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Abstract

In this paper existence for Willmore surfaces of revolution is shown,
which satisfy non-symmetric Dirichlet boundary conditions, if the infi-
mum of the Willmore energy in the admissible class is strictly below 4π.
Under a more restrictive but still explicit geometric smallness condition
we obtain a quite interesting additional geometric information: The pro-
file curve of this solution can be parameterised as a graph over the x-axis.
By working below the energy threshold of 4π and reformulating the prob-
lem in the Poincaré half plane, compactness of a minimising sequence is
garantueed, of which the limit is indeed smooth. The last step consists of
two main ingredients: We analyse the Euler-Lagrange equation by an or-
der reduction argument by Langer & Singer and modify, when necessary,
our solution with the help of suitable parts of catenoids and circles.

Keywords. Dirichlet boundary conditions, Willmore surfaces of revolution,
elastic curves, projectability.
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1 Introduction

The Willmore energy for a two dimensional regular surface S ⊂ R3 is defined
by

We(S) =

∫
S

H2 dA. (1.1)

Here H denotes the mean curvature of S, i.e. the mean value of the principal
curvatures. Already Poisson studied this energy in [36], but Willmore revived
the discussion in [42]. It can be viewed as a natural modification of the area
functional, which greatly motivated the research of nonlinear elliptic differential
equations of second order. Hence we think the Willmore energy will play a
similar role for fourth order elliptic equations. Physical applications are e.g.
in modeling the elastic energy of thin biomembranes (see [34]) or thin shells
(see [20]). In these applications and even more so in mathematics itself one is
interested in studying minimisers of the Willmore energy. A critical point S of
the Willmore functional satisfies the following Euler-Lagrange equation

∆SH + 2H(H2 −G) = 0, (1.2)
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which was found by Thomsen in [41]. Here G denotes the Gauss curvature and
∆S is the Laplace-Beltrami operator on S with respect to the first fundamental
form. A surface satisfying this equation is called Willmore surface. Under an
additional assumption Bryant was able in [8] to classify these surfaces to be
either totally umbilic or a Moebius transformed minimal surface.
Many beautiful existence results for closed Willmore surfaces have been proven
in e.g. [4, 40]. An analysis of singularities and possible branch points has been
carried out in [24,25]. In [7,37] additional compactness results for sequences of
closed Willmore surfaces by working below an energy threshold are shown.
Recently constrained Willmore surfaces have been considered. Existence for
Willmore surfaces with prescribed conformal class is shown in [39] and exam-
ples are given in e.g. [32]. Especially tori are of interest in this setting. In [21] an
analysis of these tori and their underlying differential equation has been carried
out, which extends the results by Langer & Singer (see [26]). Even some stabil-
ity issues have been considered in [23]. Other constrains are e.g. prescribing the
isoperimetric ratio (see [22]) or using Lagrangian and Hamiltonian deformations
(see [28]).
In contrast to considering closed surfaces, in the present paper we study Dirich-
let boundary value problems, so the Willmore equation becomes a kind of frame
invariant counterpart of the clamped plate equation. A discussion of suitable
boundary problems was done by Nitsche in [33]. Since (1.2) is of fourth order
many established techniques like the maximum principle or de Giorgi-Nash-
Moser-Stampacchia-type arguments do not apply. This equation is highly non-
linear, because ∆S depends on the unkown surface. Furthermore, the Willmore
energy is invariant under Moebius transformations of R3 (see [41]). Schätzle
proved in [38] a general existence result for branched Willmore immersions by
working in S3, but it is not clear, whether these solutions possibly contain ∞,
when they are pulled back to R3 by the stereographic projection.
Under free boundary conditions an existence result for constrained Willmore
immersions was shown in [2]. The surface area of the immersion was prescribed,
which also had to obey some smallness conditions.
One-dimensional boundary value problems were discussed in e.g. [14, 16,29].
To obtain solutions, where rather explicit analytic and geometric properties can
be shown, Dall’Acqua, Deckelnick and the second author studied the Dirichlet
problem for surfaces of revolution in [11]. We will pursuit a similar approach and
hope that our reasoning provides a deeper understanding for Willmore surfaces
for future research, e.g. projectability issues of Willmore graphs. Pinkall and
Hertrich-Jeromin already studied Willmore surfaces under suitable symmetry
assumptions in [35], but were interested in closed surfaces. Here we will use
an approach similar to [11] and define such a surface of revolution S(c) with a
sufficiently smooth profile curve c : [0, 1]→ H2 := R× (0,∞) by

[0, 1]× [0, 2π] 3 (t, ϕ) 7→ f(t, ϕ) = (c1(t), c2(t) cosϕ, c2(t) sinϕ). (1.3)

Now we can state the Dirichlet problem, which we are concerned with in this
paper:  ∆S(c)H + 2H(H2 −G) = 0, in (0, 1)

c(0) = (−1, α−), c(1) = (1, α+), ċ2(0) = ċ2(1) = 0,
ċ1(0), ċ1(1) > 0,

(1.4)
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with given α−, α+ ∈ (0,∞). In [11] existence for α− = α+ was shown by a
variational approach. This result was extended in [13] to arbitrary boundary
angles but the data still had to be symmetric. For natural symmetric boundary
conditions existence was shown in this setting in [5] and [15] and later extended
to non-symmetric boundary data in [6]. In [5] and [6] great use was made of
catenoids, which were inserted into minimising sequences. The resulting curves
automatically satisfy H = 0 at the boundary. Similar techniques cannot directly
be adapted when the first derivative at the boundary has to be preserved. Even
stability issues were discussed in [12] and [15]. Nevertheless we like to extend
the aforementioned existence results to non-symmetric Dirichlet boundary data.
We will proceed by a variational approach so the following objects will come in
handy. The class of admissible curves is denoted by

Mα−,α+
:= {c ∈ H2([0, 1],R× (0,∞)) : c(0) = (−1, α−), c(1) = (1, α+),

ċ2(0) = ċ2(1) = 0, ċ1(0), ċ1(1) > 0, |ċ| 6= 0}.
(1.5)

We call the infimum of the Willmore energy

W e
α−,α+

:= inf{We(S(c)) : c ∈Mα−,α+}. (1.6)

Our first main result is stated as follows.

Theorem 1.1. Let α−, α+ > 0 and satisfy W e
α−,α+

< 4π. Then there exists a
minimising curve c ∈Mα−,α+

∩ C∞([0, 1],R× (0,∞)) with

We(S(c)) = W e
α−,α+

.

This minimiser does not intersect itself.

We will use the direct method of the calculus of variations. Our reasoning will
consist of four major steps. In Section 2 we will reformulate the problem in the
hyperbolic half plane (see (2.11) and [9]). In Section 3 we eliminate the inner
invariance group by using a suitable parameterisation. This will also permit
to prove compactness of a minimising sequence if and only if the hyperbolic
arclength of this sequence is bounded (see Theorem 3.1). Section 4 then is
dedicated to finding these bounds by working below the energy threshold of 4π
(see Theorem 4.4). (In [3] a similar phenomenon was observed for minimising
sequences for the Willmore energy in H3. In this article the loss of compactness
is further analysed and a bubbling result is proven.) Finally Section 5 will
provide the regularity of the minimiser. The injectivity of c is proven in Remark
6.14. This follows from an analysis of the Euler-Lagrange equation, conducted
in Section 6, which is based on arguments by Langer & Singer in [26].

In the papers [11] and [13] the profile curve of a solution is a graph u :
[−1, 1]→ (0,∞) over the x-axis, which is an interesting geometric property, be-
cause such curves look rather special and simple. The question is widely open,
whether Willmore graphs exist, satisfying general non-symmetric boundary con-
ditions (see [17]). We hope, that our reasoning here gives some insight also for

this setting. Hence we give three matlabTM plots of solutions with different
behaviour. If α− and α+ are very close to each other, Figure 1 shows a sign
change in the first derivative of the solution. On the other hand this does not
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-1 0 1

0.6
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Figure 1: Solution satisfying α− = 0.5, α+ = 0.6.

1.0

0.4

1.6

-1 0 1

Figure 2: Solution satisfying α− = 0.5, α+ = 1.7.

seem to occur if α− and α+ have a moderate distance (see Figure 2). Last but
not least Figure 3 showcases the failure of projectivity, which seems to start
somewhere around x = −0.5 for α+ and α− being further apart.

Unfortunately projectability can in general not be expected (see Appendix A,
Lemmas A.1 and A.3) for our solutions. This is quite astounding in comparison
to [6], where the solution is a graph for every boundary value. This seems to be
the case, since these natural boundary conditions allow the solutions to be close
to catenoids. In our situation this is not the case. This is quite interesting,
since the topological class does not change and only the boundary condition
differs. It is remarkable, however that we can give explicit smallness conditions
(see Figure 4), under which we are able to prove a similar result.

Assumption 1.2. We impose the following smallness condition on the pair
(α−, α+) ∈ (0,∞)× (0,∞):

• If α− ≤ α+, then for all x ∈ R

p1,α+
(x) < α− cosh

(
1 + x

α−

)
.

• If α− > α+, then for all x ∈ R

p−1,α−(x) < α+ cosh

(
1− x
α+

)
.

Here px0,r denotes the upper half circle with centre (x0, 0), radius r and is given
by

px0,r(x) =

{ √
r2 − (x− x0)2, x ∈ (x0 − r, x0 + r)

0, else.
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Figure 3: Solution satisfying α− = 0.5, α+ = 5.1.

Figure 4: Smallness assumption for boundary data.

Our second main result can now be stated as follows.

Theorem 1.3. If the pair (α−, α+) ∈ R+ × R+ satisfies Assumption 1.2, the
following Dirichlet problem possesses a graph u : [−1, 1]→ (0,∞) as solution:{

∆S(u)H + 2H(H2 −G) = 0, in (−1, 1)
u(±1) = α±, u

′(±1) = 0.
(1.7)

Moreover u satisfies
We(S(u)) = W e

α−,α+
< 4π.

