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Abstract

Existence results available for the semilinear Brezis-Nirenberg eigenvalue
problem suggest that the compactness problems for the corresponding action
functionals are more serious in small dimensions. In space dimension n = 3,
one can even prove nonexistence of positive solutions in a certain range
of the eigenvalue parameter. In the present paper we study a nonexistence
phenomenon manifesting such compactness problems also in dimension n =
4.

We consider the equation —Au = Au + v® in the unit ball of R* under
Dirichlet boundary conditions. We study the bifurcation branch arising from
the second radial eigenvalue of —A. It is known that it tends asymptotically
to the first eigenvalue as the L°-norm of the solution tends to blow up.
Contrary to what happens in space dimension n = 5, we show that it does
not cross the first eigenvalue. In particular, the mentioned Dirichlet problem
in n = 4 does not admit a nontrivial radial solution when A coincides with
the first eigenvalue.
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1 Introduction and main result

In their celebrated paper, Brezis-Nirenberg [9] studied the following semilinear
eigenvalue problem

—Au = u+ |ul* ~2u in Q (1)
u=0 on 02

where Q C R" (n > 3) is a bounded domain and 2* = -2 is the critical Sobolev
exponent. Since they were interested in positive solutions of (1), they assumed that
0 < X < 1, where y; denotes the first eigenvalue of —A in H{ (£2). Subsequently,
many other papers studying (1) appeared and it seems almost impossible to give a
complete list of references. So, let us restrict our attention to radial sign-changing
solutions in the case where 2 = B (the unit ball). In this situation, (1) becomes an
ordinary differential equation and the space dimension n > 2 may be considered
as a real parameter. More precisely, putting r := |z| (so that 0 < r < 1) and
assuming that v = u(r), (1) reads

W)+ )+ ) + ()P ur) =0,

(2)
wW(0)=u(1)=0, u0)=w,

where, for our convenience, we overdetermined the problem by adding the “shoot-
ing condition” u(0) = w. In general, (2) admits no solution since it involves 3
boundary conditions. However, for any w > 0 and for a suitable A = A(w), prob-
lem (2) admits a solution u,, with precisely one zero in [0, 1), the second zero being
at r = 1. We are here interested in studying the behaviour of the map w — A(w).

Let p1 = p1(n) and pg = pz(n) denote the first two (positive) eigenvalues
of the problem

n —

W)+ I ) ) =0 (0<r<1),  @(0) =$(1) =0,

so that the eigenfunction corresponding to i is positive whereas the eigenfunction
corresponding to ue has exactly one zero in [0,1). If n is an integer, p; and pus
represent the first two radial eigenvalues of —A in H}(B). It is well-known (cf.
e.g. Remark 4 in Section 3) that for any n > 2 we have

lim AM(w) = po -

w—0
Much richer appears the picture of the behaviour of A(w) as w — 4o00. As we

shall see, it strongly depends on the parameter n. Firstly, in “large dimensions”
the bifurcation branch collapses to A = 0. More precisely, we have

itn>6 then lim Aw)=0. (3)

w—00



Statement (3) was established by Atkinson-Peletier [8, Theorem 4 (b)], see also
previous results by Cerami-Solimini-Struwe [11] for integer values of n > 7. Subse-
quently, Atkinson-Brezis-Peletier [5] proved that the behaviour changes for n = 6:

itn==6 then there exists p € (0, 1) such that  lim A(w)=p. (4)

Concerning the second bifurcation branch for “small dimensions”, it is mentioned
in [5] between Theorems A and B that limy .o Aw) = 272 while py = 72, if
n = 3. We believe that the techniques developed by Atkinson-Peletier [6, 7] will
allow to prove in the full range 2 < n < 4 that the second bifurcation branch does
not reach p;:

if2<n<4 then there exists p € (1, pi2) such that WILH;O Mw)=p. (5)
But the most interesting cases seem to be when the bifurcation branch skips pre-
cisely one eigenvalue. As shown in [5], this occurs in the “intermediate dimensions”.
More precisely, we have

