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Abstract

For a bounded smooth domain in the plane and smooth boundary data we consider the
minimisation of the Willmore functional for graphs subject to Dirichlet or Navier boundary
conditions. For H2-regular graphs we show that bounds for the Willmore energy imply area
and diameter bounds. We then consider the L1-lower semicontinuous relaxation of the Willmore
functional, which is shown to be indeed its largest possible extension, and characterise properties
of functions with finite relaxed energy. In particular, we deduce compactness and lower-bound
estimates for energy-bounded sequences. The lower bound is given by a functional that describes
the contribution by the regular part of the graph and is defined for a suitable subset of BV (Ω).
We further show that finite relaxed Willmore energy implies the attainment of the Dirichlet
boundary data in an appropriate sense, and obtain the existence of a minimiser in L∞ ∩ BV
for the relaxed energy. Finally, we extend our results to Navier boundary conditions and more
general curvature energies of Canham–Helfrich type.

MSC (2010): 49Q10, 53C42.

1 Introduction and main results

The present paper is intended as an analogue for the Willmore functional of the BV-approach of
minimising the non-parametric area functional under Dirichlet boundary conditions (see [Giu84,
Theorem 14.5]). We therefore consider for two-dimensional graphs Γ ⊂ R3 the following combina-
tion of Willmore functional (cf. [Wil93])1 and total Gauß curvature

Wγ(Γ) =
1

4

∫
Γ
H2 dS − γ

∫
Γ
K dS,

∗e-mail: Klaus.Deckelnick@ovgu.de
†e-mail: Hans-Christoph.Grunau@ovgu.de
‡e-mail: matthias.roeger@tu-dortmund.de
1This functional had indeed shown up already at the beginning of the 19th century. For historical and mathematical

background information on the Willmore functional one may see [MN14, Nit93].
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where γ ∈ R is a constant2, H and K denote the mean and Gauß curvature and are defined as the
sum respectively the product of the principal curvatures. We investigate how and to what extent a
direct method of the calculus of variations can be applied to the respective minimisation problem,
subject to boundary conditions. We therefore need to identify a suitable class of functions and a
suitable generalisation of the Willmore energy that allow for compactness and lower semicontinuity
properties.

1.1 The Willmore functional and boundary value problems for the Willmore
equation

Let Ω ⊂ R2 be a bounded domain with a C2–boundary and exterior unit normal field ν, let
ϕ : Ω → R be a sufficiently smooth (at least ϕ ∈ C2(Ω)) boundary datum, and fix a parameter
γ ∈ R. Our aim is to minimise the Willmore functional Wγ in the class of graphs

Γ(u) = {(x, u(x)) |x ∈ Ω}

of suitable functions u : Ω→ R, and subject to a boundary condition. We therefore consider

Wγ(u) :=Wγ(Γ(u)) :=
1

4

∫
Ω
H2

√
1 + |∇u|2 dx− γ

∫
Ω
K
√

1 + |∇u|2 dx (1)

either in the classes

{u : Ω→ R : u = ϕ,
∂u

∂ν
=
∂ϕ

∂ν
on ∂Ω} (2)

of clamped graphs or
{u : Ω→ R : u = ϕ on ∂Ω} (3)

of hinged graphs, respectively. According to [Nit93], γ ∈ [0, 1] is a physically relevant condition,
which implies that 1

4H
2 − γK ≥ 0. We expect that this condition–among others–will be needed to

ensure regularity of a minimiser of Wγ . For the compactness and lower semicontinuity properties
stated in the present paper, however, we allow for arbitrary γ ∈ R.

In order to explain the notion of Dirichlet and Navier boundary value problems for Willmore
surfaces let us assume that we have a smooth minimiser of Wγ in the class (2) or (3), respectively.
In the first case, i.e. considering a minimiser in the class of clamped graphs, one would have a
solution for the Willmore equation

∆Γ(u)H + 2H
(1

4
H2 −K

)
= 0 in Ω (4)

under Dirichlet boundary conditions

u = ϕ,
∂u

∂ν
=
∂ϕ

∂ν
on ∂Ω, (5)

see [Nit93, (25)]. Here ∆Γ(u) denotes the Laplace-Beltrami operator on Γ(u) with respect to the
first fundamental form. According to Remarks 1 and 2 below the shape of Ω and the Dirichlet
data (5) completely determine

∫
ΩK

√
1 + |∇u|2 dx. So, in order to solve the Dirichlet problem,

the parameter γ does not play any role and without loss of generality we may restrict ourselves to
minimising W0.

Let us assume now that u is a smooth minimiser for Wγ in the class (3) of hinged graphs. Such
a minimiser then solves the Willmore equation

∆Γ(u)H + 2H
(1

4
H2 −K

)
= 0 in Ω (4)

2For simplicity we call Wγ Willmore functional also for γ 6= 0.
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under Navier boundary conditions

u = ϕ, H = 2γκN on ∂Ω. (6)

Here, κN denotes the normal curvature of the boundary curve ∂ Γ(u) with respect to the upward
pointing unit normal vector field N := 1√

1+|∇u|2
(−∇u, 1) of Γ(u). The second boundary condition

H = 2γκN arises as a natural one due to the larger class of admissible comparison functions, see
[Nit93, (32)]. The case γ = 0, i.e. prescribing H|∂Ω = 0, is special since here one may just seek
solutions of the minimal surface equation subject to the boundary condition u|∂Ω = ϕ|∂Ω, see e.g.
[GT01, Sect. 14] or [Giu84]. A recent paper by Bergner and Jakob [BJ14] ensures that one even
does not miss solutions when using this approach.

These observations motivate speaking of Dirichlet and Navier boundary conditions in Sec-
tions 5.1 and 5.2 respectively, although we do in general not expect sufficient regularity of the
solutions constructed in Theorem 5 and Remark 4 to solve the above mentioned boundary value
problems in a classical sense.

Schätzle [Sch10] solved the Dirichlet problem for Willmore surfaces in the very general context
of immersions in S3. This approach, however, does not give easy access to more detailed geometric
information on the solution. In particular, even in the case of rather simple and regular bound-
ary data it is not obvious how to single out graph solutions under suitable assumptions on the
data. Concerning classical solvability of boundary value problems for the Willmore equation un-
der symmetry assumptions one may see [BDF13, DDW13, DFGS11, DG07] and references therein.
According to [Dal12], for strictly star–shaped Ω and ϕ = 0, the constant function u = 0 is the
unique solution to the Dirichlet problem. Due to the strongly nonlinear character and the lack of
convexity of this problem we do in general not expect uniqueness; numerical evidence is given in
[DKS13].

We remark that many papers have dealt with closed Willmore surfaces (compact without bound-
ary); we mention only [BK03, Sim93] for existence of (minimising) Willmore surfaces of any pre-
scribed genus. Further information can also be found in the lecture notes [KS12] and the survey
article [MN14] on the recent proof of the Willmore conjecture.

1.2 Main results

In our work the major benefit of working with graphs, i.e. using a non-parametric approach, is
the validity of a-priori diameter and area bounds which are not available in the general parametric
setting. More precisely, the corresponding result (see Section 3 below) reads as follows:

Theorem 2. Suppose that u ∈ H2(Ω) satisfies u − ϕ ∈ H1
0 (Ω). Then there exists a constant C

that only depends on Ω and ‖ϕ‖W 2,1(∂Ω) such that

sup
x∈Ω
|u(x)|+

∫
Ω

√
1 + |∇u(x)|2 dx ≤ C

(
W0(u)2 + 1

)
.

We will also present several examples that in particular demonstrate that no a-priori bounds
in W 1,p(Ω) in terms of the Willmore energy are available for any 1 < p ≤ ∞. Unlike the axially
symmetric setting (see e.g. [DFGS11]) we have further not yet succeeded to modify minimising
sequences such that they obey stronger bounds than in Theorem 2.

Our main results are stated in Theorem 3. We show that sequences (uk)k∈N ⊂ H2(Ω) with
uniformly bounded Willmore energy and obeying the boundary condition (uk − ϕ) ∈ H1

0 (Ω) have
L1(Ω)-convergent subsequences. Limit points belong to BV (Ω) ∩ L∞(Ω) and enjoy additional
(weak) regularity properties that allow for the definition of an absolutely continuous contribution
to the Willmore functional (see Section 4 for details). This contribution then gives a lower bound
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for the energies of the approximating sequence. For simplicity we state here only a corollary of
Theorem 3 and assume that the limit point u belongs to W 1,1(Ω), which allows to control the full
Willmore functional.

Theorem 3’. Let (uk)k∈N be a given sequence in H2(Ω) that satisfies

uk − ϕ ∈ H1
0 (Ω) for all k ∈ N and lim inf

k→∞
W0(uk) < ∞.

Then there exists a subsequence k →∞ and u ∈ BV (Ω) ∩ L∞(Ω) with

uk → u in L1(Ω) (k →∞).

If in addition u ∈ W 1,1(Ω) then the mean curvature H = ∇ · ∇u√
1+|∇u|2

∈ L2(Ω) exists in the weak

sense and
1

4

∫
Ω
H2
√

1 + |∇u|2 dx ≤ lim inf
k→∞

W0(uk).

holds.

In order to simplify the presentation, in the remainder of this introduction we restrict ourselves
to Dirichlet boundary conditions (5) and to the case γ = 0. As explained before, for minimising
sequences, or more generally for sequences with uniformly bounded Willmore functional, we do
not have stronger uniform bounds than those in Theorem 2. So, the regularity of limit points can
at a first instance not be proved to be better than L∞(Ω) ∩ BV (Ω). On this space, however, the
Willmore functional is not defined in the classical sense and we therefore introduce the L1-lower
semicontinuous relaxation of the Willmore functional:

W : L1(Ω)→ [0,∞], W (u) := inf{lim inf
k→∞

W0(uk) :M3 uk → u in L1(Ω)},

where

M := {v ∈ H2(Ω) : v − ϕ ∈ H2
0 (Ω)}. (7)

For geometric curvature functionals such relaxations are well established, see e.g. [AM03, BDMP93,
BM04] and the references therein. One advantage is that lower-semicontinuity properties are im-
mediately obtained; on the other hand, a more explicit characterisation of the relaxation is often
difficult. However, we prove in Theorem 4 that W0 and W coincide in M, so that W is actually
an extension of W0.