Existence of a smooth curve solving the Dirichlet problem follows from The-
orem 1.1 by combining Lemma 7.4 and (2.11). We then proceed by carefully
analysing the Euler-Lagrange equation for this solution in Section 6 with an
order reduction argument by Langer & Singer (see [26]). In Theorem 7.5 we use
these results and combine them with an idea by Dall’Acqua, Deckelnick and the
second author (see [11]) to obtain the desired result. This method was refined
in [19], which inspired our reasoning here, to prove a more general existence
result (see [19, Thm. 2.10]) for projectable minimisers with α− = α+ This
result is being generalised by Theorem 1.3. The idea consists in suitably mod-
ifying a minimising sequence, or a possible minimiser respectively, with pieces
of catenoids and half circles.
Since we cannot insert a catenoid into a possible minimiser and expect the
derivative at the boundary to be preserved, our reasonings are more involved
than in [6].
In [31] a constrained variational problem for the Willmore energy was also solved
by modifying a minimising sequence.
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2 Geometric background

In this section we derive the basic formulae we need for our calculations. These
formulae are based on [10].
For a surface of revolution S(c) given by a curve c ∈ Mα−,α+

(see (1.3)) the
metric tensor is given by

(gij)i,j=t,ϕ =

(
(ċ1)2 + (ċ2)2 0

0 (c2)2

)
. (2.1)

The second fundamental form can then be calculated as

(hij)i,j=t,ϕ =
1

|ċ|

(
c̈1ċ2 − c̈2ċ1 0

0 ċ1c2

)
. (2.2)

with respect to the ’interior’ normal

ν(t, ϕ) =
1

|ċ|
(ċ2(t),−ċ1(t) cosϕ,−ċ1(t) sinϕ). (2.3)

Here we use |ċ| =
√

(ċ1)2 + (ċ2)2 to denote the euclidean length of a vector. Now
we can write down the mean curvature H. For this we use the sign convention
that H is positive if the surface is mean convex and negative if it is mean concave
with respect to the interior normal ν.

H =
1

2

c2c̈1ċ2 − c2c̈2ċ1 + |ċ|2ċ1

|ċ|3c2
, (2.4)

and finally the Willmore energy is

We(S(c)) =
π

2

∫ 1

0

(c2c̈1ċ2 − c2c̈2ċ1 + |ċ|2ċ1)2

|ċ|5c2
dt. (2.5)

Now we reformulate the problem by introducing the elastic energy for curves on
the upper half plane H2 = {(x, y) : y > 0} equipped with the hyperbolic metric

ds2 =
dx2 + dy2

y2
, (2.6)

which will also be denoted by g(·, ·). The Christoffel symbols are given by

Γ1
11 = Γ1

22 = Γ2
12 = Γ2

21 = 0, Γ1
21 = Γ1

12 = Γ2
22 = −1

y
, Γ2

11 =
1

y
.

The covariant derivative of a curve c can be calculated as (see e.g. [18, Lemma
4.5])

∇ċċ =

(
c̈1 − 2

ċ1ċ2

c2

)(
1
0

)
+

(
c̈2 − (ċ2)2

c2
+

(ċ1)2

c2

)(
0
1

)
. (2.7)

Since the hyperbolic metric is conformal to the euclidean metric the unit normal
can be choosen as

N =
1√

gc(ċ, ċ)

(
−ċ2
ċ1

)
. (2.8)
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We use this sign convention because

(
ċ√

gc(ċ,ċ)
, N

)
becomes positively oriented.

With this we obtain the geodesic curvature (please keep in mind that |ċ| =√
(ċ1)2 + (ċ2)2 denotes the usual euclidean length)

κ[c] =
gc(∇ċċ, N)

gc(ċ, ċ)
=
c̈2ċ1c2 − c̈1ċ2c2 + ċ1(ċ2)2 + (ċ1)3

|ċ|3
. (2.9)

and in turn can introduce the hyperbolic elastic energy of a curve c by

Wh(c) :=

∫ 1

0

(κ[c](t))2 ds(t) =

∫ 1

0

(c̈2ċ1c2 − c̈1ċ2c2 + ċ1(ċ2)2 + (ċ1)3)2

|ċ|5c2
dt.

(2.10)
The next observation goes back to Bryant & Griffiths in [9] and connects the
Willmore energy with the hyperbolic elastic energy

2

π
We(S(c)) = Wh(c)− 4

[
ċ2√

(ċ1)2 + (ċ2)2

]1

0

. (2.11)

Finally we state three equations which will be useful on several occasions:
The Frenet equations for a curve c parameterised by hyperbolic arclength with
geodesic curvature κ[c] are (see (2.6))

c̈1 − 2
1

c2
ċ1ċ2 = −κ[c]ċ2, (2.12)

c̈2 − 1

c2
(ċ2)2 +

1

c2
(ċ1)2 = κ[c]ċ1. (2.13)

If on the other hand c can be reparameterised as a smooth graph u : [−1, 1]→
(0,∞), the hyperbolic elastic energy becomes

Wh(u) =

∫ 1

−1

u′′(x)2u(x)

(1 + u′(x)2)
5
2

+
1

u(x)
√

1 + u′(x)2
dx. (2.14)

3 Compactness assuming bounds on the hyper-
bolic arclength

In this section we introduce a special form of the elastic energy by reparame-
terising an admissible curve. Let c ∈ Mα−,α+

be parameterised proportionally
to hyperbolic arclength and let L be the hyperbolic arclength of c. The idea
to employ this special kind of parameterisation was already used by Langer &
Singer in [27] but on compact manifolds in combination with the L2-flow of
Wh(·). Using this parameterisation we obtain

L2 = g(ċ, ċ) =
(ċ1)2 + (ċ2)2

(c2)2
, (3.1)

and the geodesic curvature κ[c] satisfies

κ[c]2 = g

(
∇ ċ

L

ċ

L
,∇ ċ

L

ċ

L

)
=

1

L4
g(∇ċċ,∇ċċ). (3.2)
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Differentiating (3.1) yields

ċ1c̈1 + ċ2c̈2 = L2c2ċ2. (3.3)

Let us now turn to the elastic energy itself:∫ 1

0

κ[c]2 ds =
1

L3

∫ 1

0

g(∇ċċ,∇ċċ) dt

=
1

L3

∫ 1

0

1

(c2)2

((
c̈1 − 2

ċ1ċ2

c2

)2

+

(
c̈2 − (ċ2)2

c2
+

(ċ1)2

c2

)2
)
dt

=
1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 − 4

c̈1ċ1ċ2

c2
+ 4

(
ċ1ċ2

c2

)2

+ (c̈2)2 − 2
c̈2(ċ2)2

c2
+ 2

c̈2(ċ1)2

c2
+

(ċ2)4

(c2)2
− 2

(
ċ1ċ2

c2

)2

+
(ċ1)4

(c2)2

)
dt

=
1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 4

c̈1ċ1ċ2

c2
+ 2

(
ċ1ċ2

c2

)2

− 2
c̈2(ċ2)2

c2
+ 2

c̈2(ċ1)2

c2
+

(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt

(3.1)
=

(3.3)

1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 4

c̈1ċ1ċ2

c2
+ 2

(
ċ1ċ2

c2

)2

+ 2
c̈1ċ2ċ1

c2
− 2

L2(ċ2)2c2

c2
+ 2

c̈2

c2
(L2(c2)2 − (ċ2)2) +

(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt

(3.3)
=

1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 2

c̈1ċ1ċ2

c2
+ 2

(
ċ1ċ2

c2

)2

− 2L2(ċ2)2 + 2c̈2c2L2 + 2
c̈1ċ1ċ2

c2
− 2L2(ċ2)2 +

(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt

=
1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 + 2

(
ċ1ċ2

c2

)2

+ 2c̈2c2L2 − 4L2(ċ2)2 +
(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt

=
1

L3

(∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 + 2

(
ċ1ċ2

c2

)2

− 2L2(ċ2)2

+
(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt+ 2L2

∫ 1

0

c̈2
1

c2
− (ċ2)2

(c2)2
dt

)
=

1

L3

(∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 2L2(ċ2)2 +

(ċ2)4

(c2)2
+ 2

(
ċ1ċ2

c2

)2

+
(ċ1)4

(c2)2

)
dt

+
2

L

[
ċ2

c2

]1

0

(3.1)
=

1

L3

(∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 2L2(ċ2)2 + L4(c2)2

)
dt

+
2

L

[
ċ2

c2

]1

0

.
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To summarize our findings we state the following equation

Wh(c) =
1

L3

(∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 2L2(ċ2)2

)
dt+ L+

2

L

[
ċ2

c2

]1

0

. (3.4)

With this equation in mind we can prove the following theorem:

Theorem 3.1. Let (cn)n∈N ⊂Mα−,α+
be a minimising sequence for Wh(c) with

bounded hyperbolic arclength. Then there exists a curve c ∈Mα−,α+ with

Wh(c) = Wh
α−,α+

:= inf{Wh(v) : v ∈Mα−,α+}.

Proof. Reparameterise cn : [0, 1] → H2 proportional to hyperbolic arclength.
Let Ln be the hyperbolic arclength of cn. Since Ln is bounded, c2n is bounded
from above and below. (3.1) then gives us upper bounds on |ċ1| and |ċ2|. With
(3.4) there exists a C > 0 such that

C >

∫ 1

0

(c̈1n)2 + (c̈2n)2 dt.

Because of this we can extract a subsequence which is weakly convergent in
H2((0, 1),H2) and strongly convergent in C1([0, 1],H2) to a curve c : [0, 1]→ H2.
The convergence in C1 ensures the attainment of the boundary data. This, (3.1)
and the bound on Ln ensure that c is parameterised proportionally to hyperbolic
arclength. This in turn gives us ċ 6= 0, since c2 is bounded from above as well as
from below. Hence c belongs to Mα−,α+

. Since 1
c2n

converges in C0([0, 1]), the

fractions
c̈1n
c2n

and
c̈2n
c2n

converge weakly in L2((0, 1),H2). Together with the lower

semi-continuity of a norm and (3.4) this yields

Wh
α−,α+

≤Wh(c) ≤ lim inf
n→∞

Wh(cn) ≤Wh
α−,α+

= inf{Wh(v) : v ∈Mα−,α+
}.

4 Establishing a bound on hyperbolic arclength

If we wish to apply Theorem 3.1 to obtain a solution of (1.4), we have to find
an upper bound for the hyperbolic arclength of a minimising sequence. We can
achieve this, if we work strictly below the threshold of 8 for the elastic energy.
The main idea is contained in the following lemma.

Lemma 4.1. Let c ∈Mα−,α+
and 0 < t1 < t2 < 1 with

ċ1(t1) = ċ1(t2) = 0 and ċ2(t1) · ċ2(t2) < 0.