if4<n<6 then lim Aw) = 1 . (6)
w—00
Unfortunately, (6) nothing says about the “asymptotic monotonicity” of the map
w +— A(w). This was studied in [13] where it was shown that if 4 < n < 242v/2 then
AMw) > p for sufficiently large w, whereas if 2 4+ 2v/2 < n < 6 then A(w) < p; for
sufficiently large w. Therefore, for any n > 2 4 2v/2 the second bifurcation branch
eventually goes below the first eigenvalue j;. Since the number n = 2 + 2/2
plays a crucial role in the description of (1), it was conjectured in [13] that the
second bifurcation branch does not cross p; if n < 2 + 2v/2. The aim of this
paper is to partly prove this conjecture. We show that the bifurcation branch in
dimension n = 4 does not reach the first eigenvalue, namely that A(w) > uy for
all w > 0. We study dimension n = 4 for two crucial reasons. Firstly, because it is
an integer dimension so that a corresponding result for the elliptic problem (1) is
also obtained, see Corollary 1 below. Secondly, because in this case the nonlinearity
|u|2*_2u simply becomes u> which is analytic, and analytic nonlinearities are easier
to tackle with computer assisted proofs.
Our main result reads:

Theorem 1 Assume that n = 4 and let AM(w) be defined as above. Then, for all
w > 0 we have AMw) > p1.

We prove Theorem 1 in three steps. In Section 2, by refining previous esti-
mates in [5, 6, 7], we prove Theorem 1 for w sufficiently large (exactly for w > 349).
In Section 3, we use a comparison method and the variational characterization
of eigenvalues in order to show that A(w) > p1 whenever w < /us — p1. Fi-
nally, in Section 4, we prove Theorem 1 for “intermediate” values of w (i.e. for
Ve — p1 < w < 349) with the assistance of a computer. We recall here a possible
definition of computer assisted proof:



Definition 1 A proof is called computer assisted, if it consists in finitely many
elementary operations, but their number is so large that, although each step may
be written down explicitly, it is only practical to perform such operations with a
computer.

As a straightforward consequence of Theorem 1 (see also Remark 2 below),
we obtain

Corollary 1 Let B be the unit ball of R* and let 1 be the first (radial) eigenvalue
of —A in HE(B). Then the problem

—Au = pu+ u? in B (7)
u=0 on 0B .

admits no nontrivial radial solutions.

Let us recall that (7) does admit a nontrivial (nonradial nonpositive!) solu-
tion, see [12]. This result, together with Corollary 1, complements [10, Theorem
0.1] where the proof was not complete in the particular case of dimension n = 4,
when A belongs to the spectrum of —A. Moreover, Corollary 1 shows that the very
same proof cannot work in the class of radial functions and gives an explanation
why the eigenvalues had to be skipped in [2, 14, 16].

The above mentioned results (including Theorem 1) are illustrated in the
Figure below, which is obtained numerically by means of the algorithm explained
in Section 4.
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Second radial bifurcation branch A — w(\) = u(0) for n =4

With the same numerical procedure we obtained the following pictures con-
cerning other values of n. For the reader’s convenience, we also recall the values
of p1 and pe, according to [1].

n 3 4 ) 6 7
i || 7% | 14.68... [ 20.19... | 26.37... | 33.22...
we || 472 | 49.22... | 59.68... | 70.85... | 82.72...




40 12000
10000
8000

30

20 6000

4000

10
2000

) 55 35 4o 10 20 30 40 50 60

Second radial bifurcation branch for n =3 and n =5

6000 30000
5000 25000
4000 20000
3000 15000
2000 10000
1000 5000
10 20 30 40 50 60 70 20 40 60 80

Second radial bifurcation branch for n=6 and n =7

Remark 1 e It would be interesting to give a proof of (5) also for n € (2,4)\
{3}. Moreover, it would be nice to specify whether the branch approaches the
number p from the left or from the right. The latter correspondingly modified
question is also interesting in dimension n = 6. As P. Quittner mentioned to
us, the asymptotic methods developed by Atkinson-Brezis-Peletier [5, 6, 7]
will presumably allow to solve these problems.

e P. Quittner pointed out to us that for p close to pa, ||ul| behaves like (g —
p)(=2/4 Our pictures do not display this behaviour since the scale is not
suitable and the numerical calculations become unstable for y — po. In this
regime a computer assisted proof is not available and we refer to the analytic
result in Proposition 2.

2 Proof of Theorem 1, part 1

In this section we prove:
Proposition 1 For all w > 349, we have A(w) > 1.

Our proof of Proposition 1 consists in making more explicit several constants
obtained in the estimates in [5, 6, 7]. As we are basing our analysis on these papers,
we adopt their notation and we will often refer to formulas therein.

