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Boundedness for Large |z| of Suitable Weak
Solutions of the Navier-Stokes Equations with
Prescribed Velocity at Infinity

Hans-Christoph Grunau

Abstract

We consider time-dependent perturbations u of R. Finn’s stationary
PR-solution of the Navier-Stokes equations, which converges to a constant
vector ve, as |z| — co.

For a given time interval [§,7], we find a radius K such that u is
essentially bounded on [6, 7] x {]z| > K}.

AMS-Classification (1990): 35Q30, 35D10.

1 Introduction

We want to investigate the boundedness for large |z| of weak solutions v of the
Navier-Stokes system

vi—Av+ (v-V)v+ Vp = f,

dive = 0in [0,7] x €,
(1) v(0,z) = vo(z) for z € Q,
v(t,z) =0 for (¢,z) € [0,T] x 09,
v(t, ) — v as || — oo,t € [0, T],

where Q is a smooth exterior domain in R3, div f = 0, div vy = 0, 1|0 = 0,
Vo — Voo at infinity, ve, € R3 is the prescribed constant velocity at infinity.

Most of the previous work concentrates on the case v, = 0, where suitable
weak solutions of (1) are known to become small in some average sense and
bounded for large |z|-t, if f — 0 (¢, |z] — oc), see [CKN], [MP], [SW]. This
means that singularities may occur only in a compact subset of [0,00) x Q. Some
important results are also surveyed in [W].

If voo # 0 it is not apparent, whether a global weak solution to (1) will
converge to a stationary solution as ¢t — oco. This seems to happen in general



only under some smallness assumptions on a corresponding stationary solution,
see T. Miyakawa and H. Sohr [MS] and K. Masuda [MK].
In this note we will only assume the existence of a “reasonable” stationary

solution (102), we will not require any additional smallness. For the existence of 0
we refer to R. Finn’s work [Fi], cf. also [Fa]. We construct a solution v to (1) as

perturbation u of Y.

As it may be expected, that u in general does not calm down, we consider an
arbitrary bounded time interval [0, 7]. We show that the boundedness criterion
of L. Caffarelli, R. Kohn and L. Nirenberg [CKN], Proposition 1 can be carried
over to weak solutions of a “perturbed Navier-Stokes system”. For every 6 €
(0,T) we construct aradius K = K(6,T) such that u (and hence v) is essentially
bounded on [6,T] x (2N {|z| > K}).

The problem is left open whether K may be chosen independent of T'.

Acknowledgement. I would like to thank Prof. W. von Wahl for drawing
my attention to this problem.

2 Preliminaries. Results

Most of the notation is adopted from [W]. In particular Hy () denotes the
completion of {v € C§°(Q)% :  divv = 0} with respect to the L¢-norm, in a
weak sense H,(f2) is the set of all divergence free Li-vector-functions with zero
normal component on 9).

H®4(Q), HY9(Q) are the usual Sobolev spaces of functions with weak deriva-
tives in L? up to order k.

(u-V)v:= (u-(Vor),u-(Vog),u-(Vus)), “” denotes the scalar product in
RY, (u,) = [u(€) - v(e) de.

. . . (©) . .
We start with a classical solution ((5), P) of the stationary Navier-Stokes
problem

~A Y+ v) Y 4v P=o,
(2) div ¥=0in Q,

Y o =0, % (z) — voo uniformly as |z| — co.

We require 9 to satisfy

My := sup |z| - | Y (2) — v <20, Ve L2,
T€N

(3) 1Y @ <M, VY (@) <M forall zeQ

with some constants Mg, My, M.



. . . (VN . .
The existence of such a stationary solution ((1[}0, P) is ensured in R. Finn’s
article [Fi], if |v,| is not too large.

We construct a weak solution of (1) as perturbation of ¥, i.e. we look for

u:=v— 0 as a weak solution of
u — Au+ (u- V) Y +((10)) Nyu+ (u-Viu+ Vp = f,
divu =01in [0,7] x Q,
(4) u(0,2) = ug(z) for z € Q,
u(t,z) =0 for (¢,z) € [0,7] x 99,
u(t,z) — 0 as |z| — co,t € [0, T].

Combining the methods of [W] and [MS] §5, where the additional lower order
terms in (4) are treated, the existence of a weak solution to (4) with localized
energy inequality can easily be shown. But in this inequality there are terms

. L@
mvolving v which cause some trouble.

Therefore we consider w(t,z) := e Mu(t,z), n(t,z) == e~ Mp(t, z),
g(t,z) == e Mf(t,z), A > 0. (u,p) solves (4) if and only if (w, 7) solves

wy — Aw+ dw + (w - V) Y

+((8) Vw4 eM(w - V)w+ Vr =g,
(5) divw =01in [0,7] x Q,
w(0,2) = ug(z) for x € Q,
w(t,z) =0 for (t,z) € [0,7] x 6%,
w(t, z) — 0 as |z| — oo, t € [0, 7).

