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1 Introduction

By results of Boggio ([2], [3]) it is known that on balls in R™, with n > 1, the
biharmonic Dirichlet problem is order preserving, that is, the solution u of

Ay =f in Q, 1)
u= a%“ =0 on 09,
for @ = {z € R*;|z| < R} satisfies u > 0 whenever f > 0. One also finds
that the corresponding first eigenfunction is strictly positive. This biharmonic
Dirichlet problem appears in the linearized clamped plate equation.

For the (second-order) Laplace problem such a positivity preserving property
holds for every domain in R™. Although an early conjecture of Boggio and
Hadamard ([14], [15]) claimed that such a result would hold for the biharmonic
operator on arbitrary nice convex domains, numerous counterexamples have
been constructed since then. On many domains both the biharmonic Dirichlet
problem is not order preserving nor is the first eigenfunction of fixed sign. See
the counterexamples to the Boggio-Hadamard Conjecture of [7], [8], [4], [6], [17]
and [23]. Two-dimensional domains which are in an appropriate sense close to
a ball however do have the sign preserving property. Such a result was obtained
in [11].

The sign-preserving property for (1) is equivalent to having a positive Green
function. By an application of Jentzsch’s Theorem ([16]), or the Krein-Rutman
Theorem ([19]), it follows that a strictly positive Green function implies that
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the first eigenvalue of
(2)

is simple and that the corresponding eigenfunction is positive. Hence in two
dimensions the eigenfunction also remains positive if the domain is ‘not far’
from a ball. By a direct approach it has even been shown ([12]) that in higher
dimensions the sign of the eigenfunction remains fixed under small perturbations
of the domain.

AZp =\ in Q,
Y= a%cp=0 on 012,

A question in this area still left open was mentioned to us by James Serrin
[24]. Suppose that one considers a smooth deformation of the domain, say
t — Q; with Q¢ = B and B a ball. For such a family of domains we rephrase
this question as:

Can it happen that ‘positivity preserving’ and ‘first eigenfunction positive’ fail
simultaneously?

Or in other words, if ¢, is the largest number such that (2) on Q; has a
simple first eigenvalue with positive eigenfunction for all ¢ € [0,t.) and if ¢, is
the largest number such that (1) on € is strongly positivity preserving for all
t € [0,t,), can it happen that t. = t,7 By the argument using Jentzsch’s result
one finds ¢, > t,. We will show that for appropriately defined deformations
the inequality is strict and hence the answer to the question above is negative:
te > t,.

In order to study this question we include a real parameter A in (1) and
consider for Q C R”, a bounded domain with 0Q € C?™*t!, the problem

(—A)"u=Xu+f inQ, 3)
k
(8%) u=0 on 0 with0<k<m-1,
and we allow m € {2,3,...} . Positivity preserving properties of this system have
been studied in [12]. For Q = By = {z € R"; |z| < 1} there is A¢,;m,n € (—00,0)
such that (3) is positivity preserving if and only if A € (A¢,m,n, A1,m,B,) -

Note that, since the realization in L?(Q), with D = H>™2(Q) N HJ"*(), of
the boundary value problem (3) is self-adjoint and has a compact inverse, the
spectrum is discrete and consists of real eigenvalues. Since the coefficients in-
volved are constant and the boundary is C?™*!, the eigenfunctions are identical
for the realization in L? (2) as well as in C () . Indeed, the eigenfunctions are
in C?™ (Q) by standard regularity results (see [1]). Note that for each domain
Q the first eigenvalue Ay 0 is well defined by the corresponding Rayleigh-
quotient. Isoperimetric questions for the principal eigenvalue of the biharmonic
Dirichlet problem have been studied by Talenti in [25].



2 Varying the parameter in the resolvent

Let us denote by A1, .0 € Rt the first eigenvalue and by G,z 0 the Green
kernel corresponding to (3). In other words, the solution of (3) for A < A1 .0
can be written by means of this kernel:

4 (@) = Gmnof) @) = /Q G (@:9) f () dy.

Since the boundary value problem is self-adjoint with respect to the standard
inproduct Gm .0 (%,y) = Gma0 (y,7) for all z # y € Q. By [1] it follows that
Gmaa (z,7) € C?™7 (Q\ {z}) forallz € Q, v € (0,1).