By means of scaling and of Emden-Fowler inversion

1) 1= AV (20212



equation (2) (for n = 4) becomes
Y+t 1y =0 (t>0),  yt) > yast—oo 8)

where v = wA~1/2 > 0. In [5] it is shown that y has infinitely many zeros Ty () >
To(7y) > ..., and that

lim Ty(y) = oo and lim Tj(y) =71 Vj>2. 9)
y—00 y—00
Here 7 > 79 > ... are the zeros of the function

2 = (=DF
a(t) =Vt (%> 2;%t ke (10)

where Jp is the first kind (regular) Bessel function of order 1. The first (smallest)
zero of Jy is 3.83170. .. (see e.g. [1]) and therefore,

7 =0.27244 .. (11)

Remark 2 The Emden-Fowler inversion generates a one-to-one correspondence
between solutions of problems (2) and (8). In particular, by continuous depen-
dence this shows that branches of solutions of (2) arising from an eigenvalue are
connected. Moreover, by the unique continuation principle (uniqueness of solutions
for the Cauchy problem), two different branches cannot intersect.

Note that the function « defined in (10) satisfies the differential equation
o +t3a=0. (12)
As for the relative location of the respective zeros 7 and T} of a and y, we observe:

Lemma 1 For any v > 0 and every k € N one has that Ty, > 7.

Proof. For k = 1, the statement follows from the fact that (2) has positive solutions
for some suitable w > 0 precisely when A € (0, u1). For k£ > 2, the statement follows
from Sturm’s comparison result applied to equations (8) and (12). O

We now give a refinement of [5, (3.2)]:

2y

Lemma 2 For allt € (0,T1) we have |y(t)| < 152

(Ty+1—1t).

Proof. Take f(y) =y +y> so that f is asin [7, (2.6)] with k =3, ¢ =1 and p = 3.
Let y be the solution of (8), which is none other than [7, (2.8)-(2.9)]. Hence, [7,
Lemma 2.1] entails

2yt
VE>Ti: y(t) < z(t) : i

= 13
1+42+2t (13)



By [7, (2.12)], we know that z satisfies the differential equation

1+42 1
7 C— - 23(1). (14)

Z/I(t) —

+3

Therefore, by making use of (8), we obtain for all ¢ > T7:

< y(s) +y°(s) v? > 2y
/t _ y(s) d /t d.
v /t s S AT e

By replacing the exact value of z’(¢) and taking into account that

/°° ds < 1 /Oo ds 1 1
7, S2(1+~%+2s) T4+42 Jp, 82 1492 Ty
the previous inequality (when ¢t = T7) yields

273 n 2y 1< 2y 2y 1
1++42)2 14927y 1492 1427

y/(Tl) < (

This estimate makes more precise the statement of [5, Lemma 4] (recall the limit in
(9)). From the last inequality and from [5, Lemma 2] we get that for all ¢t € (0,T1):

2y 2v 1
1442  1++2T7)

(O] <1/ (TT—1) < ) @i-t) < 2 @0 2

1+~2
which proves the statement. O
Our next goal is to provide a suitable upper bound for T3 . For this purpose we

need an estimate of y from below beyond 7). By means of the differential equation
(14) and integration by parts, we have for all ¢:

OOS—t 3 72 /oo .
ds = — —t d
/t 5t (s)ds T+ ), (s —t)z"(s) ds
2 3
v g
= —2(t) = ———. 15
1+~y2(7 () L+~2+2t (15)

Furthermore, with a tedious calculation one can find

Cs—t 2~ 2~ 9 14242t
ds = — 1 2t) 1 —F ). (16
| S s = s (e +2ntos (g (16)




Next, note that by y(t) — v (t — oo) and y"(t) = —t~3(y +¥?), one deduces
that |y/(t)| < C(v)t~2. Hence, we obtain for ¢t > T:

o / T y(s)ds =y — (s — (&) + / (s — 1)y (s) ds
= 7—/:0 Ss_gt (y(s) +43(s)) ds
> - [T [T s (17)

33
3

y(t)

2y gl
1492 1+~42+2t
2y 2
——(1 2t)1
(1+72)2( +y7+20) og(
where we used (15) and (16).
We now refine [6, Theorem 3 II] with the following:

1++924+2¢
2t

Lemma 3 For all v > e* we have T} < 2log~.