As a corollary of Theorem 3 we are able to prove existence of a minimiser for the extended
functional W :

Theorem 5. There exists a function u ∈ BV (Ω) ∩ L∞(Ω) such that

∀v ∈ L1(Ω) : W (u) ≤W (v).

The regularity properties stated in Theorem 3 are in particular satisfied for any function u ∈
L1(Ω) with W (u) <∞ and so, for the minimiser constructed above. Furthermore, in Proposition 2
we prove that W (u) <∞ not only allows for defining a generalised Willmore functional (or rather
the absolutely continuous part), but also encodes attainment of the boundary conditions (5).

The proofs of these results all heavily rely on the area and diameter bounds provided by The-
orem 2. Together with the boundedness of the Willmore energies this yields sufficiently strong
compactness properties for several H1-bounded auxiliary sequences such as qk = (1 + |∇uk|2)−5/4
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and vk = qk∇uk. In particular we are able to deduce that for limits u ∈ BV (Ω) ∩ L∞(Ω) as in
Theorem 3 that v = q∇u holds as vector-valued Radon measures, for v, q ∈ H1(Ω). Moreover,
the set {q = 0} describes the set where the graph of u may become vertical. Our results then are
deduced by exploiting several fine properties of Sobolev and BV functions.

Restricting ourselves to the graph case –i.e. working in the non-parametric framework– allows
to use relatively elementary tools (compared to the use of geometric measure theory methods in
the parametric case), but on the other hand introduces additional difficulties that are due to the
particular choice of parametrisation and are in particular related to the possible occurrence of
vertical parts of the graph when passing to a limit. The condition of being a graph imposes an
obstruction to the class of admissible “surfaces”. Minimising the Willmore functional in this class
means solving a kind of an obstacle problem, as long as one cannot prove C1-estimates or C1-
regularity: We expect our minimiser to solve the Willmore equation on the non-vertical parts of
the graph while this can in general not be expected on the vertical parts. Functions having vertical
parts lie somehow on the “boundary” of the set of admissible functions since some variations would
result in surfaces which are no longer graphs but could possibly nevertheless have smaller Willmore
energy. We think that extra conditions on the data Ω, ϕ, and γ will be needed to prove that our
minimiser is indeed smooth and attains the boundary conditions in a classical sense, but such a
characterisation is out of the scope of the present paper.

The paper is organised as follows. In the next section we first state some definitions from
differential geometry and properties of Sobolev and BV functions, and then prove some basic esti-
mates. Section 3 presents the main a-priori bounds and examples that show that these bounds are
in some sense optimal. The main compactness and lower-semicontinuity properties are formulated
and proved in Section 4. The last section derives the implications for the minimisation of the (re-
laxed) Willmore functional and in particular discusses in which sense the boundary conditions are
attained for functions with finite relaxed energy. Finally, extensions to more general functionals of
Canham–Helfrich type are indicated.

2 Preliminaries and basic estimates

2.1 Differential geometry of graphs

For a smooth function u : Ω→ R we let

Γ(u) := {(x, u(x)) |x ∈ Ω}

be its graph with unit normal field N := 1√
1+|∇u|2

(−∇u, 1). The first and second fundamental

forms of Γ(u) are given by

(gij) =

(
1 + u2

x1 ux1ux2
ux1ux2 1 + u2

x2

)
, A = (hij) =

1

Q
(uxixj ),

where Q =
√

1 + |∇u|2 denotes the area element. The mean curvature and the Gauß curvature of
Γ(u) are then given by

H = ∇ · ∇u
Q

=
1

Q

(
Id−w ⊗ w

)
: D2u, (8)

K =
detD2u

Q4
= detDw, (9)
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where we have set w := ∇u/Q. In particular, the Willmore functional for the graph of u reads

Wγ(u) =
1

4

∫
Ω
H2

√
1 + |∇u|2 dx− γ

∫
Ω
K
√

1 + |∇u|2 dx

=
1

4

∫
Ω
|∇ ·

(∇u
Q

)
|2 Qdx− γ

∫
Ω

detD2u

Q3
dx. (10)

Mean curvature, Gauß curvature and the length of the second fundamental form

|A|2g =

2∑
i,j,k,`=1

gijgk`hikhj` = tr(g−1Ag−1A), (gij) = (gij)
−1,

are related by the formula

|A|2g = H2 − 2K. (11)

2.2 Functions of bounded variation and fine properties of Sobolev functions

We denote by Br(x) for x ∈ Rn, r > 0 the corresponding open ball, by Ln the n-dimensional
Lebesgue measure and by Hk the k-dimensional Hausdorff measure. We set |A| = Ln(A) for
A ⊂ Rn. The precise representative of a function u ∈ L1

loc(Rn),

u∗(x) := lim
r↓0
−
∫
Br(x)

u(y) dy,

is well-defined almost everywhere, where we have used the notation −
∫
Br(x) u := 1

|Br(x)|
∫
Br(x) u. The

Lebesgue points of u are given by all x ∈ Rn such that

lim
r↓0
−
∫
Br(x)

|u(x)− u(y)| dy = 0.

The usual Sobolev spaces are denoted by H`(Ω), ` ∈ N0, H(div,Ω) denotes the space of L2(Ω,Rn)–
vector fields which have a weak divergence in L2(Ω). For the definition and properties of the space
H(div,Ω) see e.g. [Tem01, Chapter 1, Section 1.2].

We next recall some basic definitions and properties of functions of bounded variation. For a
detailed exposition we refer to the book of Ambrosio, Fusco and Pallara [AFP00].

A function u ∈ L1(Ω) belongs to the space of functions of bounded variation if the distributional
derivatives Diu are given by finite Radon measures on Ω. We then write u ∈ BV (Ω) and denote
by ∇u the vector-valued Radon measure with components Diu. For u ∈ BV (Ω) the total variation
of ∇u is given by ∫

Ω
|∇u| = sup

{∫
Ω
u∇ · ϕdx : ϕ ∈ C1

0 (Ω,Rn), ‖ϕ‖∞ ≤ 1
}
.

The measure ∇u can be decomposed as

∇u = ∇auLn +∇su = ∇auLn +∇ju+∇cu, (12)

where ∇auLn denotes the absolutely continuous part of ∇u with respect to Ln, and ∇su, ∇ju,
∇cu are the singular part, the jump part and the Cantor part of ∇u, respectively. Letting

Σu := {x ∈ Ω : lim
%↓0

%−n|∇u|(B%(x)) =∞}, Θu := {x ∈ Ω : lim inf
%↓0

%1−n|∇u|(B%(x)) > 0}
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we have ∇auLn = ∇u (Ω\Σu), ∇ju = ∇u Θu, ∇cu = ∇u (Σu \Θu), see [AFP00, Proposition
3.92]. The set Σu has Lebesgue measure zero, see [EG92, Theorem 1.6.1]. Moreover, by [AFP00,
Theorem 3.78] ∇ju = (u+ − u−) ⊗ νuHn−1 Ju, where the approximate jump set Ju ⊂ Θu (see
[AFP00, Definition 3.67]) is (n − 1)-rectifiable, νu is a Borel unit normal vector field to Ju and
u+, u− are the traces of u on Ju. The complement Su of the set of Lebesgue points of u is a Borel
set with Ln-measure zero and satisfies Hn−1(Su\Ju) = 0, see [AFP00, Definition 3.63 and Theorem
3.78].

For a function u ∈ BV (Ω) we call x ∈ ∂Ω a Lebesgue boundary point if

lim
r↓0
−
∫
Br(x)∩Ω

|u(x)− u(y)| dy = 0,

where −
∫
Br(x)∩Ω u := 1

|Br(x)∩Ω|
∫
Br(x)∩Ω u and u(x) is defined in the sense of boundary traces.

We next recall the notion of capacity and some fine properties of Sobolev functions. We follow
[EG92]. For A ⊂ Rn and 1 ≤ p < n the p-capacity is defined as

Capp(A) := inf
{∫

Rn
|∇f |p dx : f ≥ 1 in a neighbourhood of A, f ≥ 0

}
,

where the infimum is taken over all f ∈ Lp∗(Rn) with ∇f ∈ Lp(Rn,Rn), p∗ = np
n−p .

If Capp(A) = 0 then Hs(A) = 0 for all s > n− p [EG92, Theorem 4.7.4].

For a function u ∈ W 1,p(Rn), 1 ≤ p < n, there exists a Borel set E of p-capacity zero such
that the precise representative u∗ of u is well defined on Rn \E and each x ∈ Rn \E is a Lebesgue
point of u∗ [EG92, Theorem 4.8.1]. Moreover, for every ε > 0 there exists an open set V with
Capp(V ) ≤ ε such that u∗ is continuous on Rn \ V .

We say that f : Rn → Rm has an approximate limit at x ∈ Rn if there exists a ∈ Rm such that
for every ε > 0

lim
r↓0

|Br(x) ∩ {|f − a| ≥ ε}|
|Br(x)|

= 0,

see [EG92, Section 1.7.2]. In this case the approximate limit ap limy→x f(y) := a is uniquely
determined. We call f approximately continuous at x ∈ Rn if ap limy→x f(y) = f(x). By [Zie89,
Remark 5.9.2] f : Rn → Rm is approximately continuous at x ∈ Rn if and only if there exists a
measurable set E ⊂ Rn with x ∈ E such that f |E is continuous at x and the set E has full density
in x, that is

lim
r↓0

|Br(x) ∩ E|
|Br(x)|

= 1.

Therefore the products (quotients) of approximately continuous real functions are approximately
continuous (in all points where the denominator does not vanish).

We say that f : Ω→ Rm has an approximate limit at x ∈ ∂Ω if there exists a ∈ Rm such that
for every ε > 0

lim
r↓0

|Br(x) ∩ Ω ∩ {|f − a| ≥ ε}|
|Br(x) ∩ Ω|

= 0.
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2.3 Basic estimates

The following result shows how the second derivatives of u are controlled in terms of |A|2g.