Then the elastic energy satisfies

Wh(c) ≥ 8.
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Proof. Let us distinguish two cases. The first one is ċ2(t1) < 0. Equation (2.11)
yields

Wh(c) = Wh(c)
∣∣
[0,t1]

+Wh(c)
∣∣
[t1,t2]

+Wh(c)
∣∣
[t2,1]

≥Wh(c)
∣∣
[t1,t2]

=
2

π
We(S(c))

∣∣
[t1,t2]

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t2
t1

≥ 8

The other case is ċ2(t1) > 0. The boundary data and again equation (2.11)
yield

Wh(c) = Wh(c)
∣∣
[0,t1]

+Wh(c)
∣∣
[t1,t2]

+Wh(c)
∣∣
[t2,1]

≥Wh(c)
∣∣
[0,t1]

+Wh(c)
∣∣
[t2,1]

=
2

π
We(S(c))

∣∣
[0,t1]

+
2

π
We(S(c))

∣∣
[t2,1]

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t1
0

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]1

t2

≥ 8

By using the same idea we obtain a lower bound:

Lemma 4.2. Let (cn)n∈N ⊂Mα−,α+
be a sequence with supnWh(cn) < 8. Then

there exists a constant C > 0 with

∀t ∈ [0, 1], ∀n ∈ N : C < c2n(t).

Proof. We proceed by contradiction. Let us assume that no such bound exists.
Hence after possibly passing to a subsequence we find a sequence (tn)n∈N ⊂ (0, 1)
with

c2n(tn) = min
t∈[0,1]

c2n(t)→ 0, (n→∞).

Because of the boundary data we have ċ2n(tn) = 0 for n large enough. Let us for
now assume the existence of another two sequences 0 < t−n < tn < t+n < 1 with∣∣∣∣∣ ċ2n√

(ċ1n)2 + (ċ2n)2
(t−n )

∣∣∣∣∣→ 1 and

∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

(t+n )

∣∣∣∣∣→ 1.

We will show the existence of these sequences later. For now we can use the
idea from Lemma 4.1: Let us assume for the first case that ċ2n(t−n ) < 0 with n
large enough. Then with (2.11) we obtain

Wh(cn)
∣∣
[0,tn]

= Wh(cn)
∣∣
[0,t−n ]

+Wh(cn)
∣∣
[t−n ,tn]

≥Wh(cn)
∣∣
[t−n ,tn]

=
2

π
We(S(cn))

∣∣
[t−n ,tn]

+ 4

[
ċ2n√

(ċ1n)2 + (ċ2n)2

]tn
t−n

≥ 4 + o(1).

10



If we assume on the other hand that ċ2n(t−n ) > 0 for large n, then

Wh(cn)
∣∣
[0,tn]

= Wh(cn)
∣∣
[0,t−n ]

+Wh(cn)
∣∣
[t−n ,tn]

≥Wh(cn)
∣∣
[0,t−n ]

=
2

π
We(S(cn))

∣∣
[0,t−n ]

+ 4

[
ċ2n√

(ċ1n)2 + (ċ2n)2

]t−n
0

≥ 4 + o(1).

We can work completely analogously in the interval [tn, 1] and obtain

Wh(cn) = Wh(cn)
∣∣
[0,tn]

+Wh(cn)
∣∣
[tn,1]

≥ 8 + o(1),

which would be a contradiction. Now we have to show the existence of t−n and
t+n : Again we proceed by contradiction and assume that such sequences t−n /t+n
do not exist. After passing to a further subsequence we can find a δ > 0 such
that

∀t ∈ [0, 1] :

∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

(t)

∣∣∣∣∣ ≤ 1− δ. (4.1)

Squaring the inequality gives us for all t ∈ [0, 1]

⇒ (ċ2n)2 ≤ (1− δ)2 · ((ċ1n)2 + (ċ2n)2)

⇒ 0 ≤ (ċ2n)2(1− (1− δ)2) ≤ (1− δ)2(ċ1n)2.

Since the curves are regular (ċ 6= 0) we obtain

∀t ∈ [0, 1] : ċ1n 6= 0.

Since this is the case, the curve cn can be reparameterised as a graph on [0, 1].
Hence we obtain a sequence of functions un ∈ H2([−1, 1], (0,∞)) representing
the curves on [0, 1]. To obtain a contradiction we first have to show that xn :=
c1n(tn) 9 −1. Thanks to (4.1) there exists a C > 0 such that ∀x ∈ [−1, 1]
|u′n(x)| ≤ C. The mean value theorem yields

|xn ± 1| ≥ α−
C

+ o(1) > 0

for n large enough. Since the elastic energy is a geometric functional it is
invariant under reparameterisation. This yields together with (2.14) and (2.6)

8 ≥Wh(cn)
∣∣
[0,tn]

= Wh(un)
∣∣
[−1,xn]

=

∫ xn

−1

u′′n(x)2un(x)

(1 + u′n(x)2)
5
2

dx+

∫ xn

−1

1

un(x)
√

1 + u′n(x)2
dx

≥
∫ xn

−1

1

un(x)
√

1 + u′n(x)2
dx.

=

∫ xn

−1

1

1 + u′n(x)2
ds(x)

≥ 1

1 + C2

∫ xn

−1

ds(x)→∞,

since the hyperbolic arclength tends to infinity. This is the case, because
un(xn)→ 0. The proof for t+n is analogous to t−n by working on [tn, 1].
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The proof of the next lemma is based on the previous one and provides an
upper bound.

Lemma 4.3. Let (cn)n∈N ⊂Mα−,α+
be a sequence with supnWh(cn) < 8. Then

there exists a constant C > 0 with

∀t ∈ [0, 1], ∀n ∈ N : C > |cn(t)|.
Proof. As in Lemma 4.2 we will proceed by contradiction. After possibly passing
to a subsequence we may assume the existence of a sequence (ξn)n∈N ⊂ [0, 1]
with

max{|cn(t)|, t ∈ [0, 1]} = |cn(ξn)| → ∞, (n→∞).

We transform this problem in such a way that we can directly apply our ap-
proach from Lemma 4.2. To do this we need the Cayley transformation Q :
H2 → {(x, y) ∈ R2 : |(x, y)| < 1} =: D2. Since it is an isometry between
the Poincaré disk D2 and H2, the elastic energy remains invariant under this
transformation. Now we need a rotation around (0, 0) ∈ R2 with angle ϕ > 0.
Let us denote this function by Rϕ : R2 → R2. Please keep in mind that Rϕ does
not change the elastic energy in D2, since it is an isometry of this manifold. Let
us now define the transformed curves:

cn,ϕ : [0, 1]→ H2 with cn,ϕ(t) := Q−1(Rϕ(Q(cn(t)))).

Figure 5 explains the transformation. Since ϕ > 0 we can find a sequence

Figure 5: Transformation of curves such that an extremum tends to zero.

(tϕn)n∈N ⊂ (0, 1) with

c2n,ϕ(tϕn) = min
t∈[0,1]

c2n,ϕ(t)→ 0.

Let ε > 0 be fixated but arbitrary. Since Rϕ, Q and Q−1 are smooth and cn
satisfies the boundary data, we can find a small angle ϕ > 0 with∣∣∣∣∣ ċ2n,ϕ(0)

ċ1n,ϕ(0)

∣∣∣∣∣ < ε and

∣∣∣∣∣ ċ2n,ϕ(1)

ċ1n,ϕ(1)

∣∣∣∣∣ < ε.
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This also yields ∣∣∣∣∣∣ ċ2n,ϕ(0)√
(ċ1n,ϕ(0))2 + (ċ2n,ϕ(0))2

∣∣∣∣∣∣ ≤
∣∣∣∣∣ ċ2n,ϕ(0)

ċ1n,ϕ(0)

∣∣∣∣∣ < ε,

and the same result for t = 1. As in in the proof of Lemma 4.2 we can find two
sequences 0 < tϕ,−n < tϕn < tϕ,+n < 1 for n large enough which satisfy∣∣∣∣∣∣ ċ2n,ϕ√

(ċ1n,ϕ)2 + (ċ2n,ϕ)2
(tϕ,±n )

∣∣∣∣∣∣→ 1, (n→∞).

Let us assume for large n that we have ċ2n,ϕ(tϕ,−n ) > 0 and ċ2n,ϕ(tϕ,+n ) > 0. Then
the elastic energy can be estimated with (2.11) as follows

Wh(cn) = Wh(cn,ϕ) ≥Wh(cn,ϕ)
∣∣
[0,tϕ,−n ]

+Wh(cn,ϕ)
∣∣
[tϕn,t

ϕ,+
n ]

=
2

π
We(S(cn,ϕ))

∣∣
[0,tϕ,−n ]

+
2

π
We(S(cn,ϕ))

∣∣
[tϕn,t

ϕ,+
n ]

+ 4

 ċ2n,ϕ√
(ċ1n,ϕ)2 + (ċ2n,ϕ)2

t
ϕ,−
n

0

+ 4

 ċ2n,ϕ√
(ċ1n,ϕ)2 + (ċ2n,ϕ)2

t
ϕ,+
n

tϕn

≥ 8 + o(1)− ε > 8− 2ε,

for n large enough. The remaining cases can be dealt with in the same way. By
choosing ε < 1

2 (8− supnWh(cn)) we finally reach a contradiction.

Now we can tackle our main estimate for the hyperbolic arclength:

Theorem 4.4. Let (cn)n∈N ⊂ Mα−,α+
be a sequence with supnWh(cn) < 8.

Let Ln be the hyperbolic arclength of cn. Then there exists a constant C > 0
with

∀n ∈ N : Ln ≤ C.

Proof. Again we proceed by contradiction. So let us assume that after passing
to a subsequence we have that Ln → ∞ for n → ∞. By reparameterising the
curves proportionally to hyperbolic arclength, we achieve with Lemma 4.2 and
(3.1) the following uniform convergence on [0, 1] for (n→∞)

(ċ1n)2 + (ċ2n)2 = (c2n)2L2
n →∞. (4.2)

With Lemma 4.3 and the mean value theorem we obtain three sequences:

∞ > C >

∣∣∣∣c1n(2

6

)
− c1n

(
1

6

)∣∣∣∣ = |ċ1n(tn,1)|1
6
,

1

6
< tn,1 <

2

6
,

∞ > C >

∣∣∣∣c2n(4

6

)
− c2n

(
3

6

)∣∣∣∣ = |ċ2n(tn,2)|1
6
,

3

6
< tn,2 <

4

6
,

∞ > C >

∣∣∣∣c1n(6

6

)
− c1n

(
5

6

)∣∣∣∣ = |ċ1n(tn,3)|1
6
,

5

6
< tn,3 <

6

6
.