For this problem we have the following existence theorem:

Theorem 1 Let T > 0, ug € Hy(Q) N Hoys(9),
9 € L'(0,T), Hy(Q) N Hos(2)) N L2 ((0,T), Hy N Hgs) N L%((0,T), Hy).
Then we have:

(i) There is a weak solution w on [0,T] x Q to (5) in the following sense:
w: [0,T] — Hy(Q) is weakly continuous,
w € L2((0,T), Ha(R)) N L2((0,T), Hy*(2)?),

—/OT(w,<b,)dr+/0T(Vw,V<I>)dr+A/OT(MMT
T T
+/0 (w- V) (13),<I>)dr+/0 (Y V)w, &) dr

T T
—/ e*f((wiwj)i,j,vq>)drz/ (g, ) dr + (ug, B(0))
0 0



for every ®(t,z) = p(x)h(t),p € H>2(Q)® N Hé’z(Q):’,
divp =0, h € C([0,T],R), h(T) = 0.
(i1) w has the following additional properties:

we () L32((e, 1), H*I3(Q)% 0 Hy*/%(Q)2 1 Ho ()
e:0<e<T
N L, T), H¥¥14(Q)* 0 Hy ™ 4(Q)° N Hs 4(92)),
we € () L¥%((e,T), L13(Q)*) N L¥4((e,T), LY/ (2)%).
e:0<e<T
There is a mapping 7 : (0,T) — L¥/7(Q) N L5(Q) with
vre () L ((e,T), L(Q)*) N L*2((e,T), LY/3(9)),
€:0<e<LT
e ) L3 ((e,T), L¥7(Q)) N L¥%((e, T), L95(0)),
e:0<e<T

such that the Navier-Stokes type system (5) is fulfilled a.e. in (0,7) x Q.
(it)) If X = My + %Mlz( Jor M; see (3) ), we have the following localized

energy inequality:

¢
/ O(t)|w(t)|? de +/ / ®|Vw|? dé dr
Q s JQ
t
(6) < [o@uepa+2 [ [ (@) wdr
Q s Q
!
+/ /{Iw|2(<l>t + A®) + VO - [e* |w]*w + 27w]} dE dr
K] o
for all ® € C3([0,T) x Q), @ >0, for allt >0 and almost all s € (0,¢].
Moreover for allt > 0, s = 0, almost all s € (0,t] we have the generalized

energy inequality

t t
() eI +2 / V() By 4 < Moo + 2 / (g,w) dr.

Proof. Imitating [W], chapter 11.4, IL5 and [MS] §5 we readily obtain part
(1),(ii) and the following version of the localized energy inequality (6):

/né(t)lw(t)lzdf+2/St/ﬂ<1>l\7w|2dsdr
® < [ sz [ [ @) v

—Q/St/n(q)w) ((w- V) D)+ (¥ T)w)] dfdr—‘z,\/st/ﬂdﬂwﬁd{dr

t
+/ / {{w]*(® + A®) + V& - [’ |w|*w + 2rw)} dé dr.
s JQ



Using the Cauchy-Schwarz inequality, ® > 0, the bounds for % and v @ we
conclude

¢ :
| — 2/3 L(@w) ((w- V) (5)) dédr| < 2M2/3 /QCI>|w|2 dé dr,

t (0)
1—2/3 /Q(éw)-((v V)w) de dr]
<20ty [ [ (VBlul)- (VB |Vul) dedr

<M /t/(M1<1>| 2 + ! ®|Vw|?) dé d
—Qlw — T
=T Ja 2 2M,

1 t
:/ /<I>|Vw|2d£dr + Mf/ /(I>|w|2d§dr.
s 9 s 2

These two estimates are inserted into (8), f; Jo ®[Vw|? d€ dr is subtracted
on both sides. Taking notice of 2M5 + M{ — 2X = 0 we arrive at (6).
To obtain (7) we can argue slightly differently: Integration by parts yields

/ /(‘Dw) . (((ﬁ) V)w) dé dr
3 194
= -——/ /ﬂ[(@w) . (((8) v)w) + |w|2((?3) Vq))] d{ dr.

We simply mimic chapter IL.5 of [W] (@ approximates the constant 1 ) and
deduce the generalized energy inequality (7). n

Now we can give our partial regularity result for w, note that « and w differ
on bounded time intervals only by a bounded factor.

