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1 Nonresonant dimensions

Let Ω be an open bounded set inRn (n ≥ 3); we consider the problem of the existence of nontrivial
solutions of the following equation −∆u = λu+ |u|2∗−2u in Ω

u = 0 on∂Ω
(1)

where2∗ = 2n
n−2

is the critical Sobolev exponent andλ > 0. This equation has been widely studied
in recent years but it still has several interesting open problems; in particular, a somehow surprising
phenomenon is that the existence of nontrivial solutions of (1) depends not only onλ but on the
couple(n, λ). Our starting point is the celebrated paper by Brezis-Nirenberg [7] where it is shown
that:
- if n = 3, there exist constantsλ1 > λ∗(Ω) ≥ λ∗∗(Ω) > 0 (presumably the same) such that (1)
admits a positive solution ifλ ∈ (λ∗, λ1) and not ifλ ∈ (0, λ∗∗]; hereλ1 is the first eigenvalue of
−∆ with Dirichlet conditions.
- if n ≥ 4, then (1) admits a positive solution if and only ifλ ∈ (0, λ1).
It is well-known [17] that ifΩ = B (the unit ball) positive solutions of (1) are radially symmetric;
in this case, we haveλ∗ = λ∗∗ = λ1/4, see [7]. Subsequently, Capozzi-Fortunato-Palmieri [8] (see
also [1, 16, 21]) considered the caseλ ≥ λ1 and proved the following results:
- if n = 4, λ > 0 andλ 6∈ σ(−∆) (the spectrum of−∆), then (1) admits a nontrivial solution.
- if n ≥ 5, for all λ > 0 (1) admits a nontrivial solution.
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The result stated in [8] does not make the distinction between the two casesn = 4 andn ≥ 5 but,
as pointed out in [18, p.79], a careful analysis of the proof shows that it works only in the above
stated situations. Up to now this problem is still open: it is not known if (1) admits nontrivial
solutions whenn = 4 andλ ∈ σ(−∆); some partial (positive) results are found by Fortunato-
Jannelli [13] in domains having some symmetries. Therefore, it seems natural to ask whether there
exists indeed a difference between the dimensionsn = 4 andn ≥ 5 or if it is only a technical
problem due to the particular proofs suggested in [8, 16, 21]: in agreement with [14], we name
n = 4 nonresonant dimension.
These phenomena involving the space dimension also appear for more general operators as in the
following polyharmonic problem (−∆)Ku = λu+ |u|K∗−2u in Ω

Dku = 0 on∂Ω k = 0, ..., K − 1
(2)

whereK ∈ N (N is the set of strictly positive integers),Ω ⊂ Rn (n ≥ 2K + 1) is a bounded open
set andK∗ = 2n

n−2K
is the critical Sobolev exponent; another way to generalize (1) is to consider

the quasilinear problem −∆pu = λ|u|p−2u+ |u|p∗−2u in Ω

u = 0 on∂Ω
(3)

where∆pu =div(|∇u|p−2∇u), n > p > 1 andp∗ = np
n−p . A conjecture by Pucci-Serrin [20] states

that the nonexistence result for radially symmetric solutions of (1) whenΩ = B in dimension
n = 3 “bifurcates” for (2) to the dimensionsn = 2K + 1, ..., 4K − 1: Pucci-Serrin call these
dimensionscritical. This conjecture is “almost” completely proved [10, 18, 19, 20]. It is also
known that the critical dimensions for thep-Laplacian aren ∈ (p, p2), see [11]. Recently, we
have shown [15] that the critical dimensions are the dimensions for which a “linear” remainder
term may be added in a Sobolev inequality with optimal constant for the spacesHK

0 ; for a similar
result inW 1,p

0 , see [12]. On the other hand, it has been found independently in [14, 18] that the
nonresonant dimensions for the polyharmonic operator aren ∈ [4K, (2 + 2

√
2)K], while for the

p-Laplacian they aren ∈ [p2,
p2+p
√
p2+4

2
], see [2].

