)|p−1w1(s) − |w(0)

1 |p−1w
(0)
1 ≤ 0.

This makes e

“

(n−4)− 4
p−1

”

s
z4(s) decreasing on [s, s0], and so (13) implies that

e

“

(n−4)− 4
p−1

”

s
z4(s) ≥ e

“

(n−4)− 4
p−1

”

s0z4(s0) > 0

on [s, s0]. In particular, z4(s) > 0 throughout the interval, and we have
(

∂s + (n − 2) − 4

p − 1

)
z3(s) = z4(s) > 0.

This makes e

“

(n−2)− 4
p−1

”

s
z3(s) increasing on [s, s0], so we similarly find that

e

“

(n−2)− 4
p−1

”

s
z3(s) ≤ e

“

(n−2)− 4
p−1

”

s0z3(s0) < 0 (14)

by (13). Following this approach, as in the first case, we eventually get

z4(s) > 0, z3(s) < 0, z2(s) > 0, z1(s) < 0 (15)

on any interval [s, s0] where z1(s) ≤ 0, so it is impossible for z1(s) to become 0 at some s < s0. Hence
∀s ≤ s0 : z1(s) < 0, i.e. the corresponding u( . ) is always below the singular solution. In order
to prove that u( . ) itself is singular also in this case, we show that z1(s) → −∞ for s → −∞. Since
∀s ≤ s0 : z1(s) < 0, we have that (14) holds true for all s ≤ s0. Referring to [7, Proposition 1]
would already show that also v and so u cannot be bounded. However, here it is quite easy to show
this directly. For some suitable constant δ1 > 0 one has:

∂s

(
e
−

“

2+ 4
p−1

”

s
z2(s)

)
= e

−
“

2+ 4
p−1

”

s
z3(s) ≤ −δ1e

−ns

because of (14), and this implies that

e
−

“

2+ 4
p−1

”

s
z2(s) ≥

δ1

n
e−ns − δ1

n
e−ns0 + e

−
“

2+ 4
p−1

”

s0z2(s0)

≥ δ2e
−ns
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for some suitable constant δ2 > 0. In particular,

∂s

(
e
− 4

p−1
s
z1(s)

)
= e

− 4
p−1

s
z2(s) ≥ δ2e

−(n−2)s

and this implies that

e−
4

p−1
sz1(s) ≤

δ2

n − 2

(
e−(n−2)s0 − e−(n−2)s

)
+ e−

4
p−1

s0z1(s0)

≤ −δ3e
−(n−2)s

for some suitable constant δ3 > 0. Thus, we end up with

z1(s) ≤ −δ3e
−

“

n−2− 4
p−1

”

s → −∞ as s → −∞, (16)

so that also in this case, the corresponding solution u of (1) becomes singular at r = 0. �

Completing the proof of Proposition 1 also yields the proof of Theorem 1.

3 The Dirichlet problem

If we put r = |x| then the equation in (5) becomes

u(4)(r) +
2(n − 1)

r
u′′′(r) +

(n − 1)(n − 3)

r2
u′′(r) − (n − 1)(n − 3)

r3
u′(r) = λ(1 + u)p, r ∈ [0, 1]. (17)

If we put
U(x) = 1 + u(x/

4
√

λ) for x ∈ B 4√λ
(0) (18)

then U solves the equation
∆2U = Up in B 4√λ

(0). (19)

Since the equation (19) is invariant under the rescaling

Ua(x) = aU(a
p−1
4 x)

i.e. U is a solution of (19) if and only if Ua is a solution of (19), it is not restrictive to concentrate our
attention on solutions U of the equation (19) which satisfy the condition U(0) = 1.

Next we define Uγ = Uγ(r) as the unique solution of the initial value problem

U
(4)
γ (r) +

2(n − 1)

r
U ′′′

γ (r) +
(n − 1)(n − 3)

r2
U ′′

γ (r)−(n − 1)(n − 3)

r3
U ′

γ(r) = |Uγ(r)|p−1Uγ(r),

Uγ(0) = 1, U ′
γ(0) = U ′′′

γ (0) = 0, U ′′
γ (0) = γ < 0.

(20)

We report here the following fundamental result by [8]:

Lemma 2 ([8]). Let n > 4 and p > (n + 4)/(n − 4).