Lemma 1. Let |D2u|2 = u2
x1x1 + 2u2

x1x2 + u2
x2x2 denote the euclidean norm of the Hessian of u.

Then
1

Q(x)2
|D2u(x)|2 ≥ |A(x)|2g ≥

1

Q(x)6
|D2u(x)|2. (13)

This possibly very strong deviation of |A(x)|2g from |D2u(x)|2 is one of the main difficulties in
deducing a-priori estimates for minimising sequences of the Willmore functional.

Proof. We have that

(
gij(x)

)
ij

=
1

Q2

(
1 + u2

x2 −ux1ux2
−ux1ux2 1 + u2

x1

)
=

1

Q2

(
Id +∇u⊥ ⊗∇u⊥

)
is a symmetric positive definite matrix with smallest eigenvalue equal to 1

Q2 . One the one hand
this yields the estimate:

∀η ∈ R2 : |η|2 ≥
∑
i,j

gij(x)ηiηj ≥
1

Q2
|η|2.

On the other hand we find a uniquely determined symmetric positive definite square root
(
bij(x)

)
of
(
gij(x)

)
, i.e.

gij(x) =
∑
k,`

bik(x)δk`b
`j(x).

Denoting vij :=
∑

` b
i`h`j we see that

|A|2g =
∑
i,j,k,`

gijgk`hikhj` =
∑

i,j,k,`,m,n

gk`bimδmnb
njhikhj`

=
∑

k,`,m,n

gk`vmk δmnv
n
` =

∑
k,`,m

gk`vmk v
m
`

≥ 1

Q2

∑
k,m

(vmk )2 =
1

Q2

∑
i,j,k,`

δijδ
k`vikv

j
` =

1

Q2

∑
i,j,k,`,m,n

δijδ
k`bimhmkb

jnhn`

=
1

Q2

∑
k,m,n

gmnhmkhnk ≥
1

Q4

∑
m,k

(hmk)
2 =

1

Q6

∑
m,k

(uxmxk)2 =
1

Q6
|D2u|2. (14)

As for the bound from above we find by using similar calculations as before that

|A|2g ≤
∑
m,k

(hmk)
2 =

1

Q2

∑
m,k

(uxmxk)2 =
1

Q2
|D2u|2.

In what follows the geodesic curvature of the boundary curve ∂ Γ(u) with respect to the surface
Γ(u) will be of some importance. We derive here an explicit estimate and representation that are
used below.
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Remark 1. We consider u ∈ H2(Ω) satisfying (u− ϕ) ∈ H1
0 (Ω). Let s 7→ Y (s) ∈ ∂ Γ(u) denote a

positively oriented parametrisation of (a connected component of) the boundary ∂ Γ(u). Positive
orientation means that at any point p ∈ ∂ Γ(u), the determinant of the unit tangent vector, the
unit co-normal pointing inward to Γ(u) and N(p) is positive.

Then its (signed) geodesic curvature is given by

κg(s) =
1

|Y ′(s)|3
det
(
Y ′(s), Y ′′(s), N(Y (s))

)
.

We take now a positively oriented parametrisation s 7→ c(s) ∈ ∂Ω of (a connected component of)
∂Ω with respect to its arclength so that with the natural unit tangent vector τ(s) = c′(s), we
have that (ν(c(s)), τ(s)) form a positively oriented orthonormal basis of R2. In particular we have
that ν1 = τ2, ν2 = −τ1 and τ ′(s) = −κ(s)ν(c(s)) with κ the (signed) curvature of ∂Ω (being
nonnegative on the “convex” parts of ∂Ω). With a slight abuse of notation we write

ϕ(s) = ϕ(c(s)), uν(s) =
∂u

∂ν
(c(s)), Y (s) = (c(s), ϕ(s))T

and find by using u = ϕ on ∂Ω that

N(Y (s)) =
1√

1 + ϕ′(s)2 + uν(s)2

−(τ1ϕ′ + τ2uν)
−(τ2ϕ′ − τ1uν)

1

 .

For the geodesic curvature of ∂ Γ(u) we obtain, using τ1 (τ1)′ + τ2 (τ2)′ = 0,

κg(s) =
−uν(s)ϕ′′(s) + κ(s)(1 + ϕ′(s)2)

(1 + ϕ′(s)2 + uν(s)2)1/2(1 + ϕ′(s)2)3/2
.

This formula shows in particular that the geodesic curvature of ∂ Γ(u) as a curve in the unknown
surface Γ(u) can be computed just from its Dirichlet data (5). We observe that the assumption
u = ϕ on ∂Ω already allows for estimating

|κg(s)| ≤
|ϕ′′(s)|+ |κ(s)|
(1 + ϕ′(s)2)1/2

,

hence ∫
∂ Γ(u)

|κg(s)| ds ≤
∫
∂Ω

(|ϕ′′(s)|+ |κ(s)|) ds. (15)

Remark 2. By virtue of the Gauß-Bonnet formula∫
Ω
KQdx+

∫
∂ Γ(u)

κgds = 2πχ(Γ(u)) = 2πχ(Ω),

the integral over the Gauß curvature is given by the boundary integral of the geodesic curvature and
the Euler characteristic χ(Ω) of the smoothly bounded domain Ω ⊂ R2. The Euler characteristic
is defined as usual by means of triangulations. If Ω is m-fold connected, i.e. ∂Ω consists of m
connected components (Ω contains (m− 1) holes), then χ(Ω) = 2−m. See formula (13) on p. 38
in [DHS10].

In particular, the total Gauß curvature
∫

ΩKQdx of a function u ∈ C2(Ω) is already determined
by the Dirichlet boundary condition (5).
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In Theorem 2 below we shall deduce maximum modulus and area estimates in terms of integral
norms of the second fundamental form. In the following lemma we show first how to bound these
by the Willmore functional, the data and the Euler characteristic χ(Ω) of the smoothly bounded
domain Ω ⊂ R2.

Lemma 2. Suppose that u ∈ H2(Ω) satisfies u− ϕ ∈ H1
0 (Ω). Then∣∣∣ ∫

Ω
KQdx

∣∣∣ ≤ ‖ϕ‖W 2,1(∂Ω) + ‖κ‖L1(∂Ω) + 2π|χ(Ω)|, (16)∫
Ω
|A|2gQdx ≤ 4W0(u) + 2

(
‖ϕ‖W 2,1(∂Ω) + ‖κ‖L1(∂Ω)

)
− 4πχ(Ω), (17)

where ‖ϕ‖W 2,1(∂Ω) = ‖ϕ◦c‖W 2,1(I) and c : I → R2 is an arclength–parametrisation of ∂Ω. Moreover,
the functionals W0 and Wγ are closely related:

|W0(u)−Wγ(u)| ≤ |γ| ·
(
‖ϕ‖W 2,1(∂Ω) + ‖κ‖L1(∂Ω) + 2π |χ(Ω)|

)
. (18)

Proof. Let us first assume that u ∈ C2(Ω) and u = ϕ on ∂Ω. We use the notation and same
orientation as in Remark 1. According to (15)∫

∂ Γ(u)
|κg(s)|ds ≤

∫
∂Ω

(|ϕ′′(s)|+ |κ(s)|)ds,

and by the Gauß–Bonnet Theorem (see Remark 2) we obtain (16) and (18). We further deduce
from (11) that∫

Ω
|A|2gQdx =

∫
Ω
H2Qdx− 2

∫
Ω
KQdx = 4W0(u) + 2

∫
∂ Γ(u)

κgds− 4πχ(Γ(u)), (19)

and as above we deduce (17) in the case that u ∈ C2(Ω). Finally suppose that u ∈ H2(Ω) such that
u − ϕ ∈ H1

0 (Ω). Then there exists a sequence (uk)k∈N such that uk ∈ C2(Ω), uk = ϕ on ∂Ω and
uk → u in H2(Ω), k →∞. We deduce from the generalised Lebesgue convergence theorem that∫

Ω
KkQk dx =

∫
Ω

detD2uk
Q3
k

→
∫

Ω

detD2u

Q3
=

∫
Ω
KQdx,

since detD2uk
Q3
k

converges pointwise almost everywhere and since by Qk ≥ 1 we obtain that |D2uk|2

is a L1-convergent sequence of dominating functions. This yields (16) in the general case.

Since (17) holds for C2-functions we infer that∫
Ω
|Ak|2gkQk dx ≤ 4W0(uk) + 2

(
‖ϕ‖W 2,1(∂Ω) + ‖κ‖L1(∂Ω)

)
− 4πχ(Ω)

and, with similar arguments as above, passing to the limit yields the result.

3 Sequences of graphs with bounded Willmore energy

3.1 Area and diameter bounds

The following celebrated diameter estimate of Leon Simon [Sim93] is the starting point of our
reasoning.
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Theorem 1 (Lemma 1.2 in [Sim93]). Let Γ ⊂ Rn be a smooth connected and compact surface with
boundary. Then there exists a constant C which only depends on n such that

diam(Γ) ≤ C
(∫

Γ
|A|g dS +

∑
j

diam(Γj)
)
,

where Γj are the connected components of ∂Γ.

From now on we always work in R2. The following result follows from the preceding estimate
and is the key for establishing a-priori bounds on sequences which are bounded with respect to the
W0– or Wγ–functional.

Theorem 2. Suppose that u ∈ H2(Ω) satisfies u−ϕ ∈ H1
0 (Ω) Then there exists a constant C that

only depends on Ω and ‖ϕ‖W 2,1(∂Ω) such that

sup
x∈Ω
|u(x)|+

∫
Ω
Qdx ≤ C

(
W0(u)2 + 1

)
. (20)

Examples 1 and 2 below show that it is not possible to obtain uniform bounds in W 1,p(Ω) for any
1 < p ≤ ∞.