Since all eigenvalues are real and satisfy A > Aq o one finds that for all
p € R with A < g < A1 ;0 the solution of

(A" u=pu+f inQ, 4)
(%)kuzo on 90 with0<k<m-—1,
with f € C (Q) is well defined by the following Neumann series:
s k
u=Y" (9mra(B=2) Gmarof- (5)
k=0

Since G, 2,0 is a positive definite operator, the spectral radius of G, » o satisfies
—1
v(Gmaa) = Arma —A) .

Lemma 2.1 Suppose that Q and XA < A1 m,q are such that
Gmaro (z,y) >0 for allx £y € Q.

Then, for p € R with A < pp < Ay ;.0 one has
Gmp0(z,y) >0 for all x # y € Q.

A related result in an abstract setting can be found in [5].

Proof.  Since the operators G, o are nonnegative, it follows that G, ,. 0 =
0, (= NF Gl o > (m—A) G2\ q» or in other words:

G @) 2 (=3 [ o @2)Gmaa () dee (0)
z€Q

Now fix # # y € Q. Note that G,z (z,-) cannot be identically zero.
Indeed, let o1, be the eigenfunction of (3) for m = 1 and use (p1,1)™ as a
testfunction. Since @11 > 0in Q and (p1,1)™ satisfies the boundary conditions
we find that Gz, (2, ) = 0 implies

0< (pra @)™ = Gmaa (=A™ = N (pr)™ ) (@) =0,



a contradiction. Hence there are §,¢ > 0 and 2y € Q such that B; (z0) C Q\ {z}
and
Gmao (x,2) >e>0for z € Bs(2) - (7

Next we show that G, x o (+,¥) cannot be identically zero on open sets. Sup-
pose that Gy, a0 (+,y¥) = 0 on some open set U C . Then the unique continua-
tion principle for elliptic equations (see [20]) applied to ((—=A)™ — X) G (y) =
0 on Q\{y}, implies that G 0 (-,y) = 0 on Q\ {y}, a contradiction. For
U = B; (#0) it follows that Gz 0 (-,y) Z0.

Combining with (6) and (7), we have, with e* = (u — A e,

G0 (T,y) >¢€* / G0 (2,y) dz > 0. O

z2EB;s (Zo)

Lemma 2.2 Suppose that Q and X\ < Ay 0 are such that
Gmao(z,y) >0 for all x £y € Q.

Then, for p € R with A < p < A1 .0, one has

(82 > Gmu0(x,y) >0 for all z € 092, y € Q, (8)

where n, denotes the inward normal.

Proof.  Let y € €. By the previous lemma Gy, ;.0 (-,y) > 0 holds in Q and
k
since (%) Gmp0 (- y) =0 on 0Q for k < m, it follows that

( 0 )m Gmp0 (y) > 0 on 09Q. 9)

on,

Next we fix z € 9. From the resolvent formula
G = G (T + (1= ) G0
we find

quIMQ (1'7 y) = Gm,)\,Q (x,y) + (/‘L - )‘) / Gm,X,Q ('7;7 z) Gm,u,ﬂ (za y) dz.
Q

Using Gm,u,0 (+,¥) > 0 and (9), which also holds for g = J, it follows that

(& )me,u,g @ = (5 )mam,A,Q (e,0) +

6’"4;,; anz

(u—)\)/g( 9 )me’)\’Q (x,2) Gm,p,0 (2,y) dz.

on,
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By the Green function estimates of Krasovskii ([18]) the integral is well-defined
for quite general 2mtP-order elliptic boundary value problems on bounded do-
mains in R” :

1 if 2m —n > |a| + |3/,
Hlel+18]
Ox*OyP

G(x,y)\ <coapd log(1+lz—y[ ") if2m—n=la|+|8],

|z =y =B i om — < o] + 18]

Since by the previous lemma G, .0 (z,y) > 0 for all z € O\ {y}, we find that
m
if (%) Gm.0 (z,2) > 0 for some z € Q, then the estimate in (8) holds for

all y € Q. Note that z — ( o )m Gma (x,2) € C (Q\{z}).