13



(4.2) then yields for n→∞

|ċ2n(tn,1)| → ∞,
|ċ1n(tn,2)| → ∞,
|ċ2n(tn,3)| → ∞.

This yields ∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

∣∣∣∣∣ (tn,1)→ 1,∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

∣∣∣∣∣ (tn,2)→ 0,∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

∣∣∣∣∣ (tn,3)→ 1.

Like before we would need to distinguish some cases but we will just demonstrate
the case ċ2n(tn,1) < 0 and ċ2n(tn,3) < 0.

Wh(cn) ≥Wh(cn)
∣∣
[tn,1,tn,2]

+Wh(cn)
∣∣
[tn,3,1]

=
2

π
We(S(cn))

∣∣
[tn,1,tn,2]

+
2

π
We(S(cn))

∣∣
[tn,3,1]

+ 4

[
ċ2n√

(ċ1n)2 + (ċ2n)2

]tn,2
tn,1

+ 4

[
ċ2n√

(ċ1n)2 + (ċ2n)2

]1

tn,3

≥ 8 + o(1).

For the other cases one just needs to adjust the intervals of integration and then
the desired contradiction follows.

5 Regularity of a solution

We will proceed similarly to [11, Theorem 4, step 2]. For this we need to calculate
an Euler-Lagrange equation for the elastic energy Wh(·). Let c ∈ Mα−,α+

be
a critical point of the hyperbolic elastic energy. We may parameterise this
proportionally to its hyperbolic arclength L. With the help of (2.9) we obtain
for any testing function ϕ ∈ H2

0 ([0, 1],R2):

d

dε
κ[c+ εϕ]

∣∣∣∣
ε=0

=
1

|ċ|3
(
ϕ̈2ċ1c2 + ϕ̇1c̈2c2 + c̈2ċ1ϕ2 − ϕ̈1ċ2c2

− c̈1ϕ̇2c2 − c̈1ċ2ϕ2 + ϕ̇1(ċ2)2 + 2ċ1ϕ̇2ċ2 + 3ϕ̇1(ċ1)2
)

− 3
ϕ̇1ċ1 + ϕ̇2ċ2

|ċ|5
(
c̈2ċ1c2 − c̈1ċ2c2 + ċ1(ċ2)2 + (ċ1)3

)
=

1

|ċ|3
(
ϕ̈2ċ1c2 + ϕ̇1c̈2c2 + c̈2ċ1ϕ2 − ϕ̈1ċ2c2

− c̈1ϕ̇2c2 − c̈1ċ2ϕ2 + ϕ̇1(ċ2)2 + 2ċ1ϕ̇2ċ2 + 3ϕ̇1(ċ1)2
)

− 3
ϕ̇1ċ1 + ϕ̇2ċ2

|ċ|2
κ[c].
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The derivative of Wh(·) in c(·) then becomes

0 =
d

dε

∫ 1

0

κ[c+ εϕ]2 ds

∣∣∣∣
ε=0

=

∫ 1

0

(
2κ[c]

d

dε
κ[c+ εϕ]

∣∣∣∣
ε=0

|ċ|
c2

+ κ[c]2
(
ċ1ϕ̇1 + ċ2ϕ̇2

c2|ċ|
− |ċ|

(c2)2
ϕ2

))
dt

=

∫ 1

0

2

(
κ[c]

(
1

|ċ|3

(
ϕ̇1c̈2c2 − ϕ̈1ċ2c2 + ϕ̇1(ċ2)2 + 3ϕ̇1(ċ1)2

+ ϕ̈2ċ1c2 + c̈2ċ1ϕ2 − c̈1ϕ̇2c2 − c̈1ċ2ϕ2 + 2ċ1ϕ̇2ċ2
)

− 3κ[c]
1

|ċ|2
(ϕ̇1ċ1 + ϕ̇2ċ2

)
+ κ[c]2

(
ċ1ϕ̇1 + ċ2ϕ̇2

c2|ċ|
− |ċ|

(c2)2
ϕ2

) )
dt. (5.1)

Let η ∈ C∞c ([0, 1],R) be arbitrary. We define

µ(t) =

∫ t

0

∫ y

0

η(s) ds dy + βt2 + γt3

β =

∫ 1

0

η(s) ds− 3

∫ 1

0

∫ y

0

η(s) ds dy

γ = 2

∫ 1

0

∫ y

0

η(s) ds dy −
∫ 1

0

η(s) ds.

The idea for this comparison function stems from [11, Theorem 4, step 2].
Thanks to the choice of α and β we have that µ(0) = µ(1) = µ̇(0) = µ̇(1) = 0.
We also observe the following estimates

β, γ, ‖µ‖C1 ≤ C‖η‖L1 .

If we set ϕ(t) = (µ(t), 0), we get ϕ ∈ H2
0 ([0, 1],R2). By inserting this into (5.1),

we obtain for every η ∈ C∞c (0, 1)∣∣∣∣∫ 1

0

κ[c](t)η(t)
ċ2c2

|ċ|3
dt

∣∣∣∣ ≤ C(c)‖η‖L1 , (5.2)

since c ∈ H2([0, 1],R2) and κ[c] ∈ L2([0, 1]). Because the hyperbolic arclength

is fixed, c2

|ċ| is bounded from below as well (see (3.1)). This and (L1)∗ = L∞

ensure that κ[c]ċ2 ∈ L∞([0, 1]).
We have to repeat this process for ϕ(t) = (0, µ(t)), to obtain a bound for κ[c].
With the same arguments as above, we get∣∣∣∣∫ 1

0

κ[c](t)η(t)
ċ1c2

|ċ|3
dt

∣∣∣∣ ≤ C(c)‖η‖L1 , (5.3)

for every η ∈ C∞c ([0, 1]). This means that we have κ[c]ċ1 ∈ L∞([0, 1]). If we
combine this with the bound on κ[c]ċ2 and (3.1), we finally get κ[c] ∈ L∞([0, 1]).
The Frenet equations (2.12) and (2.13) then yield c ∈W 2,∞([0, 1],R2).
Now we can show higher differentiability: For arbitrary η ∈ C∞c ([0, 1]) we define

ν(t) =

∫ t

0

η(s) ds− 3t2
∫ 1

0

η(s) ds+ 2t3
∫ 1

0

η(s) ds. (5.4)
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and get

ν(0) = ν(1) = ν̇(0) = ν̇(1) = 0, ‖ν‖C0 ≤ C‖η‖L1 and ‖ν̇‖L1 ≤ C‖η‖L1 .

If we now choose ϕ(t) = (ν(t), 0), insert it into (5.1) and combine it with the
already established L∞-bounds on κ and c̈, we obtain∣∣∣∣∫ 1

0

κ[c](t)η̇(t)
ċ2c2

|ċ|3
dt

∣∣∣∣ ≤ C(c)‖η‖L1 . (5.5)

The functional F (η) :=
∫ 1

0
κ[c](t)η̇(t) ċ

2c2

|ċ|3 dt is defined on W 1,1([0, 1]), since

κ[c] ∈ L∞([0, 1]). (5.5) now allows us to extend it to a functional F̃ on L1([0, 1]),
since W 1,1([0, 1]) is dense in L1([0, 1]) and F is bounded w.r.t. to ‖ · ‖L1 . The
Riesz representation theorem then yields a g ∈ L∞([0, 1]) with

∀f ∈ L1([0, 1]) F̃ (f) =

∫ 1

0

g(t)f(t) dt.

If we go back to C∞c ([0, 1]) as a domain of definition for F̃ , we get

∀η ∈ C∞c ([0, 1])

∫ 1

0

g(t)η(t) dt =

∫ 1

0

κ[c](t)η̇(t)
ċ2c2

|ċ|3
dt.

Since c2

|ċ|3 6= 0 the curvature satisfies κ[c]ċ2 ∈W 1,∞([0, 1]).

Repeating this argument with ϕ = (0, ν(t)), we also obtain κ[c]ċ1 ∈W 1,∞([0, 1]).
Since ċ 6= 0 and ċ is continous, we finally achieve κ[c] ∈W 1,∞([0, 1]). Then the
Frenet equations (2.12) and (2.13) yield that c ∈W 3,∞([0, 1],R2).
For achieving higher regularity another form of the Euler-Lagrange equation is
more appropriate. Langer & Singer deduced it in [26, p. 3]. By reparameteris-
ing c proportionally to hyperbolic arclength and denoting L as the hyperbolic
arclength of c, it can be stated as follows

2

L2
κ̈[c](t) = −κ[c](t)3 + 2κ[c](t). (5.6)

Hence κ[c] satisfies an equation with a right-hand side in W 1,∞([0, 1]), which in
return gives us κ[c] ∈ W 3,∞([0, 1]) = C2,1([0, 1]). Hence the Frenet equations
(2.12) and (2.13) yield c ∈ C4([0, 1]). By straightforward bootstrapping we
finally obtain c ∈ C∞([0, 1]).

6 Analysis of the Euler-Lagrange equation

In order to prove Theorem 1.3, we need to analyse the Euler-Lagrange equation.
We will proceed by an order reduction argument introduced by Langer & Singer
in [26]. We also collect results from [18], which expanded the theory provided
by Langer & Singer:
First let us reparameterise our solution c by hyperbolic arclength. We call this
new curve γ : [0, L] → H2 and L is the hyperbolic length of γ. With (5.6) the
geodesic curvature K = κ[γ] of γ satisfies (see [26, eq. (1.2)])

K̈ = K − 1

2
K3. (6.1)
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Every curve in H2 with geodesic curvature satisfying this equation is called an
elastica (see [26, p.3 bottom]). Solutions of (6.1) can be expressed with the help
of Jacobian elliptic functions (see [26, table 2.7]). The following definitions of
these functions are taken from [1, Section 16.1]: Let 0 < k < 1 and

Fk(ϕ) =

∫ ϕ

0

1√
1− k2 sin2 ψ

dψ. (6.2)

Since F ′k > 0 we can invert it and define

AM(s, k) = F−1
k (s). (6.3)

The Jacobian elliptic functions can then be expressed as

sn(s, k) = sin(AM(s, k)), cn(s, k) = cos(AM(s, k)),

dn(s, k) =
√

1− k2 sn2(s, k).
(6.4)

The non-trivial solutions of (6.1) are classified by the following three lemmas
(see [26, p. 6] and also [18, Lemma 3.1]).