Let us come back to the simpler equation (1) for which the existence of nontrivial solutions seems
to be different in the three casesn = 3, n = 4 andn ≥ 5. Our purpose in this note is to study the
nonresonant dimensions, to define them in a precise way and to give an interpretation of the limit
valuen = 2 + 2

√
2.

Let Ω = B be the unit ball inRn; we consider radially symmetric solutions of (1), namely solutions
of the ODE problem

u′′ +
n− 1

r
u′ + λu+ |u|2∗−2u = 0 r ∈ (0, 1) , u′(0) = u(1) = 0(4)

for which n may be considered as a real parameter; for allj ∈ N let µj denote the eigenvalue
of −∆ in B corresponding to a radial eigenfunction havingj − 1 nodes in[0, 1) and letujλ be a
solution of (4) havingj nodes. Thanks to Atkinson-Brezis-Peletier [3] we know that ifn ∈ [4, 6)
then

‖ujλ‖∞ →∞ =⇒ λ→ µj ∀j ∈ N .(5)
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We are here interested in finding out if the convergence in (5) occurs from above or from below: it
turns out thatn = 2 + 2

√
2 plays a crucial role. More precisely, we prove

THEOREM 1: For all j ∈ N let ujλ denote a solution of (4) havingj nodes; then,
(i) if 4 ≤ n ≤ 2 + 2

√
2, then ‖u1

λ‖∞ →∞ =⇒ λ→ µ+
1

(ii) if 2 + 2
√

2 < n < 6, then ‖ujλ‖∞ →∞ =⇒ λ→ µ−j ∀j ∈ N.

We can now define more rigorously nonresonant dimensions:

DEFINITION 2: We say that a dimensionn (n ∈ R, n > 2) is anonresonant dimensionfor −∆
if there existsm ∈ N such that ‖umλ ‖∞ →∞ =⇒ λ→ µ+

m.

Therefore, thanks to the results in [3, 4, 9], by Theorem 1 we have:

COROLLARY 3: The nonresonant dimensions for−∆ are 4 ≤ n ≤ 2 + 2
√

2.

We conjecture that (4) admits no nontrivial solution whenλ = λ1 and4 ≤ n ≤ 2 + 2
√

2.

2 Proof of Theorem 1

As we are basing our analysis on the paper by Atkinson-Brezis-Peletier [3], we adopt their notation:
in the sequel, the letter L after the reference number to an equation means that we refer to the
reference number in [3].
By means of scaling and of Emden-Fowler inversiony(t) := λ(2−n)/4u

(
(n− 2)λ−1/2 t1/(2−n)

)
,

(4) becomes

y′′ + t−k(1 + |y|2∗−2)y = 0 t ∈ (0,∞) , y(t)→ γ ast→∞

wherek = 2n−1
n−2

and the “shooting level”γ may be assumed to be positive. In [3] it is shown that
y has infinitely many zerosT1(γ) > T2(γ) > ..., and that

if 4 ≤ n < 6 then lim
γ→∞

T1(γ) =∞ and lim
γ→∞

Tj(γ) = τj−1 ∀j ≥ 2 .(6)

Hereτ1 > τ2 > ... are the zeros of the function

α(t) = (k − 2)1/(k−2)Γ

(
k − 1

k − 2

)√
tJ1/(k−2)

(
2

(k − 2)t(k−2)/2

)
whereJ1/(k−2) is the first kind (regular) Bessel function of order1/(k − 2); note thatα solves the
equationz′′ + t−kz = 0. Define the functionb as in (4.6)L, then (4.12)L entails

b(τ1) = b(T1) +

∫ T1

τ1

|y(s)|2k−4y(s)α(s)

sk
ds .(7)

By (4.6)L we getb(τ1) = −y(τ1)α′(τ1); hence, sinceα′(τ1) > 0, we have forγ large by means of
(6) the following implications forλ corresponding tou1

λ

b(τ1) > 0⇒ y(τ1) < 0⇒ τ1 > T2 ⇒ λ > µ1 b(τ1) < 0⇒ ...⇒ λ < µ1 .(8)
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The casen < 2 + 2
√