Proof. Let us first assume that u ∈ C2(Ω) and u = ϕ on ∂Ω. A careful inspection of the proof of
[Sim93, Lemma 1.2] shows that the bound in Theorem 1 holds for Γ(u) (see[Gul14]) so that

diam(Γ(u)) ≤ C
(∫

Γ(u)
|A|g dS + diam(∂ Γ(u))

)
. (21)

We note that

diam(Γ(u)) ≥ sup
x,y∈Ω,x 6=y

|u(x)− u(y)| ≥ sup
x∈Ω,y∈∂Ω

|u(x)− u(y)| ≥ sup
x∈Ω
|u(x)| − sup

x∈∂Ω
|ϕ(x)|

while diam(∂ Γ(u)) ≤ C
(
1 + ‖ϕ‖C0(∂Ω)

)
with a constant that depends on diam(Ω). Hence we

deduce from (17) and (21) that

sup
x∈Ω
|u(x)| ≤ C

(∫
Ω
|A|gQdx+ ‖ϕ‖C0(∂Ω) + 1

)
+ ‖ϕ‖C0(∂Ω)

≤ C
((∫

Ω
|A|2gQdx

)1/2(∫
Ω
Qdx

)1/2
+ ‖ϕ‖C0(∂Ω) + 1

)
(22)

≤ C
(
W0(u) + 1)

)1/2(∫
Ω
Qdx

)1/2
+ C,

where C depends on the diameter and the topology of Ω, ‖ϕ‖W 2,1(∂Ω) and ‖κ‖L1(∂Ω).

Our next aim is to bound
∫

ΩQdx. We have∫
Ω
uH dx =

∫
Ω
u∇ ·

(∇u
Q

)
dx = −

∫
Ω

|∇u|2

Q
dx+

∫
∂Ω

u∂u∂ν
Q

ds

= −
∫

Ω
Qdx+

∫
Ω

1

Q
dx+

∫
∂Ω

ϕ∂u∂ν
Q

ds.

This integration by parts is the place where we essentially exploit that the surface Γ(u) is a graph.
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Combining this relation with (22) we deduce∫
Ω
Qdx ≤ |Ω|+ ‖ϕ‖L1(∂Ω) + |Ω|1/2 sup

x∈Ω
|u(x)|

(∫
Ω
H2Qdx

)1/2
≤ C + C

((
W0(u) + 1

)1/2(∫
Ω
Qdx

)1/2
+ 1
)
W0(u)1/2

≤ 1

2

∫
Ω
Qdx+ C

(
W0(u)2 + 1

)
.

Inserting this estimate into (22) yields (20) for u ∈ C2(Ω), u = ϕ on ∂Ω. The general case is
obtained with the help of an approximation argument as in Lemma 2.

3.2 Examples: No higher integrability of gradients and singular graphs with
finite Willmore energy

In this section we present some illustrative examples. We demonstrate that the Willmore energy of a
function u does not control any Lp-norm, p > 1, of ∇u. Furthermore, we give examples of functions
u that are only in BV (Ω)\W 1,1(Ω) but for which Γ(u) describes a smooth surface. These functions
can be approximated in L1(Ω) by smooth functions with uniformly bounded Willmore energy. In
particular, the estimates on diameter and area obtained in Theorem 2 are in this sense optimal,
and sequences with uniformly bounded Willmore energy may L1-converge to limit functions that
are not even in W 1,1(Ω).

In order to construct appropriate examples it is well known that log ◦ log is a good ingredient,
see for example [Fre73, HM86, Tor94], and that in particular H2(Ω) 6↪→ W 1,∞(Ω). But we even
can show a bit more: In spite of the non-homogeneous form of the Willmore energy, we may have
unbounded gradients and arbitrarily small Willmore energy at the same time.

Example 1 ([Tor94]). Let Ω = B := B1(0) be the unit disk. We consider u : B → R, which is
smooth in B \ {0}, satisfies homogeneous Dirichlet boundary conditions u = ∂νu = 0 on ∂B, and
u(x) = x1 log(| log(r)|) for r = |x| close to 0. Then, close to 0 we have

|∇u|(x) = |log(| log(r)|)|+O(1), |D2u|(x) = O(
1

r| log r|
)

and therefore u ∈ H2
0 (B) \W 1,∞(B).

For ε ↓ 0 we consider εu:

H[εu] = ε
∆u

(1 + ε2|∇u|2)1/2
− ε3∇u ·D2u · (∇u)T

(1 + ε2|∇u|2)3/2
.

Up to a factor 2, a majorising function for H[εu]2
√

1 + ε2|∇u|2 is given by

ε2 (∆u)2

(1 + ε2|∇u|2)1/2
+ ε6 |∇u|4 · |D2u|2

(1 + ε2|∇u|2)5/2
≤ ε2(∆u)2 + ε2 |D2u|2

(1 + ε2|∇u|2)1/2
≤ Cε2|D2u|2.

Hence
lim
ε↓0

W0(εu) = 0,

while at the same time
∀ε > 0 : sup

x∈B
ε|∇u(x)| = +∞.

This means also that even for the trivial Willmore surface (x, y) 7→ 0 we find a minimising sequence
with unbounded gradients.
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Next we give an example of a function u ∈ W 1,1(Ω) \ H2(Ω) such that Γ(u) is smooth as a
surface. In this example the singularity is purely analytical, introduced by the specific choice of
parametrisation as graph. This example shows further that for p > 1, no W 1,p–norm may be
estimated in terms of the Willmore energy.

Example 2. We choose an odd integer k ∈ 2N + 1 larger than or equal to 3. We consider a
nonincreasing function h ∈ C0([0, 2]) ∩ C∞([0, 1) ∪ (1, 2], [−1, 1]) with

h(r) =


1 for r ∈ [0, 1/2],

sgn(1− r)|1− r|1/k for r ∈ [3/4, 5/4],
−1 for r ∈ [3/2, 2],

As a curve r 7→ (r, h(r)) in R2, it is C∞–smooth, because close to 1, h is the inverse of the analytic
function h 7→ 1 − hk. On the other hand, as a graph, close to 1 the singularity of h′ is of order
|1 − r|−1+1/k and the singularity of h′′ of order |1 − r|−2+1/k. This means that h has a weak first
derivative but not a weak second derivative.

The same applies to the graph of the radially symmetric function u : B2(0)→ [−1, 1], u(x1, x2) =
h(|(x1, x2)|) and yields that u ∈W 1,1(B2(0))\H2(B2(0)). We even have that u 6∈W 1,k/(k−1)(B2(0)).
Observe that k

k−1 may become arbitrarily close to 1. However, since Γ(u) is compact and smooth
as a surface, its Willmore energy is well defined and finite.

Example 3. It is also possible to introduce in the previous example a vertical piece and to obtain
a surface that is not a graph, but that can be approximated by smooth graphs with uniformly
bounded Willmore energy: Cut the surface in Example 2 along the circle where u has infinite
slope and insert there a cylindrical part. This can certainly be L1-approximated by a sequence
(uk)k∈N ⊂M with uniformly bounded Willmore energy, but u ∈ BV (Ω) \W 1,1(Ω). Note that the
limit of the graph functions is a BV -function with a non-vanishing jump part and that at its jump
points also the absolutely continuous part ∇au of the gradient blows up.

In the next example a function u ∈ W 2,1(Ω) \ H2(Ω) is constructed such that its graph has
bounded Willmore energy. Here the singularity is independent of the parametrisation of Γ(u) and
therefore a “real” geometric singularity.

Example 4. We consider Ω = B := B1(0) and a function u ∈ C0
0 (Ω) ∩ C∞(Ω \ {0}) such that for

r = |x| close to 0:

u(x) = x1 (− log r)1/2,

ux1(x) = (− log r)1/2 − (x1)2

2r2
(− log r)−1/2 = (− log r)1/2 +O(1),

ux2(x) = −x
1 x2

2r2
(− log r)−1/2 = O(1),

ux1x1(x) = −3x1

2r2
(− log r)−1/2 +

(x1)3

r4
(− log r)−1/2 − (x1)3

4r4
(− log r)−3/2,

ux1x2(x) = − x2

2r2
(− log r)−1/2 +

(x1)2x2

r4
(− log r)−1/2 − (x1)2x2

4r4
(− log r)−3/2,

ux2x2(x) = − x1

2r2
(− log r)−1/2 +

x1(x2)2

r4
(− log r)−1/2 − x1(x2)2

4r4
(− log r)−3/2.

Concerning the asymptotic behaviour for r ↓ 0 we have in view of H[u] = ∆u
(1+|∇u|2)1/2

−∇u·D
2u·(∇u)T

(1+|∇u|2)3/2
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and |H| ≤ C |D
2u|
Q :

|∇u| = (− log r)1/2 +O(1), Q = (− log r)1/2 +O(1),

|D2u| = O

(
1

r
√

(− log r)

)
, |D2u|2 = O

(
1

r2| log r|

)
, (23)

H2Q ≤ C
|D2u|2

Q
= O

(
1

r2| log r|3/2

)
∈ L1(B1/2(0)). (24)

The second derivatives of u are locally integrable around 0 and so, exist as weak derivatives in the
whole domain B, such that we even have u ∈ W 2,1(B) ⊂ W 1,1(B). Thanks to (24) we see further
that W0(u) <∞. However, u 6∈ H2(B). To this end we show that ux1x1 6∈ L2(B). We observe that

x 7→ −(x1)3

4r4
(− log r)−3/2 ∈ L2(B1/2(0)),

while

x 7→
∣∣∣∣−3x1

2r2
(− log r)−1/2 +

(x1)3

r4
(− log r)−1/2

∣∣∣∣2 =
(x1)2

r4(− log r)

(
3

2
− (x1)2

r2

)2

≥ (x1)2

4r4(− log r)
.

The latter function is not in L1(B1/2(0)). Otherwise, one would have also that x 7→ (x2)2

4r4(− log r)
∈

L1(B1/2(0)) and so that x 7→ (x1)2+(x2)2

4r4(− log r)
= 1

4r2(− log r)
∈ L1(B1/2(0)), a contradiction. This shows

that (23) displays the precise asymptotic behaviour of D2u close to 0.
Finally, Γ(u) is not a C2–smooth surface because the curvature of the curve t 7→ (t, 0, u(t, 0)) is

given by

ux1x1(t, 0)

(1 + ux1(t, 0)2)3/2
=

2− 1
log |t|

−4t
√
− log |t|(− log |t| − 1

4 log |t|)
3/2

=
1

−4t(log |t|)2
·

2− 1
log |t|

(1 + 1
4(log |t|)2 )3/2

and becomes unbounded and so undefined for t ↓ 0.