Lemma 6.1 (see [26] table 2.7c). Let K ∈ C2(R) be a solution of (6.1) with
K(0) = K0 ∈ (0, 2) and K̇(0) = 0, then

K(s) =

{
2r dn(r(s+ s0), k), if K0 6=

√
2,√

2, if K0 =
√

2,

with

r =

{
K0

2 , if K0 ∈ (
√

2, 2),√
4−K2

0

2 , if K0 ∈ (0,
√

2),

}
∈
(

1

2

√
2, 1

)
,

k =

√
2r2 − 1

r
∈ (0, 1), s0 =

{
0, if K0 ∈ (

√
2, 2),

1
rFk(π2 ), if K0 ∈ (0,

√
2).

These solutions are called orbitlike or in the constant case circular.

Lemma 6.2 (see [26] table 2.7c). Let K ∈ C2(R) be a solution of (6.1) with
K(0) = 2 and K̇(0) = 0, then

K(s) =
2

cosh(s)
.

This solution is called asymptotically geodesic.

Lemma 6.3 (see [26] table 2.7c). Let K ∈ C2(R) be a solution of (6.1) with
K(0) = K0 > 2 and K̇(0) = 0, then

K(s) = K0 cn(rs, k)

with

r =

√
−1 +

1

2
K2

0 , k =
K0

2r
.

These solutions are called wavelike.
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The following lemma provides estimates for the elastic energy of a wavelike
solution. We are especially interested in these type of elastica because later
we will see (see Lemma 6.9) that a non-projectable solution of (1.4) is indeed
wavelike.

Lemma 6.4. Let K ∈ C2(R) be wavelike with parameters K0 > 2, k, r given as
in Lemma 6.3. Additionally let a ∈ N be arbitrary. Then the following estimate
holds ∫ a 1

rFk(
π
2 )

0

(K(s))2 ds ≥ aπ.

One may observe that 1
rFk(π2 ) is a 1

4 -period of K(·).

Proof. By using aFk
(
π
2

)
= Fk

(
aπ2
)
, we find∫ 1

rFk(a
π
2 )

0

(K(s))2 ds = K2
0

∫ 1
rFk(a

π
2 )

0

cn2(rs, k) ds

= K2
0

∫ 1
rFk(a

π
2 )

0

cos2(F−1
k (rs)) ds

= K2
0

∫ aπ2

0

1

r
cos2(x)

1√
1− k2 sin2(x)

dx

≥ K2
0√

1
2K

2
0 − 1

∫ aπ2

0

cos2(x) dx

=
K2

0√
1
2K

2
0 − 1

a
π

4
.

Now we need to estimate the prefactor:

(K2
0 − 4)2 ≥ 0

⇒K4
0 ≥ 8K2

0 − 16 = 16

(
K2

0

2
− 1

)
⇒ K2

0√
K2

0

2 − 1
≥ 4.

Now we cite the main order reduction argument of [26].

Theorem 6.5 (see [26] Prop. 2.1). Let −∞ ≤ a < b ≤ ∞ and γ : (a, b)→ H2 be
an elastica parameterised by hyperbolic arclength with curvature K : (a, b)→ R
satisfying (6.1). Then the vector field

Jγ = K2γ̇ + 2K̇

(
−γ̇2

γ̇1

)
has a unique extension to a Killing vector field J on the whole hyperbolic half
plane H2.
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The following example allows us to compare the local Killing field of the
previous theorem to its corresponding extension.

Example 6.6 (see [18] Lemma 4.2). Let V be a Killing vector field on H2.
Then there exist a, b, c ∈ R, such that for all (x, y) ∈ H2

V (x, y) = a

(
x2−y2

2
xy

)
+ b

(
x
y

)
+ c

(
1
0

)
.

As mentioned before we like to analyse the behaviour of wavelike elastica.
The following lemma will help us in determining the possible shape of such
curves.

Lemma 6.7 (see [26] p. 8, or [18] Corollary 6.2, Lemma 6.1). Let −∞ ≤ a <
b ≤ ∞ and γ : (a, b) → H2 be an elastica parameterised by hyperbolic arclength
with curvature K : (a, b) → R satisfying (6.1). Additionally let the elastica be
wavelike (cf. Lemma 6.3). Then there exists a unique geodesic Σ, which is an
integral curve of the Killing vector field J (cf. Theorem 6.5). K also changes
sign precisely when γ intersects Σ. These intersections are always perpendicular.

The following lemma will help us in finding a zero in the curvature of a
solution.

Lemma 6.8. Let −∞ ≤ a < b ≤ ∞ and c : (a, b) → H2 be regular and
parameterised by hyperbolic arclength with curvature κ[c]. Additionally let a <
t1 ≤ t2 < b with

ċ1(t1) = ċ1(t2) = 0, ċ2(t1) · ċ2(t2) > 0, c̈1(t1) · c̈1(t2) ≤ 0.

Then there exists a t∗ ∈ [t1, t2] satisfying κ[c](t∗) = 0.

Proof. The Frenet equation (2.12) yields

c̈1(t1) = −κ(t1)ċ2(t1)

c̈1(t2) = −κ(t2)ċ2(t2).

By multiplying both equations we obtain

0 ≥ c̈1(t1)c̈1(t2) = κ(t1)κ(t2)ċ2(t1)ċ2(t2).

Then the intermediate value theorem gives us the desired zero.

The next lemma shows that a non-projectable solution has to be wavelike.

Lemma 6.9. Let c : [0, 1] → H2 be a solution of (1.4) with Wh(c) < 8 and
let 0 < t∗ < 1 satisfy ċ1(t∗) = 0. Then c is wavelike (cf. Lemma 6.3) and the
geodesic from Lemma 6.7 is an upper half circle centered on the x-axis.

Proof. At first we will show the existence of a zero in the curvature. Due to the
discussion in the Lemmas 6.1, 6.2 and 6.3 the solution then has to be wavelike.
For this we need to distinguish three cases:

i) c̈1(t∗) = 0: Equation (2.9) yields a zero in the geodesic curvature.
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ii) c̈1(t∗) < 0: In this case c1 has a local maximum in t∗. This also means
there exists an ε > 0, such that ∀t ∈ (t∗, t∗+ε) : ċ1(t) < 0. Then ċ1(1) > 0
yields the existence of a t∗ ∈ (t∗, 1) in which c1 has a local minimum. Now
we can distinguish two cases (since c is regular ċ2(t∗∗) 6= 0):

a) ċ2(t∗) · ċ2(t∗) < 0: Lemma 4.1 gives us Wh(c) > 8, which is a contra-
diction.

b) ċ2(t∗) · ċ2(t∗) > 0: Reparameterising c by hyperbolic arclength,
Lemma 6.8 yields a zero of the geodesic curvature in [t∗, t∗].

iii) c̈1(t∗) > 0: This case can be treated as case ii): c1 has a local minimum in
t∗. As seen above we can find a local maximum in (0, t∗). With the same
distinction in subcases we also obtain a zero in the curvature.

This shows that the solution has to be wavelike. Let us turn to the shape of
the geodesic Σ given by Lemma 6.7. Let t0 denote our zero of the geodesic
curvature κ[c]. We proceed by contradiction and assume Σ to be a parallel line
to the y-axis. Since Σ is perpendicular to ċ(t) iff κ[c](t) = 0, equation (2.9)
yields c̈1(t∗) 6= 0. The existence proof for the zero in the curvature now yields
a t∗ ∈ (0, 1) \ {t∗} with ċ1(t∗) = 0. The proof also shows that we can assume
without loss of generality t∗ < t0 < t∗. The perpendicularity of Σ also gives us
ċ2(t0) = 0. Let us now put everything together and assume for a moment that
ċ2(t∗), ċ2(t∗) > 0. Equation (2.11) yields

Wh(c) ≥Wh(c)
∣∣
[0,t∗]

+Wh(c)
∣∣
[t0,t∗]

=
2

π
We(S(c))

∣∣
[0,t∗]

+
2

π
We(S(c))

∣∣
[t0,t∗]

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
0

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
t0

≥ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
0

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
t0

= 8.

This is a contradiction to Wh(c) < 8. So Σ has to be a half circle centered on
the x-axis.
The other cases can be treated analogously.

The next lemma will help us to determine locally the sign of the curvature
of a wavelike elastica. Langer & Singer already observed this in [26, Prop.
5.1] and they even gave a more precise statement. For the readers convenience
we will point out how to obtain the proof by arguments, which are scattered
throughout [18]. Figure 6 explains the geometric meaning of the next lemma.

Lemma 6.10 (see [26], Prop. 5.2 (iii)). Let γ : R → H2 be a wavelike (see
Lemma 6.3) elastica parameterised by hyperbolic arclength with curvature K. Let
J be the Killing vector field given by Theorem 6.5 and let ΦJ be the corresponding
flow of J . Let Σ denote the geodesic given by Lemma 6.7 and let p ∈ Σ. Let
further be s1 < s2, such that K(s1) = K(s2) = 0 and |s1−s2| is minimal. Then
there exist parameters t1 < t2 with ΦJ(p, t1) = γ(s1) and ΦJ(p, t2) = γ(s2).
Moreover, the hyperbolic distance of γ(s1) and γ(s2) is the same for any such
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Figure 6: Constant hyperbolic increment on the geodesic Σ.

pair of points. This means, if there exists another pair s̃1 < s̃2 satisfying the
same assumptions, we have

distg(γ(s1), γ(s2)) = distg(γ(s̃1), γ(s̃2)) > 0.

Proof. [18, Thm. 7.4] shows the existence of the parameters t1, t2.
Since J is a Killing vector field, every integral curve of J is parameterised
proportionally to hyperbolic arclength: Let t ∈ R, then

gΦ(p,t)

(
∂

∂t
Φ(p, t),

∂

∂t
Φ(p, t)

)
= gΦ(p,t)(J(Φ(p, t)), J(Φ(p, t))) = gp(J(p), J(p)).

Also every integral curve possesses constant geodesic curvature (see [18, Thm.
A.3]). Hence they have to be euclidean circles (see [18, Thm. 4.11]). Since K
is periodic, [18, Lemma 7.8] shows that the above mentioned distance of γ(s1)
and γ(s2) is constant.

The next two lemmas will give us the opportunity to spot extrema of the
geodesic curvature of a wavelike elastica.

Lemma 6.11. Let γ : R → H2 be a wavelike elastica (see Lemma 6.3) pa-
rameterised by hyperbolic arclength. The corresponding Killing vector field will
be denoted by J respectively Jγ (see Theorem 6.5). Let K denote the geodesic
curvature of γ. Furthermore let s0 ∈ R with K(s0) = 0 and s1 > s0 minimal,
such that |K(s1)| is maximal. Finally let I be an arbitrary integral curve of J .
Then the number of elements in γ([s0, s1]) ∩ I is at most 1.