(i) There exists a unique γ < 0 such that the solution Uγ of (20) exists on the whole interval [0,∞),
it is positive everywhere, it vanishes at infinity and it satisfies U ′

γ(r) < 0 for any r ∈ (0,∞).
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(ii) If γ < γ there exist 0 < R1 < R2 < ∞ such that the solution Uγ of (20) satisfies Uγ(R1) = 0,
limr↑R2 Uγ(r) = −∞ and U ′

γ(r) < 0 for any r ∈ (0, R2).

(iii) If γ > γ there exist 0 < R1 < R2 < ∞ such that the solution Uγ of (20) satisfies U ′
γ(r) < 0 for

r ∈ (0, R1), U ′
γ(R1) = 0, U ′

γ(r) > 0 for r ∈ (R1, R2) and limr↑R2 Uγ(r) = +∞.

(iv) If γ1 < γ2 < 0 then the corresponding solutions Uγ1 , Uγ2 of (20) satisfy Uγ1 < Uγ2 and U ′
γ1

< U ′
γ2

as long as they both exist.

Proof. See the statement of [8, Theorem 2] and related proof and also the statement of [8, Lemma
2]. 2

For any γ < 0 let Uγ be the unique local solution of (20). Thanks to Lemma 2 (iii), for γ > γ we
may define Rγ as the unique value of r > 0 for which we have U ′

γ(Rγ) = 0.

Lemma 3. Let n > 4, p > (n + 4)/(n − 4) and γ ∈ (γ, 0) with γ as in the statement of Lemma 2.
Then the map γ 7→ Rγ is monotonically decreasing and

lim
γ↓γ

Rγ = +∞.

Proof. The fact that the map γ 7→ Rγ is monotonically decreasing follows immediately by Lemma 2
(iv). This shows that the function γ 7→ Rγ admits a limit as γ → γ. Suppose by contradiction that

R := lim
γ↓γ

Rγ < +∞.

Then, by Lemma 2 (i), (iv) we have for all γ ∈ (γ, 0) that

Uγ(Rγ) > Uγ(Rγ) ≥ Uγ(R) > 0. (21)

Define for any γ ∈ (γ, 0), r ∈ [0, 1] the function

uγ(r) =
Uγ(Rγr)

Uγ(Rγ)
− 1. (22)

Then, uγ solves the Dirichlet problem

{
∆2uγ = R4

γUγ(Rγ)p−1(1 + uγ)p in B,

uγ = |∇uγ | = 0 on ∂B.
(23)

Moreover, by (21) and the fact that Uγ(Rγ) ≤ Uγ(r) ≤ Uγ(0) = 1 for any r ∈ [0, Rγ ], we have for all
γ ∈ (γ, 0), x ∈ B

0 ≤ uγ(x) ≤ Uγ(R)−1 − 1. (24)

This shows that the set {uγ : γ ∈ (γ, 0)} is bounded in L∞(B) and hence by a bootstrap argument,
from (23) and the fact that R4

γUγ(Rγ)p−1 ≤ λ∗, we deduce that there exists a sequence γk ↓ γ and a

function u ∈ H2
0 (B) ∩ C∞(B) such that

uγk
→ u in C4(B) (25)

as k → ∞. Since the sequence Uγk
(Rγk

) is monotonically decreasing and bounded from below then for
any r ∈ [0, R) we have that for sufficiently large k, Uγk

(r) = Uγk
(Rγk

) [uγk
(r/Rγk

) + 1] is well defined
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and admits a finite limit as k → ∞ which will be denoted by U(r). In fact Uγk
→ U in C4([0, R]) for

any 0 < R < R and moreover by (25) we also have that

U(x) =

[
lim

k→∞
Uγk

(Rγk
)

]
·
[
u

(
r

R

)
+ 1

]
.

Since u ∈ H2
0 (B) we also have

lim
r↑R

U
′
(r) = 0. (26)

On the other hand by continuous dependence on the initial conditions we also have that

lim
k→∞

Uγk
(r) = Uγ(r) for all r ∈ [0, R)

and hence U(r) = Uγ(r) for any r ∈ [0, R). This with (26) implies

lim
r↑R

U ′
γ(r) = 0

which is absurd since U ′
γ(R) < 0. This completes the proof of the lemma. 2

Lemma 4. Let n > 4 and p > (n + 4)/(n − 4) and let u be a regular solution of (5). Then

u(x) ≤
(

λ∗

λ

)1/(p−1)

|x|−4/(p−1) − 1 for all x ∈ B\{0}.