4 Compactness and lower bounds for energy-bounded sequences

When we consider minimising sequences for the Willmore functional of graphs (subject to appro-
priate boundary conditions), or more generally sequences with uniformly bounded Willmore energy
Theorem 2 shows that BV ∩ L∞ is a natural space, where uniform bounds hold. In particular,
such sequences are precompact in L1. For this reason it is useful to study the behaviour of the
Willmore functional with respect to L1-convergence. However, as the examples of the previous
section indicate, limit points need not remain in H2(Ω) and even can have an L1-limit with jump
discontinuities, which results in vertical parts in the boundary of the corresponding sublevel-sets.
This leads to substantial difficulties in the analysis. Nevertheless, we derive below some additional
(mild) regularity properties and control the Willmore energy of the absolutely continuous part of
limit configurations.

To introduce an appropriate generalised formulation consider for u ∈ BV (Ω) the absolutely
continuous part ∇au ∈ L1(Ω) of the R2-valued measure ∇u, set Qa :=

√
1 + |∇au|2 and define the

absolutely continuous contribution to the Willmore energy as

W a
0 (u) :=

{
1
4

∫
Ω

(
∇ · ∇auQa

)2
Qa dx if ∇

au
Qa ∈ H(div,Ω) and the integral is finite,

∞ else,
(25)
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where the space H(div,Ω) of L2(Ω,R2)–vector fields with weak divergence in L2(Ω) was introduced
in Section 2.2.

In the next theorem we prove our main lower bound and compactness results. For energy-
bounded sequences in H2(Ω) that satisfy a suitable boundary condition we show that there exists
a L1-convergent subsequence. The limit belongs to BV (Ω) ∩ L∞(Ω), the absolutely continuous
contribution to the Willmore energy W a

0 is finite and obeys an estimate from above. In particular,
if the limit is already a W 1,1(Ω)-function the full Willmore functional is controlled. This also shows
the L1-lower semicontinuity of W0 in H2(Ω) (subject to prescribed boundary conditions).

Theorem 3. Let (uk)k∈N be a given sequence in H2(Ω) that satisfies uk−ϕ ∈ H1
0 (Ω) for all k ∈ N

and

lim inf
k→∞

W0(uk) < ∞. (26)

Then there exists a function u ∈ BV (Ω) ∩ L∞(Ω) with ∇
au
Qa ∈ H(div,Ω) such that after passing to

a subsequence
uk → u in L1(Ω) (k →∞) (27)

and
W a

0 (u) ≤ lim inf
k→∞

W0(uk). (28)

In particular, if u ∈ H2(Ω) then

W0(u) ≤ lim inf
k→∞

W0(uk). (29)

Moreover, in a sense made precise in Proposition 3, it is proved there that the trace of u on ∂Ω
satisfies H1-almost everywhere on {(Qa)−1 > 0} ∩ ∂Ω the boundary condition u = ϕ.

A related lower semicontinuity result in the context of integral currents was proved by Schätzle
[Sch09]. The area bound required there is in our case satisfied thanks to Theorem 2, and therefore
(29) could also be deduced (with some additional work) from [Sch09, Theorem 5.1]. However, we
prefer to give a self-consistent proof within the context of graphs, with the advantage that more
elementary arguments apply, compared to Schätzle’s approach.

Proof. There exists a subsequence, again denoted by (uk)k∈N, and a constant M ≥ 0 such that

W0(uk)→ lim inf
k→∞

W0(uk) and W0(uk) ≤M for all k ∈ N. (30)

Theorem 2 implies that

‖uk‖C0(Ω) ≤ C,
∫

Ω
Qk dx ≤ C uniformly in k ∈ N. (31)

By the compactness theorem in BV [AFP00, Theorem 3.23] we deduce that there exists a function
u ∈ BV (Ω) and a subsequence k →∞ such that (27) holds. By (31) we also have u ∈ L∞(Ω) and,
possibly after passing to another subsequence, we obtain

uk → u strongly in Lp(Ω) for any 1 ≤ p <∞, and a.e. in Ω. (32)

Furthermore, we deduce from (13), (17), and (30) that∫
Ω

|D2uk|2

Q5
k

dx ≤
∫

Ω
|Ak|2gQk dx ≤ C. (33)
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Here we made use of the boundary condition uk −ϕ ∈ H1
0 (Ω). We consider the bounded mappings

qk :=
1

Q
5/2
k

=
1

(1 + |∇uk|2)5/4
, vk := qk∇uk =

1

Q
5/2
k

∇uk =
1

(1 + |∇uk|2)5/4
∇uk.

We have

∂iqk = −5

2

2∑
`=1

∂`uk ∂i∂`uk
(1 + |∇uk|2)9/4

= O(
|D2uk|

(1 + |∇uk|2)7/4
) = O(

|D2uk|
Q

7/2
k

),

∂ivk = (∂iqk)∇uk + qk ∂i∇uk = O(
|D2uk|
Q

5/2
k

).

By (33) one has uniform boundedness of (qk)k∈N and (vk)k∈N in H1(Ω). Hence one finds q, v ∈
H1(Ω) such that, after passing to a subsequence,

qk ⇀ q, vk ⇀ v in H1(Ω), (34)

qk → q, vk → v in any Lp(Ω), 1 ≤ p <∞, and almost everywhere in Ω. (35)

From now on we fix precise representatives for qk, vk, k ∈ N and q, v. By [Eva90, Theorem 7,
Section 1.C] there exists a subsequence k → ∞ and for every m ∈ N an open set Em ⊂ Ω with
Cap3/2(Em) ≤ 1

m (the choice of 3
2 here and in the following is for convenience, any exponent in

(1, 2) instead of 3
2 works as well) such that

qk → q, vk → v uniformly in Ω \ Em. (36)

This yields for E = ∩m≥1Em that

qk → q, vk → v pointwise in Ω \ E. (37)

Since Cap3/2(E) ≤ Cap3/2(Em) for all m ∈ N by [EG92, Remark in Section 4.7.1] we conclude that

E has 3
2 -capacity zero and thus satisfies H1(E) = 0, see [EG92, Theorem 4.7.4].

Due to the uniform area bound (31), (37) and Fatou’s Lemma we deduce that

C ≥ lim inf
k→∞

∫
Ω
Qk dx ≥

∫
Ω

lim inf
k→∞

(qk)
−2/5 dx =

∫
Ω
q−2/5 dx. (38)

This shows that q−2/5 ∈ L1(Ω), in particular

q > 0 almost everywhere in Ω. (39)

We next claim that
vL2 = q∇u as Radon measures on Ω. (40)

To prove this, consider any η ∈ C∞0 (Ω,R2). Making use of (32) and so in particular of the C0-
bounds for uk we obtain:∫

Ω
η · v dx =

∫
Ω
η · vk dx+ o(1) =

∫
Ω
qkη · ∇uk dx+ o(1)

= −
∫

Ω
(div η) qk︸︷︷︸

→q in L2

uk︸︷︷︸
→u in L2

dx−
∫

Ω
(η · ∇qk)︸ ︷︷ ︸
O(1) in L2

· (uk − u)︸ ︷︷ ︸
→0 in L2

dx

−
∫

Ω
(ηu) · ∇qk︸︷︷︸

⇀∇q in L2

dx+ o(1)

= −
∫

Ω
(div η)qu dx−

∫
Ω

(η · ∇q)u dx+ o(1)

= −
∫

Ω
u∇ · (qη) dx+ o(1). (41)
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For the right-hand side we claim that

−
∫

Ω
u∇ ·

(
ηq
)
dx =

∫
Ω
ηq · d(∇u). (42)

In fact we can approximate ηq strongly in H1
0 (Ω) by a smooth sequence (w`)`∈N that is uniformly

bounded in C0(Ω). As above we deduce that there exists a set Ẽ ⊂ Ω with 3
2 -capacity zero and

thus (see above) with H1(Ẽ) = 0, such that w` → ηq everywhere in Ω \ Ẽ. Since |∇u|(Ẽ) = 0 by
[AFP00, Lemma 3.76] we have w` → ηq in |∇u|-almost every point and deduce from Lebesgue’s
dominated convergence theorem that

−
∫

Ω
u∇ ·

(
ηq
)
dx = − lim

`→∞

∫
Ω
u∇ · w` dx = lim

`→∞

∫
Ω
w` · d(∇u) =

∫
Ω
ηq · d(∇u),

which proves (42). From (41), (42) we deduce (40). We next show

v = q∇au almost everywhere in Ω, (43)

q∇su = 0 as Radon measures on Ω. (44)

To prove these properties we first obtain from [Sim83, Theorem 1.3.5] that for every k ∈ N there
exists a set Bk with |Bk| = 0 such that for any x0 ∈ {|∇au| ≤ k} \Bk

lim
r↓0

|Br(x0) ∩ {|∇au| > k}|
|Br(x0)|

= 0.