Proof. 1t suffices to show that
Vy > et Vt € [2logry,o0) : y(t) > 0. (18)
Inequality (17) shows that for all ¢ > T;:

y(t 3+ 2 72 2(14+~2 + 2t L+~2+2¢
sz(t);: s — : _ X 22) . (19)
~ 1++2 1+~2+2¢ (14+~2) 2t

Since y is positive at co and v is a lower bound for y as long as y is positive we
have that y is positive on any interval [t,00) where 1) > 0. With some calculations
one finds that

lim (1) = 1 (20)
and 82 )
i) = - 0+ 212 Pt 2+an ~ " 1)
This, together with (20), proves (18) provided that
Wy > et ¥ (2logy) > 0. (22)

We have
34372+ 12logy + 472 logy
(14++2)(1+~2+4log~)

_2(1+72+410g7) o 1+~%+4logy
(1+72)? 4logy

¥ (2logy) =




so that (22) holds if and only if

3 1 1
Ui(y) = (?+3+12 07%7+410g7) (1+?)

14+~2 1 1 2
2log (14 ) (S 414487 S0
4log~y ) \7? v?

for all v > e*. Since we assume v > e* one has

1++2 17 + 2 51 5
< < — < — =
log (1+410g”y> _10g( 16 < 2log 2007 < 2log~y 5

and may conclude:

16 8 lo lo log? log? log?
Ui(y) > 84—+ +48—2) g BT g8 T 3908 0 08 0
2y 5 ¥ ¥ ¥ 5
4\* 16 log® ~
> 8-32(= —(1-4
= ® 3(64) +72( 72>
>

16 44
7+?<1—6—8> > 0.

We see that (22) indeed holds, so that (18) also follows and the lemma is proved.
O

Next, we prove a lower bound for ¢/ (T}):

1.
Lemma 4 For all v > 110 we have y'(T1) > ﬂ
v

Proof. Since v > 110, in view of Lemma 3 we also have v > 2log~y > T3. Beyond
Ty, the solution y is concave and we obtain y'(T7) > %[y(’y) — 2z(T1)]. We make use

of [7, Lemma 2.2], according to which

2 2
¥ 2 147
y(t) > 112 (z(t) 5 log (1 + of >)

and arguing as on p.156 in [7] (case ¢ = k — 2) we get

72 { 2v° 2 (1+7)2] 2T

vy (T1) (23)

>— - = - .
1+92 [(14+79)2 ~ 2y L+92+2T
In turn, by Lemma 3, this implies

4

2y 2 g (1+7)*  dylogy

"Ty) > -
W T AT E 147 o 142



so that we have to prove that

24 2 14+7)2 4yl
Y Y 1Og( +7)° _dylogy o

Vv > 110: —
T= (14++42)(14+7v)2 1442 2~ 14+ ~2

This is equivalent to show that for all v > 110:

Hi(y) = 29" —4y(147)*log(l +7) — 2y(1 +7)*logy
+(210g2) ¥(1 4 7)% — 1.69(1 4+ 7)%(1 +~?) > 0.

Since we assume vy > 110, we have

log(1+7) < log 111 < log < log 110 < 1

1
v T 110 T 233~ 110 — 23.4°

1+y _ 111 1+72<12101

v T1100 42 T 121000

We may conclude

110\ 2 4 2
H > 2 -V 21 2_ 21 2_ 21 2
) 2 2(157) P4 = P14 - o1+ )

23.3

12101 1
—1.69—"-—=(1 22>~ (1 242 >0
12100( +79)*y" > 100( +7)*y° >0,

and the statement follows. O
For « as in (10), define the function b as in [5, (4.6)].
b(t) :=y'(Halt) —y(t)a (t). (24)

Then

b@a—y@mwm—ymn¢ﬁh<§%) (25)

Lemma 4 combined with (25) enables us to refine [5, (4.10)] with the following

V’}/ > 110: b(Tl) > @ Oé(Tl). (26)
Y

Observe that «(77) > 0 by Lemma 1.
As in [5, (4.12)] we now conclude from the differential equations (8) for y and
(12) for « that

Ty 3(s
Mﬁ)zwn)+/ y;)a@ﬁk. (27)

T1

10



Since 7y < 17 by Lemma 1 and hence 0 < a(t) < aT7) for all ¢ € (11, T1),
an estimate of the integral in the right hand side of (27) by using Lemmas 2-3 and
(11), yields that for all v > 110:

/Tl v) als) | /Tl P

3 a(Ty) ), s

2 3 oo gs 5473
(%(Tﬂrl—ﬁ))/ S < oM 1-n)

1+42) L83 T (149?)
5443
ﬁ (0.72756 4 21og)* . (28)

Inserting (28) and (26) into (27) yields

160 5443 )
b )| — — ———=(0.72 21
(1) > o(Ty) { 5 R (0.72756 + 2log ) }

1.69 54
> a(T) [— — = (0.72756 + 210g7)3] >0,
v

the last inequality being true for all v > 222. By (24) we get b(11) = —y(11)a/ (71).
Since o/(m1) > 0, we have so proved the following implications:

v>222 = b(n)>0 = y(n)<0. (29)
Since we wish to prove (29) for smaller values of v, we need to improve some
of the previous estimates. Firstly, we complement Lemma 3 with

Lemma 5 For all v € [¢%/2,222] we have Ti < 3 log~.