Proof. Let u be a regular solution of (5) for some λ > 0 and define the rescaled function

U(x) =
1

1 + u(0)

[
1 + u

(
x

4
√

λ(1 + u(0))
p−1

4

)]
(27)

so that U satisfies
∆2U = Up in BR(0) and U(0) = 1 (28)

where we put R = 4
√

λ(1 + u(0))
p−1

4 .
Define

M = max
r∈[0,R]

r4/(p−1)U(r)

and let R ∈ (0, R] be such that R
4/(p−1)

U(R) = M . If we define

w(r) =
U(Rr)

U(R)
− 1

then w solves the problem





∆2w = R
4
U(R)p−1(1 + w)p in B

w = 0 on ∂B
w′ ≤ 0 on ∂B.

This proves that Mp−1 = R
4
U(R)p−1 ≤ λ∗ since otherwise by the super-subsolution method (see [2,

Lemma 3.3] for more details) we would obtain a solution of (5) for λ = R
4
U(R)p−1 > λ∗. This yields

for all r ∈ [0, R] that
U(r) ≤ Mr−4/(p−1) ≤ (λ∗)1/(p−1)r−4/(p−1). (29)
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Then reversing the identity (27), by (29) we obtain

u(r) = λ−1/(p−1)R4/(p−1)U(Rr) − 1 ≤
(

λ∗

λ

)1/(p−1)

r−4/(p−1) − 1

which completes the proof of the lemma. 2

Proof of Theorem 2. For γ ∈ (γ, 0) consider the corresponding solution Uγ of the Cauchy problem
(20) and the function uγ introduced in (22). If we put λγ = R4

γUγ(Rγ)p−1 then by (23) we have that
uγ solves {

∆2uγ = λγ(1 + uγ)p in B,
uγ = |∇uγ | = 0 on ∂B.

(30)

We show that λγ remains bounded away from zero for γ > γ sufficiently close to γ, which is defined

in Lemma 2. By [8, Theorem 3] we infer that for a fixed ε ∈ (0,K
1/(p−1)
0 ) there exists a corresponding

rε > 0 such that
Uγ(r) > (K

1/(p−1)
0 − ε)r−4/(p−1) for all r > rε. (31)

On the other hand, by Lemma 3, we deduce that there exists γ0 ∈ (γ, 0) such that for any γ ∈ (γ, γ0)
then Rγ > rε. Therefore by Lemma 2 (iv) we obtain for all γ ∈ (γ, γ0)

Uγ(Rγ) > Uγ(Rγ) > (K
1/(p−1)
0 − ε)R−4/(p−1)

γ

and this yields

∀γ ∈ (γ, γ0) : λγ > (K
1/(p−1)
0 − ε)p−1 =: C. (32)

Combining (32) and Lemma 4 we obtain for all γ ∈ (γ, γ0), x ∈ B\{0}

uγ(x) ≤
(

λ∗

C

)1/(p−1)

|x|−4/(p−1) − 1. (33)

Since uγ solves (30), by (33) we obtain

∫

B
|∆uγ |2dx = λγ

∫

B
(1 + uγ)puγdx ≤ λ∗

∫

B
(1 + uγ)p+1dx ≤ (λ∗)

2p

p−1

C
p+1
p−1

∫

B
|x|−

4(p+1)
p−1 dx < +∞

since p > (n + 4)/(n − 4). This proves that the set {uγ : γ ∈ (γ, γ0)} is bounded in H2
0 (B) and hence

there exists a sequence γk ↓ γ and a function u ∈ H2
0 (B) such that uγk

⇀ u in H2
0 (B). Moreover, by

(33) and applying Lebesgue’s theorem, u weakly solves (5) for a suitable λ̃ ≥ C.
It remains to prove that the function u is unbounded. For simplicity, in the rest of the proof

uγk
, Uγk

, Rγk
, λγk

will be denoted respectively by uk, Uk, Rk, λk.
By compact embedding we have that uk → u in L1(B) and hence we have

lim
r↓0

1

|Br(0)|

∫

Br(0)
u(x)dx = lim

r↓0

[
1

rn|B| lim
k→∞

∫

Br(0)
uk(x)dx

]

and passing to radial coordinates, by (22) and Lemma 2 (iv), we obtain

lim
r↓0

1

|Br(0)|

∫

Br(0)
u(x)dx = lim

r↓0

[
−1 +

n

rn
lim

k→∞

∫ r

0

Uk(Rkρ)