On,

m

Now suppose that (%) Gm 0 (z,2) =0 for all z € Q. Then for every
f € C(Q) the solution u of

{ (-A)"u=pu+f inQ,

10
(ain)kuz() ondN with0<k<m-1, (10)

satisfies ((%)m u (z) = 0. Let d (z,09Q) denote the distance of z to 91, that is
d(z,0Q) = inf {|z — 2'| ;2 € 0Q}.

Note that d(-,09) is Lipschitz continuous for every Q. However, since 9Q €
C?m+1, there exists a neighborhood T's = {z € Q;d(2,0Q) < &} such that
d(-,0Q) € C*™*! (Ty), see [9, Lemma 14.16]. Let w € C* (Q) be such that
w = lonTy/5 and w = 0 on Q\Ts. Then u., defined by u, (z) = d (z,00)™ w (z),
satisfies (10) for f = ((=A)™ — p) u, and ()" u. (z) > 0, a contradiction. 0

Corollary 2.3 Suppose that Q0 and A < A\ m 0 are such that

Gmao(z,y) >0 for all x £y € Q.

Then, after suitable normalization, the first eigenfunction v1,m,q is unique and
satisfies for some c; > 0

o1,mq (z) > a1 d(z,00)™ for all z € Q.

Remark 1. Note that the boundary conditions and the fact that 1m0 €
C?™ (1) imply that there is ¢ > 0 such that

o1,ma (z) < cad(z,00)™ for all z € Q.

Proof. [of Corollary 2.3] Since Gy p0(2,y) > 0for z # y € Q and p €
(A, A1,m,0), one may use Jentzsch’s Theorem (see [21, Theorem 6.6] or [16]) to



find that G, ,,0 has a unique (normalized) eigenfunction ¢; with ¢; > 0 a.e. in
(). The stronger estimate is a consequence of Y1,m.0 = (A1,m,Q — 1) Gm,u,0¥1,m,0
and the estimates for G, ;.0 (z,y) in the previous two lemmata. d

Remark 2. For the biharmonic operator in one dimension, Schréder [22,
Theorem 6.3] gives conditions where positivity breaks down. We take Q =
(—1,1) and consider

{ u" (z) = du (z) + f (z) for —1<2z<1 (11)
u(-1)=d' (-1)=u(l)=v' (1) =0.

Using his terminology we set M = {(Lx, B) ;A € I} with Lyu = «"" — Au and
Bu = (u(—l) ,u' (1), u (1), (1)) . Let I be an interval containing 0. For

A = 0 the boundary value problem (11) is inverse positive. According to [22],
inverse-positivity breaks down when:

1. Lyu =0, Bu = 0 has a nontrivial solution, or

2. Lyu =0, (u (1) ,u (-1),u" (-1),u (1)) = 0 has a nontrivial solution.

In our case, his third possibility equals the second by symmetry. The first
possibility is reached for A = A; > 0, with A; the first eigenvalue. Since

@1 (x) = cosh ( y )\1) cos ( y Alw) — cos (ﬂ) cosh (f/)\_lx)

where A; is such that ¢} (1) = ¢} (=1) = 0, we find that A; is the smallest
positive zero of

ta,n(4 )\1) = —tanh(4 /\1) .
The second possibility is reached for A = A\, < 0 with
¢c (z) = sin (y) cosh (y) — cos (y) sinh (y) ,

where y = {/=2< (z + 1) . The number ). is determined by ¢. (1) = 0, that is,
Ac is the largest negative number such that

-A =
tan (24 4C> = tanh (2\4/ 4C> .
A numerical calculation yields Ay = 31.285243... and A, = —59.430266... .
For A € (¢, A1) one concludes that (11) is inverse positive.

In this fourth order example Lemma 2.2 is sharp in the sense that for
A < A and |\ — ;| small there exist y € (—1,1) (close to 1) such that
(%)2 Gz, (-1,1) (—1,y) < 0. This can be shown by an explicit calculation of
these Green functions.