Proof. Let ¢ be as in (19). By (20) and (21) it suffices to show that for all v €
[€9/2,222]:

3 3+3v2+9logy + 3% logry

Q/J —log’y = 2 2
2 (1+72) (1+~2+3logy)

2(1 2431 1 2
(1++2+ og7)10< +”y)>0

1 '
(L++2)2 " Slogn

The estimate (30) holds true if and only if

3 1 1
Uo(y) = (?+3+9°7g27+310g7> (1+?)

1++2\ /1 1 2
olog (14 ) (L 4143287 S
3logy ) \~* 7?

11



for all v € [?/2,222]. Since we assume v > /2 one has

2

1+7 14.5 + 42
log (1 <log [ —=11 ) < 2log (0.287) < 2log~y — 2.5.
og( + 3logv) < Og( 155 < 2log (0.287) < 2logy

and may conclude by using also v < 222

log® 1 16
Us(y) > —logy+8—24—o 1434087 4
v ?
log” log” 1
368 0 g[8 7 g5loer 8
Y v 7y
45% 1 log”
> 2.5—24—9+—2(169—36 Ogﬂ)
¢ v
1 4.5° 168
> 2.4+—2(169—36—9>22.4+—2>0.
Y ¢ v

Hence, we see that (30) indeed holds on vy € [¢%/2,222], so that the lemma is
proved. O

We now extend the statement of Lemma 4 to smaller values of +:

Lemma 6 For all v € [91,222] we have y'(T1) > %'

Proof. Since v € [91,222] and 91 > €2, in view of Lemma 5 we have y > %10g7 >
T;. Therefore, the same arguments used in Lemma 4 lead to (23). Combining
Lemma 5 with (23) yields

23 2 (14+7)? 3logy
- log - .
L+42)(1+7)? 1+92 2y 1++2

y/(Tl) > (
That means that we have to show that

Hy(y) = 29" —4y(1+7)*log(1+7) —v(1+7)*logy
+(210g2) ¥(1 + )% — 1.69(1 + ~)*(1 ++2) > 0.

Since we assume vy > 91, we have

log(1+”y)<1og92< 1 , 1og*y<1og91< 1 ,
~ =791 T201 4 S ol —201

2
14—”y<927 147 <8282'
vy 91 v2 T 8281



We may conclude

91\? 4 1
H > 2 e 2 1 2__ 21 2__ 21 2
x0) 2 2(55) P+ = ) = g4 )
8282 1
—1.69——(1 22> — (1 242 >0
8281( +7)%° > 100( +7)y" >0,
The lemma is proved. O

Lemma 6 combined with (25) enables us to complement (26) with the follow-
ing
1.69
vy e 222 (T > = a(T) (31)

Recalling again the fact that 0 < «(t) < «(Th) for all t € (r,T1), if we
estimate the integral in the right hand side of (27) by using (11) and Lemmas 2
and 5, we get for all v € [91,222]:

54~3 3 3
< ﬁ (0.72756+ . 1og7) . (32)

Inserting (32) and (31) into (27) yields

54

T 3 3
) |y 69— - <O.72756+ 51og~y> ] >0

b(Tl) >

the last inequality being true for all v € [129,222] (it suffices to show that the
term inside square brackets is positive when v = 129). By (24) we get b(m) =
—y(m1)a’(71). Since o/ (11) > 0, we have now proved the following implications:

v €[129,222] = b(r1) >0 = y(n) <0. (33)

A third iteration of this procedure is in order:

Lemma 7 For all v € [¢%/?,129] we have T1 < 2log~.