This implies that for almost every x0 ∈ Ω

lim
r↓0

|Br(x0) ∩ {|∇au| > |∇au|(x0) + 1}|
|Br(x0)|

= 0. (45)

Next we deduce from [Mag12, Corollary 5.11] and [EG92, Theorem 1.6.3, Corollary 1.7.1] that
almost all x0 ∈ Ω are Lebesgue points of both ∇au and q, and that ∇u is absolutely continuous in
almost every x0, i.e.

lim
r↓0
−
∫
Br(x0)

d(∇u) = ∇au(x0) ∈ R2, (46)

lim
r↓0

|∇su|(Br(x0))

|Br(x0)|
= 0, (47)

lim
r↓0
−
∫
Br(x0)

|∇au(x)−∇au(x0)| dx = 0, (48)

lim
r↓0
−
∫
Br(x0)

|q(x)− q(x0)| dx = 0. (49)

To prove (43) we therefore can restrict ourselves to x0 ∈ Ω such that (45)-(49) are satisfied. We
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then compute ∣∣∣−∫
Br(x0)

q d(∇u)− q(x0)−
∫
Br(x0)

d(∇u)
∣∣∣

≤−
∫
Br(x0)

|q(x)− q(x0)| d|∇u|(x)

≤−
∫
Br(x0)

|q(x)− q(x0)||∇au|(x) dx+−
∫
Br(x0)

d|∇su|

≤ (|∇au|(x0) + 1)−
∫
Br(x0)

|q(x)− q(x0)| dx

+
1

|Br(x0)|

∫
Br(x0)∩{|∇au|>|∇au|(x0)+1}

|∇au(x)−∇au(x0)| dx

+
1

|Br(x0)|

∫
Br(x0)∩{|∇au|>|∇au|(x0)+1}

|∇au(x0)| dx+−
∫
Br(x0)

d|∇su|

→ 0 for r ↓ 0

by (49),(48),(45) and (47). This shows (q∇u)a(x0) = q(x0)∇au(x0) and implies by (40) that almost
everywhere in Ω

v = (q∇u)a = q∇au

holds, which gives (43). We further deduce from (40) that

0 = (q∇u)s = q∇u− (q∇u)a = q∇u− q∇au = q∇su,

and therefore (44) holds.
Finally, we claim that there exists a set E1 of 3

2 -capacity zero such that ∇au has an approxi-
mately continuous representative on {q > 0} \ E1 that satisfies

∇au = q−1v in {q > 0} \ E1. (50)

In fact, by [EG92, Theorem 4.8.1] first there exists a set E1 of 3
2 -capacity zero such that Ω \ E1

only consists of Lebesgue points of both q and v. Therefore q, v are approximately continuous in
Ω \ E1 and by (43) and the properties of approximate continuity stated in Section 2.2 we see that
the approximately continuous representative of ∇au is well-defined in {q > 0} \ E1 and that (50)
holds.

Enlarging the set E from (37) by E1 we conclude that

∇uk =
1

qk
vk →

1

q
v = ∇au in {q > 0} \ E, (51)

Qk =
√

1 + |∇uk|2 →
√

1 + |∇au|2 = Qa in {q > 0} \ E, (52)

where Cap3/2(E) = 0. Using (39) we deduce that∫
Ω
Qa dx ≤ lim inf

k→∞

∫
Ω
Qk dx ≤ C.

We next discuss convergence properties of the mean curvatures Hk = div
(
∇uk
Qk

)
, k ∈ N. In view

of (30) we have that ∫
Ω
H2
k dx ≤

∫
Ω
H2
kQk dx ≤ 4M.
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Hence there exists Ha ∈ L2(Ω) such that after passing to a subsequence

Hk ⇀ Ha in L2(Ω).

By Lebesgue’s theorem we further deduce for any ζ ∈ C∞0 (Ω)∫
Ω
Haζ dx = lim

k→∞

∫
Ω
Hkζ dx = − lim

k→∞

∫
Ω

∇uk
Qk
· ∇ζ = −

∫
Ω

∇au
Qa
· ∇ζ dx,

where we have used that ∇ukQk
is uniformly bounded and converges pointwise a.e. to ∇

au
Qa by (39),

(51) and (52). This shows that ∇
au
Qa ∈ H(div,Ω) and that

div
∇au
Qa

= Ha weakly.

We next claim that even
Hk

√
Qk ⇀ Ha

√
Qa in L2(Ω). (53)

By (30) there exist f ∈ L2(Ω) such that after passing to a subsequence

Hk

√
Qk ⇀ f in L2(Ω).

Moreover, we have for any ζ ∈ C∞0 (Ω) that
(

1−
√
Qa√
Qk

)
ζ → 0 almost everywhere and so, by

Lebesgue’s theorem and
√
Qa√
Qk
≤
√
Qa, in L2(Ω). Hence∫

Ω
ζ
(
Hk

√
Qk −Ha

√
Qa
)
dx =

∫
Ω
Hk

√
Qk︸ ︷︷ ︸

O(1) in L2

(
1−
√
Qa√
Qk

)
ζ︸ ︷︷ ︸

→ 0 in L2

dx+

∫
Ω
ζ
√
Qa︸ ︷︷ ︸

∈L2

(Hk −Ha)︸ ︷︷ ︸
⇀ 0 in L2

dx

→ 0 for k →∞.

We conclude that for all ζ ∈ C∞0 (Ω)∫
Ω
ζ
(
f −Ha

√
Qa
)
dx = lim

k→∞

∫
Ω
ζ
(
Hk

√
Qk −Ha

√
Qa
)
dx = 0.

This proves that f = Ha
√
Qa and so finally (53).

The weak lower semicontinuity of the L2-norm eventually yields

W a
0 (u) =

1

4

∫
Ω

(Ha)2Qa dx ≤ 1

4
lim inf
k→∞

∫
Ω
H2
kQk dx = lim inf

k→∞
W0(uk)

as claimed.

We next show that in H2(Ω) subject to a suitable boundary condition we have continuity of
the total Gauß-curvature with respect to L1-convergence. Together with (18) and Theorem 3 this
implies lower semicontinuity as in (29) also for Wγ , γ ∈ R arbitrary.

Proposition 1. Suppose that Ω is C3–smooth and that ϕ ∈ C3(Ω).
Let uk, u ∈ H2(Ω) satisfy uk − ϕ ∈ H1

0 (Ω). Let Kk and K, resp., denote the Gauß curvatures
of their graphs. Then

uk → u in L1(Ω), sup
k∈N

W0(uk) < ∞

implies that ∫
Ω
KQdx = lim

k→∞

∫
Ω
KkQk dx. (54)
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Proof. We shall first collect a number of equivalent representations for the total curvature which
are convenient in different situations we have to deal with. We use the notation from Remark 1 and
assume the boundary ∂Ω to be parametrised by arclength, ϕ′(s) and ϕ′′(s) have to be understood
correspondingly. According to Remarks 1 and 2 and using an approximation argument we have∫

Ω
KQdx = 2πχ(Ω)−

∫
∂ Γ(u)

κgds = 2πχ(Ω)−
∫
∂Ω

−uν(s)ϕ′′(s) + κ(s)(1 + ϕ′(s)2)

(1 + ϕ′(s)2 + uν(s)2)1/2(1 + ϕ′(s)2)
ds

= 2πχ(Ω) +

∫
∂Ω

∇u · ν(s)

Q
· ϕ′′(s)

1 + ϕ′(s)2
ds−

∫
∂Ω

κ(s)

Q
ds. (55)

Thanks to our smoothness assumptions on the boundary data we find a function

α ∈ C1(Ω) : α|∂Ω =
ϕ′′

1 + ϕ′2
|∂Ω

and may proceed:∫
Ω
KQdx = 2πχ(Ω) +

∫
Ω
H(x)α(x) dx+

∫
Ω

∇u
Q
· ∇αdx−

∫
∂Ω

κ(s)

Q
ds. (56)

Now, consider a sequence uk → u in L1(Ω) as described in our assumptions. According to the
proof of Theorem 3 and since u ∈ H2(Ω) we have after passing to a suitable subsequence

Hk ⇀ H in L2(Ω),

∇uk → ∇u, Qk → Q a.e. in Ω,

Q
−5/2
k =

(
1 + |∇uk|2

)−5/4
⇀ Q−5/2 =

(
1 + |∇u|2

)−5/4
in H1(Ω), hence

Q
−5/2
k =

(
1 + |∇uk|2

)−5/4 → Q−5/2 =
(
1 + |∇u|2

)−5/4
in L2(∂Ω), hence

Q
−5/2
k =

(
1 + |∇uk|2

)−5/4 → Q−5/2 =
(
1 + |∇u|2

)−5/4 H1-a.e. on ∂Ω.

One should observe that thanks to uk, u ∈ H2(Ω), we also have ∇uk|∂Ω,∇u|∂Ω ∈ L2(∂Ω) and in
particular that |∇uk| <∞, |∇u| <∞ H1-a.e. on ∂Ω. We conclude that

Qk =
√

1 + |∇uk|2 → Q =
√

1 + |∇u|2 H1-a.e. on ∂Ω.

Making use of Lebesgue’s theorem and observing that |∇ukQk
| ≤ 1 and 1

Qk
≤ 1, this yields∫

Ω
KkQk dx = 2πχ(Ω) +

∫
Ω
Hk(x)α(x) dx+

∫
Ω

∇uk
Qk
· ∇αdx−

∫
∂Ω

κ(s)

Qk
ds

→ 2πχ(Ω) +

∫
Ω
H(x)α(x) dx+

∫
Ω

∇u
Q
· ∇αdx−

∫
∂Ω

κ(s)

Q
ds

=

∫
Ω
KQdx.

Since the previous reasoning can be carried out for any subsequence we have also convergence of
the whole sequence.

5 Minimising a relaxed Willmore functional in L1(Ω)

5.1 Dirichlet boundary conditions

In what follows we always assume Ω ⊂ R2 to be a bounded C2-smooth domain and fix a boundary
datum ϕ ∈ C2(Ω).
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To model Dirichlet boundary conditions (5), i.e.

u = ϕ and
∂u

∂ν
=
∂ϕ

∂ν
on ∂Ω,

we consider the set

M := {u ∈ H2(Ω) : (u− ϕ) ∈ H2
0 (Ω)}.

As mentioned before (see Remark 2) in this situation it suffices to consider the original Willmore
functional W0 since the total Gauß curvature is completely determined by the data.

Following Ambrosio & Masnou [AM03, Introduction & Section 4] (cf. also [BDMP93, BM04] and
references therein), we define the L1(Ω)–lower semicontinuous relaxation of the Willmore functional:

W : L1(Ω)→ [0,∞], W (u) := inf{lim inf
k→∞

W0(uk) :M3 uk → u in L1(Ω)}.

We remark that such approximating sequences always exist. However, their Willmore energy may
not be bounded and ∞ will certainly be attained by W for some u ∈ L1(Ω). From the area
and diameter bound we however obtain that any u ∈ L1(Ω) with W (u) < ∞ belongs at least to
BV (Ω) ∩ L∞(Ω).