Theorem 2 Let T, ug,g,w, 7, be as described in Theorem 1. Assume addi-
tionally g € yeeor LU((,T), LY(0)3) for some q > 3 Let§ €(0,T).

Then there erist numbers K = K(8,T, w, 7, My, M, Ms) and
L = L(6,T, My, M) such that

lw(t,z)| < L
for almost all (t,2) € [6,T] x Q with |z] > K.

The proof bases upon a generalization of a boundedness criterion of L. Caf-
farelli, R. Kohn and L. Nirenberg, see [CKN] Proposition 1, which we will de-
velop in the following section.



3 A boundedness criterion

Throughout this chapter let the assumptions of Theorem 2 be satisfied. We
remark, that all the integrability properties needed below can be derived by
means of interpolation inequalities, see the proof of Theorem 2.

Parabolic cylinders will play an important role in the following:

Qr(t,z) ={(r,) ERxR*: t —R*< 1<t |a—&| <R}

Lemma Let Qg(ty,zy) C [S,T] x Q for some § > 0.
There are constants £1 = ¢1(My, My, T), €5 = go(My, My, T, q),
L = L(My, My, T), such that the validity of

(9) R72[ [ g nttone) (10 + Jw] - |x]) dé dr
+R_13/4 ttOO_RZ(fiE_.‘TU[<R |7r|d£)5/4 dT S 61)

(10) RSq—Sf an(to,to) |g|q dfdr < ¢,

(11) |V (2) = veo| < 1R for |o— x| < R

implies

almost everywhere in Qgy2(to, xo).
Proof. We can use some parts of the proof of Proposition 1 of [CKN] with
only minor changes, these parts will not be repeated here but only refered to.
Step 1. We shift (¢5,20) to the origin (0,0) and scale the cylinder Qg:
For (t,2) € Q1(0,0), let

(13) W(t,x) = Rw(to + R*, z0+ Rz), o(x) = R YW (zo + Rz),
7(t, ) == R?n(to + R*,x0 + Rz), §(t,z) := R3g(to + R*t, 20 + Rz).

Then (@, 7) is a weak solution of the differential equations

(14) @ — A+ Ao+ (0 - V)3 + (- V)i + eMero(i - V)G + Vi = g,
divw = dive = 0,

where A = AR?. Moreover for every ® € CZ((—1,0] x B1(0)),® > 0, and every
t € (—1,0] the localized energy inequality holds:

1
/ (1, €) Ja(t, )] dé + / / (. €) [Vii(r, &) de dr
B;(0) -1 JB,(0)

(15) < / 1 /B o 100)- 6+ 00, + a9)

+VS - [er A |20 + 274} dE dr.



The smallness conditions (9)-(11) now read as follows:

. s 0 -
(16)  JJ guon (B + (] 7)) d dr + [, ([ o) 171 )/ 4dr < 1,
(17) fol(o,o) |§|q dé dr < ey,
(18) [9(2) = Rueo| < €1,
where €1,¢, have to be determined below. W.lo.g. we assume €1,¢5 < 1. We
remark that e’ < C, C = C(My, My, T).
Step 2. Let (s,a) € Q1/2(0,0) be an arbitrary point, Q™ := Qr.(s,a),
rn = 27", We will prove inductively:
Claim (Ay):
1 N
sup  — [w(r,€)|? d¢

s—rﬁ<r§srn [€—al<rn
1
+—3// V|2 de dr < Coe?l® n>2,
”
n Q"

with a constant Cy = Co(M;, Mo, T) which does not depend on either n or .
Claim (By):

r;”/s// |@| - |7(1, &) — T (7)| dE dr
+r;5// o dgdr <€} n >3,
Qn

where 7,(7) := m fBr,.(a) (7, &) d€.

From (Ay) it follows r72 [ ) [d(s,€)]* d€ < Co and further
[@(s,a)|* < Co, if (s,a) is a Lebesgue-point for |w]?, i.e. almost everywhere in
CQI/Z(OaO)'

To prove (Az), we choose a smooth function ® > 0, ® = 1 in Q?and ® =0
outside Q' and see from (15), that the left hand side of (A2) is bounded by

gl - o] + @] + | + |7 - |w T.
C [ [ Al il + g + 131 ol de

If €1,e2 are small enough, this is at most Coef/s by Holder’s inequality, (16)
and (17).

Step 3. (Ax), 2 < k < n, implies (Bpy1), if n > 2.