Proof. Let ¢ be as in (19). By (20) and (21) it suffices to show that for all v €
[€9/2,129]:

1/;(§lo > 3+ 372+ Llogy + 292 logy

1087 (1+72) (1 +12 + S logn)

2(1+~%2+21 1442

2497+ 5log) <1+—5+7 >>0.
(L++2)2 5 logy

(34)

13



Estimate (34) holds if and only if

1442\ (1 51 2
—2log(1+5+—7) (—2+1+ ng) >0
Slogy /) \v

9/2

for all y € [?/2,129]. Since we assume v > ¢%/2 one has

1 2 12.25 2
log (1 + +7 ) <log (i> < 2log(0.3v) < 2logy —2.4.

5logy 11.25

and may conclude by using also v < 129

3 log” 1 15.6
Us(y) > —Slogy+78-20—2 T 4980 2
2 S e
log’ log’ 1 7.8
—25=2 T 4102 2750 +
Y y v ~y
4.52 1 1 3
> 0.51-20—5-+— (132.6 —25 Ogﬂ)
e ’}/ ry
>

1 4.5% 132
0.45+ — (132.6 - 25—9> > 0.45+ — > 0.
g e g

Hence, we see that (34) indeed holds on vy € [¢%/2,129], so that the lemma is
proved. 0

Using now Lemma 7, complementing (32) we obtain that for all v € [91,129]:

54~3 5 s
< ﬁ (0.72756+ - 1og7) . (35)

Inserting (35) and (31) into (27) yields

54

T 5 3
) |y 69— - <O.72756+ Z1og~y> ] >0

b(Tl) > T

the last inequality being true for all v € [91,129]. Similarly as above we have the
following implications:

v €[91,129] = b(ry) >0 = y(m) <O0. (36)

Summarizing, if we combine (29)-(33)-(36) we have

v>91 = y(r1) <0.

14



On the other hand, by (9) and continuity of the maps v — Tj(vy) (j > 1), this
shows that
7291 = n>T = A>p. (37)

We may now prove Proposition 1, namely that A > pu; whenever w > 349.
Assume for contradiction that A < p1. Then, using (37), we have

VAy=w>349>91/1 > 91VA = 7 >91 = A\ >,

a contradiction! O

Remark 3 One could gain the impression that with (finitely or possibly infinitely
many) further iterations, one could finally show that A(w) > p; for arbitrary w > 0.
However, some numerical experiments show that this does not seem to be the case,
therefore it seemed convenient to let the computer complete the proof for w < 349,
except for the case w € (0,5.87...), see the next section.

3 Proof of Theorem 1, part 2

In this section we prove:
Proposition 2 For all w < \/pg — 1, we have A(w) > p1.

As above, p1 and us denote the first two radial eigenvalues of —A in H{ (B).

We begin with a simple observation on solutions of the equation
3
u”(r) + = (r) + du(r) +u*(r) =0 for r > 0. (38)
r

Lemma 8 Let A > 0 and u be a nontrivial solution of (38), with u'(0) =0, then

Vr>0: lu(r)] < |u(0)].

Proof. We may assume that «(0) > 0. Consider the energy function

E(r) = %u’(r)2 + %u2(7°) + %u‘l(r),
so that, using (38),
E'(r)=4/(r) (u”(r) + du(r) + ug(r)) = —%1/(7“)2.

This tells us that r — F(r) is decreasing. Since we also have E(r) > 0 for all r,

the solution u is globally bounded. Moreover, in any further critical point R > 0

of the solution of (38), we have
A 1

§u2(R) + Zu‘*(R) = E(R) < E(0) = Zu*(0) + ~u*(0).
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This immediately gives |u(R)| < w(0) and the statement follows. O

As a straightforward consequence of Lemma 8, for all solutions of (38) one has

w= I[Iéai)]( |u] > |u(r)] vr e (0,1]. (39)

)

Proof of Proposition 2. Let w < \/uz — u1 and let u,, be a solution of (38) with
precisely one zero in the interval [0,1). This means that u, = ¢ is the second
radial eigenfunction of

—Ap=Xp+ulp inB
=0 on 0B

with eigenvalue A = A(w). In what follows H, denotes the space of radially symmet-

ric functions in Hg(B). By means of the variational characterization of eigenvalues
and (39) we have

— : 2 2 2
AMw) = nin max (/B|ch| dx /Buwgo dx)

T
dim V=2 fl¢ll 2 g)=1

. 2
> min max </ [V|™ do —w2>
VCHr peV
dim V=2 || B

L2m)=!

= pp—w? >

since we assumed initially that w < /s — 1. This completes the proof of Propo-
sition 2. 0

Remark 4 The above proof may be extended to any space dimension n > 3. In

particular, it states that A\(w) > g —w? for all w sufficiently small. In turn, Lemma
1 states that A(w) < ps for all w. Therefore, lim, o A(w) = pua.