Proof. Equation [18, (5.4)] yields

g(Jγ , Jγ) = 4K2 + const.

Since K2 is strictly increasing on [s0, s1], g(Jγ , Jγ) has to be strictly monotone as
well. [18, Theorem 7.4] and [18, Lemma 7.7] give us a one to one correspondence
between the hyperbolic length of Jγ and the set of integral curves of J , as long
as K does not change sign. Thus the lemma follows.

Lemma 6.12 (see [26] p. 8 and Prop. 2.3, [18] Section 5.3). Let γ be a wavelike
solution (cf. 6.3) with Σ being a half circle centered on the x-axis (cf. Lemma
6.7). Then there exist two euclidean circles B+, B− ⊂ R2, which are the only
integral curves of J (cf. Theorem 6.5), that are tangent to γ. Moreover, γ
touches B+ iff the geodesic curvature K has a maximum and it touches B− iff
K has a minimum.
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By the next lemma a wavelike solution has to be injective.

Lemma 6.13. As before let γ : R → H2 be a wavelike elastica (see Lemma
6.3), parameterised by hyperbolic arclength, and J the corresponding Killing
vector field (cf. Theorem 6.5). We set J⊥ := (J2,−J1) as the perpendicular
vector field of J . Let now I ⊂ H2 be an integral curve of J⊥ defined on its
maximal interval of existence. Then I intersects γ exactly once.

Proof. First let us fix the notation: K is the geodesic curvature of γ, ΦJ the
flow of J and Jγ the local variant of J (see Theorem 6.5). [18, Theorem 4.10]
and [18, Lemma 7.1] allow us without loss of generality to write J as

J(x, y) = a

(
x2−y2

2
xy

)
+ c

(
1
0

)
,

with a < 0 and c > 0. This can be achieved by finding a point s ∈ R, such
that K(s) is extremal. [18, Theorem 4.10] gives us a Moebius transformation
Ψ : H2 → H2 with Ψ(γ(s)) ∈ {(0, y) : y > 0} and dΨ(γ(s))γ̇(s) = (|γ̇(s)|g, 0).
[18, Lemma 7.1] then yields the above mentioned form of J .
Since ΦJ is an isometry and hence preserves orthogonality, we have that for
all t ∈ R the curve ΦJ(I, t) is again an integral curve of J⊥. Furthermore
[18, Theorem 7.4] gives us that ΦJ((0, ·), ·) is a diffeomorphism of H2 with
ΦJ({(0, y), y > 0},R) = H2. If we fix a p ∈ I then there exists a t ∈ R such
that ΦJ(p, t) ∈ {(0, y), y > 0}. We have achieved that Φ(I, t) ⊂ {(0, y), y > 0},
because ΦJ(I, t) is an integral curve of J⊥. If we assume the existence of a
q ∈ {(0, y), y > 0} with q /∈ ΦJ(I, t), we could further extend ΦJ(I, t) as an
integral curve to the whole of {(0, y), y > 0}. This would contradict I being
defined on its maximal interval of existence. Hence we can assume without loss
of generality that

I = {(0, y), y > 0}.
Multiplying γ̇ and Jγ yields

g(Jγ , γ̇) = (K(s))2 ≥ 0. (6.5)

Now we proceed by contradiction and assume that s1 < s2 ∈ R exist and satisfy
γ(s1), γ(s2) ∈ I. For every y > 0 the Killing vector field satisfies J1(0, y) > 0
and J2(0, y) = 0. In combination with (6.5) and Lemma 6.7 we have without
loss of generality K(s2) = 0. Then K(s1) 6= 0. Otherwise γ(s1) and γ(s2) would
both lie on the unique geodesic Σ (see Lemma 6.7). Since Σ is an upper half
circle (see e.g. [18, Lemma 6.1]) this would be a contradiction. Now we can
find an ε 6= 0 such that ΦJ(I, ε) meets γ at least twice with different signs for
g(Jγ , γ̇). This contradicts (6.5). Figure 7 explains the situation.

Remark 6.14. Lemma 6.13 together with Lemma 6.9 shows that our energy
minimising solution, found in Theorem 1.1, does not intersect itself.

7 Projectability of solutions under a smallness
condition

In this section we will prove that the solution, obtained in Section 4 of (1.4), is a
graph (·, u(·)), if we assume the smallness condition 1.2. It will be an important
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Figure 7: I meets γ exactly once.

argument to compare the energy of our solution to special comparison functions
which we calculate now:

Example 7.1. The euclidean Willmore energy of a revolved upper half circle
centered on the x-axis is

We(S(px0,r)) = 4π

for all x0 ∈ R and r > 0.

Example 7.2. The hyperbolic elastic energy of a catenoid ccat is

Wh(ccat) = 8.

Proof. The geodesic curvature of ccat parameterised by hyperbolic arclength can
be expressed as (see Lemma 6.2)

K(s) =
2

cosh(s)
.

Integration gives

Wh(ccat) =

∫ ∞
−∞

(
2

cosh(s)

)2

ds = 4
[

tanh(x)
]∞
−∞ = 8.

To get a grasp of the local elastic energy of a curve, we need the following
lemma:

Lemma 7.3. Let c : [0, 1] → H2 be a smooth regular curve, such that there
exists a t∗ ∈ (0, 1) with ċ1(t∗) = 0. c should also satisfy ċ2(0) = ċ2(1) = 0.
Then its hyperbolic elastic energy satisfies

Wh(c) ≥ 4.
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Proof. Without loss of generality we can assume that ċ2(t∗) > 0. Then we have
with the help of (2.11) that

Wh(c) = Wh(c)
∣∣
[0,t∗]

+Wh(c)
∣∣
[t∗,1]

≥ 2

π
We(S(c))

∣∣
[0,t∗]

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
0

≥ 4.

To apply Theorems 3.1 and 4.4 we need a suitable comparison function:

Lemma 7.4. If the pair (α−, α+) satisfies Assumption 1.2, then

Wh
α−,α+

= inf{Wh(v) : v ∈Mα−,α+
} < 8.

Proof. Without loss of generality we assume α− ≤ α+. Furthermore let

cosh−(x) = α− cosh

(
1 + x

α−

)
and cosh+(x) = α+ cosh

(
1− x
α+

)
.

Now define t 7→ (x(t), r(t)) in such a way that the upper half circle px(t),r(t)(·)
is tangent to the graph of cosh+ at (1− t, cosh+(1− t)). Since cosh+ is smooth,
x(·) and r(·) are continuous. Assumption 1.2 also ensures that px(0),r(0) = p1,α+

and cosh− do not meet. Since cosh− and cosh+ do meet, we can find a first time
t0 > 0, such that a t̃ > t0 exists for which px(t0),r(t0) is tangent to the graph of

cosh− in (1− t̃, cosh−(1− t̃)). Figure 8 gives a sketch of the situation. We can

Figure 8: Comparison function for the elastic energy.

define the desired comparison function by

vα−,α+
(x) =

 cosh−(x), x ∈
[
−1, 1− t̃

]
px(t0),r(t0)(x), x ∈

(
1− t̃, 1− t0

]
cosh+(x), x ∈ (1− t0, 1]
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Since vα−,α+
∈ C1,1([−1, 1]), it is also an element of Mα−,α+

. Since px(t0),r(t0)

is a geodesic w.r.t. to the hyperbolic metric, it does not contribute to the
hyperbolic elastic energy Wh. The proof of Example 7.2 then shows

Wh
α−,α+

≤Wh(vα−,α+
) < 8.

We are now able to tackle the main result of this section:

Theorem 7.5. Let the pair (α−, α+) ∈ R+ × R+ obey Assumption 1.2. Also
let c ∈ C∞([0, 1],H2) ∩Mα−,α+ satisfy

We(S(c)) = W e
α−,α+

= inf{We(S(v)) : v ∈Mα−,α+}.

(Existence is proven by Theorem 1.1 and Lemma 7.4). Then c can be represented
as a graph (·, u(·)) with u ∈ C∞([−1, 1], (0,∞)).

Proof. Without loss of generality we can assume that

α− ≤ α+.

Otherwise we simply reflect c at the y-axis. Let L > 0 be the hyperbolic ar-
clength of c and γ : [0, L]→ H2 the reparameterisation by hyperbolic arclength
with γ̇1(0) > 0. Then the corresponding geodesic curvature K : [0, L] → R
satisfies (6.1). Theorem 6.5 gives us the Killing vector field J , which is the
unique extension of Jγ = K2γ̇+2K̇(−γ̇2, γ̇1). We proceed by contradiction and
assume that there exists a minimal s∗ ∈ (0, L) with γ̇1(s∗) = 0. Lemma 6.9
yields K to be wavelike (cf. Lemma 6.3) and the unique geodesic Σ (cf. Lemma
6.7) to be an upper half circle with center on the x-axis.
We can now state the following observation concerning the geodesic curvature
of γ:

Claim 1. K possesses at most two zeros in [0, L].

Proof. Assume the existence of at least three zeros of K in [0, L]. Then [0, L]
contains at least one period of K. Lemma 6.4 yields Wh(γ) ≥ 4π > 8, a
contradiction to Lemma 7.4.

For the remainder of the proof we need to distinguish two major cases. For
now let

γ̇2(s∗) > 0.

Now we have to prove a claim concerning Σ, which is described by Figure 9.

Claim 2. From an euclidean viewpoint the geodesic Σ seperates H2 into an
unbounded part Σ− and a bounded part Σ+. For all s ∈ [0, L] we then have:
γ(s) ∈ Σ−, iff K(s) < 0. On the other hand γ(s) ∈ Σ+, iff K(s) > 0.
We also have that K(s∗) ≥ 0.

Proof. We need another distinction of cases:
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Figure 9: Decomposition of H2 by means of the geodesic curvature K.

1. γ̈1(s∗) 6= 0: This means we have an extremum of γ1 in s∗. Since s∗ is
minimal the boundary datum γ̇1(0) > 0 yields s∗ to be a local maximum
of γ1. With γ̇1(L) > 0 we can then find an s∗ ∈ (s∗, L) minimal with
γ̇1(s∗) = 0 and γ̈1(s∗) ≥ 0. The minimality ensures ∀s ∈ (s∗, s∗) γ̇

1(s) <
0. By Lemma 7.3 we also obtain ∀s ∈ [s∗, s∗] that γ̇2(s) > 0, because
Wh(γ) < 8. Let us give a look at the curvature K: Equation (2.9) yields

K(s∗∗) = − γ̈
1γ̇2γ2

|γ̇|3
(s∗∗).