We use the following Sobolev and interpolation inequality (see [CKN],
Lemma 3.1.):

/ / @ de dr < Cri/?{( sup / (7, €)[° de )2
Q» [€—al<r,

—_p2
s—r2<r<s

. 2 70\3/4 <12 3/4
H s [ e[ [ vapasan,

s—r2<7<s



From this and the inductive hypothesis (A, ) it follows:

(19) r;fI// lof® de dr < Cr;5// [@]3 d¢ dr < C*ey.
Qn+1 Qn

If €1 is so small, that

1
C*Ei/s S 5

is satisfied, then
1
(20) e / / [ dg dr < =}/,
Qn+l 2

The second term in (B,41) causes more trouble. In step 4 we will give a
sketch of proof for the following estimate:

//Qm @] - |F = Fnpa| dE dr
= C(/ /Qm 5] d¢ dr)t/?

) 13 2/3 5/3 =13 1/3
(f [, vatazarqteseninf [ lapdeansy
sonffif [t anise

~2 -~
s (f e L
ra<[E—al<rs

s—ri_H(TSs !E‘alq

(21) ~|—Cr2_,,1(//Qn+l |1])|3 dfdr)l/s

A [ vopagaryr e[ [ ardeansy

+Cri P sup / [, €)[? de)V/®
|E_al<rn+l

s—ri+1<r§s
f [ apdeane [ ([ aean
Qrtt s=1/16 J|¢-al<1/4
= I+ 11+ 11T+ 1V.
These four terms are estimated using (16),(19) and (Ay) (note that ¢; < 1 ):

I < C(Cerry)P{(Cerrd)™? 4 e1r33(Cerrd)13) < Ceyr?,



n—1

11 < Cri3l3(Ceyr?)/3. Z sup {r;‘]/ |@|? de
k=28—7‘§<753 rr41<[€—al<rk

+Cerll ([ af? de)'/?)

re+1<[E—al<ry
n-1
061/31»2(2 reell® < Cenn,
I1I < Cri(Ceyrd) 3 (e f/s +€11/3) < Ceyrkt/3,
IV < Cri¥ 3 (Crd iP5 (Ceyrd) oetl® < ey 25,

Collecting terms we obtain from (21):

’:‘ﬁ/s// | |7 = Tny1|dE dr
Qn+1
< Cerry P12 + 0 1 0220%) < 0y

We require now ¢ to be small enough to satisfy

1
cra <3

and conclude:

_ 1
(22) nﬁ/*’» // |7 — Tpytldédr < = 2/3.
g+ 2

From (20) and (22) we obtain (By41).
Step 4. We give a sketch of proof for (21).
Applying div to (14), we see that 7 is a weak solution of

3
Z Qw(])v( ) 4 e’\te”%bg{)zbg?]

ij=1

3
(23) Z Qw(l) (5 — Rug, )(J) + eAze,\tD@g{)wg?]

Qw(j)(ﬁ — Rue)(®) 4 eMterto i) g0,

?3

Now we can proceed in exactly the same way as in [CKN], Lemma 3.2. : lo-
calization of (23), integral representation for 7, Calderon-Zygmund theorem,
etc.



The only change lies in the additional term @) (35— Rvs, )*), which is treated
by using the smallness condition (18): |§ — Rve,| < €; on B1(0). The time
dependent factor e*e?e is estimated by a constant C' = C(My, M, T).

Step 5. (Bx),3 < k < n, implies (A,), if n > 3.

This may be proved by copying the corresponding part of [CKN] : pp. 792-795.

We have to insert a regularized fundamental solution of the backward heat
equation into the energy inequality (15). We remark, that our energy inequality
(15) differs from that one used in [CKN] only by bounded factors. |

Proof of Theorem 2. We follow the proof of [W], Theorem I11.2.1., so we
only give the estimates without calculations.

Let K be so large, that {|z| > K — 6} C Q.
Let 0 < R? < -g— fixed, 0 < 6 <t < T, x| > K, then is Qg(t,z) C [%,T] x Q.
We have:

// lw*d¢ dr < C'Rl/'z”w[[iw,a(QR)
R
9/5

1/2 6/5
S CREC sup  Melleamo)™ - IVwll o pe,o, 200

[ [ 1wl imldedr < R eipullzusgn -rllen
R
< CRI/?”“’”LIDN(QR) : lIWl'L3/2((t—R2,t),L9/5(B,q))v

t
5/4 2 5/4
/t—Rz(/lf—:t]<R lﬂ" d&) dT S CR IIWI|L3/2((t—82,3),L9/5(BR))'

Using the integrability properties of w, g, we conclude that the integrals in
(9),(10) become uniformly small on Qg(t, z) for all ¢ € [6,T] and fixed R, if
|2] — 00, i.e. (9),(10) are fulfilled if [z| > K for a constant

K =K(§T,w,r, g, M1, My).

If K is sufficiently large, we deduce from (3):

| @ —Veo| < % on Bpg(z)

for |z] > K.

The conclusion of the Lemma yields the statement of Theorem 2.
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