3 Perturbing the domain

It is not obvious that for small perturbations of the domain the Green function
or the eigenfunction remains positive. Such problems have been studied in [11]
and [12]. In [11] it is shown that in 2-dimensional domains the Green function
for A = 0, and hence also the first eigenfunction, remains positive whenever the
domain Q is close to the disk in R? in C?™+!_gsense. Whether or not the Green
function remains positive for small perturbations of  C R"® with n > 2 is still
an open question. The eigenfunction however is shown to remain positive for
small domain perturbations in any dimension ([12]).

For a precise statement we need to define a continuous family of C*-domains.
The families of domains that we will consider start with Q¢ = B, a ball, and
will deform C*-smoothly. We will be interested in the largest ¢, t, such that
the first eigenfunction, respectively the Green function on €, is strictly positive
for all ¢ € [0,¢.), respectively ¢ € [0,1,) .

Definition 3.1 Let k be a positive integer. We say that the collection
{Q4;t € [0,1]} 4s a continuous family of C*-domains in R™ if there erists a
family of functions {h; € C* (Qo; R™) 5t € [0,1]} such that:

1. Qq is bounded and 0Qy € C*;
2. for every t € [0,1] the mapping hy : Qo — Q is a C*-diffeomorphism;

3. for every t € [0,1] we have lim,_,4 ||hs — ht||Ck(§0) =0.

3.1 Influence on a solution

Let {Qt €[0,1]} be a continuous family of C?*™*!-domains in R" and let
{h;t € [0,1]} be corresponding mappings mentioned in Definition 3.1. For fixed

f € C () we consider

(=A)"u=fo (hy') in Q, (12)
(%)kuZO for0<k<m-—1 on 89,.

We will be interested in the case that {29 = B, the unit ball in R™.
Lemma 3.2 Let {Q;t € [0,1]} be a continuous family of C*™*'-domains in
R™ and let f € C (Qo) . For each t let u; denote the solution of (12). Then

lim [[us 0 s 0 (he") = | cam () = 0-



Proof.  For every t € [0,1] we will denote the unique solution of (12) by
ug. Let us define two auxiliary functions on €, namely f; = fo (h; ') and
@iy = us o hy o (hy ). For simplicity we also write g, = hs o (h; ') . We will
compare u; and ;.

First notice that for m even

/ (A%us)zdwz/ us fs dz;
Q. Q

s

this together with Cauchy-Schwarz and the Poincaré-inequality implies that

”uanm,?(Qs) < CRmyn ||fS||L2(Qs) ) (13)

where the constant cg m,, depends only on m,n and the radius R of the smallest
ball that contains (J;¢[o 1) € For m odd, the same estimate (13) holds using

(A% us)| dr = fQ us fs dz. Since ||fsl2(q,, is uniformly bounded for
s€ [0,1], 50 is ||us| rm.2(q,) and hence also [|ds| gm.2(q,) -

For w € C? (Q,) we have wo g, € C* () and
(Aw) o gs = As (w o gs)

with

> (86 ) 00e)

where (g;!), is the k™ component of g;*. The function i, satisfies

(_As mu=ft in Qt, (14)
(%)kuzo for0<k<m-—1 on 8.

Since (—A;)™ is uniformly elliptic on Q; uniformly in s, there are A and b such

8
that (—45)™ = 24 <2m @5 (2) (2) satisfies

P < Y e (@& <A™ and ladller < b for |of < 2m.

la|=2m

By [1, Theorem 15.2], respectively [1, Theorem 7.3], we find that for all
s € [0,1] there exist constants Cq, A p,n,2m,p a0d Cq, Ab,n,2m,y, Which do not
depend on s, such that

liollmmo@y < Coumpmamn (Ifells@,) + Msllia,)) and

@sllcomin(a) < Counbmzmy (”ft”ov((‘zt)+||as”co(g'i))'



Since we have a uniform bound for [|@s|| g 2(,) we may use Sobolev embeddings
(on the fixed domain ;) and a bootstrapping argument to find a bound for
[|s| ot (Q) which is uniform in s € [0,1]. By the property that hy; — h; in

C?™+1 ] and hence g; — g¢ in C?™*! as s — t, it follows that a® — a!, in C!
for s — t. Since ||@s]| c2mta(0) is uniformly bounded we find that

HQ—AV%—@Aam)aS

From (—=A)" @5 = f; + ((—A)m - (—As)m) s it follows that

— 0 for s = t.
Cv

lm s — o o, = 0. 0

3.2 Dependence on the first eigenfunction

The proof in [12] of the result that the eigenfunction remains positive for € close
to the ball uses the estimate

d(z,0B)" < p1.ma (z) <cad(z,0B)™ for z € B. (15)

Since the proof only uses this estimate, and not the fact that B is a ball, we
may refine this proof in order to show the following result.