4 Proof of Theorem 1, part 3

In this section we prove:
Proposition 3 For all \/uz — p1 < w < 349, we have A\w) > p.

Since /g — p1 = 5.8767 ..., we prove Proposition 3 for all w € [5, 349].
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4.1 Transformation

In this subsection we transform the equation (2) (with w = u(0)) in order to make
it suitable for the computer assisted proof when n = 4 and for the numerical study
of the dimensions n = 3,5,6,7.

Let t = wn?r and w(t) = wu(r) so that u'(r) = wizw'(t), u"(r) =
= w” (t). Then, (2) becomes

w”(£) + =L (1) + v mw(t) + |w(t)| =2 w(t) = 0 t € (0,00)
w(0) =1 (40)
w'(0) =0

where v = wA*T and we want to determine the second zero z of the solution of
(40) as a function of 4. Note that z = wrE = ”yﬁﬁ so that A = z2~yﬁ and
w=2"T" = ’y/\%.

Summarizing, in the case n = 4 we need to show that

5<AVA<349 = 2>~/ (41)

Since we already know that vvA < 5... and vvA > 349 imply A > u1, by
continuity (41) follows if we prove the following

Proposition 4 For all v satisfying 5 < v/p1 < 349, the second positive zero z
of the solution of (40) satisfies z > ~./{1-

In order to prove Proposition 4, we solve the initial value problem (40) with a
rigorous computer assisted method, introduced in [3]. We describe here the pecu-
liarities of this equation and we refer to the above mentioned paper for the details.
We remark that equation (40) has also been used to make the numerical experi-
ments leading to the pictures concerning the cases n = 3,5,6,7 displayed in the
introduction.

4.2 Technical lemmas

In this subsection we recall the functional analytic background introduced in [3], to
which we refer for the proofs. Let R > 0, let Hr be the space of analytic functions
in the open disk Dr = {z € C: |z| < R} and let X and Vg be the subspaces of
‘Hpr with finite norm

oo
[ull xy = Y Jur| B and July, = sup |u(t)]
=0 teDR

respectively, where

u(t) = iuktk (42)
k=0
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and uy € R. In the sequel, we denote by Zg either Xg or Vg, and by || - ||z, the
respective norm. The following lemma is straightforward:

Lemma 9 The spaces Zr are Banach algebras, i.e. for all u,v € Zr we have
w € Zr and ||z, < [lul|z, 0]z,

Remark 5 In particular, this implies that [[u™( z, < [[u[/’Z, for all m € N and
le¥|lz, < elllzr .

The derivative operator Dg : Zr — Hpg is unbounded, but if we choose R’ < R
we may define Dr g/ : Zr — Zr/ and we have the following

Lemma 10 HDR.,R’” < CR.,R’; where OR,R/ = (eR’ 10g %)71 when ZR = XR and
Crr = (R—R')™! when Zgp = Yg.

Since we want the computer to handle functions in Zg, we need to represent
such functions by using only a finite set of representable numbers [15]. Our choice
is to write functions in Zi as

N—-1
u(t) =Y ugt® +tVE,(t) (43)
k=0

where E,, € Zr. We store 2N + 1 representable numbers: NV pairs represent lower
and upper bounds for the value of the (real) coefficients {uy}, while the last number
is an upper estimate of the norm of E,.

Lemma 11 Let 0 < R' < R. If u € Zg is represented as in (43), then u' € Zg 1is

represented as
N—-1

u'(t) =Y upth +tVE, (1),
k=0

where vy, = (k4 Dugyr for k =0,...,N =2, vy_1 = [-N||Eullzp, N||Full 2],
| Eullxn < |Eullxn(N/R+ Crrr) and | Eyllyg < |Eullye(2N/R + Cr r).

4.3 The first step

An easy computation shows that, when v > 1, the solution of (40) can be extended
analytically at least to the disk centered at 0 of radius R = 1. For this reason, for
the first step we set R = 11/10 and

Xp ={w e Xg : w(0) =1, w(t) = w(—t)}.

Let L: Xgr — Mg and f, : Xg — Xg be defined by
2 3 / —

Lw=w —|—¥w and fr(w) ==y w —w”,

18



and consider the operator
E,:=(L7'f): Xr — Xg .
The following lemma is straightforward:

Lemma 12 The operator L is invertible and solutions of equation (40) in the
interval (0, R) (more precisely, their analytic extension in Dg) correspond to fixed
points of the operator F,.