Uk(Rk)
ρn−1dρ

]

= lim
r↓0

[
−1 +

n

rn
lim

k→∞

1

Rn
kUk(Rk)

∫ Rkr

0
Uk(ρ)ρn−1dρ

]

≥ lim
r↓0

[
−1 +

n

rn
lim

k→∞

1

Rn
kUk(Rk)

∫ Rkr

0
Uγ(ρ)ρn−1dρ

]
. (34)

10



By (31) we have that there exist C,R0 > 0 such that

∀ρ ∈ (R0,∞) : Uγ(ρ) > Cρ−4/(p−1). (35)

Hence we have for k > k = k(r)

∫ Rkr

0
Uγ(ρ)ρn−1dρ ≥

∫ R0

0
Uγ(ρ)ρn−1dρ + C

(
n − 4

p − 1

)−1(
R

n− 4
p−1

k r
n− 4

p−1 − R
n− 4

p−1

0

)
. (36)

Since p > (n+4)/(n−4) > (n+4)/n and since by (32), λk is bounded away from zero as k → ∞ then

lim
k→∞

Rn
kUk(Rk) = lim

k→∞
R

n− 4
p−1

k λ
1

p−1

k = +∞

and hence by (36) we obtain

lim
k→∞

1

Rn
kUk(Rk)

∫ Rkr

0
Uγ(ρ)ρn−1dρ ≥ lim inf

k→∞

C(
n − 4

p−1

)
Rn

kUk(Rk)

(
R

n− 4
p−1

k r
n− 4

p−1 − R
n− 4

p−1

0

)

= lim inf
k→∞

Cr
n− 4

p−1

(
n − 4

p−1

)
λ

1/(p−1)
k

≥ Crn−4/(p−1)

(
n − 4

p−1

)
(λ∗)1/(p−1)

=: C̃rn−4/(p−1). (37)

Inserting (37) in (34) we obtain

lim
r↓0

1

|Br(0)|

∫

Br(0)
u(x)dx ≥ lim

r↓0
(−1 + nC̃r−4/(p−1)) = +∞.

This proves that u /∈ L∞(B). �

Proof of Theorem 3. We make use of an idea from [6]. Let uλ denote the positive minimal regular
solution of (5) for 0 ≤ λ < λ∗. According to [7, Theorem 2], these are stable so that one has in
particular:

∀ϕ ∈ C∞
0 (B) :

∫

B
(∆ϕ(x))2 dx − pλ

∫

B
(1 + uλ(x))p−1ϕ(x)2 dx ≥ 0.

By taking the monotone limit we obtain that

∀ϕ ∈ C∞
0 (B) :

∫

B
(∆ϕ(x))2 dx − pλ∗

∫

B
(1 + u∗(x))p−1ϕ(x)2 dx ≥ 0. (38)

We assume now for contradiction that u∗ is singular. Then, according to [7, Theorem 5] we have the
following estimate from below:

u∗(x) >

(
K0

λ∗

)1/(p−1)

|x|−4/(p−1) − 1. (39)

Combining this with (38) yields

∀ϕ ∈ C∞
0 (B) :

∫

B
(∆ϕ(x))2 dx ≥ pK0

∫

B
|x|−4ϕ(x)2 dx. (40)
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However under the subcriticality assumptions made we have that pK0 > n2(n − 4)2/16. This contra-
dicts the optimality of the constant in Hardy’s inequality

∀ϕ ∈ C∞
0 (B) :

∫

B
(∆ϕ(x))2 dx ≥ n2(n − 4)2

16

∫

B
|x|−4ϕ(x)2 dx,

so that u∗ has indeed to be regular. �
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