Here s∗∗ denotes that the equation is satisfied for s∗ and s∗. This means
that K(s∗) > 0 and K(s∗) ≤ 0. On the other hand the sign conditions
on γ̇ (∀s ∈ (s∗, s∗) γ̇

1(s) < 0, γ̇2(s) > 0), Σ being a geodesic circle and γ
crossing Σ perpendicularly yield γ(s∗) ∈ Σ+ and γ(s∗) ∈ Σ−. Figure 10
explains this situation.

Figure 10: Proof of curvature decomposition of H2, part 1.

2. γ̈1(s∗) = 0: Equation (2.9) yields K(s∗) = 0. Lemma 6.7 then yields
γ(s∗) ∈ Σ. Since Σ is a half circle, γ(s∗) has to be the north pole of this
geodesic. Since we have choosen s∗ to be minimal, we can reparameterise
γ
∣∣
[0,s∗)

as a smooth graph (x, u(x)) with u : [−1, γ1(s∗)) → (0,∞). The

geodesic curvature κ[u], which represents K in this parameterisation, can
be calculated by (cf. (2.9))

u′′(x)u(x)

(1 + (u′(x))2)
3
2

+
1√

1 + (u′(x))2
= κ[u](x). (7.1)
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We also have lim
x↗γ1(s∗)

u′(x) = +∞. The mean value theorem then yields

a sequence ξk ↗ γ1(s∗) with

u′′(ξk)

(
γ1(s∗)− 1

k
− 1

)
= u′

(
γ1(s∗)− 1

k

)
− u′(−1)→∞.

For k ∈ N big enough we obtain u′′(ξk) ≥ 0. Equation (7.1) then gives
us κ[u](ξk) > 0. This yields a sequence sk ↗ s∗ with K(sk) > 0. Since
γ1(s∗) lies on the north pole of Σ and γ̇2(s∗) > 0, we have γ(sk) ∈ Σ+ for
k ∈ N big enough.

As a corollary to the proof of Claim 2 we have the following:

Claim 3. There exists an s0 ∈ (0, L) with K(s0) = 0 and in which the geodesic
curvature changes sign from positive to negative. This point also satisfies s∗ ≤ s0

and ∀s ∈ (s∗, s0) we have γ̇1(s) 6= 0.
If K(s∗) > 0, there exists exactly one s∗ ∈ [s0, L) with γ̇1(s∗) = 0 and K(s∗) ≤
0.
If on the other hand K(s∗) = 0 we do not have another point s ∈ [0, L] \ {s∗}
with γ̇1(s) = 0.

Proof. The proof of Claim 2 already showed most of the statement. All that
is left is the uniqueness property of s∗. The aforementioned proof yields an
s∗ ∈ [s∗, L) with γ̇1(s∗) = 0, K(s∗) ≤ 0, γ̇2(s∗) > 0 and ∀s ∈ (s∗, s∗) γ̇

1(s) 6= 0
(If K(s∗) = 0 we set s∗ := s∗). Let us proceed by contradiction and assume that
a minimal s̃ ∈ (s∗, L) with γ̇1(s̃) = 0 exists. Lemma 4.1 yields that γ̇2(s̃) > 0.
Here we need to distinguish a few cases to demonstrate how the above mentioned
arguments apply:

1. K(s∗) > 0: The arguments for Claim 2, case 1, show that K(s∗) < 0,
since γ(s∗) ∈ B−. Figure 10 gives a sketch of the situation. Now two
subcases need to be considered (see Figure 11):

(a) γ̈1(s̃) 6= 0: As in Claim 2, case 1, K(s̃) > 0 and we find an s1 ∈ (s̃, L]
with K(s1) = 0. K(s∗) < 0 yields a zero of K between s∗ and s̃.
Hence we found three zeros of K, contradicting Claim 1.

(b) γ̈1(s̃) = 0: The proof of Claim 2, case 2, yields a δ > 0 such that
∀s ∈ (s̃− δ, s̃) we have K(s) > 0. K(s∗) < 0 again yields three zeros
of K which contradicts Claim 1.

2. K(s∗) = 0: The proof of Claim 2, case 2, yields a δ > 0 such that
∀s ∈ (s∗, s∗ + δ] we have K(s) < 0. Hence equation (7.1) yields γ to
be a strictly concave graph on (s∗, s∗ + δ]. Now we need to consider two
subcases (see Figure 12):

(a) γ̈1(s̃) 6= 0: Since γ̇1(s∗ + δ) > 0 we can apply the arguments of case
1 of the proof of Claim 2. Hence K(s̃) > 0 and we find an s1 ∈ (s̃, L]
with K(s1) = 0. K(s∗+ δ) < 0 yields again at least three zeros of K
contradicting Claim 1.
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(b) γ̈1(s̃) = 0: Since γ is a graph on (s∗, s̃) the arguments of case 2 of
the proof of Claim 2 yield K(s̃) = 0 and the existence of a δ̃ > 0
such that for all s ∈ [s̃ − δ̃, s̃) we have K(s) > 0. In combination
with K(s∗+ δ) < 0 we obtain at least three zeros of K, contradicting
again Claim 1.

Figure 11: Uniqueness of s∗ and s∗, case 1.

Figure 12: Uniqueness of s∗ = s∗, case 2.

Claim 3 also means we have at most two points s∗ ≤ s∗, such that γ̇1(s∗∗) = 0.
For the sake of simplicity we set s∗ := s∗, if we only have one such point.
Claim 1 shows that K has at most two zeros. With this in mind we distinguish
the following cases to prove our main result:

1. K(L) < 0:
Claim 3 and Claim 1 show that ∀s ∈ [s∗, L] we have K(s) ≤ 0. Let
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us take a closer look at the behaviour of γ on [s∗, L]. For this let us
reparameterise γ locally around s = L as a smooth graph (·, u(·)). The
geodesic curvature κ[u] then satisfies (7.1). Since ∀s ∈ [s∗, L]: K(s) < 0
the function u has to be strictly concave until γ1(s∗) =: x0 < γ1(L)
with lim

x↘x0

u′(x) = ∞. By comparing this to Assumption 1.2 we obtain

∀s ∈ [s∗, L]: γ2(s) ≤ p1,α+
(γ1(s)), because the geodesic curvature of p1,α+

is zero. Then the intermediate value theorem and the boundary data give
us an ŝ ∈ (0, s∗) with γ2(ŝ) = p1,α+(γ1(ŝ)).
To construct a suitable comparison curve for γ, let us define a family of
catenoids cats : [0,∞)→ H2 by cats(0) = γ(s), ˙cats(0) = γ̇(s) and by cats
being parameterised by hyperbolic arclength. For reasons of consistency
cats is defined as a straight line parallel to the y-axis, whenever γ̇1(s) = 0.
By the smallness condition 1.2 cat0 cannot intersect p1,α+ . The existence
of ŝ on the other hand gives us an s̄ ∈ (0, ŝ], such that cats̄ is tangent
to p1,α+

. Figure 13 explains the situation. Two different situations can
now arise. To distinguish these subcases let us define x̄ ∈ R as the point,
in which p1,α+

(x̄) is tangent to cats̄. The first case reflects the situation
described by Figure 13.

Figure 13: A comparison curve for γ.

(a) x̄ ≤ 1:
For the following let p̃ : R → H2 be the reparameterisation of p1,α+

by hyperbolic arclength, satisfying p̃2(0) = p1,α+
(x̄). Let s̃ ∈ R be

given by cats̄(s̃) = p̃(0). Furthermore we need L̃ ≥ 0 defined by
p̃(L̃) = (1, α+). Now we can write down our comparison curve:

v(s) =


γ(s), s ∈ [0, s̄)

cats̄(s− s̄), s ∈ [s̄, s̄+ s̃)

p̃(s− (s̄+ s̃)), s ∈ [s̄+ s̃, s̄+ s̃+ L̃].
(7.2)

By construction v ∈ C1,1([0, s̄+ s̃+L̃],R2) and satisfies the boundary
conditions. Let us compare v to γ

∣∣
[s̄,L]

in terms of the Willmore
energy:

We(S(γ))
∣∣
[s̄,L]
≥We(S(γ))

∣∣
[s∗,L]

=
π

2
Wh(γ)

∣∣
[s∗,L]

− 2π

[
γ̇2√

(γ̇1)2 + (γ̇2)2

]L
s∗

≥ 2π.
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On the other hand Example 7.1 shows We(S(v))
∣∣
[s̄,L̃]

< 2π. All in

all we have
We(S(γ)) > We(S(v)).

Hence γ would not have been an energy minimiser, a contradiction.

(b) x̄ > 1 :
This assumptions yields the existence of an s1 ∈ (0, s̄] with γ2(s1) >
α+. Additionally this point has to satisfy γ1(s1) < γ1(s∗), since we
would otherwise find an s ∈ (s1, L) with γ̇1(s) = 0 and γ̇2(s) < 0.
In combination with Lemma 4.1 this would be a contradiction. The
perpendicularity condition with Σ then ensures γ(s1) ∈ Σ−. This in
turn means K(s1) < 0. Since this s1 exists, we can find an s2 ∈ [0, s1)
with K(s2) > 0. This is due to a concavity argument in combination
with (7.1). Figure 14 gives a sketch of the situation. Claim 3 states

Figure 14: Behaviour of γ with x̄ > 1.

that K changes sign in s0 from positive to negative. This gives us at
least three zeros in K, which is a direct contradiction to Claim 1.

2. K(L) > 0:
The Claims 1 and 3 imply K(0) > 0 and the existence of exactly two
zeros of K. In turn Claim 2 yields γ(0), γ(L) ∈ Σ+. Let (x0, 0) ∈ R2

be the center of Σ. Since every integral curve of J is an euclidean circle
(see e.g. [18, Thm. 4.11 and Thm. A.3]) and J satisfies Example 6.6,
every center of it is of the form (x0, y) ∈ R2. We discuss in detail the case
x0 ≥ −1. Otherwise we have x0 < −1 < 1 and the same arguments as
below can be applied around γ(L). Let s0 > 0 be the first zero of K. Now
we like to show the existence of an s̃ ∈ [0, s0) such thatK(s̃) is a maximum.
Lemma 6.4 would then give us Wh(γ) > 3π > 8, a contradiction.
Let us now assume such an s̃ ∈ [0, s0) does not exist. We can extend γ as
a solution of the differential equation (6.1) to (−∞, L] (see e.g. [18, Eq.
(3.1)]. We can choose s1 < 0 to be maximal with K(s1) = 0. Then
we can find an s̄ ∈ (s1, 0) with K(s̄) being a maximum. Lemma 6.12
yields γ(s̄) ∈ B+. Let I ⊂ H2 be the integral curve of J starting at
γ(0) = (−1, α−). With −1 ≤ x0 and again Lemma 6.12 the derivative
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γ̇(0) = (α−, 0) points strictly inward with respect to I. The intermediate
value theorem gives us at least two intersecting points of γ|(s̄,s0) with I.
This directly contradicts Lemma 6.11. Figure 15 describes the situation.