If -
= Zwktk y
k=0

with waog41 = 0 for all integers k, then
w=Y"(k+2)(k+ w2t
k=0

inverting this relation we get
_ 0 wktk+2
L'w=1+Yy ————— .
];) (k+2)(k+4)
Let B(0,K) = {w € Xg : |w||x, < K}, then

Lemma 13 The Lipschitz constant of F., restricted to B(0, K) is at most

2

-2 2
= (77 +3K7).
Proof. We have
- Rk - R?

L71 — |wk| Rk - .

S ;(k+2) i+ 4) Z'“”“' g vl
The statement follows considering that f,'y(w) = —~~2 — 3w? and that X is a
Banach algebra. O

Assume that we have an approximate solution @w(t) = iv 01 wyt*, where

{wy} are interval values satisfying wg = [1,1] and war; = [0,0] for all k& =
0,...,N/2 —1 (since 0 and 1 are representable numbers, cf. [15], we may choose

intervals of width 0 for wy and ;). The following lemma yields a true solution
close to w:
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Lemma 14 Let w(t) = Zg:_ol wytk. If there exist e,p > 0 such that | F,(w) —
W||lxr < € and the restriction of F., to the ball B(w,p) has Lipschitz constant
L(F,) <1—¢/p, then there exists a fixed point of F., in B(w, p).

Remark 6 Typical values of the constants mentioned above are as follows: K ~
1.2, L ~ 0.8, &,p ~ 10~ 7. The actual values of the constant occurring in Lemma
14 can be obtained from the function Basics.Integrate of the Ada program.

4.4 Second step
By applying Lemmas 10 and 11 we rigorously compute Wy := w(1) and W; :=

w'(1). To proceed, it is convenient to make another change of variable. Let V (s) :=
tw(t) where s = logt. The differential equation (40) together with the initial
conditions in ¢t = 1 transforms into

V! = (1 _ 772825)‘/ _ V3

V(0) =W, (44)

VI(O) =Wy + Wy

Fix R > 0 and consider the space Vg; let
Vr={V € Yr:V(0) =Wy, V'(0) = Wy + W}
and let C,, : J>R — J>R be defined by
(V) = D21 =2V — V7],

where D=2 : Yp — J>R is the inverse of the second derivative. It is clear that the
analytic extension in Dg of the solution of the initial value problem (44) is a fixed
point of the operator C. The analogue of Lemma 14 reads:

Lemma 15 Let o(t) = Zg:_ol vgt*. If there exists e,p > 0 such that ||Cy(v) —
Uy, < € and the restriction of Cy to the ball B(v,p) has Lipschitz constant
L(C,) <1—¢/p, then there exists a fized point of C in B(T,p).

To proceed, we need an upper bound for the Lipschitz constant of C.:

Lemma 16 Let Bx = {v € Vg, ||[v|ly, < K}. The Lipschitz constant L(C.,) of
the operator C., restricted to By satisfies

2

_9 9 R
L(C,) < glg)lc%(l—w %e**) + 3K* -
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2 R?
H: 2

Proof. The statement follows when considering || D~

9 — s — s
57 (Q—~72e*)V = V?) = (1 -y 2%*) —3V?
and the definition of the norm in Vg. ]

In order to solve equation (44), we proceed as follows. We compute an ap-
proximate solution v as a truncated power series, we compute its norm and by
Lemma 16 we estimate R in such a way that C has Lipschitz constant not larger
than 0.95 in a ball of radius equal to the norm of the approximate solution. Then
we compute an upper bound for |C,(v) — 7|y, and we choose p > 0 such that the
assumptions of Lemma 15 are satisfied. Finally, by using again Lemmas 10 and 11
we compute V(T') and V'(T') for some T close to, but less than R.

4.5 Successive steps and proof of Proposition 4

We can now proceed by setting Vo = V(T') and V; = V/(T') and by solving

with the method described above (up to small adjustments). It is straightforward
to iterate the procedure as many times as necessary, in order to obtain a lower
bound for the second zero of the solution.

Finally, we partition the interval [5,349] into the union of small intervals. For
each such interval we solve the equation (40) as described above, until we reach
the second zero z and we check the inequality z > v,/p1, which proves Proposition
4. See the Ada files [4] for the details of the proof.

Acknowledgement. We are grateful to P. Quittner for several interesting and
useful remarks.
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