Theorem 3.3 Let {Q;t € [0,1]} be a continuous family of C*™T!-domains in
R™ with to € [0,1] and 4, = Q. Suppose that A1, is the first eigenvalue of
(8), that M m.q is simple, and that

‘plmQ() (plmQ() _
< e . 1
B a0 <SR g aayr <™ (16)

Then for all € > 0 there is 6 > 0 such that for t € [0,1] with [t —to| < I :

O<c=

1. the first eigenvalue M\ .m0, is simple and | A m,.0 — M,m0.| < €

2. the corresponding eigenfunction @1 m.0,, ofter suitable normalization, sat-
isfies
(plmﬂt( ) P1,m,Qs (l‘) _
c—e=inf ——-2 < gup ~— > -—--=C+e¢ 17
zeQ d(z,00)" — weé’t d(z,00) (17)

Proof.  See [12, Lemma 5.1 and Theorem 5.2]. For h; as in Definition 3.1, one
finds that there exists § > 0 such that for [t — ¢o| < &

lerma () =erma, (ke o byt O) [l gom(a,,) <&

o \"* a \"* _
( ) P1,m,Q = (6n ) (‘le,m ohgo htol) =0

on,

Since




for all k € {0,...,m — 1}, it follows that
|orm.e (@) = prmea, (heo by (2))] < ed(z,00)™,

implying (17). O

3.3 Conclusion for the sign change

Theorem 3.4 Let {Q; C R*;t € [0,1]} be a continuous family of C*™ ' -domains
with Q¢ = B. Set

ty =sup{t € [0,1];Gmo,0, (z,y) >0 for allz #y € Q and s < t}.

Then there is € > O such that for all t <ty +¢ the first eigenvalue is simple and
the corresponding eigenfunction satisfies

Prma, >0 in Q. (18)

Proof.  Suppose that G 0,0,, (7,y) changes sign. Since G, 0,0,, is continuous
on Q%\ {(z,z);z € Q} thereis f € C (Q,) with f > 0 and the corresponding
solution u being negative somewhere. Let u; be the solution of (12) with this f
on the right hand side. Then we find by Lemma 3.2 that u;o h; oht_g Ly U, = U
uniformly. Since u; > 0 for all ¢ < t, and u;, # 0 we obtain a contradiction.
Hence we have G 0,0,, (z,y) > 0forall z,y € Qfg. Then we find by Corollary
2.3 that ¢1,m,,, > cd(z)™ for some ¢ > 0. By Theorem 3.3 it follows that
there is € > 0 such that (18) holds for all ¢t € [ty,t, +¢€) and hence for all
te0,ty+¢). O

We have proven that Gm,0,, > 0 and ¢1,m,0, ,. > 0 for small positive
€. In order to answer the question whether or nor the Green function remains
positive under small perturbations of the domain, that is ¢, > 0, one would
have to show that G 0,0, > 0 implies Gy 0,0,,. > 0 for small positive . As
mentioned before this question is still open in dimensions n > 3. The symbol >
denotes a strict ordering in an appropriate lattice. In [10] one finds > defined
as follows for the Green function of (3) with 2m > n : G = 0 if and only if there
is ¢ > 0 such that for all z,y €

. n
G o) > (A0 d(,00)" " min (1, d‘””’f”)dﬁi”m)) -
r—y

Note that from our proofs one finds that G, x o, > 0 implies G, .0, > 0 for
1€ (A M m,0,) . Assuming that the Green function remains positive in >~-sense
under domain perturbations for all A € (A, A1,+) , a schematic graph of ¢ and
A for which the Green function is positive should have the appearance that is
shown in Fig. 1. In the grey area G50, > 0 holds true.
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