One should observe that the Dirichlet boundary conditions are not encoded in the domain
of definition of W but implicitly included by restricting the class of approximating sequences to
functions that satisfy the boundary conditions in H2(Ω). We will prove below that W (u) < ∞
implies attainment of the Dirichlet boundary conditions in an appropriate weak sense.

We show first that W and W0 coinicide on M.

Theorem 4. For u ∈M one has W (u) = W0(u).

Proof. For all u ∈M the inequality W0(u) ≥W (u) is obvious by definition. To prove the opposite
inequality take any sequence (uk)k∈N ⊂ M with uk → u in L1(Ω) and lim infk→∞W0(uk) < ∞.
By Theorem 3 and since u ∈ H2(Ω) we deduce

W0(u) = W a
0 (u) ≤ lim inf

k→∞
W0(uk).

This yields W0(u) ≤W (u).

In the following proposition we discuss the implications of finiteness of W (u).

Proposition 2. Suppose that W (u) <∞ for some u ∈ L1(Ω). Then

u ∈ BV (Ω) ∩ L∞(Ω),
∇au
Qa
∈ H(div,Ω) and W a

0 (u) ≤W (u) (57)

holds. Moreover, both the trace of u and the absolutely continuous representative of ∇au are well-
defined H1-almost everywhere on ∂Ω and satisfy the Dirichlet boundary conditions (5) H1-almost
everywhere on ∂Ω.

Proof. Let u ∈ L1(Ω) satisfy W (u) < ∞. Then there exists a sequence (uk)k∈N ⊂ M such that
uk → u in L1(Ω) and W (u) = limk→∞W0(uk). From Theorem 3 we deduce (57).

It therefore remains to prove the attainment of the boundary data (5). Let us choose an
open bounded set Ω1 ⊂ R2 with smooth boundary such that Ω ⊂⊂ Ω1 and let us extend ϕ to
ϕ ∈ C2(Ω1). We also extend uk by ϕ|Ω1\Ω and obtain a sequence (uk)k in H2(Ω1) with uniformly
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bounded Willmore energy also with respect to the larger domain Ω1. Theorem 3 and the properties
(37), (44), (50), (51), (52) show that

qk → q, vk → v in Ω1 \ E, (58)

q∇su = 0 as Radon measures on Ω1, (59)

∇au = q−1v on {q > 0} \ E, (60)

∇uk → ∇au, Qk →
√

1 + |∇au|2 = Qa in {q > 0} \ E, (61)

where E ⊂ Ω1 has 3
2 -capacity zero and the approximately continuous representative of ∇au exists

everywhere in {q > 0} \ E. We recall that q > 0 a.e. in Ω1.
On ∂Ω we have, denoting by τ a unit tangent field on ∂Ω

Qk =
√

1 + |∇uk|2 =
√

1 + (ν · ∇uk)2 + (τ · ∇uk)2 =

√
1 + (

∂ϕ

∂ν
)2 + (

∂ϕ

∂τ
)2.

We deduce from (5) and (58) that

q > 0 on ∂Ω \ E, (62)

in particular H1-a.e. on ∂Ω. By [AFP00, Lemma 3.76] we have |∇su|(E) = 0 and by (59), (62)
this yields |∇su|(∂Ω) = 0.

By (61), (62) we deduce for the approximately continuous representative ∇au, which is well-
defined H1-a.e. on ∂Ω, that

∇au · ν = lim
k→∞

∇uk · ν = ∇ϕ · ν H1-almost everywhere on ∂Ω. (63)

This proves the attainment of the second Dirichlet boundary datum.

From now on we will work in the original domain Ω. We observe that gk := Q
−3/2
k and

ek := ukQ
−3/2
k satisfy

∂igk = −3

2

2∑
j=1

(∂juk) (∂j∂iuk)Q
−7/2
k ,

∂iek = (∂iuk)Q
−3/2
k − 3

2

2∑
j=1

uk(∂juk) (∂j∂iuk)Q
−7/2
k .

Using the diameter bound (31) and (33) we infer that the sequences (gk)k∈N and (ek)k∈N are
bounded in H1(Ω). After passing to suitable subsequences and possibly enlarging the set E, we
obtain in addition to (58)–(62) that

gk ⇀ g, ek ⇀ e in H1(Ω), (64)

gk → g, ek → e in Ω \ E, Cap3/2(E) = 0, (65)

and that g = (Qa)−3/2 and e = ug hold almost everywhere in Ω.
We next claim that H1-almost everywhere on ∂Ω the traces of e, g, u, which are well-defined by

[EG92, Theorem 5.3.1], satisfy e = ug. In fact, H1-almost all x0 ∈ ∂Ω are by [AFP00, Theorem
3.87] Lebesgue boundary points,

lim
r↓0
−
∫
Br(x0)∩Ω

|u(x)− u(x0)| dx = 0,

lim
r↓0
−
∫
Br(x0)∩Ω

|g(x)− g(x0)| dx = 0, lim
r↓0
−
∫
Br(x0)∩Ω

|e(x)− e(x0)| dx = 0.
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Using these properties we deduce

|e(x0)− u(x0)g(x0)|

=−
∫
Br(x0)∩Ω

|e(x0)− u(x0)g(x0)| dx

≤−
∫
Br(x0)∩Ω

(
|e(x0)− e(x)|+ |u(x0)(g(x0)− g(x))|+ |g(x)(u(x0)− u(x))|

)
dx

+−
∫
Br(x0)∩Ω

|e(x)− u(x)g(x)| dx

→ 0 (r ↓ 0),

since the last integral is zero and since u, g are uniformly bounded. This shows

ug = e H1-almost everywhere on ∂Ω. (66)

We further obtain from g = q3/5 in H1(Ω) that g = q3/5 holds H1-almost everywhere on ∂Ω for
the corresponding traces. Furthermore the sets of Lebesgue boundary points of q and Lebesgue
boundary points of g on ∂Ω are the same, since

−
∫
Br(x0)∩Ω

|q3/5 − q3/5(x0)| dx ≤ −
∫
Br(x0)∩Ω

|q − q(x0)|3/5 dx ≤ −
∫
Br(x0)∩Ω

|q − q(x0)| dx,

−
∫
Br(x0)∩Ω

|q − q(x0)| dx ≤ −
∫
Br(x0)∩Ω

|(q3/5)5/3 − (q(x0)3/5)5/3| dx ≤ −
∫
Br(x0)∩Ω

5

3
|q3/5 − q(x0)3/5| dx,

where we have used |q| ≤ 1. In particular, this implies

{g > 0} ∩ (∂Ω \B) = {q > 0} ∩ (∂Ω \B) for some B ⊂ ∂Ω with H1(B) = 0, (67)

and by (62)

g > 0 H1-almost everywhere on ∂Ω. (68)

By (64) and since uk satisfies the first Dirichlet boundary condition we find that in L2(∂Ω) and
H1-almost everywhere on ∂Ω

e = lim
k→∞

ek = lim
k→∞

ϕgk = ϕg

holds. This yields by (66), (68) that u = ϕ is satisfied H1-almost everywhere on ∂Ω. Together with
(63) this proves that the Dirichlet boundary data are attained.

Since by construction the lower semicontinuous relaxation is lower semicontinuous and by the
compactness property from Theorem 3 we obtain the existence of a minimiser for W , which is even
bounded and has finite surface area.

Theorem 5. There exists a function u ∈ BV (Ω) ∩ L∞(Ω) such that

∀v ∈ L1(Ω) : W (u) ≤W (v).

Proof. We consider
α := inf{W (v) : v ∈ L1(Ω)} < ∞

and a minimising sequence (uk)k∈N ⊂ L1(Ω), thus α = limk→∞W (uk). Thanks to the definition of
W we may achieve that even (uk)k∈N ⊂ M. According to Theorem 4 we have W (uk) = W0(uk),
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hence α = limk→∞W0(uk). Theorem 3 yields that for a subsequence uk → u in L1(Ω) and that
u ∈ BV (Ω) ∩ L∞(Ω). Due to the definition of W it follows that

W (u) ≤ lim
k→∞

W0(uk) = α.

The reverse inequality α ≤ W (u) follows from the definition of α as an infimum. To conclude we
have u ∈ BV (Ω) ∩ L∞(Ω) and it satisfies

W (u) = α = inf{W (v) : v ∈ BV (Ω)}.

The preceding arguments show that the infimum in the definition of W is in fact a minimum
and that

inf{W (v) : v ∈ L1(Ω)} = inf{W (v) : v ∈M} = inf{W0(v) : v ∈M}.

5.2 Navier boundary conditions

In what follows we always assume Ω ⊂ R2 to be a bounded C3-smooth domain and fix a boundary
datum ϕ ∈ C3(Ω).

In order to model the so called Navier boundary conditions

u = ϕ and H = 2γκN on ∂Ω

we consider the set

M̂ := {v ∈ H2(Ω) : v − ϕ ∈ H1
0 (Ω)}. (69)

As explained in the introduction one can formulate only the first Navier datum via a suitable subset
of H2(Ω) while the second datum is only obtained via a minimising property and, when compared
with the Dirichlet setting, the larger set of admissible testing functions.

In contrast to Dirichlet boundary conditions the total Gauß curvature is not determined just by
the Navier condition and is not constant on M̂. Thus, we now consider the generalised Willmore
functional Wγ from (1).

We define as above the L1(Ω)-lower semicontinuous relaxation of the Willmore functional:

Ŵγ : L1(Ω)→ [0,∞], Ŵγ(u) := inf{lim inf
k→∞

Wγ(uk) : M̂ 3 uk → u in L1(Ω)}.

We remark that again such approximating sequences always exist and that the set {Ŵγ <∞} will
be strictly smaller than L1(Ω).

Similarly to Theorem 4 we also obtain for the Navier boundary problem that the relaxation of
Wγ coincides with the original functional in M̂:

Theorem 6. For u ∈ M̂ one has Ŵγ(u) = Wγ(u).