2 (k > 2 +
√

2/2). By (8), in this case we have to show that forγ large
enough we haveb(τ1) > 0. By (3.2)L and (3.4)L-(3.5)L we have for largeγ∣∣∣∣∫ T1

τ1

|y(s)|2k−4y(s)α(s)

sk
ds

∣∣∣∣ ≤ C1

(
T1(γ)

γ

)2k−3

≤ C2

γ4k2−16k+15
if k < 3∣∣∣∣∫ T1

τ1

|y(s)|2y(s)α(s)

s3
ds

∣∣∣∣ ≤ C3

(
T1(γ)

γ

)3

≤ C4

(
log γ

γ

)3

if k = 3;

on the other hand, (4.10)L states thatb(T1) > C5γ
−1 for largeγ; since4k2 − 16k + 15 > 1 (for

2 +
√

2/2 < k < 3) andγ−3 log3 γ � γ−1 asγ → ∞, these two asymptotics inserted into (7)
yield b(τ1) > 0 for γ large enough.
The casen = 2 + 2

√
2 (k = 2 +

√
2/2). By (4.10)L, we haveb(T1(γ)) = (1+

√
2

2
)
√

2γ−1 +o(γ−1)
asγ →∞. First, using (3.2)L, (3.5)L and proceeding as in the case before, for anyε > 0 one finds
T0 > τ1 such thatT0 < T1 for largeγ and∣∣∣∣∫ T1

τ1

|y(s)|2k−4y(s)α(s)

sk
ds

∣∣∣∣ ≤ ∫ T0

τ1

|y(s)|2k−3α(s)

sk
ds+

ε

γ
.

Second, on the fixed interval[τ1, T0], (4.13a)L may be applied to obtain∫ T0

τ1

|y(s)|2k−3α(s)

sk
ds

≤ 1

γ


((

1 +

√
2

2

)
Γ
(√

2− 1
)

Γ
(√

2 + 1
)

Γ
(
2
√

2
) )1+

√
2

·
∫ ∞
τ1

α(s)2+
√

2

s2+(
√

2/2)
ds+ o(1)


=

(
1 +

√
2

2

)√2

· 1

γ
·


(

1 +

√
2

2

)(
Γ
(√

2− 1
)

Γ
(√

2 + 1
)

Γ
(
2
√

2
) )1+

√
2

· 1
√

2
2
√

2−1

·Γ
(√

2 + 1
)2+

√
2

·
∫ j√2

0

t−1J√2(t)2+
√

2 dt+ o(1)

}

≤

(
1 +

√
2

2

)√2

· 1

γ
· (0.500041 . . .+ o(1)) ≤ 0.6

(
1 +

√
2

2

)√2

· 1

γ

for γ large enough; herej√2 denotes the first positive zero ofJ√2. In the last step the numerical
calculation was carried out with help of MAPLE. By an appropriate choice ofε, collecting terms
yieldsb(τ1) > 0 for γ large also in this marginal case.
The casen > 2 + 2

√
2 (k < 2 +

√
2/2). In order to prove (ii) we need to show thatτj < Tj+1 for

all j ∈ N and for all sufficiently largeγ; to this end, by Sturm separation Theorem it suffices to
prove thatτ1 < T2 for γ large enough. By contradiction, assume thatτ1 ≥ T2: theny(s) ≤ 0 (i.e.
y(s) = −|y(s)|) for all s ∈ [τ1, T1] and for largeγ by (4.13a)L we have

−
∫ T1

τ1

|y(s)|2k−3α(s)

sk
ds ≤ − C1

γ4k2−16k+15

∫ 2τ1

τ1

[α(s)]2k−2

sk
ds ≤ − C2

γ4k2−16k+15
:

since4k2 − 16k + 15 < 1, by (4.10)L and (7) this yieldsb(τ1) < 0 for largeγ, contradiction; by
(8) this completes the proof.
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