Figure 15: Existence of a maximum of K by contradiction.

Now we can switch to the other major case:

γ̇2(s∗) < 0.

With precisely the same arguments, we can give analogous statements to the
Claims 2 and 3:

Claim 4. From an euclidean viewpoint the geodesic Σ seperates H2 into an
unbounded part Σ− and a bounded part Σ+. For all s ∈ [0, L] we then have:
K(s) < 0, iff γ(s) ∈ Σ−. On the other hand γ(s) ∈ Σ+, iff K(s) > 0.
We also have K(s∗) ≤ 0.

Claim 5. There exists an s0 ∈ (0, L) with K(s0) = 0 and in which the geodesic
curvature changes sign from negative to positive. This point also satisfies s∗ ≤ s0

and ∀s ∈ (s∗, s0) we have γ̇1(s) 6= 0.
If K(s∗) < 0, there exists exactly one s∗ ∈ [s0, L) with γ̇1(s∗) = 0 and K(s∗) ≥
0.
If on the other hand K(s∗) = 0 we do not have another point s ∈ [0, L] \ {s∗}
with γ̇1(s) = 0.

As in the first major case we identify without loss of generality s∗ := s∗,
if K(s∗) = 0. Again we have to distinguish cases by the sign of the geodesic
curvature:

1. K(0) < 0: Here we need to consider two subcases:

(a) K(L) > 0:
We will show α− > α+, which would contradict our general assump-
tion from the beginning of the proof. Claim 1 and Claim 5 yield
exactly one zero s0 ∈ [s∗, s∗] of the geodesic curvature K. If we
reparameterise γ as a smooth graph (·, u(·)) at γ(0), this u would
be strictly concave. This is due to K(s) ≤ 0 for all s ∈ [0, s∗] and
equation (7.1). We then have γ2(s0) < γ2(0), since Lemma 7.3 yields
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∀s ∈ [s∗, s∗] γ̇
2(s) < 0.

If we assume α+ > γ2(s0), we would find an ŝ ∈ (s0, L) with
γ̇1(ŝ) = 0 and γ̇2(ŝ) > 0, because γ(L) ∈ Σ+ and γ̇1(L) > 0. Figure
16 explains the situation. Lemma 4.1 finally yields a contradiction.

Figure 16: Wh(γ) > 8.

(b) K(L) < 0:
Claim 1 and Claim 5 yield exactly two zeros s0 < s1 of K with
s0 ∈ [s∗, s∗] and s∗ < s1. Our aim is to construct a suitable compar-
ison function to show that γ cannot be a minimiser for the Willmore
energy. As in case γ̇(s∗) > 0, subcase K(L) < 0, we define a family
of catenoids cats : R → H2, s ∈ [0, s∗), such that cats(0) is tangent
to γ(s). Additionally we parameterise every catenoid by hyperbolic
arclength.
At first we have to show that γ meets cat0 only at γ(0): As shown
in case γ̇2(s∗) < 0, subcase K(L) > 0, we have for all s ∈ (0, s1]
γ2(s) < α−. Since cat20(t) is monotonically increasing for t > 0,
γ|(0,s1] and cat0(R) do not meet. On the other intervall [s1, L] the
curvature satisfies K ≤ 0. Since p1,α+

is a geodesic circle, the bound-
ary datum γ̇2(L) = 0 yields for all s ∈ [s1, L] p1,α+(γ(s)) ≥ γ2(s).
With Assumption 1.2 γ meets cat0 only in γ(0). Figure 17 gives a
sketch of the situation.

Figure 17: Situation for γ̇2(s∗) < 0, K(0) < 0 and K(L) < 0.
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For s ↗ s∗ the vertex of cats approaches zero. Then the bound-
ary data for γ yield an s̄ ∈ (0, s∗) and an s̃ ∈ (s̄, L), such that cats̄
touches γ at γ(s̃).
Before we can define a comparison curve, we have to show γ̇1(s̃) > 0.
Since ∀s ∈ [s∗, s∗] we have γ1(s) ≤ γ1(s∗) and γ2(s) ≤ γ(s∗), the
catenoid cats̄ does not intersect γ|[s∗,s∗]. Claim 5 on the other hand
shows that γ can be reparameterised as a graph on [0, L] \ [s∗, s∗].
This yields γ̇1(s̃) > 0.
The resulting situation is sketched in Figure 18.

Figure 18: Inserting a catenoid.

Let us denote with L̃ > 0 the point with cats̄(L̃) = γ(s̃). We can
now define the desired comparison curve:

v(s) =


γ(s), s ∈ [0, s̄)

cats̄(s− s̄), s ∈ [s̄, s̄+ L̃)

γ(s− (s̄+ L̃) + s̃), s ∈ [s̄+ L̃, s̄+ L̃+ L− s̃].
(7.3)

Since catenoids are minimal surfaces their associated mean curvature
vanishes. This means their Willmore energy is zero. This in turn
yields We(S(v)) < We(S(γ)). Equality cannot arise, since it would
mean that γ is a catenoid. This is not possible due to the boundary
data.

2. K(0) > 0:
Claim 5 and Claim 1 yield exactly two zeros of K. This gives K(L) > 0.
By Claim 4 the proof is from here on out completely analogous to γ̇(s∗) >
0, subcase K(L) > 0.

A Estimates for the infimum of the Willmore
energy

Here we provide an estimate, which shows that the elastic energy is not uni-
formely bounded for (α−, α+) in the class of graphs:

Lemma A.1. If α+ > α− + 1, then for any u ∈ C1,1([−1, 1], (0,∞)) satisfying
u(−1) = α−, u(1) = α+ and u′(±1) = 0 we have

Wh(u) ≥ α+ − 1

10
.
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Proof. Equation (2.14) yields

Wh(u) =

∫ 1

−1

u′′(x)2u(x)

(1 + u′(x)2)
5
2

+
1

u(x)
√

1 + u′(x)2
dx

≥
∫ 1

−1

u′′(x)2u(x)

(1 + u′(x)2)
5
2

dx

=

∫ 1

−1

u(x)
√

1 + (u′(x))2

(
u′′(x)

(1 + (u′(x))2)
3
2

)2

dx

We may now choose x1 ∈ (−1, 1) such that u′(x1) ≥ 1
2 and u

∣∣
[x1,1]

≥ α+ − 1.

We conclude:

Wh(u) ≥
∫ 1

−1

u(x)
√

1 + (u′(x))2

(
u′′(x)

(1 + (u′(x))2)
3
2

)2

dx

≥
∫ 1

x1

u(x)
√

1 + (u′(x))2

(
u′′(x)

(1 + (u′(x))2)
3
2

)2

dx

≥ (α+ − 1)

∫ 1

x1

(
u′′(x)

(1 + (u′(x))2)
3
2

)2

dx

≥ α+ − 1

|1− x1|

(∫ 1

x1

u′′(x)

(1 + (u′(x))2)
3
2

dx

)2

=
α+ − 1

1− x1

(
u′(x1)√

1 + (u′(x1))2

)2

≥ α+ − 1

2

 1
2√

1 + 1
4

2

≥ α+ − 1

10
.

If α+ tends to ∞ the elastic energy of graphs will tend to ∞ as well.
In contrast to this we shall prove boundedness of the elastic energy in the

class of curves. For this we need a lemma concerning circles first.

Lemma A.2 (see e.g. [18], Example 4.7). Let r > 0 and M ∈ R2 define an
euclidean circle by

Cr,M (t) := r(sin t, cos t) + (M1,M2).

If we further assume Cr,M (R) ∩H2 6= ∅ the geodesic curvature is here

κ[Cr,M ] = −M
2

r
.

In contrast to Lemma A.1 the following lemma shows that in the class of
curves, the elastic energy is bounded for small α− and big α+:

Lemma A.3. Let (α−, α+) ∈ (0,∞)2 satisfy

α+√
2 + 1

+
α−√
2− 1

≥ 2 and α+ > α−(
√

2 + 1)4,

then
W e
α−,α+

< 2π2.
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Proof. Thanks to (2.11) we will show Wh
α−,α+

= inf{Wh(v) : v ∈ Mα−,α+
} <

4π. Let us define two circles:

Cα− := C α−√
2−1

,
(
−1,α−+

α−√
2−1

) and Cα+ := C α+√
2+1

,
(

1,α+−
α+√
2+1

)
Lemma A.2 yields

κ[Cα± ] = −
√

2

and therefore the elastic energy of one half of a circle is with the help of mapleTM∫ π

0

(κ[Cα− ])2(t) ds(t) =

∫ π

0

2 α−√
2−1

α−√
2−1

cos(t) + α− + α−√
2−1

dt = 2π.

Analogously we obtain to
∫ 0

−π(κ[Cα+ ])2(t) ds(t) = 2π.

Due to α+ > α−(
√

2 + 1)4, Cα− and Cα+ do not intersect, since this inequality
is equivalent to

α+ − 2
α+√
2 + 1

> α− + 2
α−√
2− 1

.

On the other hand the line Gπ
2

, which is parallel to the y-axis and starts at

Cα−(π2 ), intersects Cα+

∣∣
[−π,0]

because α+√
2+1

+ α−√
2−1
≥ 2. We can now define a

family of geodesics (upper half circles) Gt, which are tangent to Cα− at Cα−(t).
Since G0 does not intersect Cα+

we find a t0 ∈ (0, π2 ) such that Gt0 touches
Cα+ . As in Lemma 7.4 we obtain a comparison curve v with

Wh(v) < 4π

Figure 19 sketches the situation.

Figure 19: A comparison curve for small α− and big α+.

Remark A.4. The choice of the circles Cα− and Cα+
in Lemma A.3 is not

accidental. They are part of the Clifford torus and therefore minimal in the
class of possible circles for the construction made above (see e.g. [26], Thm 4.1,
or the proof of the Willmore conjecture [30]).
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