Proof. The inequality Wγ(u) ≥ Ŵγ(u) follows immediately from the definition. To prove the oppo-

site inequality take any sequence (uk)k∈N ⊂ M̂ with uk → u in L1(Ω) and lim infk→∞Wγ(uk) <∞.
By Lemma 2 also (W0(uk))k∈N is bounded. Therefore all properties shown in Theorem 3 hold and
since u ∈ H2(Ω) we deduce that W0(u) ≤ lim infk→∞W0(uk). Since the total Gauß curvature is
continuous by Proposition 1 we therefore also obtain

Wγ(u) ≤ lim inf
k→∞

Wγ(uk),

which implies Wγ(u) ≤ Ŵγ(u).
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Remark 3. As in the Dirichlet case we would like to characterise properties of the subset of L1(Ω)

where Ŵγ is finite. The key difficulty here is to identify a suitable generalisation of the total Gauß
curvature for a sufficiently large subclass of functions u ∈ L1(Ω) \ H2(Ω). We consider here for
u ∈ BV (Ω) with ∇

au
Qa ∈ H(div,Ω) and (Qa)−1 ∈ BV (Ω)

EG(u) := 2πχ(Ω) +

∫
∂Ω

∇au
Qa
· ν ∂2

τϕ

1 + (∂τϕ)2
ds−

∫
∂Ω

κ

Qa
ds, (70)

where τ, κ denote a unit tangent field and the scalar curvature (taken nonnegative for convex parts)
of ∂Ω, respectively, see Remark 1.

Since ∇
au
Qa ∈ H(div,Ω) by [Tem01, Theorem I.1.2] we have ∇

au
Qa · ν ∈ H

−1/2(∂Ω) and the first

boundary integral, which more precisely has to be understood as a H−1/2(∂Ω)-H1/2(∂Ω) duality
product, is well-defined. Furthermore (Qa)−1 ∈ BV (Ω) ensures by [EG92, Theorem 5.3.1] that the
second boundary integral is well-defined. Note also that by [Tem01, Theorem I.1.2]

EG(u) = 2πχ(Ω) +

∫
Ω
Ha(x)α(x) dx+

∫
Ω

∇au
Qa
· ∇αdx−

∫
∂Ω

κ

Qa
ds, (71)

where Ha := ∇ · ∇auQa and where α ∈ C1(Ω) is any differentiable function satisfying α|∂Ω =
∂2τϕ

1+(∂τϕ)2
|∂Ω.

Our choice of the functional EG is motivated by Proposition 1 and (55). In fact, the latter
proposition shows that EG(u) coincides with

∫
ΩKQdx for u ∈ H2(Ω) with boundary values ϕ.

Moreover, for all C > 0 the functional EG is continuous with respect to L1-convergence in H2(Ω)∩
{W0 ≤ C}. We do not claim that our choice of EG is a reasonable representation for arbitrary

u ∈ L1(Ω) \H2(Ω). However, at least for minimising sequences in M̂ we expect that limit points
enjoy additional good properties such that their total Gauß curvature might already be described
by EG.

Using this modified total Gauß curvature we can define a generalised Willmore functional (or
rather the non-singular part of the latter) as

W a
γ (u) = W a

0 (u) + γEG(u)

for u ∈ BV (Ω) with ∇
au
Qa ∈ H(div,Ω) and (Qa)−1 ∈ BV (Ω).

The next proposition shows that for u ∈ L1(Ω) with Ŵγ(u) < ∞ the functional W a
γ is well-

defined and satisfies an upper estimate. In addition, at the non-vertical part of the boundary the
first Navier boundary datum is attained.

Proposition 3. Consider u ∈ L1(Ω) with Ŵγ(u) < ∞. Then u ∈ BV (Ω) ∩ L∞(Ω), ∇
au
Qa ∈

H(div,Ω) and (Qa)−1 ∈ BV (Ω) holds and we have

W a
γ (u) ≤ Ŵγ(u). (72)

Moreover, H1-almost everywhere on {(Qa)−1 > 0} ∩ ∂Ω the trace of u on ∂Ω satisfies the first
Navier boundary condition u = ϕ.

Proof. There exists a sequence (uk)k∈N ⊂ M̂ such that

uk → u in L1(Ω), Ŵγ(u) = lim
k→∞

Wγ(uk).
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Thanks to Lemma 2 and since (Wγ(uk))k∈N is bounded also (W0(uk))k∈N is bounded. So, most argu-
ments of the proofs of Theorem 3 and Proposition 2 carry over, but the convergence of

∫
ΩKkQk dx

and the attainment of the boundary condition need to be carefully discussed.
As in the proofs of Theorem 3 and Proposition 2 we obtain, after passing to a subsequence and

recalling gk = Q
−3/2
k , ek = ukgk,

gk ⇀ g, ek ⇀ e in H1(Ω),

gk → g, ek → e in Ω \ E, Cap3/2(E) = 0, (73)

∇uk → ∇au a.e. in Ω, (74)

Hk ⇀ Ha = ∇ · ∇
au

Qa
in L2(Ω), (75)

and that g = (Qa)−3/2 and e = ug holds almost everywhere in Ω. Moreover Qa ∈ L1(Ω), ∇
au
Qa ∈

H(div,Ω) and

W a
0 (u) ≤ lim inf

k→∞
W0(uk). (76)

Since 0 < (Qk)
−1 ≤ 1 for all k ∈ N and further

∇(Qk)
−1 = −Q−3

k D2uk∇uk,
∫

Ω
|∇(Qk)

−1| ≤
(∫

Ω
Q−5
k |D

2uk|2
) 1

2
(∫

Ω
Qk

) 1
2
,

(Qk)
−1 is uniformly bounded in W 1,1(Ω). By the BV compactness theorem and since (Qk)

−1 →
(Qa)−1 in L1(Ω) we deduce that (Qa)−1 ∈ BV (Ω).

We next show the convergence of the total Gauß curvature. Here it is convenient to fix any
α ∈ C1(Ω) as above and to use the representation (71). By (73) we deduce that gk → g in L2(∂Ω)
and, possibly passing to a subsequence, H1-almost everywhere on ∂Ω. Since gk, g are bounded we
deduce that we also have

(Qk)
−1 = g

2/3
k → g2/3 = (Qa)−1

strongly in L1(∂Ω), where in the last equality we have used that g2/3 = (Qa)−1 in BV (Ω) and
therefore in L1(∂Ω). Furthermore, from (74) and since |∇ukQk

| ≤ 1 we obtain

∇uk
Qk

→ ∇au
Qa

in L1(Ω).

Equation (56), the convergence properties just derived, and (75) yield for k →∞

EG(uk) = 2πχ(Ω) +

∫
Ω
Hk(x)α(x) dx+

∫
Ω

∇uk
Qk
· ∇αdx−

∫
∂Ω

κ

Qk
ds

→ 2πχ(Ω) +

∫
Ω
Ha(x)α(x) dx+

∫
Ω

∇au
Qa
· ∇αdx−

∫
∂Ω

κ

Qa
ds = EG(u).

Recalling (76) we conclude that (72) holds.
Following the proof of (66) in Proposition 2 we obtain H1-almost everywhere e = ug on ∂Ω.

Moreover we deduce from (Qa)−1 = g2/3 similarly as in (67) that

{g > 0} ∩ (∂Ω \B) = {(Qa)−1 > 0} ∩ (∂Ω \B) for some B ⊂ ∂Ω with H1(B) = 0,

and further by the first Navier boundary condition that e = limk→∞ ek = ϕg holds H1-almost
everywhere on ∂Ω. This implies that u = ϕ is satisfied H1-almost everywhere on the set ∂Ω ∩
{(Qa)−1 > 0}.
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Remark 4. As before we obtain as a corrollary the existence of a minimiser for Ŵ , which is even
bounded and has finite surface area: There exists a function u ∈ BV (Ω) ∩ L∞(Ω) such that

∀v ∈ L1(Ω) : Ŵγ(u) ≤ Ŵγ(v).

The proof follows closely that of Theorem 5. To obtain the respective compactness property for the
generalised Willmore functional Wγ we in addition use that by Lemma 2 a bound on Wγ implies
a bound for W0. We expect that the first Navier boundary data are not necessarily attained in
a pointwise sense if vertical parts of the graph are present in the limit. Such a deviation will be
charged by contributions to the energy from the singular part. In particular in such cases we expect
that W a

γ (u) < Ŵγ(u).

Remark 5. Most of the results for the functional Wγ also apply to more general Canham–Helfrich-
type functionals [Hel73, Can70]

Wα,H0,γ(u) = α

∫
Ω

√
1 + |∇u|2 dx+

1

4

∫
Ω

(H −H0)2
√

1 + |∇u|2 dx− γ
∫

Ω
K
√

1 + |∇u|2 dx.

The physical meaningful range of parameter values is described by the conditions α ≥ 0, 0 ≤ γ ≤ 1,
γH2

0 ≤ 4α(1−γ), see [Hel73, Nit93]. These restrictions ensure pointwise nonnegativity of the whole
integrand α+ 1

4(H −H0)2 − γK.
Here we can consider arbitrary fixed α > 0 and H0, γ. For given ϕ ∈ C2(Ω) we prescribe the

boundary condition u|∂Ω = ϕ|∂Ω. Then the term γ
∫

ΩK
√

1 + |∇u|2 dx is uniformly bounded by
the data, see the proof of Lemma 2. Hence, bounds for Wα,γ,H0 immediately yield bounds for the
area and so for W0. Diameter bounds follow directly by Theorem 1.

In order to extend Proposition 3 one observes that the area term is L1-lower semicontinuous.
Moreover, the proof of Theorem 3 yields that (

√
Qk)k∈N is bounded in L2(Ω) and

√
Qk →

√
Qa

holds almost everywhere in Ω. Vitali’s theorem implies that
√
Qk ⇀

√
Qa in L2(Ω). We conclude

further from (53) that (Hk−H0)
√
Qk ⇀ (Ha−H0)

√
Qa in L2(Ω). Hence the proof of Proposition 3

can be extended to the Helfrich case.
If we assume only α ≥ 0, but further that α ≥ εH2

0 for some ε > 0, then bounds for Wα,γ,H0

imply bounds for W0 that are uniform in α. Diameter and area bounds follow by Theorem 2. The
corresponding results to Proposition 3 can the be proved as indicated above.
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